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8i ces imperfections sont malheureusement nombreuses, cela vient de ce que la
soience appliquée est jeune et encore pauvre; avec ses ressources actuelles, elle peut
déja rendre de grands services, mais ses destinées sont bien plus hautes: elle offre
un champ immense au zéle de ceux qui voudront I’enrichir, et beaucoup de parties
de son domaine semblent méme n’atlendre que des efforts légers pour produire des

résultats d'une grande utilité.
Saint-Venant.

Jedenfalls sicht man aus den angefiihrten Thatsachen, dass die Theorie der
Elasticitit noch durchaus nicht als abgeschlossen zu betrachten ist, und es wire
zu wiinschen, dass recht viel Physiker sich mit diesem Gegenstande beschiftigten,
um durch vermehrte Beobachtungen die sichere Grundlage zu einer erweiterten

Theorie zu schaffen.
Clausius.

Ceux qui, les premiers, ont signalé ces nouveaux instruments, n'existeront plus
et seront complétement oubliés; & moins que quelque géomadtre archéologue ne
ressuscite leurs noms. Eh! qu’importe, d’ailleurs, si la science a marché !

Lamé.




PREFACE.

IN the summer of 1884 at the suggestion of Dr Routh the
Syndics of the University Press placed in my hands the manusecript
of the late Dr Todhunter’s History of Elasticity, in order that it
might be edited and completed for the Press. That the publication
might not be indefinitely delayed, it was thought advisable to
print off chapter by chapter as the work of revision progressed.
That this arrangement has accelerated the publication of the first
volume is certain, but at the same time it has introduced some
disadvantages to which it is necessary for me to refer. In the
first place it was impossible to introduce in the earlier cross-
references to later portions of the work; this I have endeavoured
to rectify by adding a copious index to the whole volume. In the
next place I must mention, that it was not till I had advanced
some way into the work that I felt convinced that the reproduction
in the analysis of a memoir of the individual writer’s terminology
and notation must be abandoned and a uniform terminology and
notation adopted for the whole book. This was absolutely needful
if the book was to be available for easy reference, and not merely
of interest to the historical student. The choice, however, of such
terminology and notation—considering the enormous diversity, I
will even say confusion,on this point to be found in the writings of
British and continental elasticians—was an extremely venturesome
task. To evolve a really scientific terminology which shall stand
any chance of universal adoption from a number of words, which
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each individual writer has used in his own sense, is no easy matter.
If I have in some cases dispensed with such well-worn words as ten-
sion, pressure, extension, contraction and so forth, it has been from
no desire for novelty, but in order to avoid a conflict of definitions.
That the notation and terminology proposed in this work will
extend beyond it I hardly venture to hope, I shall be content if
they be intelligible to those who may consult this book. They will
be found fully discussed in Notes B—D of the Appendix, which I
would ask the reader to examine before passing to the text. AsI
have said, it was unfortunately only after I had made some progress
in the work, that I became convinced of the need of terminological
and notational uniformity. I think, however, consistency in these
points will be found after the middle of the chapter devoted to
Poisson. The introduction of this uniform system of symbols and
terms has itself involved a considerable amount of additional work
on the manuscript. The symbols and terms used in the manuscript
are occasionally those of the original memoirs, occasionally those of
Lamé or of Saint-Venant. The want of uniformity in the first two
chapters will perhaps not be considered a disadvantage, the memoirs
being of historical rather than scientific interest, and their language
often the most characteristic part of their historical value.

The disadvantages which I have pointed out in this first
volume will I trust be obviated in the second by the revision and
completion of the whole manuscript before the work of printing is
commenced. The second volume will contain an analysis of all
researches in elasticity from 1850 to the present time. From 1850
to 1870 most but not all of the chief mathematical memoirs have
been already analysed by Dr Todhunter; there is but little of a
later date completed. Considering the amount of work to be done,
considering that it is advisable to avoid revision and printing being
carried on simultaneously, and finally noting the very limited time,
which the teaching duties of my present post allow me to spend
in a library where it is possible to carry on historical work of
this kind, I fear the publication of the second volume would be
much delayed were the task of editing it entrusted to me. I lay
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stress upon this point as, although I have endeavoured to make
the first volume complete in itself, much of its usefulness will be
realised only on the appearance of the second. Indeed, in the
interests of the reader as well as of the work, I think the Syndics
will have to consider the question of appointing another editor,
who bas more of the needful leisure.

It is proper that I should explain with some detail the manner
in which I have performed my task as editor. Dr Todhunter’s
manuscript consists of two distinct parts, the first contains a
purely mathematical treatise on the theory of the ‘ perfect’ elastic
solid; the second a history of the theory of elasticity. The treatise
based principally on the works of Lamé, Saint-Venant and
Clebsch is yet to a great extent historical, that is to say many
paragraphs are composed of analyses of important memoirs. Thus
in the History-manuscript after the title of a memoir there is
occasionally only a mere reference to the paragraph of the Theory-
manuscript, where it will be found discussed. Certain portions
also of the manuscript have inscribed upon them in Dr Todhunter’s
handwriting ‘History or Theory?’ The Syndics having determined
to publish in the first place the History only, it became necessary
to determine how the gaps in the ‘ History’ which were covered
by mere reference to the ‘ Theory ’ should be filled up. With the
sanction of the Syndics I have adopted the following principle : the
analysis of a memoir wherever possible is.to be Dr Todhunter’s.
Thus certain, on the whole not very considerable, portions of the
Theory-manuscript are incorporated in the History, while all
portions of the manuscript marked doubtful have been made use
of when required.

Dr Todhunter’s manuscript contains two versions, a first
writing and a revision. The revision has been again read through
by the author, but the principal alterations made are notes or
suggestions for further consideration; in some cases the note is
merely a statement that a criticism must be either modified
or entirely rccomstructed, in other cases, it involves a valuable
cross-refercnce. One of the most important of these notes is that
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referred to in my footnote on p. 250 ; it led to the only considerable
excision which I have thought it proper to make before printing
Dr Todhunter’s manuscript.

The changes I have made in that manuscript are of the
following character ; the introduction of a uniform terminology and
notation, the correction of clerical and other obvious errors, the
insertion of cross-references, the occasional introduction of a
remark or of a footnote. The remarks are inclosed in square
brackets. With this exception any article in this volume the
number of which is not included in square brackets is due entirely
to Dr Todhunter. So far as the arrangement of the memoirs
is concerned there was little if anything to guide me in the
manuscript. Dr Todhunter had evidently intended to give each
of the principal elasticians chapters to themselves, and to group
the minor memoirs together into periods. This method although
it destroys the strict chronological treatment, and to some
extent obscures the order of development, yet possesses such
advantages, in that it groups together the researches of one
man following his own peculiar lines of thought, that I have
followed it without hesitation as the best possible. I even regret
that I have not devoted special chapters to such elasticians as
Hodgkinson, Wertheim and F. E. Neumann; in the latter case
the regret is deepened by the recent publication of his lectures on
elasticity. :

Turning to my own share in the completing of the work, I fear
that at first sight I may appear to have exceeded the duty of an
editor. For all the Articles in this volume whose numbers are
enclosed in square brackets I am alone responsible, as well as for
the corresponding footnotes, and the Appendix with which the
volume concludes. The principle which has guided me throughout
the additions I have made has been to make the work, so far as it
lay in my power, a standard work of reference for its own branch
of science. The use of a work of this kind is twofold. It forms on
the one hand the history of a peculiar phase of intellectual de-
velopment, worth studying for the many side lights it throws on
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general human progress. On the other hand it serves as a guide to
the investigator in what has been done, and what ought to be done.
In this latter respect the individualism of modern science has not
infrequently led to a great waste of power; the same bit of work
has been repeated in different countries at different times, owing
to the absence of such histories as Dr Todhunter set himself to
write. It is true that the various Jahkrbiicher and Fortschritte now
reduce the possibility of this repetition, but besides their frequent
insufficiency they are at best but indices to the work of the last
few years; an enormous amount of matter is practically stored out
of sight in the T'ransactions and Journals of the last century and
of the first half of the present century. It would be a great aid to
science, if, at any rate, the innumerable mathematical journals
could be to a great extent specialised, so that we might look to
any one of them for a special class of memoir. Perhaps this is too
great a collectivist reform to expect in the near future from even
the cosmopolitan spirit of modern science. As it is, the would-be
researcher either wastes much time in learning the history of his
subject, or else works away regardless of earlier investigators. The
latter course has been singularly prevalent with even some first-
class British and French mathematicians.

Keeping the twofold object of this work in view I have
endeavoured to give it completeness (1) as a history of develope-
ment, (2) as a guide to what has been accomplished.

Taking the first chapter of this History the author has discussed
the important memoirs of James Bernoulli and some of those due
to Euler. The whole early history of our subject is however so
intimately connected with the names of Galilei, Hooke, Mariotte
and Leibniz, that I have introduced some account of their work.
The labours of Lagrange and Riccati also required some recogni-
tion, so that these early writers form the basis of a chapter, which
I believe the reader will not find without interest, whether judged
from the special standpoint of the elastician or from the wider
footing of insight into the growth of human ideas. With a similar
aim I have introduced throughout the volume a number of
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memoirs having purely historical value which had escaped Dr
Todhunter’s notice.

Another class of memoirs which I have inserted are memoirs of
mathematical value, omitted apparently by pure accident. For
example all the memoirs of F. E. Neumann, the second memoir of
Duhamel, those of Blanchet etc. I cannot hope that the work is
complete in this respect even now, but I trust that nothing of
equal importance has escaped the author or editor'.

My greatest difficulty arose with regard to the rigid line which
Dr Todhunter had attempted to draw between mathematical and
physical memoirs. Thus while including an account of Clausius’
memoir of 1849, he had omitted Weber’s of 1835, yet the con-
sideration of the former demands the inclusion of the latter, were
it not indeed required by the long series of mathematical memoirs
which have in recent years treated of elastic after-strain. What
seemed to me peculiarly needful at the present time was to place
before the mathematician the results of physical investigations,
that he might have some distinct guide to the direction in which
research is required. There has been far too much invention of
‘solvable problems’ by the mathematical elastician ; far too much
neglect of the physical and technical problems which have been
crying out for solution. Much of the ingenuity which has been
spent on the ideal body of ‘perfect’ elasticity ideally loaded,
might I believe have wrought miracles in the fields of physical and
technical elasticity, where pressing practical problems remain in
abundance unsolved. I have endeavoured, so far as lay in my
power, to abrogate this divorce between mathematical elasticity on
the one hand, and physical and technical elasticity on the other.
With this aim in view I have introduced the general conclusions of
a considerable body of physical and technical memoirs, in the hope
that by doing so I may bring the mathematician closer to the
physicist and both to the practical engineer. I trust that in doing
so I have rendered this History of value to a wider range of

1 I should be very glad of a notification of any omissions, so that some reference
might be made to them in the second volume.
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readers, and so increased the usefulness of Dr Todhunter’s many
years of patient historical research on the more purely mathe-
matical side of elasticity. In this matter I have kept before me
the labours of M. de Saint-Venant as a true guide to the functions
of the ideal elastician. -

It remains for me to thank those friends who have so readily
given assistance and sympathy in the labour of editing. Only
- those, who have undertaken a task of similar dimensions can fully
appreciate the value of such help. The aid of two men, strangely
alike in character though diverse in pursuit, who exhibited a
keen interest in the progress of this work, has been lost to me
during its passage through the press. To the late Mr Henry
Bradshaw I owe assistance in procuring scarce memoirs, pamphlets,
and dissertations, as well as many valuable suggestions on typo-
graphical and bibliographical details. To the late M. Barré de
Saint-Venant I am indebted for the loan of several works, for
a variety of references and facts bearing on the history of elasticity,
as well as for a revision of the earlier pages of Chapter 1X. The
later pages of that chapter were revised after the death of M. de
Saint-Venant by his friend and pupil M. Flamant, Professeur
3 I'Ecole Centrale; whom I have likewise to thank for dis-
interested assistance in the revision of other portions of the work
relating to French elasticians.

The assistance of two other friends has left its mark on nearly
every article I have contributed to the work. My colleague,
Professor A. B. W. Kennedy, has continually placed at my
disposal the results not only of special experiments, but of his
wide practical experience. The curves figured in the Appendix,
as well as a variety of practical and technical remarks scattered
throughout the volume I owe entirely to him; beyond this it is
difficult for me to fitly acknowledge what I have learnt from mere
contact with a mind so thoroughly imbued with the concepts of
physical and technical elasticity. Mr W. H. Macaulay, University
Lecturer in Applied Mechanics, Cambridge, has given me re-
peated aid in the discussion of mathematical difficulties, and has
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saved me from many errors of interpretation, and several of judg-
ment. I have to thank Mr C. Chree of King’s College, Cambridge,
for a very careful revision of the proofs subsequent to Chapter 1v.,
and for a variety of suggestions. Mr T. H. Beare of the
Engineering Department, University College, has prepared the
copious Index to this volume, upon which much of its usefulness
will depend. To Mr R. J. Parker of Lincoln’s Inn I owe frequent
linguistic assistance and revision. While to Professor Callcott
Reilly of Cooper’s Hill, to my colleague Professor M. J. M. Hill,
and to Mr R. Tucker of the London Mathematical Socxety Iam
indebted for aid in a variety of ways.

In conclusion I can only hope that this first volume of
Dr Todhunter’s work will fulfil the object which he had designed
for it, that—notwithstanding the want of the author’s own revision
and the many editorial failings—it may still take its place as a
standard work of reference, worthy alike of its author and of the
University which publishes it.

KARL PEARSON.

Uxtversity CoLLecE, Loxpox,
June 28, 1886.




CONTENTS.

CHAPTER I
PAGES
The Seventeenth and Eighteenth Centuries. Galilei to Girard,
1638—1798 . . . . . . . . . 1—-79
CHAPTER II
Miscellaneous Investigations between the Years 1800 and
1822 . . . . . . . . . . . 80—132
CHaPTER III
Miscellaneous Researches 1820—1830, Na.vwr, Germain,
Savart, Pagani, and others . . . . . 133—207
CHAPTER IV.
Poisson . . . . . . . . . . . 208—318
CHAPTER V.
Cauchy . . . . . . . . . .. 319376
CHAPTER VL
Miscellaneous Researches of the Decade, 1830--1840 . . 377—543

CHAPTER VII.

Lamé and Clapeyron, Lamé . . . . . . . 544626
CuaptER VIIL
Miscellaneous Researches of the Decade 1840—1850, including
those of Blanchet, Stokes, Wertheim and Haughton . . 627—832
CHAPTER IX,
Saint-Venant’s Researches before 1850 . . . . . 833-872
APPENDIX. NoTEs A—E. 873—896

INDEX,



CHIEF ELASTICIANS BEFORE 1850.

ARRANGED IN THE ORDER OF THEIR CHIEF MEMOIRS
ON ELASTICITY.

Birth. Death.

Galilei . 1664—1642
Hooke . 1635—1702
Mariotte . 1620 (1)—1684
James Bernoulli . 1654—1705
Musschenbroek . 1692—1761
Daniel Bernoulli . 1700—1782
Euler . . 1707—1783
Coulomb . . 1736—1806
Girard . 1765—1836
Young . 1773—1829
Tredgold . . 1788—1829
Hodgkinson . 1789—1861
Navier . 1785—1836
Germain . 1776—1831
Savart . 1791—1841
Poisson . 1781—1840
Cauchy . 1789—1857
W. Weber. . 1804— *
Vicat . 1786—1861
Piola . 1791—1850
F. E. Neumann . 1798— *
Gerstner . . 1756—1832
Duhamel . . 1797—1872
Green . 1793—1841
Poncelet . 1788—1867
Lamé . . 1795—1870
Clapeyron . 1799—1864
Stokes . 1819— *
‘Wertheim . 1815—1861
Blanchet . . 1813— *
Maxwell . 1831—1879
Haughton MH— *
Jellett .= ¥
Kupffer . 1799—1865
Saint-Venant . 1797—1886

* Living scientists.




