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Delay effects in the human sensory system
during balancing
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Mechanical models of human self-balancing often use the Newtonian equations of
inverted pendula. While these mathematical models are precise enough on the mechanical
side, the ways humans balance themselves are still quite unexplored on the control
side. Time delays in the sensory and motoric neural pathways give essential limitations
to the stabilization of the human body as a multiple inverted pendulum. The sensory
systems supporting each other provide the necessary signals for these control tasks; but
the more complicated the system is, the larger delay is introduced. Human ageing as
well as our actual physical and mental state affects the time delays in the neural system,
and the mechanical structure of the human body also changes in a large range during
our lives. The human balancing organ, the labyrinth, and the vision system essentially
adapted to these relatively large time delays and parameter regions occurring during
balancing. The analytical study of the simplified large-scale time-delayed models of
balancing provides a Newtonian insight into the functioning of these organs that may
also serve as a basis to support theories and hypotheses on balancing and vision.
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1. Introduction

Balancing ourselves is an essential human property. It has always been an
interest of researchers in either medical or physical sciences. Since Newtonian
mechanics described and analysed the stable and unstable equilibria of a
pendulum by means of differential equations, the inverted pendula have been the
obvious subjects for mechanical models of balancing. However, the inverted
pendulum is unstable without control actions, and the way we balance this
pendulum is a complex and still not fully understood process.

The mechanical models can also be quite complicated if all the mechanical
degrees of freedom of a human body are taken into consideration. The labyrinth
in the auditory system, the eyes in the visual system and the mechanoreceptors
in the touch system all serve as sensory systems for balancing, and the brain uses
these inputs in an intricate way to achieve stability. If control actions are
considered to happen at the same time instant as when the input signals are
detected, the mathematical models are ordinary differential equations—the
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identification of the equilibria and the analysis of their stability with the help of
the linear variational systems are quite straightforward procedures. This way,
simple first approximations can be derived to determine under what conditions
balancing is successful.

However, there is a substantial time delay caused by the finite speed of signal
propagation in the nervous system. The story of measuring this speed first in 1850
by Helmholtz can be found in Nijhawan (2008), where the most important neural
delays are also summarized for the visual system. Recently, Campbell (2007) has
given a summary of different kinds of delays occurring in neural systems in general.

The mathematical models that take into account the delay effects in the
nervous system are delay-differential equations (DDEs). These can be viewed as
a kind of infinite dimensional version of the ordinary ones, and, consequently, the
corresponding dynamical behaviour can be much more complex in the presence
of delays. In spite of the fact that there can be found detailed mathematical
analyses of delayed second-order differential equations (see Schurer 1948), the
mechanical theory of balancing is well understood (see Roberts 1995), the central
role of the time delay is recognized and analysed by neuropsychology (see
Nijhawan 2008), the dynamics of a few interconnected neurons are analysed
mathematically (see Campbell 2007) and the anatomy of the sensory systems are
well described in biology (see Alcamo & Bergdahl 2003), there are only a few
efforts that try to integrate this knowledge.

The goal of this paper is to connect the distant disciplines all related to the
study of balancing, while the different aspects of balancing considered here are all
the possible simplest ones. First, the low-degree-of-freedom (DoF) mechanical
models are summarized that all lead to the same simple mathematical form, a
second-order scalar DDE. Regarding the control part of balancing, the classical
force/torque and stiffness control models are compared with those of the
so-called velocity controls in non-holonomic systems and anticipatory ones,
equivalencies and essential differences are pointed out. Then, the mathematical
analysis of the underlying scalar DDE is presented, and the critical control
parameters—including the time delays—are calculated in a simple way. With the
help of all these results, the functioning of the sensory systems is summarized
then from the view point of compensating for their own time delays. The
ultimate goal is to understand and explain how our brain copes with these
destabilizing delay effects in our nervous system.

2. Low-degree-of-freedom mechanical models of balancing

The simplest possible mechanical models are considered which can still
characterize the most important dynamic effects of time delays. Although the
task of balancing a body in gravitational space is usually a spatial problem, these
models typically describe balancing in a single vertical plane only. The most
popular mechanical models are derived and reviewed here.

