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In the space of system parameters, the closed-form stability chart is determined for
the delayed Mathieu equation de­ ned as �x(t)+( ¯ +" cos t)x(t) = bx(t ¡ 2 º ). This sta-
bility chart makes the connection between the Strutt{Ince chart of the Mathieu equa-
tion and the Hsu{Bhatt{Vyshnegradskii chart of the second-order delay-di¬erential
equation. The combined chart describes the intriguing stability properties of a class
of delayed oscillatory systems subjected to parametric excitation.
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1. Introduction

Systems governed by time-periodic delay-di¬erential equations often come up in dif-
ferent ­ elds of science and engineering. One of the most important mechanical appli-
cation is the dynamics of milling, where the regenerative e¬ect of the cutting process
causes the time delay, while the time-varying number of active teeth causes a time
periodicity exactly equal to the time delay (see Insperger & St́ep´an 2000a; Davies
et al . 2002; Bayly et al . 2001). A similar problem is the remote control of periodic
robot motions, when the delay in the information transmission system is not negligi-
ble (see Insperger & St́eṕan 2000b). The qualitative investigation of these mechanical
systems always includes stability analysis. This work can e¬ectively be supported by
the so-called stability charts.

The underlying mathematical problem of the above applications is the analysis of
the delayed Mathieu equation. This is a special case of the linear periodic retarded
functional di¬erential equation (RFDE) of the general form

_y(t) = L(t; yt); L(t; yt) =

Z 0

¡ ½

d# ´(t; #)y(t + #); L(t + T; yt) = L(t; yt):

(1.1)
The matrix ´ is a function of bounded variation on [ ¡ ½ ; 0] and the integral is a
Stielties one, i.e. it describes discrete and continuous time delays as well. The linear
functional L can be represented in the above integral form according to the Riesz
representation theorem (see Hale 1977), and the continuous function yt is de­ ned by
the shift

yt(#) = y(t + #); # 2 [ ¡ ½ ; 0]: (1.2)

The Floquet theory (Floquet 1883) can be extended for these systems (see Hale
& Lunel 1993; Farkas 1994). The linear operator U(t) de­ nes the solutions by
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yt = U (t)y0. While U(t) plays the role of the fundamental matrix in classical Flo-
quet theory, the role of the principal matrix is taken by U (T ). The non-zero elements
of the spectrum of U(T ) are called the characteristic multipliers of system (1.1), also
de­ ned by

Ker(· I ¡ U (T )) 6= ;: (1.3)

Opposite to the classical case, periodic delayed systems usually have an in­ -
nite number of characteristic multipliers. If · is a characteristic multiplier, and
· = exp( ¶ T ), then ¶ is called the characteristic exponent. Our investigation is based
on the following two theorems (Hale & Lunel 1993).

Theorem 1.1. The trivial solution of system (1.1) is asymptotically stable if and
only if all the (in¯nite number of) characteristic multipliers are in modulus less than
one, that is, all the characteristic exponents have negative real parts.

Theorem 1.2. · = e¶ T is a characteristic multiplier of system (1.1) if and only if
there exists a non-trivial solution in the form y(t) = p(t)e ¶ t, where p(t) = p(t + T ).

For periodic RFDEs, the di¯ culty is that the operator U (t) has no closed form,
so no closed-form stability conditions can be expected. Stability investigations are
often carried out by numerical simulations (see, for example, Balachandran 2001).
Another approach is used by Insperger & St́ep´an (2000a) when the discrete time delay
is approximated by special continuous ones, and the in­ nite-dimensional eigenvalue
problem is transformed into an approximate ­ nite-dimensional one. An alternative
of Hill’s method was used by Seagalman & Butcher (2000) to determine the stability
properties of turning processes with harmonic impedance modulation.

In spite of all these dī culties, the stability chart of the delayed Mathieu equation
is constructed in the subsequent sections in an `almost’ closed from. This chart serves
as a basic reference for the above engineering applications, and also serves as a test
example for numerical methods investigating the stability of linear periodic RFDEs.

2. Special cases

In this section we consider the Mathieu equation and the equation of the delayed
oscillator as the two special limit cases of the delayed Mathieu equation.