CHAPTER L

THE SEVENTEENTH AND EIGHTEENTH CENTURIES.

GALILEI TO GIRARD. 1638—1798.

ERRATA.

p. 100, line 4 for d'z/dz* read dy|dzt.

p. 142, last line for Poisson read Poinsot.

p. 217, dele footnote.

p. 317, line 5 from bottom for VII. read VIII.
. 327, footnote for confusing f(r) read confusing f(r).
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1 There is an English translation in Thomas Salusbury’s Mathematical Collections
and Translations, London, 1665. Tom. 11. p. 89.
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CHAPTER 1.

THE SEVENTEENTH AND EIGHTEENTH CENTURIES.
GALILEI TO GIRARD. 1638—1798.

[1] THE modern theory of elasticity may be considered to
have its birth in 1821, when Navier first gave the equations for the
equilibrium and motion of elastic solids, but some of the problems
which belong to this theory had previously been solved or discussed
on special principles, and to understand the growth of our modern
conceptions it is needful to investigate the work of the seventeenth
and eighteenth centuries.

[2.] The first memoir that requires notice is by Galileo Galilei
and forms the second dialogue of the Discorsi e Dimostrazioni
matematiche, Leiden 1638, This dialogue both from its contents
and form is of great historical interest. It not only gave the
impulse but determined the direction of all the inquiries concern-
ing the rupture and strength of beams, with which the physicists
and mathematicians for the next century principally busied
themselves. Qalilei gives 17 propositions with regard to the
fracture of rods, beams and hollow cylinders. The noteworthy
feature about his method of discussion is that he supposed the
fibres of a strained beam to be tnextensible. There are two

1 There is an English trauslation in Thomas Salusbury’s Mathematical Collections
and Translations, London, 1665. Tom. 11. p. 89.

T. E. -1
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2 GALILEL

problems which Galilei discussed, and which form the starting
points of many later memoirs. They are the following :

[3.] A beam (4 BCD) being built horizontally into a wall (at
AB) and strained by its own or an applied weight (E), to find the
breaking force upon a section perpendicular to its axis. This
problem is always associated by later writers with Galilei’s name,
and we shall call it in future Galiler’s Problem.

(From the Discorsi, Leiden 1638.)

The ‘base of fracture’ being defined as the section of the
beam where it is built into the wall; we have the following
results :—

(i) The resistances of the bases of fracture of similar prismatic
beams are as the squares of their corresponding dimensions.
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In this case the beams are supposed loaded at the free end
till the base of fracture is ruptured; the weights of the beams are
neglected.

(i) Among an infinite number of homogeneous and similar
beams there is only one, of which the weight is exactly in equili-
brium with the resistance of the base of fracture. All others, if of
a greater length will break,—if of a less length will have a
superfluous resistance in their base of fracture.

[4¢] The second problem with which Galilei particularly
busied himself, was the discovery of ‘solids of equal resistance.’
The problem in its simplest fortn may be thus stated; ACB,
AC'B’ are two curves in vertical and horizontal planes respectively,
a solid is generated by treating ACB and A C'B as the bases of
cylinders with generators perpendicular to the bases. This solid
BEB’'DA is then treated as a beam built in at the base BEB' D
and from 4 a weight is suspended. The problem is to find the
form of the generating curves so that the ‘resistance’ of a section
CE’C'D may be exactly equal to the tendency to rupture at that
place. Obviously the problem may take a more complex form by
supposing any system of forces to act upon the beam. As we
" have stated it, it still remains indeterminate, for we must either be
given one of the generating curves or else a relation between them.
Galilei supposed the curve 4C’'B’ to be replaced by a line parallel
to AE, so that all vertical sections of his beam parallel to 4 CBE
were curves equal to ACB. In this case he easily determined
that the ‘solid of equal resistance’ must have a parahola for its
generating curve,

1-2
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[5] This problem of solids of equal resistance led to a
memorable controversy in the scientific world. It was discussed by
P. Wurtz, Frangois Blondel (Galilaeus Promotus 1649 (?); Sur la
résistance des solides, Mém. Acad. Paris, Tom. 1. 1692), Alex.
Marchetti (De resistentia solidorum, Florence 1669), V. Viviani
(Opere Galiler, Bologna 1655), Guido Grandi (La controversia contro
dal Sig. A. Marchetti, and Risposta apologetica...alle opposizions dal
Sig. A. Marchetti; both Lucca 1712), and still more fully later, in
memoirs to be referred to, of Varignon (1702) and Parent (1710).
An interesting account of the controversy and also of writings on
the same subject will be found in Girard’s work (¢f. infra Art. 124).

Closely as the problem of solids of equal resistance is associated
with the growth of the mathematical theory of elasticity, it is never—
theless the problem of the flexure of a horizontal beam which may
be said to have produced the entire theory.

[6.] While the continental scientists were thus busy with
problems, which were treated without any conception of elasticity,
and yet were to lead ultimately to the problem of the elastic curve,
their English contemporaries seem to have been discussing
hypotheses as to the nature of elustic bodies. One of the earliest
memoirs in this direction which I have met with is due to Sir
William Petty, and is entitled :

The Discourse made before the Royal Society concerning the
use of Duplicate Proportion; together with a new Hypothesis of
Springing or Elastique Motions, London 12mo. 1674.

Although absolutely witkout scientific value, this little work
throws a flood of light on the state of scientific investigation at the
time. On p. 114 we are treated to an ‘instance’ of duplicate
proportion in the “ Compression of Yielding and Elastic Bodies as
Wooll, &c.” There is an appendix (p. 121) on the new hypothesis
as to elasticity. The writer explains it by a complicated system of
atoms to which he gives not only polar properties, but also sexual
characteristics, remarking in justification that the statement of
Genesis 1. 27:—“male and female created he them”—must be
taken to refer to the very ultimate parts of nature, or, to atoms as
well as to mankind! (p. 131.)
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Much more scientific value must be granted to the work of the
next English writer.

[7] The discovery apparently of the modern conception of
elasticity seems due to Robert Hooke, who in his work De potentid
restitutiva, London 1678, states that 18 years before the date of
that publication he had first found out the theory of springs, but
bad omitted to publish it because he was anxious to obtain a
patent for a particular application of it. He continues :—

Abount three years since His Majesty was pleased to see the
Experiment that made out this theory tried at Wkite-Hall, as also my
Spring Watch.

About two years since I printed this Theory in an Anagram at the
end of my Book of the Descriptions of Helioscopes, viz. ésiiiniosssitun, id
est, Ut Tensio sic vis; That is, The Power of any spring is in the same
proportion with the Tension thereof.

By spring’ Hooke does not merely denote a spiral wire, or a
bent rod of metal or wood, but any “springy body” whatever.
Thus after describing his experiments he writes:

From all which it is very evident that the Rule or Law of Nature
in every springing body is, that the force or power thereof to restore
it self to its natural position is always proportionate to the Distance
or space it i8 removed therefrom, whether it be by rarefaction, or
separation of its parts the one from the other, or by a Condensation, or
crowding of those parts nearver together. Nor is it observable in these
bodies only, but in all other springy bodies whatsoever, whether Metal,
‘Wood, Stones, baked Earths, Hair, Horns, Silk, Bones, Sinews, Glass
and the like. Respect being had to the particular figures of the bodies
bended, and to the advautageous or disadvantageous ways of bending
them.

[8.] The modern expression of the six components of stress as
linear functions of the strain components may perhaps be physically
regarded as a generalised form of Hooke’s Law. (See the remark
made on this point by Saiot-Venant in his Mémoire sur la Torsion
des Prismes, pp. 256—7, and compare the same physicist's valuable
note in his translation of Clebsch’s Theorie der Elusticitt fester
Korper, pp. 390—40).
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[9.] The principles of the Congruity and Incongruity of bodies
and of the ‘fluid subtil matter’ or menstruum by which all bodies
near the earth are incompassed—wherewith Hooke sought to
theoretically ground his experimental law will no more satisfy the
modern mathematician than the above-mentioned researches of
Galilei. They are however very characteristic of the mathematical
metaphysics of the period’.

[10.] Mariotte seems to have been the earliest investigator
who applied anything corresponding to the elasticity of Hooke to
the fibres of the beam in Galilei’s problem. In his Traité dw
mowvement des eaux, Paris 1686, Partie V. Disc. 2, pp. 370—400, he
publishes the results of experiments made by bim in 1680 and
shows that Galilei’s theory does not accord with experience. He
remarks that some of the fibres of the beam extend before rupture,
while others again are compressed. He assumes however without
the least attempt at proof (“on peut concevoir”) that half the
fibres are compressed, ha f extended.

[11.] G. W. Leibniz: Demonstrationes novae de Resistentid.
solidorum. Acta Eruditorum Lipsiae July 1684. The stir created
by Mariotte’s experiments and his rejection of the views of the
great Italian seem to have brought the German philosopher into
the field. He treats the subject in a rather ex cathedrd fashion, as
if his opinion would finally settle the matter. He examines the
hypotheses of Galilei and Mariotte, and finding that there is always
flexure before rupture, he concludes that the fibres are really exten-
sible. Their resistance is, he states, in proportion to their extension.
In other words he applies “ Hooke’s Law ” to the individual fibres.
As to the application of his results to special problems, he will leave
that to those who have leisure for such matters.. The hypothesis
of extensible fibres resisting as their extension is usually termed by
the writers of this period the Mariotte-Leibniz theory.

1 A suggestion which occurs in the tract that one of his newly invented spring
scales should be carried to the Pike of Teneriffe to test * whether bodies at a
further distance from the centre of the earth do not lose somewhat of their powers
or tendency towards it,” is of much interest as occurring shortly before Newton's
enunciation of the law of gravitation.
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[12] De la Hire: Traité de Mécanique, Paris 1695. Propo-
sition CXXVI. of this work is entitled De la résistance des solides.
The author is acquainted with Mariotte’s theory and considers
that it approaches the actual state of things closer than that of
Galilei. At the same time, notwithstanding certain concluding
words of his preface, he does little but repeat Galilei’s theorems re-
garding beams and the solid of equal resistance.

[13.] Varignon: Dela Résistance des Solides en général pour
tout ce qu'on peut faire d hypothéses touchant la force ou la ténacité
des Fibres des Corps & rompre; Et en partioulier pour les
hypothéses de Galilde & de M. Mariotte. Mémorres de U Aoadémse,
Par’s 1702,

This author considers that it is possible to state a general
formula which will include the hypotheses of both Galilei and
Mariotte, but to apply his formula it will in nearly all practical
cases which may arise be necessary to assume some definite
relation between the extension and resistance of the fibres. As
Varignon’s method of treating the problem is of some interest,
being generally adopted by later writers (although in conjunction
with either Galilei’s or the Mariotte-Leibniz hypothesis), we shall
briefly consider it here, without however retaining his notation.

[14] Let ABCNML be a beam built into a vertical wall at
the section 4BC, and supposed to consist of a number of parallel

G B
M
X ) .
H 7 >t
A N

T
®
fibres perpendicular to the wall (it is somewhat difficult to see how
this is possible in the figure given, which is copied from Varignon)

and equal to AN in length. Let H' be a point on the ‘base of
fracture, and H'E perpendicular to AC=y, AE=x. Then ifa
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weight Q be attached by means of a pulley to the extremity of the
beam, and be supposed to produce a uniform horizontal force over the

whole section NML, Q=1r. fyda; where r is the resistance of a

fibre of unit sectional area and the integration is to extend over
the whole base of fracture. @ is by later writers termed the
absolute resistance and is given by the above formula. Now
suppose the beam to be acted upon at its extremity by a vertical
force P instead of the horizontal force . All the fibres in a
horizontal line through H' will have equal resistance, this may be
measured by a line HK drawn through H in any fixed direction
.where H is the point of intersection of the horizontal line through
H and the central vertical BD of the base. As H moves from B to
D, K will trace out a curve GK which gives the resistance of the
corresponding fibres. Take moments for the equilibrium of the
beam about 4 C

P.l= fuyda:dy,
where ! = length of the beam DT and u = HK.

This quantity f f uydzdy was termed the relative resistance of

the beam or the resistance of the base of fracture. The meaning
of these terms is important for the understanding of these early
memoirs. (Varignon speaks of Résistance absolue and Résistance
respective, cf. § X111) So far there is little to complain of in
Varignon’s formulae except that it is necessary to know u before
we can make use of it. He then proceeds to apply it to Galilei’s
and the Mariotte-Leibniz hypotheses.

[15] In Galilei’s hypothesis of inextensible fibres u is supposed
constant = r and the resistance of the base of fracture becomes

= rfydxdy = g Jyde.

On the supposition that the fibres are extensible we ought to con-
sider their extension by finding what is now termed the neutral line
or surface. Varignon however, and he is followed by later writers,
assumes that the fibres in the base ACLN are not extended; and
that the extension of the fibre through H’ varies as DH, in other
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words he makes the curve GK a straight line passing through
D. Hence if r' be the resistance of the fibre at B, and DB = a,
the resistance of the fibre at H =7"y/a or the resistance of the base
of fracture on this hypothesis becomes

v
3 ly'd=.
This resistance in the case of a rectangular beam of breadth b and
height a becomes on the two hypotheses
ra’h r'a’d

g and —

respectively.

Hence in calculating the form of “solids of equal resistance”
where the resistance of any section of the beam is taken pro-
portional to the breaking moment at the section, it will be
indifferent which hypothesis we make use of. (Cf. § XxL of the
memoir.)

[16.] Varignon calculates the forms of various solids of
resistance, but it is unnecessary to follow him, his results are
practically vitiated when applying the true (Leibniz-Mariotte)
theory by his assumption of the position of the neutral surface,
but in this error he is followed by so great a mathematician as
Euler himself. (See Art. 75.)

[17.] Before entering on the more important work of James
Bernoulli we may refer to a memoir by A. Parent entitled Des
points de rupture des figures:...des figures retenués par un de leurs
bouts et tirées par telles et tant de puissances quon voudra. M¢-
moires de I’ Académie. Paris 1710, Tom. 1. p. 235. I mention this
memoir as it practically concludes the theory of solids of equal resis-
tance. The author refers to two of his own earlier memoirs (1704 and
1707) which I have not thought it needful to examine. The point
of rupture is deduced from the solid of equal resistance in the
following not altogether satisfactory fashion. Consider the case
of a beam loaded in any fashion; then retaining the horizontal
generating curve of the beam (supposed formed by two cylinders
with generators respectively horizontal and vertical in the manner
described in our Art. 4,) we may replace the beam by a solid
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of equal resistance of the same length by changing its vertical
generating curve, or again we may invert the process, retaining
the vertical and varying the horizontal generating curve. In either
case the ‘relative resistance’ of these two solids at any point (ie.
section) will be the same, and a point at which the difference
between the relative resistances of the actual solid and of the
hypothetical solids of equal resistance is & minimum will be a
point of minimum resistance. A point at which this difference
vanishes or is negative will be a point of rupture. Parent
considers a variety of cases of solids of equal resistance and their
points of rupture.