(a) Balancing on a horizontal straight bar

Consider, for example, the task shown in figure 1a. In case we have to stand on
a horizontal bar or a tensed rope, we can easily balance ourselves in the vertical
plane spanned by the bar and our body, since the two feet placed along the bar
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Figure 1. (a) Balancing on a straight bar. (b) The arms are used to stabilize the vertical position
with the help of internal torques M applied between the arms and the body. (c¢) The corresponding
mechanical model has two DoF with general coordinate ¢ of the body and y for the variation of the
angle between the arms and the body.

provide two actuating forces in this sagittal plane partly supporting our weight
and partly producing the necessary control torque vector normal to this plane
(see the so-called stiffness control by Winter et al. (1998) later). However, our
feet practically do not provide any torque about the bar, i.e. any torque vector
having a line of action parallel to the bar. This means that it is rather difficult to
balance ourselves in the vertical plane normal to the bar that we are walking on.

In these cases, there are two simple options to stand still and balance
ourselves. One is that we use our arms as shown in figure 1a and rotate them
about an axis parallel to the bar. Our arms are usually rotated in the same
direction, with more or less the same orientation angle. The other option is to use
the hip joint and bend our body in the plane normal to the bar. This option is
used when we already have serious problems with standing on the bar. We are
going to model the first, and actually simpler, behaviour.

The corresponding simplified mechanical model in the critical vertical plane is
shown in figure 1b. The feet are substituted by a simple ideal joint at the point O,
the vertical bar modelling the body has mass m; and mass moment of inertia J; o
with respect to the axis normal to the plane of the figure through O. The two
arms are approximated to be aligned so they are substituted by a single bar
having the total mass my and mass moment of inertia Joc with respect to the
normal line via the centre of gravity of the arms denoted by C. We also use
the notation I= OC for the distance of the joints O and C while I, and I, denote
the height of the body and the span of the arms, respectively, where the
corresponding centres of gravity are supposed to be at [;/2 for the body, and at
l5/2, i.e. at the joint C, for the arms. If the body and the arms are modelled with
these bars, for example, then J,o=m;13/3 and Joc = m,l3/12.

The system has two DoF. The chosen general coordinates shown in figure 1c are
¢ =¢ and ¢;=4y where ¢ stands for the inclination of the bar OC' representing the
body, and Y represents the variation of the angle between the line of the arms and
the body. This angle normally varies about /2. The two bars are connected by an
ideal joint at C. Consequently, the ¢ =0 position is an equilibrium for any value of y.
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Without control, this position is unstable, of course. The simplest way to stabilize
it is to apply an internal torque M between the two bars about the normal axis
through C. Actually, there are two torques here equal in magnitude and opposite
to each other while acting on the two bars, but they have a non-zero power (and
work), of course. Via the calculation of this power

one obtains the general forces ;=0 and Q2= M. The Lagrangian equations then
assume the form

.. 1
<J10+J20+m212 JQC><¢>+ —(2m111+m21>gsm¢
Joo Joc )

v 0

_< 0 ) 22)
-\ Me,0) ) '

If this internal torque M is chosen as the resultant of a virtual active spring
and damper, i.e. a locally linear proportional-derivative (PD) controller is used in
the form

M(¢,9) = Pp + D¢ + h.o.t., (2.3)
with h.o.t. representing the higher order terms of the angle ¢ and the angular
velocity ¢, then the upper position can be stabilized with the appropriate choice of
the scalar proportional and differential gains P and D.

Following the terminology of rational mechanics in Griffiths (1985) or Rand
(1994), the second general coordinate y takes the role of a cyclic coordinate and
the coupled equations of motion (2.2) can trivially be separated into two scalar
differential equations; one for the essential coordinate ¢ in the form

. 1 ) .
(Jlo+ma12)<p—(§m1l1 +mgl)gsm¢ =—M(o, ), (2.4)

which can be solved independently from v, and the other for the so-called hidden
motion, which can be integrated directly from

M(p,9)
Joc

Y = (2.5)

The zero point of the hidden motion can be anywhere, although we consider
Y=0 at the position where the arms and the body are normal to each other. It is
likely that the normal position gives the most convenient way to apply this
control. Before we analyse the mathematical model derived in (2.4) and (2.3),

some further basic mechanical models of balancing are reviewed.

(b) Balancing a stick and balancing ourselves in the sagittal plane

While we presented the derivation of the mathematical models of balancing on
a straight bar in detail, other mechanical models are briefly summarized only in
this subsection. Figure 2a presents stick balancing on a fingertip or on a
stretched open palm. This stick balancing could be a rough model for balancing
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Figure 2. (a) Two-DoF mechanical model of stick balancing. (b) The general coordinates are the
angle ¢ of the stick and the position z of its lowest point where there is an ideal joint. The control
force F is horizontal.

our body in the sagittal plane when we use small steps to and fro to balance
ourselves while our arms are not supposed to be in use. This is what we do when
we try to stand still on the tips of skates on a paved surface.