The Mathieu equation

�x(t) + ( ¯ + " cos t)x(t) = 0 (2.1)

was ­ rst discussed by Mathieu (1868) in connection with the problem of vibrations of
an elliptic membrane. For its stability analysis, Hill (1886) worked out a method (the
so-called Hill’s in­ nite determinant method) that was generalized by Rayleigh (1887).
The most straightforward and less accurate method is the piecewise constant approx-
imation of the periodic coē cient (see, for example, D’Agelo 1970). There are other
methods described in the book of Nayfeh & Mook (1979): the Lindstedt{Poincare
technique and the method of multiple scales. A novel approach using Chsebysev
polynomials was developed by Sinha & Wu (1991).

The stability chart, the well-known Strutt{Ince diagram, was ­ rst published by
van der Pol & Strutt (1928). This chart shows the domains of stability and instability
denoted by S and U§ 1, respectively, in the ( ¯ ; ") parameter plane of ­ gure 1. S refers
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Figure 1. The Strutt{Ince stability chart of (2.1).
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Figure 2. The Hsu{Bhatt{Vyshnegradskii stability chart of (2.2).

to complex conjugate characteristic multipliers on the unit circle, U§ 1 refers to a
real characteristic multiplier greater than +1 or less than ¡ 1, respectively.

The delayed oscillator is described by the scalar RFDE

�x(t) + ¯ x(t) = bx(t ¡ 2 º ): (2.2)

The ­ rst attempts to give stability criteria for (2.2) were made by Bellman &
Cooke (1963) and by Bhatt & Hsu (1966). They used the D-subdivision method
(see Neimark 1949) combined with a theorem of Pontryagin (1942). A more sophisti-
cated method was developed by St́ep´an (1989), applicable even for the combination
of several discrete and continuous time delays.

Although the stability chart (see ­ gure 2) in the parameter plane ( ¯ ; b) has a very
clear structure. It was ­ rst published correctly only in 1966 by Hsu & Bhatt (1966).
According to Kolmanovskii & Nosov (1986), this chart was also published in the
literature in Russian, often referred there as the Vyshnegradskii diagram. The sta-
bility boundaries are lines with slope +1 and ¡ 1. The numbers denote the numbers
of characteristic roots with positive real parts. This will be called the number of
instabilities. If this number is 0, then the corresponding domain refers to an asymp-
totically stable system. This will be called the domain of stability, bounded by thick
lines in the chart of ­ gure 2. The only domains of stability are the triangles attached
to the b = 0 axis for ¯ > 0. Along the boundaries where the number of instabilities
changes from 0 to 2, Hopf bifurcations occur.
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3. The delayed Mathieu equation

The equation of interest to us is the delayed Mathieu equation, de­ ned as

�x(t) + ( ¯ + " cos t)x(t) = bx(t ¡ 2 º ): (3.1)

The time delay is equal to the principal period 2 º , so it can also be viewed as a
special resonant case of systems with optional principal period. We are looking for
the stability chart in the space of the parameters ¯ , b, ". The stability charts for the
two special cases " = 0 and b = 0 are presented in the previous section. The stability
charts in the plane ( ¯ ; b) will be determined for various values of the parameter ".
Geometrically, this means that we follow how the stable triangles of ­ gure 2 change
for " > 0.

Let us de­ ne the boundary curves as the set of points in the plane ( ¯ ; b), where
there is at least one characteristic multiplier in modulus equal to one. The domains
bounded by these curves are invariant for the number of instabilities due to the
continuous dependence on the parameters.

According to the Floquet theory of RFDEs, we use the trial solution

x(t) = p(t)e ¶ t + ·p(t)e
·¶ t; (3.2)

where p(t) = p(t + 2º ) is a periodic function and ¶ is the characteristic exponent.
Expand the periodic function p(t) in (3.2) into a Fourier series, and substitute

x(t) =

1X

k = ¡ 1

(Cke(¶ + ik)t + ·Cke(·¶ ¡ik)t) (3.3)

into (3.1). The standard balancing of the harmonics e( ¶ + ik)t yields a system of equa-
tions for the coē cients Ck :

1
2
"Ck¡1 + ckCk + 1

2
"Ck + 1 = 0; k = ¡ 1; : : : ; 1; (3.4)

where
ck = ¯ + ( ¶ + ik)2 ¡ be¡2 º ( ¶ + ik): (3.5)

The balancing of the complex conjugate harmonics leads to the same equations for
·Ck . There is a non-trivial solution of system (3.4) if the determinant of the tridiagonal
form for the Ck, the so-called Hill’s in­ nite determinant, is zero:

D( ¶ ; ¯ ; b; ") = det

0

BB@

. . .
. . .