18. The first work of gennine mathematical value on our
subject is due to James Bernoulli, who considered the form of
a bent elastic lamina in a paper entitled Curvatura Laminae
Elasticae, printed in the Acta Eruditorum Lipsiae for June 1694,
p- 262, with Annotationes et Additiones thereto in the same Acta,
Dec. 1695, p. 537. The method of this first examination of the
elastic curve did not satisfy Bernoulli, and these memoirs were
replaced by another entitled :

Véritable hypothése de la résistance des Solides, avec la démon-
stration de la Courbure des Corps qui font ressort. This occupies
Vol. 11. pp. 976—989 of the collected works of the author, published
at Geneva, 1744. The date of the memoir is 12th of March 1705 ;
and as the memoirs which follow it in the collected works are
entitled Varia Posthuma, we may take it to be the last which
appeared during the life of this famous mathematician : he died on
the 16th of August 1705,

19. The memoir begins by brief notices of what had been
already done with respect to the problem by Galilei, Leibniz,
and Mariotte; James Bernoulli claims for himeelf that he first
introduced the consideration of the compression of parts of the
body, whereas previous writers had paid attention to the ex-
tension alone ',

20. Three Lemmas which present no difficulty are given and
demonstrated :

1 [As we have seen this remark does not apply to Mariotte.] Ep.
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I. Des Fibres de méme matitre et de méme largeur, ou
épaisseur, tirées ou pressées par la méme force, s'étendent ou
se compriment proportionellement & leurs longueurs.

II. Des Fibres homogenes et de méme longueur, mais de
ditférentes largeurs ou épaisseurs, s'étendent ou se compriment
également par des forces proportionelles & leurs largeurs.

III. Des Fibres homogtnes de méme longueur et largeur,
mais chargées de différens poids, ne s'étendent ni se compriment
pas proportionellement & ces poids; mais I'extension ou la com-
pression causée par le plus grand poids, est & 'extension ou a la
_compression causée par le plus petit, en moindre raison que ce
poids-1a n’est & celui-ci. )

The third Lemma just stated is strictly true, but is not
of great practical importance for our subject, because hitherto
in the problems discussed it has been found sufficient to limit the
forces so that the extension or contraction of the fibres shall
be proportional to the tension or pressure’.

[21.] The fourth Lemma is more complex in statement, but
may be readily understvod by reference to Varignon’s memoir.
We have seen that Varignon supposed the neutral surface to pass
through the line AC, the so-called ‘axis of equilibrium’
(see the figure p. 7). James Bernoulli considering there to be
both compression and extension does not treat this axis of
equilibrium as the horizontal through the lowest point of the
base of fracture. He recognises the difficulty of determining the
fibres which are neither extended nor compressed, but he comes
to the conclusion that the same force applied at the extremity
of the same lever will produce the same effect, whether all the
fibres are extended, all compressed or part extended and part
compressed about the axis of equilibrium. In other words the
position of the axis of equilibrium s indifferent. This result is
expressed by the fourth Lemma and is of course inadmissible. The
editor of the collected works has supplied notes recording his dis-
satisfaction with the reasoning by which this Lemma is supported,

! {We shall see reason for somewhat modifying this statement later.] Eb.
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and Saint-Venant remarks in his memoir on the Flexure of Prisms
in Liouville’s Journal, 1856 :

On s'etonne de voir, vingt ans plus tard, un grand géométre, auteur
de la premiére théorie des courbes élustiques, Jacques Bernoulli tout en
admettant aussi les compressions et présentant méme leur considération
comme étant de lui commettre sous une autre forme, précisement la
méme méprise du simple au double que Mariotte dans I’évaluation du
moment des résistances ce qui le conduit méme & affirmer que la
pos:tion attribuée & I'axe de rotation est tout & fait indifférente.

[22.] In addition to this error of Bernoulli's it must be
noted that he rejects the Mariotte-Leibniz hypothesis or the
application of Hooke’s law to the extension of the fibres. He
introduces rather an idle argument against, and quotes an ex-
periment of his own which disagrees with Hooke's Ut tensio, sic vis.

23. James Bernoulli next takes a problem which he enunciates
thus : ““Trouver ‘combien il faut plus de force pour rompre une
poutre directement, c’est-a-dire en la tirant suivant sa longueur, que
pour la rompre transversalement.” The investigation depends on
the fourth Lemma, and is consequently not satisfactory.

24. Next we have a second problem entitled: *Trouver la
courbure de la Ligne Elastique, c’est-a-dire, celle des lames a ressort
qui sont plies.” This problem forms the permanent contribution
of the memoir to our subject.

The process is more elaborate than is necessary, because it
does not assume the extension or contraction of a fibre to be
as the force producing it. But the case in which this assumption
is made is especially noticed, and the differential equation to the
elastic curve then takes the form dy =baz’dz/,/c* — b'z".

The investigation considered as the solution of a mechanical
problem is imperfect; we know that three equations must be
satisfied in order to ensure equilibrium among a set of forces in
one plane, but here only one equation is regarded, namely. that
of moments*.

t
1 [P. 985 | mt dt is curious notation for f 0updp. Fig. 5 omit the O close by N.]
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25. The method of James Bernoulli with improvements,
has been substantially adopted by other writers. The English
reader may consult the earlier editions of Whewell's Mechanics.
Poisson says in his T'raité de Mécanique, Vol. 1, pages 597 and 600 :

Jacques Bernoulli a déterminé, le premier, la figure de la lame
élastique en équilibre, d’'aprés des considérations que nous allons
développer,...

[26.] Sir Isaac Newton: Optics or a Treatise of the Reflections,
Refractions and Colours of Light. 1717.

The first edition of the Optics (1704) concluded with a series
of sixteen Queries. To the second edition of 1717 were added
fifteen additional queries, making thirty-one in all. Of these the
XXXI*, termed ‘Elective Attractions,” occupies pp. 242—264 of
Vol. 1v. of Horsley’s edition of the Opera. It contains the
suggestions upon which were afterwards built up the various hypo-
theses of the physical nature of elasticity, which seek to explain
it by the attractive properties of the ultimate atoms of bodies
(see Articles 29. . and 36).

The Query commences by suggesting that the attractive powers
of small particles of bodies may be capable of producing the great
part of the phenomena of nature : —

For it is well known that bodies act one upon another by the attrac-
tions of gravity, magnetism and electricity ; and these instances shew
the tenor and course of nature, and make it not improbable, but that
there may be more attractive powers than these. For nature is very
consonant and couformable to herself.

We then find certain chemical combinations, fermentations
and explosive unions discussed on the ground of attractions between
the small particles of bodies.

The parts of all homogeneal hard bodies, which fully touch oue
another, stick together very strongly. And for explaining how this
may be, some have invented hooked atoms, which is begging the
question ; and others tell us, that bodies are glued together by Rest:
that is, by an occult quality, or rather by nothing: and others, that
they stick together by conspiring motious, that is byrelative Rest among
themselves. I had rather infer from their cohesion, that their particles



14 NEWTON.

attract one another by some force, which in immediate countact is ex-
ceeding strong, at small distances performs the chemical operations
above-mentioned, and reaches not faur from the particles with any
sensible effect.

Newton supposes all bodies to be composed of hard particles,
and these are heaped up together and scarce touch in more than a
few points.

And how such very hard particles, which are only laid together, and
touch only in a few points can stick together, and that so firmly as
they do, without the assistance of something which causes them to be
attracted or pressed towards one auother, is very difficult to conceive.

After using arguments from capillarity to confirm these remarks
he continues:

Now the small particles of matter may cohere by the strongest
attractions, and compose bigger particles of weaker virtue; and many
of these may cohere and compose bigger particles, whose virtue is still
weaker ; and so on for divers successions, until the progression endl
in the biggest particles, on which the operations in chemistry, and the
colours of natural bodies depend; and which by adhering, compose
bodies of a sensible magnitude. If the body is compact, and bends or
yields inward to pression without any sliding of its parts, it is Hard
and Elastick, returning to its figure with a force rising from the mutual
attractions of its parts.

The conception of repulsive forces is then introduced to explain
the expansion of gases.

Which vast contraction and expansion seems unintelligible, by
feigning the particles of air to be springy and ramous, or rolled up like
hoops, or by any other means than a Repulsive power. . And thus
Nature will be very conformable to herself, and very simple ; perform-
ing all the great motions of the heavenly bodies by the attraction of
gravity, which intercedes those bodies ; and almost all the smull ones
of their particles, by some other Attractive and Repelling powers.

[27.] The conclusivon of the Query and thus also of the Optics
is devoted to a semi-theological discussion on the creation of the
ultimate hard particles of matter by God. A suggestive paragraph
however occurs (p. 261), which is sometimes not sufficiently re-
membered when gravitation is spoken of as a cause :—
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These principles—i.e. of attraction and repulsion—I consider not as
occult qualities, supposed to result from the specitick forms of things,
but as general laws of Nature, by which the things themselves are
formed ; their truth appearing to us by phenomena, though their causes
be not yet discovered’.

This seems to be Newton’s only contribution to the subject of
Elasticity, beyond the paragraph of the Principia on the collision of
elastic bodies. (See Art. 37 and footnote.)

[28.] We may here note that while the mathematicians were
beginning to struggle with the problems of elasticity, a number of
practical experiments were being made on the flexure and rupture
of beams, the results of which were of material assistance to the
theorists. Besides the experiments made by Mariotte, we may
mention :

a. A. Parent: A first memoir by this author dated either 1702
or 1704, I have not been able to discover. It is cited by Girard.
Expériences pour connoitre la Résistance des Bois de Chéne et de
Sapin. Mém. Acad. Paris, 1707, p. 680. Les Résistances des
Poutres par rapport d leurs Longueurs ou Portées...et des Poutres
de plus grande Résistance. Ibid. 1708, p. 20.

B. B.F.de Bélidor: La Science des ingénieurs dans la conduite
des travaux de fortification et d architecture civile, La Haye 1729,

v. R. A. F. de Réamur: Expériences pour connaftre, si la force
des cordes surpasselasomme des forces des fils qui composent ces mémes
cordes. Mémoires de I Académie. Paris 1711. Also, Ezpériences
et réflexions sur la prodigieuse ductilité de diverses matiéres. Ibid.
1713. I have referred to these memoirs, because although they
can hardly be-said to form part of our subject, yet subsequent writers
on elasticity draw material from them (e.g. Musschenbroek and

Belgrado).
8. Petris van Musschenbroek : Introductio ad cohaerentiam cor-

porum firmorum. This extremely voluminous work commences
at p. 423 of the author’s Physicae experimentales et geometricae

1 See also the remarkable phrase with which the preface to the second edition
concludes ; “I do not take gravity for an essential Property of Bodies.”
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Dussertationes. Lugduns 1729. It was held in high repute even
to the end of the 18th century.

The author commences with an historical preface, which has
been largely drawn upon by Girard. He describes the various
theories which have been started to explain cohesion, and rejects
successively that of the pressure of the air and that of a subtle
medium. Of the latter, he writes:

Quare clarissime conspicimus ex hypothesi aetheris nequaquam
fluere phaenomena quae circa cohaerentiam experientia detegit, meri-
toque hanc Hypothesin ex Physica esse proscribendam (p. 443).

He laughs at Bacon’s explanation of elasticity, and another
metaphysical hypothesis he terms abracadabra. Finally he falls
back himself upon Newton’s thirty-first Query (see Art. 26) and
would explain the matter by vires internae. These internal forces
Musschenbroek assumes to exist, and holds that, without our need-
ing a metaphysical hypothesis as to their cause, we may deter-
mine them in each case by experiment.

Haec vis interna & Deo omnibus corporibus indita fuit, voluitque
infinite efficax Creator, ut haec in se operantur secundum vim illam :
adeoque haec vis est Lex Naturae, cui similis observatur altera, gravitas
appellata (p. 451).

The source of elasticity is a vis interna attrakens. This theory
is obviously drawn directly from Newton’s Optics.

Musschenbroek then proceeds to propositions and experiments.
He treats of the extension (cohaerentia vel resistentia absoluta) and
of the flexure (cohaerentia respectiva aut transversa) of beams,
but does not seem to have considered their compression. His
experiments are principally on wood, with a few however on metals.
He refers to earlier experiments by Mersenne (T'raité de Uharmonie
universelle 162(6. Lsb. 111. prop. 7) and Francesco de Lama (Magzs-
terium naturae et artis 1684-92. Lib. XI. cap. 1) and discusses the
Galilei and the Mariotte-Leibniz hypotheses. Anything of value
in his work is however reproduced by Girard.

Musschenbroek discovered by experiment that the resistance of
beams compressed by forces parallel to their length is, all things
being equal, in the inverse ratio of the squares of their lengths; a
result afterwards deduced theoretically by Euler (see Art. 76).
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e. Buffon, Moyen facile d'augmenter la solidité, la force et la
durée du bois. Mém. Acad. Pards 1738, p. 241.

Expériences sur la force du bois. Two memoirs presented
to the French Academy in 1740 (p. 636) and 1741 (p. 394).

Buffon seems to have been the first after Musschenbroek who
experimented on bars of iron. See the Oeuvres complétes, Tom. viI.
p- 61. Paris, 1774—8. Most of the early experimenters deal only
with wood.

& M. Perronet. QOeuvres. Tom.I. Sur les pieuz et pilotis.

9. Finally at the end of the century (1798) Girard closed this
" list of experiments with a remarkable series conducted at Havre
referred to later (see Art. 131).

[29.] A few other minor memoirs of the first half of the 18th
century must be mentioned before we proceed to the more im-
portant work of Jacopo Riccati, Daniel Bernoulli and Euler.

a. Pere Maziére: Les Loix du choc des corps & ressort parfait
ou smparfait, déduites d'une explication probable de la cause physique
du ressort. Paris, 1727. This was the essay which carried off
the prize of the Académie Royale des Sciences offered in the year
1726. Pere Mazitre, Prétre de U'Oratoire, seems to have had
remarkable notions on the extreme complexity of the mechanism
by which Nature produces her phenomena, and on the slight
grounds necessary for the statement of the most elaborate hypo-
theses. The essay is of purely historical interest, but that interest
is considerable ; it brings out clearly the union of those theological
and metaphysical tendencies of the time, which so checked the
true or experimental basis of physical research. It shews us the
evil as well as the good which the Cartesian ideas brought to
science. It is startling to find the French Academy awarding their
prize to an essay of this type, almost in the age of the Bernoullis
and Euler. Finally it more than justifies Riccati’s remarks as to
the absurdities of these metaphysical mathematicians.

Pere Mazidre finds a probable explanation of the physical
cause of spring in that favorite hypothesis of a ‘subtile matter’ or
étherée. In a series of propositions he deduces the following
results.

T. E. 2
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La cause physique du ressort est un fluide. This he proves by
the method of elimination. ‘Une cause physique n’est pas une
intelligence ;’ that is only God or the first cause. Next it cannot
be a solid, ergo it must be a fluid. This fluid circulates in the
imperceptible canals of bodies. La cause physique du ressort n’est
pas lair, mais la matiére subtile. A single argument from a
bladder will hardly strike the modern reader as conclusive.

La matiére subtile a une force infinie, ou comme infinie.
La matidre subtile est un fluide parfast.
La matiére subtile est infiniment comprimée.