The corresponding mechanical model of stick balancing has two DoF again
and the convenient general coordinates are ¢; =¢ and ¢ =z as shown in figure 2b.
The control is established via the horizontal actuating force F' at the slider,
which gives the general forces () =0 and )= F. Note that the control force F'is
clearly external in the case of stick balancing. In the case of balancing ourselves
on the tips of skates, this control force F is provided by the friction force that
is controlled by us in an intricate way of walking strategies based on small
internal torques at the hip and ankle joints (for more details see Coleman &
Ruina (1998) and Piiroinen & Dankowicz (2005)). If the mass of the slider is
negligible relative to the mass m of the bar of length [, the Lagrangian equations
assume the form

1 1 1 :

—mil —ml cos ¢ — —mgl sin ¢

3 2 ) 2 0
1 N s 1 = . (26)
5 ml cos ¢ m z —5 mlqb281n 0 F(o,9)

This time, z takes the role of the ‘cyclic’ coordinate that can be eliminated
to be left with a scalar second-order differential equation for the essential
coordinate ¢

1 1 1 1
13 (4—3 6032<p)m12¢ + 3 m12<p231n(2(p) 3 mgl sin ¢ = — 3 F(o,¢)lcos ¢,
(2.7)

Phil. Trans. R. Soc. A (2009)



1200

Figure 3. One-DoF mechanical model of balancing ourselves in the sagittal plane. The ankle joint
provides the necessary control torque M between our feet and legs.

which is used with the same PD-like control
F(p,¢) = Pp + D¢ + h.o.t., (2.8)

as in (2.3) the units of P and D are different, however.

Finally, figure 3 shows a one-DoF model of balancing ourselves in the sagittal
plane via the torques applied at the ankle joint that is called stiffness control
(Winter et al. 1998) in neurophysiology. For the single general coordinate ¢; = ¢,
the Lagrangian equation and the attached control torque assume the form

1 1

36 — 5 mglsing =—M(e,¢), (2.9)

M(¢,¢) = Pp + D¢ +h.ot., (2.10)

respectively. At this point, we briefly review other possible ways of modelling
these simple PD control strategies on the introductory example of balancing on a
straight bar.

(¢) Non-holonomic constraints versus anticipatory systems

Instead of the control torque M in (2.3), it is a natural idea to try to model the
control of the system in figure 1c¢ as a constraint established between the essential
coordinate ¢ and the cyclic coordinate y. Clearly, a simple geometric constraint
between ¥ and ¢ as Y= Pp+h.o.t. cannot be established since there are no
corresponding constraining forces, i.e. there are no actuators available which
could determine the inclination ¢ of the body relative to the vertical direction
defined by the gravitational acceleration vector. The same applies for the
application of a possible linear non-holonomic constraint
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Y = Py + D¢, (2.11)

where the corresponding Lagrangian equations extended by the Lagrange
multiplier 41 would assume the form

.. 1
<J10+J20+m212 J20> (q)) N —<§m1l1 +m2l>gsinq) B (—DA)
S Joc ) \ ¥ 0 4
(2.12)

and the coupled algebraic differential equations (2.12) and (2.11) determine the
magnitude of the constraining torque, which is exactly 4 (see Griffiths 1985).
Clearly, there is no actuator that could provide the torque (— DA) with respect
to the angle ¢ of the body—only the other constraining torque 4 is available via
the internal actuation between the body and the arms.

All these observations mean that the classical methods of rational mechanics
should not be applied here in a standard way; in spite of the fact that controlling
the velocities of DC actuators is a widely used strategy in robotics, they can
rarely be modelled as non-holonomic constraints. The way these strategies could
easily be modelled is given in the theory of anticipatory systems, where the
‘constraint’ (2.11) provides a kind of prediction for the relative angular velocity ¥
based on just the previous values of the sensed angle ¢ and angular velocity ¢. If
the constrained angular velocity v is realized with a simple PD-like control as in
(2.11), however, the control torque M is not the result of a direct PD control any
more; it is determined in a more complicated way by the substitution of the
derivative of equation (2.11) of the form

Y = P¢ + D, (2.13)

into the second equation of (2.2); that is, we obtain this control torque as a
function M(¢,®,$). In the meantime, substitution of (2.13) into the first
equation of (2.2) results in

1
(J10 + J20(1 + D) + m2l2)('/5 + JQCP(p_ <§ mlll + m21>g sin Q = 07 (214)

which clearly shows that this kind of PD control cannot stabilize the upward
position, as no control term appears there to compensate the negative stiffness
originated in the gravitational force acting on the inverted pendulum.