. . .
1
2
" ck

1
2
"

. . .
. . .

. . .

1

CCA = 0: (3.6)

This transcendental expression can be treated as the characteristic function of (3.1),
since its roots are the characteristic exponents. Consequently, equation (3.6) is equiv-
alent to (1.3) for the characteristic multipliers · = exp(2 º ¶ ).

In order to carry out calculations, only the truncated system of equations of index
k = ¡ N; : : : ; N will be considered. This approximation is just the same as the one
applied during the construction of the Strutt{Ince diagram. In the following, we will
construct the boundary curves, then determine the domains of stability.
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(a) Boundary curves

According to the D-subdivision method, the substitution of ¶ = i! into (3.6) gives
an implicit form for the approximate boundary curves of (3.1) in the parameter space
( ¯ ; b; ") with the frequency parameter !. In this case, the diagonal elements in (3.6)
read

ck = ¯ ¡ (! + k)2 ¡ be¡i2 º !: (3.7)

Note that the imaginary part of ck is not dependent on k:

Im ck = b sin(2º !); k = ¡ N; : : : ; N: (3.8)

We disregard the case b = 0, which gives the classical Mathieu equation. Then we
can state that Im ck = 0 if and only if ! = 1

2
j, where j = 0; 1; : : : . Now we examine

two cases.

Case 1 (! 6= 1
2
j, j = 0; 1; : : : )

In this case, Im ck 6= 0 for any k, as follows from (3.8). The Gauss algorithm can
be applied for the tridiagonal matrix in (3.6) to transform it to an upper triangular
matrix having elements dk in the main diagonal. Clearly, d¡N = c¡N 6= 0. In the
(N + k)th step of the Gauss elimination process, Hill’s matrix assumes the form

0

BBBBBBBBBBBB@

d¡N
1
2
" 0 ¢ ¢ ¢

...
. . .

. . .
. . .

: : : 0 dk¡1
1
2
" 0 ¢ ¢ ¢

¢ ¢ ¢ 0 dk
1
2
" 0 ¢ ¢ ¢

¢ ¢ ¢ 0 1
2
" ck + 1

1
2
" 0 ¢ ¢ ¢

¢ ¢ ¢ 0 1
2
" ck + 2

1
2
" 0 ¢ ¢ ¢

. . .
. . .

. . .
. . .

. . .

1

CCCCCCCCCCCCA

: (3.9)

Let us suppose that sgn(Im dk) = sgn(Im ck) for some k. Since Im ck 6= 0, this
means that Im dk 6= 0, i.e. jdk j 6= 0. Thus the subsequent elimination of 1

2
" in front

of ck + 1 leads to

dk + 1 = ck + 1 ¡
"2

4dk
=

µ
Re ck + 1 ¡

"2 Re dk

4jdkj2

¶
+ i

µ
Im ck + 1 +

"2 Im dk

4jdkj2

¶
: (3.10)

Consequently,

sgn(Im dk + 1) = sgn

µ
Im ck + 1 +

µ
"

2jdk j

¶2

Im dk

¶
= sgn(Im dk) = sgn(Im ck) 6= 0:

(3.11)
Since Im d¡N = Im c¡N = b sin(2º !) 6= 0, we have Im dk 6= 0, that is, jdk j 6= 0 is
true by induction.

The determinant of Hill’s matrix can be calculated as the product of the diagonal
elements of the upper triangular matrix. Hence

D(i!; ¯ ; b; ") =
NY

k = ¡N

dk 6= 0; (3.12)

and condition (3.6) cannot be satis­ ed.
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Figure 3. Domains of stability of (3.1) for " = 1 (denoted by zeros).

This means that there is no non-trivial solution of system (3.4), and there are no
boundary curves in this case.