The extremely naive proofs of these propositions are well
calculated to fill the modern reader with a pharisaical feeling. A
remark which occurs under the last heading deserves to be repro-
duced at length :

Mais comment la matiére subtile ne 'insinuéroit-elle pas dans tous
les corps créez? C’est elle qui les engendre, pour ainsi dire, & qui
les fait croitre par des végétations, fermentations, &c. Sans elle que
seroit ’Univers? Si Dieu qui I'a créée cessoit un instant de la com-
server, ou de la comprimer ; les Astres n'auroient plus de lumitre, ni
de mouvement ; le feu perdroit sa chaleur, I'eau sa liquidité, & l'aiment
toutes ses vertus; l'air que nous respirons se reduiroit 4 un amas
confus de lames spirales sans aucune force; les ocorps n’auroient plus
ni dureté, ni ressort, ni fluidité, ni pesanteur ; ils ne tendroient plus
vers le centre de la terre; & la terre elleméme que deviendroit-elle 3
Otez la matiere subtile, 'Univers entier disparoit (p. 16).

The Pére Mazidre then applies the Cartesian theory of vortices
to the aether:

La matiére subtile n'est composée que d’une infinité de tourbillons
qut tournent sur leurs centres avec une extréme rapidité. He
" attributes this discovery regarding the aether to Malebranche.
These vortices are retained in equilibrium by their centrifugal
forces, which leads to the corollary: “la force centrifuge des tour-
billons tnfiniment petits, est infiniment grande. Finally we have
the concluding proposition of this ¢ explanation’: La matidre sub-
tile est la cause physique du ressort par la force centrifuge de ses
petits tourbillons. These little vortices are in the pores of all bodies,
etc., etc. Such will sufficiently characterise the method of expla~
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nation. Maziere thinks that other solutions might be given by
means of the “subtile matter,” “mais je me suis arrété a celle qui
m’a paru avoir le plus de vraisemblance.”

The rest of the tractate applies the theory to the impact of
bodies.

B. G. B. Biilfinger: De solidorum Resistentia Specimen, Com-
mentariv Academiae Petropolitanae. Tomus Iv. p. 164.

This is a memoir of August 1729, but first published in the
proceedings for that year which appeared in 1735.

The author commences with a reference to the labours of
Galilei, Leibniz, Wurtz, Mariotte, Varignon, James Bernoulli and
Parent (“ Vidimus et Parentium saepius in hoc negotio versatum,
virum, cuius longe infra meritum fama est”). He then states as
the object of his memoir :

Nobis id curae est, ut factis repetita vice experimentis, tandem
aliquando appareat, num dicta virorum naturae congruant? aut quous-
que aberrent? Id ut consilio magis, quam casu, fiat, praemitti utique
considerationes abstractae debent, sed paucae illae, nec difficiles, nec
omnes novae.

The following nine sections (§ 3 to § 12) are concerned with
the breaking force on a beam when it is applied longitudinally and
transversally. QGalilei’s and the Mariotte-Leibniz hypotheses are
considered. It is shewn that the latter is the more consonant
with actual fact, but it is not exact because it neglects the
compression (i.e. places the neutral line in the lowest horizontal

fibre of the beam).

Ita propius ad naturam accessimus in nova hac hypothesi: sed
absumus tamen a plena similitudine. Extenduntur fibrae in puncto D,

by

C
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comprimuntur quoque. Nescio, qui factum sit, ut Mariotto maculam
inurat, Jac. Bernoullius, quasi compressionem neglexerit, soli extensioni
intentus, cum tamen id Mariotto debeamus, quod compressionis primam
ipse mentionem fecerit; idemque sit autor propositionis, quam et '
Bernoullius approbat, quod eaedem conclusiones prodeant, sive solam
extensionem fibrarum inde a B ad D, sive extensionem a B, ad punctum
aliquod C, et a C ad D, compressionem supponas. (§ 12.)

§ 13—§ 21 are concerned with various suppositions as to the
relation between extension of a fibre and the extending force.
Biilfinger thinks that the ut tensio sic vis principle is not consonant
with experiment and suggests a parabolic relation of the form

tension « (distance from the neutral line)™,
where the power is a constant to be determined by experiment.

In § 22 the writer returns to the question of extension and
compression of the fibres of the beam under flexure. He cites the
two theories; namely that of Marintte, that the neutral line is
the ‘middle fibre’ of the beam, and that of Bernoulli that its
position is indifferent. He himself rejects both theories, and gives
on the whole sufficient reasons for doing so. Finally, not having
accepted Hooke's principle for the fibres of a beam, he holds that
till the laws of compression are formulated, the position of the
neutral line must be found by experiment.

. J.T. Desaguliers: Thoughts and conceptions concerning the
Cause of Elasticity, Phil. Trans. 1736.

Desaguliers’ opinions on elasticity are also expressed in his
Course of Experimental Philosophy. London 1734—44. Vol. m.
pp. 1—11 and p. 38 et seg. He supposes elasticity to be due to
repulsive and attractive properties in the atoms, but he also
endows them with polar properties, so that they are nothing else
than “a great number of little loadstones.” (Cf Riccati's state-
ment, Art. 36.)

8. Jacopo Belgrado: De corporibus Elasticis Disquisitio Phy-
sico-mathematica, Parma 1748.

This is a quarto pamphlet without any statement as to author,
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printer or place, but it appears to belong to the above named
Italian physicist’.

There is little that is of value in this production, though the
writer is evidently endeavouring to find a dynamical theory of
elasticity apart from the hypothesis of some metaphysical me-
chanism. Here as elsewhere we find a preference among the
Italians for the method of Bacon. We may quote the first para-
graph as historically interesting : —

Ea seculi nostri indoles est, & ingenium, ut, fictis hypothesibus
praetermissis, ex experimentis, observationibus, ac ¢awopévois petenda
Philosophia sit, & caussarum scientia ducenda. Propterea desinamus
mirari, si ii qui hactenus vis elasticae caussam investigarunt, operam
luserint, & nihil invenerint quod vel ¢aiwvopévors congrueret, vel naturae
simplicitatem referret. Hypotheses celeberrimae a Cartesio, Bernullio,
Mazerio, aliisque institutae, & eloquentissime expositae nodum non
solvunt, ac vel principii petitione laborant, vel nimis compositae innu-
meris ambagibus constant. Alii vorticibus, alii viribus centrifugis
plus aequo addicti, vel extra ipsa corpora, vel extra solidam partium
compagem, & constructionem elaterii caussam quaesiverunt, minus de
intimo corporum statu excutiendo solliciti, perinde ac si ad caussae
cognitionem ejus investigatio nihil conduceret. Verum, aut ego fallor,
aut hujusmodi disquisitio rei extricandae viam quodammodo sternit,
ac parat. Non id molior, quod viri ingeniosissimi ante me quicquam
tentarunt. Unice animus est nonnulla, quae ad intimum corporum
elasticorum statum pertinent, ex observationibus, & experimentis de-
ducta in apricum proferre, quae sin minus vim elasticam constituunt,
ac praestant, saltem eam exigunt, ac requirunt, ut, iis positis, elastica
corpora sunt, demtis, hujusmodi esse desinant.

The anonymous Italian then states the three principles:

De quibus nemo sanus hac aetate dubitat... Alterum est : nulla vis
in natura intercidit, nullo edito effectu ; alterum vero est : nihil natura
per saltum, ut inquiunt, agit; Tertium vero Leibnitianum nihil
unquam aceidit, nisi ratio vel caussa sufficiens in promtu sint.

There is little to be learnt from this somewhat diffuse account
of elastic bodies. I may note that the author is of opinion that all

1 A reference of Musschenbroek led me to Belgrado, and Poggendorff places a
tractate of the above title among Belgrado’s works.
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bodies which exist in nature are elastic, and that he proposes the

construction of a “scala, seu curva virlum elasticarum.” Further

he recognises that Mariotte had discovered that the fibres of a bent
beam are partly compressed and partly extended, and he gives a
geometrical method for determining points on the unchanged
fibre or neutral line (p. 10). He does not place the neutral line on
the surface of a beam, a mistake made by several more important
mathematicians of his date. Gravesande’s theory of the composi-
tion of elastic bodies out of fibres and filaments (see Art. 42) he
rejects, remarking the variety of construction in bodies, e.g. the
granular. Finally, he states shortly a theory by which the wis
elastica may be explained by a change of vis viva to vis mortua
followed by the reverse process. This theory is very similar to that
of Riccati and was of course suggested by the impact of elastic bodies.

e. H.Manfredi: De viribus ex elasticorum pulsu ortis, Commen-
tarii Bononienses, Tom. 11. 1748.

(The name of this, together with the fact that I have found no
reference to it in later memoirs seemed to render its examination
unnecessary for our present purposes.)

[30.] Jacopo Riccati. This author has made two contributions
to our subject. The first is a memoir entitled : Verae et germanae
virium elasticarum leges ex phaenomenis demonstratae, 1731, and
printed in the De Bononienst scientiarum Academia Commentaris,
Tom. 1. p. 528, Bologna 1747.

This memoir is of very considerable interest; it marks the
first attempt since Hooke to ascertain by ezperiment the laws
which govern elastic bodies. The author commences by laying
down the true theory of all physico-mathematical investigations :

Arduum opus aggrediuntur hi, qui quaestionem aliquam enodandam
sibi proponunt, in qua cum nihil datum sit, quod ad investigationem
perducat ; quot data invenire oportet, totidem nova, et difficilia problemata
solvenda occurrunt. Et quamquam ea, quae pro notis usurpamus, non
ex fictis philosophorum hypothesibus, sed ex ipsa naturs, et ab ex-
perimentis petenda sunt ; saepissime accidit, ut quae propriora videntaur,
et rem fere attingunt, ca nos a proposito longissime removeant.
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This latter difficulty Riccati had fallen into with regard to his
experiments on elastic bodies:

Verum incassum recidit labor, et rei difficultas qualemcumqué
industriam meam frustrata est; nullus enim canon observationibus ex
omni parte respondens sanciri potuit; quod an materise defectui, et
circumstantiarum varietati, an experimentorum subtilitati tribuam,
nescio: parumque abfuit, quin in doctissimi Iacobi Bernoulli sententiam
descenderem, unumquodque scilicet corpus, pro varia suarum partium
textura, peculiarem, et ab aliis corporibus diversam elasticitatis legem
obtinere.

The paragraph expresses very concisely the state of physical
investigation with regard to elasticity in Riccati's time. The
remark of Bernoulli referred to occurs in the corollary to his
third lemma : ““ Au reste, il est probable que cette courbe” (ligne de
tension et de compression) “ est différente de différens corps, & cause
de la différente structure de leurs fibres.” (See our article 20.)
It struck Riccati however to consider the acoustic properties of
bodies. For, he remarks, the harmonic properties of vibrating
bodies are well known and must undoubtedly be connected with
the elastic properties—(“ canoni virium elasticarum ™).

[31.] When bowever we come to examine the substance of the
memoir itself, we find from Riccati’s first canon that he has no
clear conception of Hooke’s Law, nor does the theory he bases
upon the known results of acoustic experiments lead him to
discover that Jaw. In his third canon he states that the ‘sounds’
of a given length of stretched string are in the sub-duplicate ratios
of the stretching weights. The ‘sounds’ are to be measured by
the inverse times of oscillation. Proceeding from this known
result he deduces by a not very lucid train of argument that, if
u be a weight which stretches a string to length & and u receive a
small increment Su corresponding to an increment &z of z, then
the law of elastic force is that du/u is proportional to 8z/z". Hence
according to Riccati we should have instead of Hooke’s Law:—

1
u=Ce %, where C is a constant. For compression the law is
obtained by changing the sign of x.

[32.] Riccati points out that James Bernoulli’s statements in
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the memoir of 1705 do not agree with this result or as he

expresses it “ fortasse minus veritats consonat” ! He notes that the

equation du/u=tdz/s* has been obtained by Taylor and Varignon

for the determination of the density of an elastic fluid compressed
by its own weight “ quod scilicet densitas sit oneri imposito proper-
tionalis et gravitas aeris sit in ratione reciproca duplicata distan-

tiae a centro telluris” (p. 541).

[33] The second contribution of Riccati is an attempt at a
general explanation of the character of elasticity. It occurs in his
Sistema dell’ Universo and must have been written before 1754,
which was the year of his death. The Sistema was first published
in the Opere del Conte Jacopo Riccats, Tomus 1. Lucca 1761. The
third and fourth chapters of the first part of the second book are
respectively entitled : Delle forze elastiche and Da quali primi prin-
cipi derivi la forza elastica.

These chapters display very clearly the characteristics of
the author; dislike namely of any semi-metaphysical hypothesis
introduced into physics; and desire to discover a purely dynamical
theory for physical phenomena.

Chap. III opens with the statement that the physicists of his
time had troubled themselves much with the consideration of
elasticity : »

E si pud dire, che tante sono le teste, quante le opinioni, fra cui
qual sia la vera non si sa, se pure non son tutte false, e quale la piu
verisimile, tuttavia con calore si disputa.

[84.] Riceati then sketches briefly some of the theories then cur-
rent. Descartes had supposed elasticity to be produced by a subtle
matter (aether) which penetrates the pores of bodies and keeps the
particles at due distances; this aether is driven out by a compressing
force and rushes in again with great energy on the removal of the
compression. (We may compare the conception to a sponge squeezed
under water. The Cartesian view was first, I believe, given in the
Principia Philosophiae published in 1644, or six years later than
Hooke in his De potentid restitutiva (see Art. 9) had also en-
deavoured to explain elasticity by a ‘subtle medium.’ There is
however a Cartesian character about Hooke’s discussion and he
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may have heard of Descartes’ conception. The priority of the idea
is only of historical interest and perbaps not worth investiga-
tion.)

[35.] The next theorist mentioned is John Bernoulli who in his
discourse on motion® treats of the cause of elasticity and finds the
Cartesian hypothesis insufficient. Bernoulli supposes the aether
enclosed in cells in the elastic body and unable to escape. In this
captive aether float other larger aether atoms describing orbits.
When a compressing force is applied the cells become smaller, and
the orbits of these atoms are restricted, hence their centrifugal
force is increased; when the -compressing force is removed the
cells increase and the centrifugal forces diminish. Such is the
complicated mechanism invented by Bernoulli to explain (?) how
the forza viva absorbed by an elastic body can be retained for
a time as forza morta. (This theory of captive aether was at a later
date adopted by Euler although in a slightly more reasonable
form, see Art. 94.)

[36.] Finally Riccati gives a characteristic paragraph with
regard to the English theorists:

Escono in campo i matematici Inglesi con una terza assai pid
delle altre applaudita spiegazione. Non ci ha fenomeno in Natura,
ch’ eglino non ascrivano alle favorite attrazioni, da cui derivano la
durezza, la fluiditd, ed altre proprietd de’ composti, e spezialmente la
forza elastica. Se ad una molla si attacca per lungo un grave, che la
distenda, viene esso sostenuto, ed equilibrato da una energia attratrice,
che rimosso, il peso, accorcia la verga, e la riduce alla sua natural
dimensione. AIll’ opposto se I' elastico si comprime, sbuca fuori una
forza repulsiva, che coll’ azione esterna contrasta, la quale tolta di
mezzo, torna prontamente a rimetterlo (p. 154).

[87.] We have quoted so much from Riccati in order to shew
exactly the hypotheses as to the nature of elasticity current in his
day. :

As for Riccati himself he will not enter into these disputes
“merc? che il miglior partito di oppugnare le altrui false opinioni

! Prize essay of 1724, Discours sur les loiz de la communication du mouvement,
Paris, 1727. Chaps. 1. to m1.
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consiste nel produrre la vera.” For his own theory he will not
call to his assistance the aether of Descartes or the attractions of
Newton: “Il mio giro di raziocinio non uscird fuori de’ confini
della Dinamica”—a most excellent principle. We have now to
consider how Riccati applied it.