This lengthy train of thought leads to the observation that the velocity control
of the actuating electric motors preferred in robotics should work as a
proportion-integral control as

t
Y = Po + IJ o()dd, (2.15)
0

with proportional gain P and integral gain I. From the view point of stability
and qualitative dynamical behaviour, this leads to a control strategy that
is equivalent to the PD-like torque control introduced in (2.3) above.
Since the derivative of (2.15) yields
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Y = P¢ + Io, (2.16)

where P takes the role of the differential gain and I takes the role of
the proportional gain in (2.3), the substitution of (2.16) into the first equation
of (2.2) results in

1
(Jio + mal®)¢ + Joo P + Joolp — (5 myly + mﬂ)g sin ¢ = 0, (2.17)

which is practically equivalent to the system formed by (2.4) and (2.3).
Consequently, without loss of generality, we can discuss only the PD-like control
for the internal torque as introduced in (2.3), and only the case (2.4) of balancing
on a straight bar is analysed in the rest of this study.

Still, we have to keep in mind another important observation in the theory of
anticipatory systems: the control action—either M in (2.3) or ¢ in (2.16)—has to
be predicted because it cannot be taken at the same time instant as the
observation of the signals ¢ and ¢. In the case of digital control in robotics, the
minimum value of this delay is the sampling time in the system, which could be
in the range of milliseconds in practice; but in the case of human balancing, this
delay is rather in the range of hundreds of milliseconds to even one second
(see Nijhawan 2008).

3. Stability in the presence of time delay

Consider the task of balancing on a straight bar and its equation of motion (2.4)
for the essential coordinate ¢, and introduce a constant time delay 7 in the
control (2.3) to obtain the extended mathematical description

M(¢,,¢,) = Po(t—7) + Dép(t—7) + h.ott., (3.1)

where the subscript ¢ in the symbolic expression on the left-hand side refers to
the functions of the state variables with respect to the past instead of their actual
values. It is expressed with a single explicit delayed value in its actual form on
the right-hand side. Then the nonlinear equation of motion of balancing on a
straight bar (figure 1) is constructed from (2.4) and (3.1)

. 1 .
(Jio + mal?)§(t) — (5 myly + m21>g sin ¢(¢)

= —Po(t—71)— D¢(t—7) + h.o.t., (3:2)

which is a DDE having an infinite dimensional phase space (for an introduction,
see Hale & Lunel (1993)).

The consideration of a single deterministic time delay both at the angle and at
the angular velocity signals in (3.2) is a rough approximation since the delay
must also depend on the actual combinations of the sensory systems in use and
on the ways they are actually functioning. Still, there are several measurement
data described by Nijhawan (2008) which support this approach, although many
different clusters of neurons are involved in the process parallel to each other.
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(a) Stability of the upward position

The trivial solution =0 of the nonlinear DDE (3.2) represents the upward
position of the inverted pendulum in figure 1lc. The stability of this upward
position is investigated with the help of the variational system of (3.2), which is
the result of linearization at ¢ =0

(Jio + m2l2)gb'(t) + D¢(t—71) + Pop(t—71)— (é myly + mgl> go(t) =0. (3.3)

Introduce the new notation for the gains p and d, and the angular natural
frequency w, of the uncontrolled system having small oscillations at the
downward position about ¢=m

:7? :77 u)Il = ) :_7
b Jl() + m2l2 JlO + m212 Jl() + m2l2 Wy,
(3.4)

where the corresponding time period of small oscillations is denoted by 7. Then
the simplified form of the variational system assumes the form

é(t) + dp(t— 1) + pp(t— 1) —wig(t) = 0. (3.5)

It is easy to see that the linearized form of equations (2.7) and (2.8) of stick
balancing, or those of equations (2.9) and (2.10) of the stiffness control in the
sagittal plane, or even the linearized form of equation (2.17) of the anticipatory-
like model of balancing on a straight bar, have the same mathematical form
as (3.5) with different kinds of definitions for the parameters p, d and w,.
This means that the analysis of the linear DDE (3.5) has a central role in the
theory of balancing.