Case 2 (! = 1
2
j, j = 0; 1; : : : )

In this case, the diagonal elements in (3.6) are real:

ck = ¯ ¡ (k + 1
2
j)2 ¡ b( ¡ 1)j : (3.13)

If j is even, that is, j = 2h, h = 0; 1; : : : , then ¶ = ih, and the corresponding
characteristic multiplier is

· = eih2º = ei2 º = 1: (3.14)

In this case, ck = ¯ ¡ b ¡ (k + h)2, and (3.6) gives the relation f+ 1( ¯ ¡ b; ") = 0
for the boundary curves. For the case b = 0, the relation f+ 1( ¯ ; ") = 0 serves the
· = +1 stability boundary curves of the classical Mathieu equation de­ ned in the
form ¯ = g + 1("), as was shown ­ rst by van der Pol & Strutt (1928). This means that
the boundary curves exist for the b 6= 0 case, too, in the form ¯ ¡ b = g + 1("). In the
plane ( ¯ ; b), these are lines with slope +1 (represented by solid lines in ­ gure 3). Along
these boundary curves, there exists a characteristic multiplier · = +1, and (3.1) has
a periodic solution of period 2 º . This case is topologically equivalent to the saddle-
node bifurcation of autonomous systems.

If j is odd, that is, j = 2h+1, h = 0; 1; : : : , then ¶ = i(h + 1
2
) and the corresponding

characteristic multiplier is

· = ei(h + 1=2)2º = ei º = ¡ 1: (3.15)

In this case, ck = ¯ + b ¡ (k + h + 1
2
)2, and (3.6) implies the boundary curve relation

f¡1( ¯ + b; ") = 0. For the same reason as above, the boundary curves exist again
in the form ¯ ¡ b = g¡1("), where ¯ = g¡1(") gives the · = ¡ 1 stability boundary
curves of the classical Mathieu equation. The boundary curves are lines with slope ¡ 1
in the parameter plane ( ¯ ; b) (represented by dashed lines in ­ gure 3). Along these
boundary curves, there exists a characteristic multiplier · = ¡ 1, and (3.1) has a
non-trivial periodic solution of period 4 º . This type of bifurcation is called period
doubling, or ° ip bifurcation. There is no topologically equivalent type of bifurcation
for autonomous systems.
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Thus the boundary curves are lines in the plane ( ¯ ; b). For varying parameter ",
these lines pass along the boundary curves of the Strutt{Ince diagram. As mentioned
before, these charts are approximate to the same extent as the Strutt{Ince diagram
(N = 20 in the ­ gures), and they converge to the exact result for the N ! 1 limit
case. This means that the appearance of the delay in the Mathieu equation does not
require any more approximation in the stability analysis, just the same as already
used in the classical Mathieu equation. The point is that the parametric excitation
in the delayed oscillator does not alter the linearity of the stability boundaries.

(b) Domains of stability

Since the characteristic multipliers and exponents depend continuously on the
system parameters, the number of instabilities is constant in each domain separated
by the boundary curves. The special case " = 0 can be treated as a reference regarding
the number of instabilities. The domains attached to these triangles of stability in the
stability chart of ­ gure 2 also have zero instability number. Similarly, some domains
of instability can also be identi­ ed this way, and also the number of instabilities can
be given based on the " = 0 chart. But there are also some new domains, which are
not connected directly to any domain of the chart " = 0 in ­ gure 2. To decide the
stability of these domains, the sign of Re ¶ will be investigated near to the boundary
curves. The derivative of ¶ with respect to the parameter b will be determined for
¶ = 1

2
ij, j = 0; 1; : : : .

A recursive form for the calculation of the tridiagonal upper-left sub-determinants
in (3.6) can be given as

D¡N = c¡N ; (3.16)

D¡N + 1 = c¡N c¡N + 1 ¡ 1
4
"2; (3.17)

Dk = ckDk¡1 ¡ 1
4
"2Dk¡2; k = ¡ N + 2; : : : ; N: (3.18)

Let us denote the partial derivative with respect to b by a prime (¤0 = @¤=@b)
and the substitution of ¶ = 1

2
ij by a hat (¤̂ = ¤j ¶ = ij=2). According to this notation,

the partial derivatives of expressions (3.5), (3.16) and (3.17) yield

c0
k = 2( ¶ + ik) ¶ 0 ¡ e¡(¶ + ik)2 º + b2 º ¶ 0e¡(¶ + ik)2 º ; (3.19)