He proceeds first to discuss the results of experiments on
elastic bodies, and quotes those of Newton® and Rizzetti®, but he
still seems ignorant of Hooke's Law and quotes Gravesande® to
shew that the relation of extension to force is quite unknown.
This is the more curious as he elsewhere cites Hooke for a remark
as to the specific gravity of bronze.

[38.] Chap. IV. After again insisting on the importance of
the method, which proceeds from the codification of phenomena to
the deduction of a principle consistent with experience, Riccati
states la mia novella sentenza. This principle, so far as I have
been able to follow Riccati’s not very lucid exposition, is involved
in the following statements.

Every deformation is produced by forza viva and this force is
proportional to the deformation produced. Of this statement
Riccati says:

To son certo, che non ci sia per essere Fisico, che si opponga ad una
veritd cosi splendida e dalle allegate sperienze in tante guise compro-
vata.

1 T have thought it advisable to omit all consideration of Newton’s and other
experiments on the collision of elastic bodies. The history of this branch of the
subject is considerable and there are a number of memoirs from the seventeenth
and first half of the eighteenth centuries. I may refer to:

Marcus Marci: De proportione motus, Prag, 1639. Historically & most inter-
csting work.

Wren : Phil. Trans. Dec. 1668.

Huyghens: Ibid. Jan. 1669. De motu corporum ex percussione, 1703,

Mariotte : Traité de la percussion, Paris, 1676.

Newton : Principia Naturalis Philosophiae; Scholium to Corol. vi. p. 23 of the
first edition.

A list of further memoirs, De percussione Corporum, is given by Reuss, Reper-
torium Commentationum, p. 211, but those I have been able to examine do not seem
of much value.

3 De Bononiensi Academia Commentarii, Tomus 1. De corporum collisionibus,
p. 497,

3 Physices elementa mathematica experimentis confirmata, 1729, L. 1. o. 26.
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"The forza viva spent in producing a deformation remains in
the strained body in the form of forza morta; it is stored up in
the compressed fibres. Riccati comes to this conclnsion after asking

" whether the forza viva so applied could be destroyed ? That such
a dissipation of energy—to use a modern expression—is possible
in the universe he denies, making use strangely enough of the
argument from design, a metaphysical conception such as he has
told us ought not to be introduced into physics!

La Natura anderebbe successivamente languendo, e la materia
diverrebbe col lungo girare de’ secoli una massa pigra, ed informe fornita
soltanto d’ impenetrability, e d’ inerzia, e spogliata passo passo di quella
forza (conciossiache in ogni tempo una notabil porzione se ne distrugge)
la quale in quantitd, ed in misura era stata dal sommo Facitore sin
dall’ origine delle cose ad essa addostata per ridurre il presente
Universo ad un ben concertato Sistema.

[39.] This paragraph is singularly interesting as uniting the
old theologico-mathematical standpoint, with the first struggling
towards the modern conception of the conservation of energy. It
is this principle of energy which la mia novella sentenza endeavours
so vaguely to express, namely that the mechanical work stored
up in a state of strain, must be equivalent to the energy spent
in producing that state.

{40.] In sections IV. and V. of this chapter Riccati attempts
to elucidate, although without much success, his principle by the
simple case of a stretched string. He refers to his previous
memoir and tells us that the forza viva must be measured by the
square of the velocity. The consideration of the impact of bodies
is more suggestive; the forza viva existing before impact is
converted at the moment into forza morta and this re-converted
into forza viva partly in the motion of either body as a whole, and
partly in the vibratory motion of their parts, which we perceive in
the sound vibrations they give rise to in the air. With regard to
the transition from forea viva to forza morta, Riccati remarks :

Del perpetno, e non interroto passaggio delle forze di vive in morte,
o di morte in vive fa uso la Natura nel generare con tanta costanza di
leggi, e nel tempo stesso con tanta varietd i suoi prodotti, e, quasi direi,
per tener equilibrata I' economia del presente Universo (p. 168).
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A great example of this is the elastic property of bodies, and to
explain it there is no need to fly “alla materia sottile de’ Cartesiani,
o alle Newtoniane attrazioni.” Riccati concludes his discussion
with a summary of eight headings, which however contain nothing
of additional interest.

[41] The importance of Riccati’s work lies not in his practical
results, which are valueless, but in his statement of method, and
his desire to replace by a dynamical theory semi-metaphysical
hypotheses. In many respects his writings remind us extremely
of Bacon, who in like fashion failed to obtain valuable results,
although he was capable of discovering a new method. Eulers
return to the semi-metaphysical hypothesis (see Art. 95) is a
distinct retrogression on Riccati’s attempt, which had to wait
till George Green’s day before it was again broached.

[42.] Of the authorities quoted by Riccati, John Bernoulli,
in his Discours sur les loix de la communication du mouvement,
Paris, 1727, devotes the first three chapters to hardness and
elasticity, but without coming to any conclusions worth quoting
even for their historical value. Gravesande in his Physices Elementa
Mathematica, 1720, explains elasticity (Lib. 1. Cap. v. p. 6) by
Newtonian attractions and repulsions. The 26th chapter of the
first book is also entitled De legibus elasticitatis. He is of opinion
that within the limits of elasticity, the force required to produce
any extension i8 a subject for experiment only. The results are
principally experimental, he considers elastic cords, laminae and
spheres (supposed built up of laminae), and finds the deflection
of the beamn in Galilei’s problem proportional to the weight. He
makes however no attempt to discuss the elastic curve.

[43.] The direct impulse to investigate elastic problems un-
doubtedly came to Euler from the Bernoullis. Thus in a letter
of John Bernoulli to Euler dated March 7, 1739, the writer
mentions a property of the Elastica rectangula (vel etiam
Lintearia; ambae enim eandem faciunt curvam) which Euler

1 Fuss: Correspondance Mathématique et Physique, St Pétersbourg, 18438, Tom.
. p. 28.
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had communicated to him', but for the full understanding of
Euler's work Daniel Bernoulli’s letters to Kuler are peculiarly
instructive.

[44.] On Sept. 23, 1733, he writes™:

Unterwegs habe ich einige meditationes mathematicas gemacht de
determinandis utique crassitiebus laminae muro horizontaliter infixae,
ita ut ubique aequaliter sit rupturae obnoxia lamina, die lamina mag
proprio pondere agiren oder noch von einem superincumbente pondere
utcunque geladen seyn. Man kann iiber dieses Thema viele curiose
Sachen annotiren, woriiber ein sonderbhares mémoire abfassen werde.

[45.] In a second letter dated May 4, 1735, we find the
following paragraph :

Haben Sie seithero auch gedacht an die vibrationes laminae elasticae
muro verticali perpendiculariter infixae. Ich finde pro curva diese
Aequation nd'y = ydx* allwo n eine quantitas constans, z die abscissae y
die applicatae, dz constans. Aber diese Materie ist gar schliipfrig ; und
mochte gern Ihre Meinung dariiber horen : Obgedachter Aequation
satisfucirt die logarithmica wie auch dieser Aequation niddy = ydx’.
Keine aber ist pro presenti negotio general genug®

Another letter of the same year (Oct. 26) mentions further
results of his researches with regard to the period of vibration*,

It will be seen at once how Qalilei’s problem had determined
the direction of later researches, how while James Bernoulli solved
the problem of the elastic curve his nephew Daniel first obtained
a differential equation which really does present itself in the
consideration of the transverse vibrations of a bar. Euler when in
1740 he arrived at the same differential equation was already
in possession of Bernoulli’s results. Neither of these dis-
tinguished mathematicians seem at this period, 1735—1740, to
have obtained a general solution of their equation. Daniel
Bernoulli’s results were first published in a memoir printed in the
Commentarsi of the St Petersburg Academy for 1741—1743. I
shall return to this memoir later.

1 His brother James appears to have discovered this curve as early as 1691
See his account of the matter in the dcta Eruditorum Lipsiae for 1695, p. 546.
2 Fuss, 1. p. 412. 3 Fuss, 1. p. 423, 4 Fuss, m, p. 429.
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[46.] A still more important letter is that of Oct. 20, 1742.
In this Bernoulli proposes several problems concerning elastic
laminae to Euler, and states that several months previously
he had sent to him

Eine weitliufige und operose pitce de sono laminarum liberarum,
darin ich gar viel merkwiirdige phaenomena physica explicirt und
ausgerechnet habe; hierzu war aber eine neue theoria physica erfordert
ehe und bevor ich die mathesin appliciren konnte.

He suggests for Euler’s consideration the case of a beam with
clamped ends, but states that the only manner in which he has
himself found a solution of this “idea generalissima elasticarum”
is “per methodum isoperimetricorum.” He assumes the “vis viva
potentialis laminae elasticae insita” must be a minimum, and
thus obtains a differential equation of the fourth order, which
he has not solved, and so cannot yet shew that this “aequatio ordi-
naria elasticae” is general.

Ew. reflectiren ein wenig darauf ob man nicht kénne sine interventu
vectis die curvaturam immediate ex principiis mechanicis deduciren.
Sonsten exprimire ich die vim vivam potentialem laminae elasticae
naturaliter rectae et incurvatae durch [ds/R’, sumendo elementum ds
pro constante et indicando radium osculi per B. Da Niemand die
methodum isoperimetricorum so weit perfectionniret als Sie, werden Sie
dieses problema, quo requiritur ut [ds/R* faciat minimum, gar leicht
solviren'.

[47.] Bernoulli writes further about the same matter to Euler
Feb. 1743 and Sept. 1743. In the latter letter he extends his
principle of the ‘vis viva potentialis laminae elasticae’ to laminae
of unequal elasticity, in which case [Eds/R' is to be made a
minimum. The last letter I have found referring to the subject is
written in either April or May 1744, and therein Bernoulli ex-
presses his pleasure that Euler’s results on the oscillations of
laminae agree with his own®. '

[48.] The memoir of Daniel Bernoulli to which I have
referred is published in the Commentarii Academiae Scientiarum
Imperialis Petropolitanae, Vol. 13, 1751; and is entitled De vibra-

1 Fuss, 11. pp. 505—7. 2 Ibid. 11. pp. 518, 538 and 558.
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tionibus et sono laminarum elasticarum Commentationes Physico-
Geometricae, p. 105. The memoirs in this volume are for the years
1741—1743.

We may note that the volume commences with Ezcerpta ex
literis a Daniele Bernoulls ad Leonh. Euler, and on p. 8, after
considering several differential equations, Bernoulli takes another
example:

Quod praesertim amo, quia pertinet ad argumentum mechanicum
iam pridem a me propositum et a nobis ambobus solutum, argumentum
intelligo de figura, quam lamina elastica uniformis muro infixa et
vibrata affectat...

The equation is d's=f*.s.dv",
and the solution given
s=uael’+ be /P + cgf’\/:i +de 'jb\l:—l,

or, since the exponentials may be read as “sinus arcuum cir-
cularium,” :
8=ae”’ + be7” + g sin arc (fv +h).

[49.] The method of the memoir itself is unsatisfactory be-
cause the differential equation is obtained from statical rather
than dynamical considerations. For the vibrations of a free beam
morticed into a vertical wall Bernoulli finds the differential
equation of his earlier letters (see Art. 45), namely,

dy_y

dct —'j—'c ’
where « is the horizontal distance from the wall and y the
corresponding vertical displacement of any point of the beam.
The solution of this equation is then given, first in the form of
four infinite series each with an arbitrary constant, and then in the
form of the previous article. Bernoulli states that these arbitrary
constants will be in each case determined by the character of the
oacillations of that particular case (“cuivis casui proposito accom-
modari potest, vt et cuivis oscillationum generi”). His method
of connecting the “longitudo penduli simplicis isochroni cum
vibrationibus laminae” with his differential equation (§§5 and
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11—12) will hardly satisfy modern desire for accuracy. At the
same time he arrives at the equation (stating that. he owes it to
Euler?),

14+e'
Varzo"
where [ is the length of the rod, and deduces that the length of the
isochronous pendulum =gf*/m* where m* is an elastic constant.
He notes that the equation for I/f gives only numerical values for
this ratio;—*“igitur longitudo penduli isochroni est in ratione bi-
quadrata longitudinis [ et numerus oscillationum laminae in ratione

reciproca duplicata ejusdem longitudinis.” If we write I/f=w
the above equation for the periods may be written

cosw.(e®+e ) +2=0.

Uf =2 sin™’

The memoir concludes with some discussion as to the notes of
a beam vibrating transversally.

[50.] A second memoir of Bernoulli in the same volume is
entitled De sonis multifariis quos Laminae Elasticae diversimode
edunt disquisitiones Mechanico- Geometricae Experimentis acusticis
illustratae et confirmatae, p. 167. This memoir commences with
an enumeration of the four modes of vibration of an elastic lamina
which are identical with those afterwards formulated by Euler (see
Art. 64). Various forms of the solution of the general differential
equation are next considered for these particular modes. Then
follows a discussion as to the periods of the vibrations and
the position of the nodes. Several experiments in confirmation
of the theoretical results are considered in the course of the
~ memoir.

51. Euler, 1740, De minimis oscillationtbus corporum tam
rigidorum quam flexibilium. Methodus nova et facilis. This is
published in the Commentarii Academiae Scientiarum Imperialis
Petropolitanae, Vol. 7, 1740 : it occupies pages 99—122.

This memoir is very slightly connected with our subject; it is

1 This equation appears also in Daniel Bernoulli’s letter to Euler of February
1748 mentioned above,
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devoted to the exposition of a method of solving problems relating
to certain cases of motion, which was useful at an epoch previous
to the introduction of D’Alembert’s Principle. All that it con-
tains relative to elastic bodies is reproduced in that part of the
Methodus inveniends lineas curvas which treats of the vibration
of elastic curves; and Euler on page 283 of that work cites
the present memoir. A few points may be noticed.

Euler here, as elsewhere, is not very careful with respect to his
potation. For instance, in his diagram ¢ it will be seen that
a and 4 denote certain points; in the corresponding text it will be
found that a denotes also a certain length, and A4 a certain elastic
force.

52. Euler assumes that the elasticity along a curve varies
inversely as the radius of curvature (see his page 113); he gives
only this brief reason, namely that the more the rod is bent the
greater is the elastic force. His words are; “ Cumque eadem vis
elastica sit eo major, quo magis curvatur, erit vis elastica in M ut
V divisum per radium osculi in M.”

The differential equation Z—;—%=c‘y presents itself, and Euler
seems unable to state at once the general form of the solution: (see
his pages 116 and 117%). Inthe Methodus inveniends, page 285, he
gives the general form, namely,

z
y=Ae° + Be °+C’sin§+Dcos;f.

53. Euler, 1744. The celebrated work of Euler relating to
what we now call the Calculus of Variations appeared in 1744
under the title of Methodus inveniendi lineas curvas mazims
minimive proprietate gaudentes. This is a quarto volume of 320
pages; of these pages 245—310 form an appendix called Addita-
mentum I. De Curvis Elasticis, which we shall now examine.

1 The following extract from page 122 may interest those who study the history
of music: *“Ope hujus regulae inveni in instrumentis musicis, quae ad tonum
choralem attemperata sunt, chordam inﬂmgn littera C notatam minuto secundo
118 edere vibrationes; summam vero, quae & signari solet, eodem tempore vibra-
tiones 1888 absolvere (sic)."