Early stability analyses of DDEs such as (3.5) appeared in the 1940s (see
Minorsky 1942; Schurer 1948; or Hayes 1950) before the basic mathematical
theory of DDEs was established as an infinite dimensional system by Myshkis
(1949). Since then, many examples have been studied that require detailed linear
analysis and the corresponding nonlinear investigation of second-order delayed
systems (e.g. Campbell et al. 1995; Stepan & Kollar 2000; Niculescu 2001; Landry
et al. 2005). All these results construct the characteristic function of (3.5) via the
substitution of the exponential trial solution A exp(At), A, A€ C (or by Laplace
transformation)

P+ dre ™ +pe ™ —wl = 0. (3.6)

The trivial solution is (exponentially) asymptotically stable in the Lyapunov
sense if and only if all the infinitely many characteristic roots of the characteristic
equation (3.6) have negative real parts. Stability criteria, such as the ones of
Stepan (1989) and Sipahi & Olgac (2006), can be used to carry out this test.
Clearly, there exists a pure imaginary characteristic root A=iw, w€[0,%) at the
limit of asymptotic stability. Substitute this root into (3.6) and separate the real
and imaginary parts of the resulting complex equation

—w* + dw sin(wr) + p cos(wr) —wi =0, dw cos(wr) — psin(wr) =0.  (3.7)
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Figure 4. (a) The shaded stability region in the parameter plane of the proportional gain p and
differential gain d. The stable domain disappears for delay parameters larger than the critical 7.
The linear prediction line touches the stable region at the critical values of the gains. (b) The
vibration frequencies of the self-excited vibration occurring at the Hopf limit of stability are shown.

This technique is also called the D-subdivision method by Kolmanovskii & Nosov
(1986). The stability boundaries in the parameter space are among these
w-parametrized surfaces. If the system parameter w, and the delay parameter 7
are fixed, the equations (3.7) can be reformulated

forw=0: p=w:, deE (—wo,+x),

forow>0: plw)= (w2 + wi)cos(uﬂ), (3.8)

d(w) = (0 + w}) M

These are w-parametrized curves in the parameter plane (p, d) shown in
figure 4a. With the help of the lengthy implicit differentiation of the
characteristic function with respect to the gain parameters p and d in (3.6),
one can show that a real characteristic root crosses the imaginary axis of the
complex plane from left to right when the proportional gain p is decreased
through the boundary defined for w=0 in (3.8), while a complex pair of
characteristic roots crosses the imaginary axis from left to right each time when
the spiralling curve in (3.8) is crossed with the gain parameters from inside to
outside, i.e. with increasing values of ( p®+ d?) radially in the (p, d) plane.

The above calculations result in the stability chart presented in figure 4a. The
shaded stability region in the ( p, d) parameter plane has a straight line boundary
for =0 in (3.8) where saddle-node (SN) or pitchfork bifurcation may occur in
the original nonlinear system (2.4) and (2.3), while Hopf bifurcation may lead to
self-excited vibrations at the boundary in (3.8) for w€ (0,7/(27)) and p> w?.
The frequency f=w/(2m) of these self-excited vibrations varies in the range

fe (0%) (3.9)
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given in the units Hz as shown in figure 4b. These vibration frequencies arise
typically when too large gains are used in the presence of relatively large time
delays, which is in the parameter region located to the right of the shaded
domain of stability in figure 4.

(b) Critical delay and critical gain parameters of linear predictions

It is easy to check that the stability region shrinks with increasing values of
the delay parameter 7. Moreover, the stable region disappears and the balancing
of the inverted pendulum is impossible with any linear PD controller if

T> T, (3.10)

In order to determine the critical value 7, of the delay parameter, consider the
critical gain parameter point

1
P = w121 = Pcr = <§m1l1 + m2l>g,
(3.11)

— 2 —
dcr = TWy = Dcr - 7—Pcr'

At these parameters, the simplest possible anticipation strategy is applied: the
proportional gain is set just at the minimal necessary value to achieve stability
without time delay, and the differential gain is set in a way that the actual
orientation angle ¢ is predicted by estimating the motion with a uniform rotation
of constant angular velocity, and the control torque is selected to be proportional
to this predicted value ¢ of the angle

M(q)ta (Pt) = Pcrq)(t) + Dcr(p(t) = Pcr(q)(t_ T) + T(i)(t— T)) = Pcr(z)(t)' (312)

The behaviour of a tennis player returning a fast tennis ball was explained in the
same way by Nijhawan (2008). At this point, the simplest linear prediction with
the finite-difference method coincides with the PD control providing the
necessary virtual spring stiffness and virtual viscous damping to stabilize an
otherwise unstable system in accordance with the Newtonian laws.