ĉ0
k = (2 º b( ¡ 1)j + i(j + 2k)) ¶ 0 ¡ ( ¡ 1)j ; (3.20)

D̂0
¡N = (2 º b( ¡ 1)j ¡ ¡N + i « ¡N) ¶ 0 ¡ ( ¡ 1)j ¡ ¡N ; (3.21)

D̂0
¡N + 1 = (2 º b( ¡ 1)j ¡ ¡N + 1 + i « ¡N + 1) ¶ 0 ¡ (¡ 1)j ¡ ¡N + 1; (3.22)

where the coe¯ cients

¡ ¡N = 1;

« ¡N = j ¡ 2N;

¡ ¡N + 1 = ĉ¡N + ĉ¡N + 1;

« ¡N + 1 = ĉ¡N (j ¡ 2N + 2) + ĉ¡N + 1(j ¡ 2N)

are real numbers, since ĉk is real for all k = ¡ N; : : : ; N . The same di¬erentiation
of (3.18) yields the recursion

D̂0
k = ĉ0

kD̂k¡1 + ĉkD̂0
k¡1 ¡ 1

4
"2D̂0

k¡2; k = ¡ N + 2; : : : ; N: (3.23)
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Figure 4. Stability chart of the delayed Mathieu equation.

We prove by induction that (3.23) can be expressed in the same form as (3.21)
and (3.22). For some k, let us suppose that

D̂0
k¡2 = (2 º b( ¡ 1)j ¡ k¡2 + i « k¡2) ¶ 0 ¡ ( ¡ 1)j ¡ k¡2; (3.24)

D̂0
k¡1 = (2 º b( ¡ 1)j ¡ k¡1 + i « k¡1) ¶ 0 ¡ ( ¡ 1)j ¡ k¡1; (3.25)

where ¡ k¡2, ¡ k¡1, « k¡2, « k¡1 are real numbers. Then, using (3.20), equation (3.23)
reads

D̂0
k = (2 º b( ¡ 1)j ¡ k + i « k) ¶ 0 ¡ ( ¡ 1)j ¡ k; k = ¡ N + 2; : : : ; N; (3.26)

where the coē cients

¡ k = D̂k¡1 + ¡ k¡1ĉk ¡ 1
4
"2 ¡ k¡2;

« k = (j + 2k)D̂k¡1 + « k¡1 ĉk ¡ 1
4
"2 « k¡2

are real numbers, again. Together with (3.21) and (3.22), this completes the induc-
tion.

The ­ nal round of recursion is given by the k = N case. The implicit di¬erentiation
of the characteristic exponent in D̂0

N = 0 provides the expression of Re ¶ 0 after a
straightforward algebraic calculation from (3.26):

Re ¶ 0 =
2 º ¡ 2

N

(2 º b( ¡ 1)j ¡ N)2 + « 2
N

b: (3.27)

Since the coe¯ cient of b is positive, sgn(Re ¶ 0) = sgn(b) on the boundary curves.
That is, moving away from the b = 0 axis, each boundary line represents at least
one characteristic exponent becoming unstable (i.e. crossing the imaginary axis of
the complex plane from the left to the right). So the only domains of stability are
the triangles born from the stable triangles of the " = 0 case. Since the case " = 0
is already known (see ­ gure 2), the number of instabilities can be determined for all
the domains by (3.27) and topological considerations (see the numbers in the chart
of ­ gure 3). The domains of stability are bounded by thick lines. The frame of the
three-dimensional stability chart in the space ( ¯ ; b; ") is shown in ­ gure 4.
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4. Conclusions

The closed form three-dimensional stability chart for the delayed Mathieu equa-
tion (3.1) was constructed. It was shown analytically that the boundary curves in
the plane ( ¯ ; b) are lines for any ". The number of instabilities was also determined
in the domains separated by these lines. At the boundaries with slope +1, a char-
acteristic multiplier crosses the unit circle at +1, presenting a 2 º -periodic motion.
At the boundaries with slope ¡ 1, a characteristic multiplier crosses the unit circle
at ¡ 1, presenting a 4º -periodic motion (a period-doubling bifurcation).

This research was supported by the Hungarian National Science Foundation under grant no.
OTKA T030762/99, and the Ministry of Education and Culture grant no. MKM FKPP 0380/97.
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