T. E. ' 3
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[54] The memoir commences with a statement which is of
extreme interest as shewing the theologico-metaphysical tendency
which is so characteristic of mathematical investigations in the
17th and 18th centuries. It was assumed that the universe was
the most perfect conceivable, and hence arose the conception that
its processes involved no waste, its ‘action’ was always the least
required to effect a given purpose. That the results obtained by
such metaphysical reasoning would differ according to the method
in which ‘action’ was measured, does not seem at first to have
occurred to the mathematicians. Thus we find Maupertuis’ ex-
tremely eccentric attempt at a principle of Least Action. On
the whole it is however probable that physicists have to thank
this theological tendency in great part for the discovery of the
modern principles of Least Action, of Least Constraint, and perhaps
even of the Conservation of Energy.

The statement to which we refer is the following :

Cum enim Mundi universi fabrica sit perfectissima atque a Creatore
sapientissimo absoluta, nihil omnino in mundo contigit, in quo non
maximi minimive ratio quaepiam eluceat, quamobrem dubium prorsus
est nullum quin omnes mundi effectus ex causis finalibus, ope methodi
maximorum et minimorum, aeque feliciter determinari queant, atque ex
ipsis causis efficientibus.

55.] Euler then cites several examples of this natural prin-
ciple and mentions the service of the Bernoullis in the same
direction. He continues:

Quanquam igitur, ob haec tam multa ac praeclara specimina,
dubium nullum relinquitur quin in omnibus lineis curvis, quas Solutio
Problematum physico-mathematicorum suppeditat, maximi minimive
cujuspiam iudoles locum obtineat; tamen saepenumero hoc ipsum
maximum vel minimum difficillime perspicitur ; etiamsi a priori Solu-
tionem eruere licuisset.

Then stating that Daniel Bernoulli (see Bernoulli's letter of Oct.
1742, Art. 46) had discovered in the course of his investigations
that the ws potentialis represented by fds/R* was a minimum
for the elastic curve, Euler proceeds to discuss the inverse
problem, namely :
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36. To investigate the equation to a cprve which satisfies
the following eonditions. The curve is to have a given length
between two fixed peints, to have given tangents at those points,
and teo render [ds/R® a minimum: see pages 247—250 of the book.
No attempt is made to shew why this potential furce should be a
minimum in the case of the elastic curve,

By the aid of the principles of his book Euler arrives at
the following equations where a, a, B, 7y are constants,

dy= (a + Bz +yade
Jia = (2 +Bz 92y}’
from this we obtain
ds = a'dz
Jia¢' = (@ + Bz + 92}
Euler then says

Ex quibus aequationibus consensus hujus curvae inventae cum curva
elastica jam pridem eruta manifeste elucet.

Quo antem iste consensus clarius ob oculos ponatur, naturam curvae
elasticae & priori quoque investigabo; quod etsi jam a Yiro summo
Jacobo Bernoullio excellentissime est factum ; tamen, hac idonea occasione
oblata, nonnulla circa indolem curvarum elasticarum, earumque varias
species et figuras adjiciam; quae ab aliis vel praetermissa, vel leviter
tantam pertractata esse video.

57. Accordingly Euler gives on his page 250 his investigation
of the elastic curve in what he has just called an a prior: manner.
But this method is far inferior to that of James Bernoulli; for
Euler does not attempt to estimate the forces of elasticity, but
assumes that the moment of them at any point is inversely
proportional to the radius of curvature: thus he in fact writes
down immediately an equation like (1) on page 606 of Poisson’s
Traité de Mécanique, Vol. 1., without giving any of the reasoning by
which Poisson obtains the equation’,

58. Euler starts with the supposition that the elastic curve is
fixed at one poipt, and is bent by the application of a single force

1 On page 250 cbserve P is used as elsewhere in {wo senses, namely for a force,
and for the position of a point.

3—2
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at some other point ; and then he considers cases in which instead
of his single force we have two or more equivalent forces. On his
page 255 he supposes that the forces reduce to a couple, and he
shews that the elastic curve then becomes a circle. Saint-Venant
alludes to this in the Comptes Rendus, Vol. XI1xX. page 184, where
he remarks:

Déja M. Wantzel, dans une communication faite le 29 juin & la
Société Philomatique, a remarqué que la courbe & double courbure,
affectée par une verge primitivement cylindrique, solicitée par un couple,
est nécessairement une hélice.

C’est une généralisation du résultat d’Euler, consistant en ce que
lorsque la courbe provenant de la verge ainsi solicitée est plane, elle ne
peut étre qu’un arc de cercle.

59. Euler distinguishes the various species of curves included
under the general differential equation of Art. 56; he finds them to
be nine in number. The whole discussion is worthy of this great
master of analysis; we may notice some of the points of interest
which occur.

The third species is that in which the differential equation

reduces to dy = fodx_‘; see his page 261. This is not substan-
a' -z

tially different from the particular case'we have noticed in (Art.
24) our account of James Bernoulli. The curve touches the axis
of x at the origin; and Euler calls it the rectangular elastic curve.
In connection with the discussion of this species Euler introduces
two quantities f and b which are thus defined:

s a'dz s Z'de
= —_—=— b= ——--;
f fo Ja‘—:z:‘ o Wat =zt

and he says:
- Quanquam autem hinc, neque b, neque f per a accurate assignari
potest ; . tamen alibi insignem relationem inter has quantitates locum

habere demonstravi. Scilicet ostendi esse 45/ = waa.

I do not know where Euler has shewn this; however b and £
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can now be expressed in terms of the Gamma-function, For put
z=a \fsin §; thus we obtain

Se§[maan=5 T,
po® (i d0_aJzTQ)

2] Jsino"22 T@’
(See Integral Calculus, page 291, Example 24.) Hence we obtain
2
bf=’ﬁ, since T' (§)=1T (}). Euler says that he finds approxi-

mately f= _a. ;, and still more closely f— 3 42 x 11803206 ;

then by a mistake he puts b=l:/a—2 x 11803206 instead of
a 1

b c
b—"/é X 11803206 Thus he makes = 834612, which is too

great; in fact g is about §.

60. On his page 270 Euler observes that he has hitherto
considered the elasticity constant, but he will now suppose that it
is variable; he denotes it by S, which is supposed a function of the
are 8; p is the radius of curvature. He proceeds to find the
curve which makes [Sds/p* a minimum’; and by a complex in-
vestigation finds for the differential equation of the required curve

a+ Bx—vyy==8/p,

where a, B, v are constants. This he holds to be necessarily
the correct result, by the same principle as in Art. 54; and he says
on his page 272: .

Sic igitur non solum Celeb. Bernoullii observata proprietas Elasticae
plenissime est evicta; sed etiam formularum mearum difficiliorum usus
summus in hoc Exemplo est declaratus.

1 [This “principle’ is again due to Daniel Bernoulli: see Art. 74. Eb.]
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- N o 88 88
61. On page 276 the mtegra.lsfds.smEa—a a.nd]da cos 5 o

present themselves, especially for the case in which the limits are
0 and o ; but Euler cannot assign the values. He says,

Non exiguum ergo analysi8 incrementum capere existimanda erit,
si quis methodum inveniret, cujus ope, saltem vero proxime, valor

horum integralium f ds sin 3an o f ds cos 5 a.ssxgnnn posset, casu

quo 8 ponitur infinitum : quod Problema. non mdlgnum videtur, in quo
Geometrae vires suas exerceant.

The required integrals can be now expressed; for we have by
putting &' = 2a’z,

fdsm s a~/2f smx

8 av2 cos.'c
fdscos2, ‘é . J1r,

see Integral Calculus, page 283.

62. On his pages 278 and 279 Euler takes the case in which
forces act at every point of the elastic curve; and he obtains
an equation like that denoted by (c) on page 630 of the first
volume of Poisson’s Traité de Mécanique'.

63. From page 282 to the end Euler devotes his attention
to the oscillations of an elastic lamina; the investigation is some-
what obscure for the science of dynamics had not yet been placed
on the firm foundation of I’ Alembert's Principle: nevertheless the
results obtained by Euler will be found in substantial agreement
with those in Poissun's Traité de Mécanique, Vol. 1L, pages
368—392. The important equations (a) and (a') on Poisson’s

1 Page 2680, line 7. Go back rather to the first equation of Art. 58, which will

reduce to
d [ dR . dv
—ER Rﬁi)‘*“*"’ dw~(€F9);

then differentiate again.
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pages 377 and 387 respectively agree with corresponding equations
on Euler’s pages 207 and 287.

64. On the whole Euler examines four cases of vibration of
an elastic rod, namely the following, where I use built in for the
encastré of the French writers:

(1) Rodbuilt in at one end, and free at the other; page 285.
(2) Rod free at both ends; page 295.

(3) Rod fixed at both ends; page 303.

(#) Rod built in at both ends; page 308.

[These are identical with the four cases given by Bernoulli in
the memoir referred to above, Art, 50.]

[65.] 1757. Sur la force des colonnes, Mémoires de U Académie
de Berlin, Tom. x11. 1759, pages 252—282. This is one of
Euler's most important contributions to the theory of elasticity’,

The problem with which this memoir is concerned, is the dis-
covery of the least force which will suffice to give any the least
curvature to a column, when applied at one extremity parallel to
its axis, the other extremity being fixed. Euler finds that the

force must be at least =7r’.E—(;—If’ , where a is the length of the

column and EZ*®is the ‘moment of the spring’ or the ‘moment of
stiffness of the coluinn’ (moment du ressort or moment de roideur).
The moment of stiffness multiplied by the curvature at any point
of the bent beam is the measure of the moment about that point
of the force applied to the beam (ErE = P, fin Euler’s notation).
[66.] If we consider a force F perpendicular to the axis of a
beam (or lamina) so as to displace it from the position 4AC to 4D,
and & be the projection of D parallel to AC on-a line through C

F.a

3. Ex’
supposing the displacement to be small. This suggests to him a
method of determining the ‘moment of stiffness’ K%' and he makes

perpendicular to AC, Euler finds by easy analysis D& =

1 Historically, not practically, see footnote, p. 44.



40 EULER.

(§§ v.—vi1) varions remarks on proposed experimental investi-
gations. He then notes the curious distinction between forces
acting parallel and perpendicular to a built-in rod at its free end;
the latter, however small, produce a deflection, the former only
when they exceed a certain magnitude. It is shewn that the

D_1s

’
e

A

force required to give curvature to a beam acting parallel to its
axis would give it an immense deflection if acting perpendicularly

(§ x1m).

[67.] In sections xvI, and XVIL Euler deduces the equation
for the curve assumed by the beam AC fixed but not built
in at one end 4 and acted upon by a force P parallel to its
axis, If RM be perpendicular to AC and y=RM, z=AM, he

finds o
%'«/ﬁa”‘“("’«/gﬁ)’

where 8 =< RCM, Hence since y =0, when z = a the length of the

el

A M P C

beam, a ,\/ IT[I;’ must at least =, whence it follows that P must
be at least==", gg—f'. This paradox Euler seems unable to ex-
Plain (see our discussion of Lagrange’s Memoir, Art. 108).

[68] Sections XIX.—XXXV. are concerned with beams of

varying density or section and are of less interest or importance.
In section XXXVI. he returns to the case of a uniform beam, but
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takes its weight into consideration, If Q be the total weight of the
beam the differential equation

Ei? ad®y + Pa (dz)* dy + Qo (dz) dy =0

is obtained (§ xxxvi). This is reduced by a simple transformation
to a special case of Riccati’s equation, which is then solved on the

supposition that Q is small. Euler obtains finally for the force

P
P, for which the rod begins to bend, the expression

P=n. ER[a~ Q.(x* - 8)/2";

_ which shews that the minimum force is slightly reduced by taking
the weight of the beam into consideration.

69. Euler, 1764. De motu vibratorio fili flexilis, corpusculis
gquotcunque onustt. This is published in the Novi Commentari
A cademiae Scientiarum Imperialis Petropolitanae, Volume IX. for
the years 1762 and 1763; the date of publication is 1764. The
memoir occupies pages 215—245 of the volume.

Euler first gives a sketch of the treatment of the general
problem, and then discusses the special cases in which the number
of weights is respectively one, two, three, and four. The subject of
this memoir is considered by Lagrange in the Mécanique Analytique,
Tome 1., Seconde Partie, Section vI.

70. Euler, 1764. De motu vibratorio cordarum inaequaliter
crassarum. ‘This memoir occupies pages 246—304 of the volume
which contains the preceding memoir. Euler implies that this is
the first time that the motion of a cord of variable thickness was
discussed. He says, on page 247 :

Ne igitur talibus phaenomenis, quae cordis uniformiter crassis sunt
propria, nimium tribuatur, haud abs re fore arbitror, si cordarum etiam
inacqualiter crassarum motum, quantum quidem Analyseos fines per-
mittunt, examini subjecero, ejusque investigationem latissime complexam
instituero. Maxime autem ardua est haec quaestio, atque gravissimis
difficultatibus involuta; hancque ob causam etiamsi in ejus enodatione
parum profecero, tamen amplissimus nobis aperietur campus, vires
nostras in analysi exercendi, hujusque scientiae limites ulterius di-
latandi.
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. These two memoirs by Euler relate to flexible bodies, but not
to elastic bodies; and thus do not really belong to our subject’.
I was led to examine them in the attempt to verify a reference
given by Cauchy in his Ezercices de Mathématiques, Vol. 111. page
312,

71. Euler, 1771. Genuina Principia Doctrinae de Statu aequi-
libriv et motu corporum tam perfecte flexibilium quam elasticorum.
This is published in the Novi Commentarii Academiae Scientiarum
Imperialis Petropolitanae, Volume Xv. for 1770; the date, of
publication is 1771. The memoir occupies pages 381—413 of the
volume.

In pages 381—394 general formulae are given for the equi-
librium of a flexible string and of an elastic rod. So far as relates

1 [The acoompanying bibliographical note on the vibrations of flexible cords
may be of service to the reader, as the subject is intimately connected with our
present one. 2%

(1) Broor Tavromr. ‘De motu nervi tensi.’ Phil. Trans: 1713, p. 26. ‘Methodus
incrementorum directa et inversa.” London, 1715, p. 88.

(2) D’Aremeerr. ‘Sur la courbe que forme une corde tendue mise en vibra-
tion.” Mémoires de UAcadémie. Berlin, 1747. Cf. Opuscules mathématiques, Tom.
1. pp. 1 and 65. Paris, 1761.

(8) Evuier. ‘Sur les vibrations des cordes.” Mémoires de I'Académie. Berlin,
1748,

(4) Daxrer BernourLr. ¢ Réflexions et éclaircissemens sur les nouvelles
vibrations des cordes.” Mémoires de UAcadémie. Berlin, 1753.

(5) Evurer. ‘Remarques sur les mémoires précédens de M. Bernoulli. Ibid.

(6) LaarangE. ‘Recherches sur la nature et la propagation du son’ (a most
interesting and important memoir), 1759, Miscellanea Taurinensia, Tomus 11. Pars
1. ¢Addition & la premidre partie des Recherches, etc., 1762. Ibid.

(7) Euner. Mémoires of 1762 and 1764 referred to in the text. ‘Bur le
mouvement d'une corde qui au commencement n’a été ébranlée que dans une partie.’
Mémoires de U'Académie. Berlin, 1765. * Eclaircissemens sur le mouvement des
cordes vibrantes.’ ¢Rech. sur le mouvement des cordes inégalement grosses.’
Both in the Miscellanea Taurinensia, Tom. m. (1762—65).

(8) DaxierL BerNourLi. °Bur les vibrations des cordes d'une épaisseur inégale.’
Mémoires de ' Académie. Berlin, 1765.

(9) Giorpano Riccati. *Delle corde ovvero fibre elastiche schediasmi.’ Bologna,
1767, Schediasma 1v.