Expand the Taylor series of p(w) in (3.8) about w=0

1
p(w) = wp + (1—572w§>w2+—~-. (3.13)

Locally, at the critical gain parameter point (3.11), the proportional gain
parameter starts increasing with increasing w if the coefficient of w? is positive;
that is, the stable region exists if and only if

V2 _ T
Wy 77\/5'

This means that the maximal time delay 7., allowed in the case of successful
balancing can be determined by measuring the time period T of small oscillations
of the same mechanical structure hanging at its stable (downward) position, then
calculating by (3.14).

T< T =

(3.14)
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Figure 5. Labyrinth—the balancing organ. Its static and dynamic receptors provide the necessary
angle and angular velocity signals to balance the body in the presence of time delays in the
auditory neural pathways.

The zoo of the different kinds of dynamic behaviour around the critical
parameter point (3.11) was described thoroughly by Sieber & Krauskopf (2004)
via the exploration of the intricate multiple degenerate bifurcation there.

4. Sensory systems compensating for their own delay

Many sensory systems support us during balancing. They all have to provide both
angle and angular velocity signals since the domain of stability in figure 4 is
essentially separated from the axes of the gain parameters, the upward position is
unstable if either the proportional gain P or the differential gain D is zero. Among
these sensory systems, first, we mention the one that provides signals about the
pressure distribution between the ground and the feet supporting the body, then the
balancing organ in the inner ear called the labyrinth, and finally the most important
faculty and its organ, the eye. The functioning of the pressure sensors in our feet (see
Winter et al. 1998) and their relationship to improved balancing due to slight
stochastic perturbations are discussed by Moss & Milton (2003). In what follows,
the labyrinth and the eye are analysed from the viewpoint of coping with time delays
in the Newtonian mechanics to ensure successful balancing.

(a) The labyrinth and the auditory subsystem of balancing

A schematic view of the balancing organ, called the labyrinth, is shown in
figure 5. The balancing organ is located in the inner ear (see Alcamo & Bergdahl
2003) and it has two important units often referred to as static and dynamic
receptors; one is responsible for providing signals about the inclination of our
head and the other is responsible for providing signals about angular velocity
components of the head. This is in perfect accordance with the result of the
analysis of the Newtonian equations with delay: both angle and angular velocity
signals are needed during balancing (see the stability chart in figure 4).
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Look at the static receptor, first. As shown in figure 5, the so-called vestibule
contains two chambers, the utricle and the saccule. There are two sensitive parts of
the skin there: the macula at the bottom of the utricle and the macula at the top of
the saccule. They provide the angle signal in an intricate way, since this sensor has
no perfect information about the absolute vertical direction defined by the gravita-
tional acceleration. At this point, more sophisticated mechanical models are to be
developed in order to explain how the static receptor part of the labyrinth works.

As shown in figure 5, the crista provides the angular velocity signal. This hairy
part covered with a gelatinous dividing partition called the cupula is located in
the ampulla (figure 5). The three ampullae are situated at the stems of the three
semicircular canals lying in three planes normal to each other. The liquid called
endolymph in the corresponding semicircular canal moves relative to the duct
wall and provides a signal in the crista owing to the viscous damping between the
endolymph and the cupula.

This system seems to work as a perfect velocity sensor. However, the endolymph
is not at rest as the head is rotating in the same direction for longer periods of time:
it accelerates owing to the viscous friction between the duct wall and the liquid and
starts rotating together with the head. Consequently, the viscous damping force
decreases and the brain starts missing the angular velocity signal in this situation.
Moreover, when we stop suddenly after a long period of rotation, the endolymph
moves forward and gives the false sensation of rotating in the opposite direction via
opposite excitation of the crista. Clearly, the mechanical model used in the case of
balancing on a straight bar (see figure 1 and (3.2)) is weak in this respect, since it
assumes that the angular velocity ¢ is known perfectly after a certain time delay—
consequently, this model cannot describe the above-explained ‘dizziness’. If we
improve this model by introducing two further general coordinates, namely the
deformation of the hair in the crista and the angle of the endolymph in the canal, the
mechanical system will have four DoF, and analysis of the much more complex
equations shows that balancing is still possible in the presence of time delay, too.
This analysis can be found in Stepan & Kollar (2000), where the model of an
artificial labyrinth is also discussed in detail.

People without any liquid in their inner ear suffer from so-called ‘dry ear’. In
this case, the angular velocity signal is not provided by the labyrinth, for certain.
Balancing is impossible in these cases if no other sensory system can help, for
example when our feet are aligned on a bar and no pressure signal is provided and
our eyes are also closed. In the subsequent section, we check how the visual
system works from the viewpoint of balancing.

(b) The eye and the visual subsystem of balancing

Generally speaking, the visual system seems to be much more reliable than the
auditory one in the sense that it can detect the head’s inclination relative to the
vertical direction quite well using the images of walls, trees or any other well-
known vertically positioned objects. However, we must keep in mind that the
neural delay along the visual pathway in the brain is much larger than those of
the auditory pathways, which are still slower than the mechanoreceptors of the
touch system (see details in Nijhawan 2008). This is not necessarily related to
the physical lengths of the pathways, but also (or rather) to the time needed for
the additional cortical processing of the signals.
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Figure 6. Gabor elements representing the orientation-defined contour stimulus. The stimulated path
is a circle in the centre of the picture. Adapted with permission from Kovacs (2000).

It has been known for a long time (see Wertheimer 1938) that the so-called
‘law of good continuation’ helps to recognize a number of geometric illusions as
an object or just as a certain path of elements in visual perception (see Field et al.
1993). The so-called Gabor signals roughly model the receptive field properties of
orientation selective simple cells in the primary visual cortex; therefore, they are
appropriate stimuli for the examination of these small spatial filters and their
interactions (see the circular path in figure 6, taken from Kovacs (2000)). The
reason why these tiny elements with different orientation angles are used in
psychological experiments has a physiological background.

Light stimulates the photoreceptors in the eye and the detected tiny different
orientation signals are mapped through the visual neural pathway onto the
surface of the visual cortex in the brain (see Nicholas & Swindale 1996). The
different colours in figure 7a show the different stimulus orientations that best
activate the corresponding coloured regions of the cortex. This way our brain is
able to recognize geometrical objects such as circles (see the one in figure 6), and
it is ‘easy’ to recognize straight lines characterized by their orientations; we
especially need to identify the vertical ones in order to determine the inclination
of our body during balancing (see angle ¢ in figure 1c).

In the meantime, we must keep in mind that balancing does not work with the
angle signal only when time delays are present (see the stability chart in
figure 4). If the brain tried to produce the velocity signal by using additional
cortical processing, then the time delay would be increased so much that
balancing would be impossible in the same way as the tennis player would not be
able to return a fast ball (see the analysis in Nijhawan 2008).

The enlarged region of the visual cortex in figure 7b shows the corresponding
colour-coded orientation preference, and the arrows in the regions also denote the
so-called direction preference. This means, for example, that the green region
sensitive to vertical orientation tends to be stimulated by horizontal velocity (see
Weliky et al. 1995 or Sincich & Blasdel 2001). Consequently, the most important
part of a complex image we see during balancing is not only the inclination of a
vertical straight line relative to our body; our visual system also detects its
angular velocity. A hypothetical model of Nijhawan (2008) also provides
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Figure 7. (a) Coloured regions of the visual cortex sensitive to the corresponding orientation-
defined stimuli. The colour code is defined by the orientations in the middle section. The data were
obtained by optical recording from the visual cortex of a macaque monkey. Adapted with
permission from Blasdel (1992). (b)) The enlarged section of the coloured visual cortex also
represents the direction preference denoted by arrows roughly normal to the orientation
preferences. Adapted with permission from Weliky et al. (1996).

a possible explanation of how the horizontal and vertical neural pathways might
actually produce velocity signals with a kind of finite-difference method realized
physically among the cells, and how it might predict the image ‘ahead’ through
layers of excitatory and inhibitory interactions in the retina.

5. Concluding remarks

The mathematical analysis of the basic mechanical models of balancing in the
presence of time delays together with the observations related to the functioning
of the auditory system including the balancing organ, the labyrinth, and the
vision system including the eyes gives a specific view of the functioning of our
brain. These systems have to cope with their own neural delays, i.e. in the
centre of the mechanical task, which is actually the stabilization of a multiple
inverted pendulum.