(10) Tromas Youna. ‘Outlines of experiments and enquiries respecting Sound
and Light,’ § 18 of the * Vibrations of Chords,’ Phil. Trans. 1800, pp. 106—150.

There is an. interesting historical note by RiEMANN, Partielle Differential-
gleichungen, § 78, without however references to the original memoirs.] Eb.
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to the latter the essential part ix the hypothesis that if the rod is
originally straight the elasticity gives rise to a force along the
normasl, the moment of which is proportional to the curvature, that
i8, inversely proportional to the radius of curvature; if the rod is
originally curved the moment is taken to be proportional to the
difference of the original curvature and the new curvature. The
hypothesis agrees with what has since been obtained by con-
sidering the nature of the elastic force. See Poisson’s T'raité de
AMécanigque, Vol. 1. pages 603 and 616.

After obtaining his general equations Euler proceeds to
particular cases. On his pages 391—400 he discusses the ordinary
catenary, and a curve called by the old writers the Velaria which
he finds to coincide with the catenary. See Whewell's Mechanics,
Third Edition, page 193.

72. On his pages 400—405 Euler treats the problem of the
elastic rod, supposed originally straight; this, as we have seen
in Art. 56, he had already discussed in his Methodus inveniends... ;
the solution given in the present memoir is however more simple
than the former. He says on his page 405:

Plura exempla circa aequilibrium hujusmodi filorum flexibilium et
elasticorum, hic subjungere superfluum foret, quoniam hoc argumentum
jam passim abunde tractatum reperitur. Hic enim id tantum nobis
erat propositum ; ut methodum fucilem simulque aequabilem, quae ad
omnia genera hujusmodi corperum extendatur, traderemus, hocque
respectu nullum est dubiam, quin haec methodus aliis quibus GGeometrae
sunt usi, longe sit anteferenda, id quod imprimis ex altera parte hujus
dissertationis patebit, ubi ostendemus hanc methodum pari successu
adeo ad motus hujusmodi corporum determinandos adhiberi posse.

Accordingly he proceeds to form equations of motion for
flexible or elastic cords; the method is in fact coincident with
what we should now call an application of D’Alembert’s principle:
but the name of D’Alembert is not mentioned. KEuler does not
attempt to integrate these equations.

73. The present memoir is commended by Poisson: see the
Annales de Chimie, Vol. 38, 1828, page 439; Vol. 39, 1828, page
208; and the Astronomische Nachrichten, Vol. 7, 1829, column 353.
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[74.] Determinatio onerum quae columnae gestare valent.
Ezamen insignis paradoxs in theoria columnarum occurrentis. De
altitudine columnarum sub proprio pondere corruentium. These
three memoirs occur on pages 121—194 of the Acta Academiue
Petropolitanae for the year 1778, Pars 1. Petersburg, 1780.

The first memoir begins by referring to the memoir of 1757,
and points out that vertical columns do not break under vertical
pressure by mere crushing, but that flexure of the column will be
found to precede rupture. Proceeding in a similar method to that
adopted in the Berlin memoir, Euler shews that there will be
no flexure, so long as the superincumbent weight is less than
a*. Ek*/a*, where EX* is the ‘moment of stiffness’ and a is the height
of the column. He also notes, § 10, that if a horizontal force dis-
place the top of the column a horizontal distance a, Ek*= F.a*/3a.
So far there is no novelty in this memoir.

[75.] In § 14 however he proposes to deduce a result which
is now commonly in use, but which I have not met with before the
date of this memoir, namely to find an expression connecting Ek*
with the dimensions of the transverse section of the.column. Euler

finds Ek*=h. f z*ydz, where & and y have the following meanings;

let a section be taken of the column at any point by a plane
perpendicular to the plane of flexure and passing through the
centre of curvature of the unaltered fibre (neutral line), then z is
the distance of any point on the trace upon this plane of the central
plane of flexure from the neutral line, y is the corresponding breadth
of the section, and h is the constant now termed the modulus of
elasticity. Euler appears however to treat the unaltered fibre or
‘neutral line’ without remark as the extreme fibre on the concave
side of the section of the column made by the central plane of
flexure. Thus for a column of rectangular section of dimensions
b in, and ¢ perpendicular to the plane of flexure, he finds (§ 21)

El* =} b ch,
and the like method is used in the case of a circular section®.

1 [In the case of & beam or column bent by a longitudinal foree it may be shewn
theoretically that the neutral line does not necessarily lie in the material of the
beam, its position and form vary with the amount of the deflecting force; in other




EULER. 45

[76.] In §§ 26—29 there is a short discussion of the experi-
ments of Musschenbroek (see Art. 28, 8) on the rupture of fir beams;
A is evaluated from some of his results and from this value of & the
extension of a fir beam under a given tension is calculated
theoretically with a result “quod ab experientia non abhorrere
videtur.”

[77.] In § 31 Euler proceeds to calculate the flexure which
may be produced in a column by its own weight. If y be the
horizontal displacement of a point on the column at a distance

z from its vertex, the equation E%*. Ty +b’ f zdy=0 is found,

where the weight of unit volume of the column is unity and its
section a square of side . This equation Euler solves by a series
ascending according to cubes of 2. Finally, if a be the altitude of
the column and m = Ek*/b’, it is found that the least altitude for
which the column will bend from its own weight is the least root
of the equation

1.4.a° 1.4.7.0° 1.4.7.10.a"
0=1-3:%+ Time ~ 10wt T 131mi O

[78] Euler finds that this equation has no real root, and thus
arrives at the paradoxical result, that however high a column may
be it cannot be ruptured by its own weight. “Haec autem omnia
accuratius examen requirunt, quod in sequente dissertatione in-
stituemus” are the concluding words.

We may note that in this problem of the column bending
under its own weight as considered by Euler, the top of the
column is during the bending supposed to be in the same vertical
line as the base.

[79.] In the second memoir Euler returns to the paradox
““quod scilicet nulla columna cylindrica, quantumvis fuerit alta,

words Ei? is not a constant, but a function of the force and of the flexure. The
assumption that the ‘moment of stiffness’ is constant seems to me to vitiate
the results not only of Euler and Lagrange but of many later writers on the subject.
1 have to thank Prof. A. B. W. Kennedy for a series of experiments, the results of
which conclusively prove that the position of the neutral line varies with the magni-
tude of the longitudinal force.] Ebp.
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unquam a proprio pondere frangatur.” He starts from the series
cited in our Art. 77 and writing a’/m = 6v states that the paradox
depends upon the fact that the series

12 v v v*

~FitTas 0151231512 92 o

cannot vanish for real values of v.

Instead of considering the roots of this equation by a pnrely
algebraical process as in his first memoir, Euler (§§ 6—16) treats
the question graphically and endeavours to sketch the curve which
the column would take up when bent by its own weight; this
curve has for its equation

1.2 1.4.2
y=A.{x— m-l- W—etc.} ,
where 4 is some constant.
The process is extremely complex and leads to no definite
results’.

[80.] In the second part of the memoir Euler inquires whether
-no solution of the question can be obtained ex principiis mechantcis.
He starts by placing a load upon the top of a column, which he
then converts into an additional length of column, this additional
length of column is maintained in a vertical position by means
of horizontal forces. Euler argues that, if the weight of this
addition be sufficient to bend the column, a fortiort it would bend
1 Euler's equation is m. f—}i +/:wdy=0, ordiﬁerentintingmdd—;y+z%’=0. Put
z=a/m.t and :—':=v, and substitute, we find

d%
@ =0
which is a case of Riccati's equation. This equation can be solved by the two

Bessel’s functions (cf. Messenger of Mathematics, Vol. 1x. p. 129),
v=Ni(B.7,ah+a. 7 g
The second function only will be found to be admissible, hence
1 9 ¢
”=~ﬁ",:/5(1 ‘2—.3‘“2.*.5.6“’“")'
dy _ 2 28
or =4 (1'2.3.m+2.3.5.6m*'°t°')'

which agrees with Euler's result § 12, or integrating, and remembering that y and r
vanish simultaneously, with the value of y given above,
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under its own weight, were the column and the addition considered
as united and the horizontal forces removed. He obtains the

3
result that a column of height 2 =3.,/ 7—%’—9, where _cq is the

weight of unit length of the column, would certainly bend under
its own weight (§ 29).

[81.] In the case of cylindrical columns, EX* is considered to
vary as the fourth power and C/c as the square of the diameter (b),
hence 4 varies as the subtriplicate ratio of the area (o b'). Euler
thus concludes his second memoir with a Theorema mazime
memorabile (§ 34):

Maxima altitudo, qua columnas cylindricae ex eadem materia
confectae, proprium pondus eliamnunc sustinere valent, tenet rationem
subtriplicatam amplitudinis.

[82] The results of these first two memoirs do not appear
however to have satisfied Euler. He returns again to the problem
in the third. The result of the second memoir, if correct, shews
that for some value of v less than the one calculated (Euler finds
this limit of » =} of 266 in § 32 of the second memoir), the series
above given for v ought to vanish. This mechanical result seems
to be contradicted by the algebraical investigation of the series,
which shewed that it had no real root (see Art. '77). After certain
considerations as to the possibility of representing the form of the
column by a portion of the curve obtained in the first memoir
Euler (§ 6) concludes:

Ut nostram quaestionem rite evolvamus, statum columnae, sive
laminae elasticae, initialem aliter constituere debemus atque ante
fecimus, scilicet praeter sollicitationes a gravitate oriundas supremo
termino 4 certam quandam vim horizontalem applicatam concipere
debemus qua istud punctum A4 perpetuo in eadem recta verticali con-
tineatur. Facile autem intelligitur, magnitudinem huius vis prius
definiri non posse, quam totus calculus ad finem fuerit perductus;
quandoquidem tum demum patebit, quanta vi opus sit, ad supremum
terminum 4 in debito situ conservandum’.

1 There are two paragraphs (6) by some clerical error in the memoir, we refer to
that on p. 166.
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[83.] It will thus be seen that Euler has quite changed the
character of the problem, he has discovered that a horizontal force
is necessary to preserve the summit of the column in the same
vertical with the base, yet instead of attempting to solve his
differential equation

with the true terminal conditions, namely %y’ =0 at the summit,

y and %:0 at the base, he turns to the mew problem where

there is a horizontal force as well as gravity acting on the
beam.

[84] In order to determine this horizontal force F, Euler
practically takes moments about the base of the column: if A be its
height, @ the centre of gravity of the displaced column ACB and
M the weight of the column,

A
F.h=M.OG=%[.] yda,
[
with Euler's notation. He then writes

9= ([ yiz)/h and m = 5.1/,
[}
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Hence his final equation becomes

* Ty _
yx+f° ady + m 54=0.

This equation (§ 28) is solved by means of two infinite series’,
namely y = ap + g¢, where a is a constant and

ot + 1.4.2 1.4.7.2" +et
P=*= 93 4 m* 2.3..7.m" 2.3..10.m %
2  1.3.2° 1.3.6.2°

q=—2.3.m+2 .3...6.m'_2.3.-.9.m'+ ete.
At the base we have 2 =%, y =0, hence
ap +gq=0 when =4,

A A 13
and again gh=[ yda:=aj pcl’r+gf qdz,
[ o o

or p(h—f:qda:)+qf:pdz=0,

an equation to find h the greatest altitude “in qua se tantum non
sustinere valebit.”

[85.] In §§ 32—37 Euler calculates this value of A and
finds that it is nearly equal to 1/200 m.

Hence we have the following result. Let 4" be the area of a
perpendicular section of the column supposed of unit weight per
unit volume, then M= b*h, and m = EX*h/M = El*/b". Now let O be
the weight which placed upon a column of the same material but
of section d* and height @ would suffice to bend it, then

ElPx* a' k
0==~fa—,»~ and Mm=ps 0. T
Finally let A =the ratio of the weight O (to be ascertained by
experiment) to the weight of the column, which it will just bend,
e

then O =\ ad* and i ¥ Thus

2
h=27263a /N

a
This is Euler’s final result with regard to the bending of columns
under their own weight. Interesting as these three memoirs

1 Easgily obtained in the form of Bessel's Functions.
T. E. 4
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undoubtedly are, they cannot be said to furnish a complete and
satisfactory discussion of the subject.

86. 1782. Euler: Investigatio motuum quibus laminae et
wirgae elasticae contremiscunt. This is published in the Acta
Academiae Scientiarum Imperialis Petropolitanae for the year
1779, Pars Prior; the date of publication is 1782. The memoir
occupies pages 103—161 of the volume.

The memoir commences thus:

Quanquam hoc argumentum jam pridem tam ab Illustriss. D. Ber-
noulli, quam a me fusius est pertractatum : tamen quia illo tempore
neque principia, unde hujusmodi motus determinari oportet, satis erant
exculta, neque ea Analyseos pars, quae circa functiones binarum varia-
bilium versatur, satis explorata, actum agere non videbor, si munc
idem argumentum accuratius investigavero. Praeterea vero etiam tot
diversa motuum genera in hujusmodi corporibus locum habere possunt,
quse accuratiorem enucleationem postulant; quamobrem hic operam
dabo, ut universam hujus rei disquisitionem ex primis principiis de-
ducam, et clarius, quam quidem ante est factum, proponam. Imprimis
autem omnia diversa motuum genera, quae quidem occurrere possunt,
dilucide sum expositurus. Quo igitur omnia fiant magis perspicua,
duo praemittam Lemmata, quorum altero status aequilibrii, altero vero
motus virgarum utcunque elusticarum et a potentiis quibuscunque
sollicitatarum definietur; ubi quidem tam virgam quam potentias
perpetuo in eodem plano sitas esse assumo. Demonstrationem autem
horum lemmatum non addo, quoniam eam alio loco jam dedi, atque
adeo etiam ad eos casus quibus motus non sit in eodem plano, ac-
commodavi.

I do not know to what place Euler alludes in the last sentence
which I have quoted’. He gives on his pages 104—106 the general
equations which he here calls Lemmas; they substantially agree
with those of Poisson’s T'raité de Mécanique, Vol. 1. pages 624—627.

1 [The following is probably the memoit to which Euler refers. I give a short
account of its contents although the memoir of 1782 covers almost exactly the
same ground at somewhat greater length.

De Motu Vibratorio laminarum elasticarum, ubi plures vibrationum spect
hactenus non pertractatae evolvuntur. Novi Commentarii Academiae Petrop. Tom.
xvir. (An. Acad. 1772). 8t Petersburg, 1773, pp. 449—457. Euler here obtains
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87. For the transversal vibrations of a straight elastic rod
Euler arrives on his page 109 at an equation which agrees with
that in Poisson’s Vol 11. page 371; namely,

@y Ly
a0 T =0

The improvement which we find in comparing the present

investigation with that in the Methodus Inveniends consists in the
use of what is practically equivalent to D’Alembert’s Principle.

88. After obtaining the differential equation Euler a.dds on
his page 109:

Ita ut totum negotium huc sit reductum, quemadmodum ista
aequatio differentialis quarti gradus integrari queat; ubi quidem in
limine confiteri cogimur ejus integrale nullo adhue modo inveniri
potuisse, ita ut contenti esse debeamus in solutiones particulares in-
quirere.

by a somewhat cumbrous method the equation Z’g+ » = ay =0 for the vibrations of

a rod built in at one end and free at the other. He expresaes his terminal conditions
in analytical form, and obtains the equation

2+008w(e®+e7*)=0
to determine the periods. He calculates some of the roots of this equation
(88 xvm, xvim.)