Many one- and two-DoF mechanical models of balancing can be simplified to
second-order scalar DDEs having a standard linearized form (3.5) at the upward
position of the pendulum. The stability analysis of this equation results in the
stability chart in figure 4. The most important conclusions related to this chart
are as follows.

Simple PD control can be used for balancing in the presence of time delay, but
increasing time delays tend to destabilize dynamical systems. Although this
statement does not always apply for second-order systems (see Stepan 1989),
the rule of thumb is valid for balancing with delay. The larger the delay is, the more
difficult it is to find appropriate PD control gains to stabilize the system. For delays
exceeding a critical value, the system is always unstable. This maximal delay
belonging to successful balancing can be determined by measuring the time period of
small oscillations of the same mechanical structure hanging as a non-inverted
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pendulum at its stable (downward) position, and this time period has to be divided
then by the irrational numbers 7 and v/2 (see (3.14)). Clearly, the larger the mass
moment of inertia of the mechanical system is, the larger the time period of
oscillation is, and consequently the balancing task is easier to carry out. For the
simple case of stick balancing (figure 2), this means that the longer the stick is, the
easier it is to balance it. The practical limit is at a stick of 0.3 m in length where
the critical time delay is approximately 0.1 s, which is a common value from the
eyes to the arm. Shorter sticks, such as pencils, can be balanced by reducing the
delay further, for example by placing the pencil on a knife held in our mouth.

Another conclusion provided by the stability chart of figure 4 is that both the
angle and the angular velocity signals are needed to accomplish the task
successfully with a simple PD controller. In case the velocity signal is missing
from the sensory system, the brain would need much more time to establish a
more complex control strategy based on two or even more past values of the
position signals. This would increase the time delay substantially, and that costs
stability (see Changizi 2008). This might be one of the reasons why our auditory
and visual systems provide both position and velocity signals at the same time in
a very efficient and fast way. That is how these sensory systems help to
compensate for the neural delay mainly caused by themselves.

It is also worth mentioning that the linear prediction based on an estimated
uniform motion does not guarantee balancing. If the actual position is predicted
by summing up the past position and the past velocity multiplied by the delay,
then the corresponding P, D gains might be close to but still below the region of
stability shown in figure 4.

Along the stability limit for maximal proportional gain P, self-excited
vibrations arise with frequencies varying from 0 to 1/(47). These low-frequency
oscillations in the range of 1 Hz are observed when tipsy people try to walk, or
when we have to stand with our eyes closed and our feet aligned.

There are still many open questions. Some of these are related to the problems
of sensing absolute angles relative to vertical direction or absolute angular
velocities, also discussed briefly related to the labyrinth sketched in figure 5.
Another question is how the brain copes with balancing a stick of 0.3 m when the
time delay must be in the range of 0.1 s, while the visual system works much
more ‘slowly’ if the signals are sent up to the appropriate regions of the visual
cortex. A ‘short’ neural pathway through the so-called medial temporal loop of
the brain might be one of many possible explanations.

The study of the Newtonian equations of balancing will certainly provide
further conclusions for the study of the brain itself via the central role of time
delays in the dynamics of balancing. However, it is not only classical mechanics
that could be applied in research in neurophysiology and neuropsychology. If we
are going to explain the small amplitude stochastic oscillations that are observed
even in those cases when balancing is considered to be practically stable and
successful, we can apply the results in the field of chaotic dynamics of nonlinear
mechanical systems such as the ones in Haller & Stepan (1995) or Enikov &
Stepan (1998). The description of micro-chaotic motions in digitally controlled
unstable systems could serve as an alternative explanation as to why the finite
sensitivity of the auditory and/or the visual system leads to the small-amplitude
stochastic oscillations of the body while standing still. This stochastic oscillation
is also discussed by Yao et al. (2001) or by Milton et al. (2009) with the help of
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stochastic DDEs. As explained by Moss & Milton (2003), enhancing these
oscillations may improve balancing abilities of elderly people, which is one of the
many possible applications of the results in medical technology.

This research was partially supported by the Hungarian Scientific Research Foundation OTKA
under grant no. K68910. The author is grateful for inspiring discussions on neuropsychological
aspects with Ilona Kovacs. The author would also like to thank Jan Sieber for drawing his
attention to the early paper of Schurer (1948).
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