In § xxin. Euler treats the problem of the vibrations of & fres rod (lamina libera
sex incumbat plaro horizontali), In this case he obtains the equation

2=cosw(e”+e~"). )

In § xx1v. we have the case of a rod fixed at one end and free at the other with
the equation

(" +e ®)tanw= (" -~ ).

In § xxvr. the rod is fixed at both ends, and the equation for the periods takes
the form sin w =0.

In § xxvm. the rod is supposed fixed at one end and built in at the other; the
equation for the periods is the same as in the case of § xxiv,

In § xxvn. Problem V, the rod is supposed built in at both ends; the equation
for the periods is the same as in the case of § xxi1.

In § xxvnr. Problem VI, the rod is free at both ends but fixed (as on a pivot) at
some point of its length. In the case where the middle point is fixed, Euler finds
the equation

2+cosw (e +¢7%) =0, )
which agrees with the result for a rod built in at one end and free at the other.] Eb.

4—2
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In discussing the transversal vibrations for the rod there are six
cases, with Euler, as with Poisson, Vol. 11. page 371. Each end
may be free; each end may be fixed, or as Euler says simpliciter
fioum ; each end may be mortised, or as the French writers
say, encastré, or a8 Euler says infizum’,

89. Euler first discusses the case in which both ends are free,
which occupies his pages 118—124. He arrives at an equation

cosw (€ +6)=2 .ccoeeerrernnnnn. (OF

this Poisson obtains in his Vol. 11. page 372.
This equation is obviously satisfied by @ = 0; Euler says that it
cannot be satisfied by any other value of @ which is less than

7—;: see his page 122, To justify this statement he affirms that for

such a value of o the product cos » (¢” + ¢~ ") would be less than
2, and he finds by expanding the cosine and the exponentials that

cosw(e'+e—')=-2(l—%‘>.

But this is not satisfactory, for the equation just given is not
exact. If we put for cos e its exponential value and expand,
we shall find that

e COTE PP
cos o (6" +6") 2{1 PERILE LA o
the general term of the series being
£2;cos'—'lron—w
n g oS-

Now it may be shewn that if w lies between 0 and 72—" the two terms
4 8
—°—L;_ 2! +r—82‘ give a negative aggregate; and the same is true for

1 [For the purposes of this History the terms clamped, mortised and built-in are
used as equivalents, to denote not only that the end of a rod is fixed, but ita ter-
minal direction also. At an end which is only said to be fized the terminal direction
is free.] Eb.
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every succeeding pair: thus the demonstration is completed. Or
we may proceed thus: from equation (1) we obtain

sno=+2"°_ ... @);
e +e

and if @ do not exceed 'g we must take the upper sign in (2).
Then from (1) and (2) we get

tanw=3("—€ ) ccveerrrreeennnnn. (3).
We shall shew that, except @ = 0, there is no solution of (3) if @

does not exceed %r

Suppose we trace the curve
y,=tana........coooonininnni. 4),

Yo=3("—€) oot ().
When z is very small we have approxiinately

and the curve

h=2+ % and y’=x+a_=' ’
so that y, is at first greater than y, Now y, cannot become equal
to y,, for P P
D=l+tan's, A=y(+e);
and this shews that y, increases more rapidly than y, For g,

being at least through some range greater than y, we have tanx
greater than }(¢*—¢™), and therefore 1+ tan'z greater than

- . . . e + e\’
141} (€ —e€™)", that is 1+tan'x greater than ( , and

2

dte ¢ so that through that

therefore a fortiori greater than 3

range % is greater than %

90. We have already stated that the problem involves six
cases: see Art. 88, Four of these cases Euler had already dis-
cussed in the Methodus Inveniendi: see Art. 64. The two cases
not discussed there are given in the present memoir, namely that
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in which the rod is free at one end and fixed at the other, on pages
126—133 ; and that in which the rod is fixed at one end and mortised
at the other, on pages 143—146. All the cases discussed in the
Methodus Inveniends are given again in the memoir, namely that
in which the rod is free at both ends, on pages 118—126; that in
which the rod is free at one end and mortised at the other, on
pages 134—139; that in which it is fixed at both ends on pages
140—143 ; and that in which it is mortised at both ends on pages
146—150.

91. The mathematical processes consist mainly of discussions
of such equations as (1). I have not noticed any points of interest
except that presented by page 122, which I have already con-
sidered, and something of a similar kind which occurs on page 129.
Euler wishes to shew that the equation

eﬂ_ -
tan 0 =— e.
e +e

has no root, except o = 0, between 0 and g He says that

sinw (€’ +¢ ") =20 (1 + } o' — 3 o),
and cosw(e” -6 ")=20(1-}0'—J; o),
and hence it is plain that the former expression is greater than the
latter through the whole of the first quadrant. To make this out
distinctly it should be observed that the general term in the
expansion of sin » (" +¢™") is

* nis
nwr . nmw

2 smismT .

o,
[
and that the general term in the expansion of cos @ (6* —¢™") is
21}' N
sin “2 Ccos —4— .
.
i
We may also obtain the result thus: sin @ (e”+¢™™) and
cos  (¢" —e™ ") both vanish when  vanishes, but the differential
coefficient of the former is greater than that of the latter through-
out the first quadrant.
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92. On his pages 152—157 Euler discusses the case in
which the elastic rod has spme constraint at a point intermediate
between its ends ; the constraint is to be of such a kind as to allow
of the transmission of motion between the two parts of the rod on
the two sides of it: he examines in particular the case in which the
constraint is at the middle point.

On his pages 158—162 he notices very briefly the case in
which the elastic rod is originally not straight but curved; and
especially the case in which the curve is one that returns to itself,
as a circle.

Cauchy alludes to the present memoir in his Exercices, Vol. 111
pages 276 and 312.

[93] The following additional memoirs or notes by Euler on
subjects connected with elasticity occur in the Opera Posthuma
edited by P. H. and N. Fuss, St Petersburg 1862, Tom. Ir.

Page 126. A note on the problems connected with the
vibrations of the Elastic Lamina proposed by D. Bernoulli ; Euler’s
results are found to agree with Bernoulli’s.

Page 128. A short memoir entitled De osctllationibus annu-
lorum elasticorum. This is a discussion on the oscillations of
elastic ‘annuli’ or rings, with a remark at the end which would
seem to suggest that the author considered he could apply the
results of his memoir to bells. The method and results can hardly
be considered of much value, yet it is interesting to note Euler’s
manner of attacking the problem of an elastic solid. He supposes
the annulus to be built up of elastic threads placed transversally:
“et a vi horum filorum dependet cohaesio partium materiae ex qua
aunnulus est fabricatus.” He then supposes that a certain number
of filaments extended to a certain length will support a certain
weight; to find the weight or temsion which this number of
filaments will support for any other extension, a simple proportion
is used. In other words Euler applies Hooke's Law *.

1 T have found a memoir of Euler’s, Tentamen de sono campanarum, in the Novi
Commentarii, Tomus x. (for the academioc year 1766) p. 261. The bell is divided into

annuli by vertical and horizontal sections. The vibrations of these annuli are in
either case treated as independent, and in both cases a differential equation of the

oy Ty + b‘ d* y =0 is obtained. The method is unsatisfaetory.

4 3
form an TV a4
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[94.] Page 536. Anleitung zur Naturlehre. Chapter XVIIL is
entitled Von der Zusammendriickung und Federkraft der Korper. In
this discussion the nature of elasticity is explained by a subtle
matter enclosed in the pores of the coarser matter of ordinary bodies.
This subtle matter corresponds to the aether, and the magnitude of
the elastic force depends upon the quantity, magnitude and figure
of the closed pores of a body. “Diese Erkldrung der elastischen
Kraft, durch die in den verschlossenen Poren befindliche subtile
Materie, ist der Natur der elastischen Korper vollkommen gemaéss,
und wird durch die Art, nach welcher verschiedenen Korpern eine
elastische Kraft beigebracht wird, noch mehr bestatigt.” '

This theory of Euler’s to explain the physical nature of Elasticity
is interesting, especially a3 we have noted that Hooke also based
the ‘springiness’ of bodies upon the existence of a like subtle
medium. (See Art. 9.)

[95] Further memoirs by Euler,

De propagatione pulsuum per medium elasticum :—Novi Com-
mentarii Petropol. Tom. 1. 1750.

Lettre & M. de la Grange contenant des recherches -sur la
propagation des ébranlemens dans un milieu élastique. Miscellanea
Taurinensia. Tom. 11. 1760—1
treat only of the motion of sound waves in an elastic fluid.

The memoir entitled :

De Figura curvae Elastioae contra objectiones quasdam IlL.
D Alembert, Acta Academiae Scientiarum Petropol. 1779, Pars 11
p- 188, is written to defend James Bernoulli’s solution of Galilei’s
problem against an attack of D’Alembert in the 8th volume of his
Opuscules. It contains nothing of importance.

A work of Euler's entitled: Von dem Drucke eines mit einem
Gewrchte beschwerten Tisches, auf eine Flaeche, A.d. Papieren Eulers
ges. von Jak. Bernoulli 1794, might possibly contair matter
relating to our subject, but I have not been able to find a copy.

[96.] The following memoirs are by pupils of Euler, and
closely connected with the subject of one or other of the master’s

papers.
a. 1778. Nicolaus v. Fuss: Varia Problemata circa statum
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asquilibris Trabium compactilium oneratarum, earumque wires et
pressionem contra anterides. Acta Academiae Scientiarum Petrop.
1778. Pars1. St Petersburg, 1780. pp. 194—216.

This memoir by Fuss the biographer son-in-law and assistant
of Euler applies the results of Euler'’s papers on the bending of
columns to calculate the strength of various simpler cases of
framework subjected to pressure. The whole consideration turns
on Euler’s result quoted in our Art. 74, and contains nothing of
any interest or value.

B. A.J.Lexell Meditationes de formula qua motus Lamina-
rum elasticarum tn annulos circulares incurvatarum exprimitur.

This memoir is on pp. 185—218 of the Acta Academiae
Petrop. for the year 1781, Pars 11. (published 1785).

This memoir by a disciple of Euler’s contains a discussion of
the equation obtained by Euler in his memoir on the tones of bells
(see our footnote, p. 53). In that memoir Euler had obtained an
equation of the form

Py 2%y %Y

PR R 7
for the vibrations of a rod or thin beam in the form of a circular
ring, y being the normal displacement at a distance z along the
arc from some fixed origin of measurement.

Lexell obtains an equation of the same form, but he differs
from Euler in the value he attributes to his coefficients @’ and b.

This paper is hardly of sufficient importance to justify an
analysis of its contents. The results obtained are, no more than
Euler’s, in agreement with the more accurate investigations of
Hoppe (Crelle Bd. 63); see also The Theory of Sound, Lord Ray-
leigh, Vol. 1. p. 324.

9. In the same volume of the St Petersburg Acta immediately
preceding Lexell's paper is a short memoir by another disciple M.
Golovin (pp. 176—184), which contains an application of Euler’s
theory of the sounds of bells ad sonos scyphorum vitreorum, qui sub
nomine tnstruments harmonici sunt cogniti. The notes of the har-
monicum are calculated from Euler's results, but there is no state-
ment of the amount of agreement the calculated results bear to
those of experiment.

+b 0,
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[97.] Lagrange: Sur la Force des Ressorts pliés, 1770".
Mémorres de U Académie de Berlin, xxv. 1771.

Two important memoirs seem to be Lagrange’s real contri-
butions to our subject. The above memoir is reprinted pp.
77—110 of Tome 11L of Serret’s edition of the Oeuvres.

The author commences by telling us that in springs which act
by contraction or elongation, the force appears to be proportional
to the quantity by which they are contracted or expanded or at
least to be a function of these quantities :

Mais ce principe n’a pas lieu dauns les lames élastiques inextensibles
et pliées en spirale telles que celles qu'on applique aux horloges: le
seul principe qu'on puisse employer pour ces sortes de ressorts est que
la force avec laquelle le ressort résiste & étre courbé est toujours
proportionnelle & I'angle méme de oourbure ; et c’est d’aprés ce principe
que de tris-grands Géomdtres ont déterminé la courbe qu'une lame
élastique doit former lorsquelle est bandée par des forces quelconques
. données.

[98.] In order to ascertain the law of force of bent springs,
Lagrange proposes the following problem for consideration in his
memoir ‘

Une lame & ressort de longueur donnée et fixe par une de ses
extrémités étant bandée par des forces quelconques qui agissent sur
Pautre extrémité, et qui la retiennent dans une position donnée,
déterminer la quantité et la direction de ces forces.

In order that the equations may not be too complex the lamina
is supposed to be of uniform thickness and in its primitive state a
straight line.

1 With regard to the title of Lagrange's work we may refer to three earlier
memoirs on the same subject, namely:

Deschamps: Méthode pour mesurer la force des differens ressorts. Mémoires de
UAcadémie. Paris, 1728.

C. E. L. Camus: Du mouvement accéléré par des ressorts et des forces qui résident
dans les corps en mouvement. Ibid. 1728.

James Jurin: On the Action of Springs. Phil. Trans. 1744, The author
commences by stating Dr Hooke’s principle Ut tensio, sic vis; and applies it to
a general theorem concerning the compression of a spring struck by a body of weight
M moving with velocity V in the direction of the axis of the spring. The theorem
is followed by upwards of 40 corollaries. The paper is of no value.
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[99.] Lagrange proceeds in his first section to prove ‘d’une
manidre aussi simple que rigoureuse’ that the force of a spring at
any point is proportional to the sum of the moments of all the
powers which act on the segment marked off by the point. The
ingenuity rather than the simplicity or rigour of the proof will
strike the modern reader. The exact nature of the ‘force of a
spring’ does not seem to have been quite clear to the writer, or
he would have perceived the truth of the proposition from the
ordinary statical equations of equilibrium. The force of the
spring, we are then told, has been usually held proportional to the
curvature.

[100.] Taking the tangent and normal at the extremity at
which the forces are applied as axes of # and y respectively, z and
y as the co-ordinates of any point of the lamina, p as the radius of
curvature, and ¢ as the tangential angle, Lagrange very easily
deduces the relation

Py+Qw=?.

where 2K* is a coefficient depending on the elasticity of the
lamina, and P and Q are the resultant components of the forces
along the tangent and normal respectively. Hence by differentia-
tion and integration he finds

P ¢ B—
JP—Pcosp+Qsing’
dy= K sin ¢pdep
JP—Pcosp+Qsing’
de K cos ¢pddp

T JP-Poosp+Qsing

[101.] If these equations could be integrated, we should have
equations to determine P, Q and the integral curvature, or the
problem would be solved, but Lagrange writes

11 est aisé de voir que I'intégration dont il s'agit dépend en général

de la rectification des sections coniques, et qu’ainsi elle échappe & toutes
les méthodes connues.

In his third section Lagrange integrates these equations for Q
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zero and @ very small ; in the latter case the results are extremely
complex’,

* [102.] A resolution of the applied forces P and @ along and
perpendicular to the chord joining the extremities of the spring
into components B and T leads to more interesting results. It
T'=0 it is found that

where u is any integer and ! the length of the spring. Hence we
deduce that the least force which acting in the direction of the
chord will suffice to produce in a spring any the least curvature is

2%':13 . This curious result was first obtained by Euler (see Art. 67).
It is also shewn that when the spring is very little bent and r the
length of the chord, then the force at the free extremity perpen-
dicular to the chord vanishes, when the angle at the fixed

extremity between chord and spring is

[103.] In the seventh section by means of another resolution
of the forces at the free end, it is shewn that, if the free end of the
spring be compelled to describe a very small circular arc about a
centre lying in what would be the unstrained direction of the
spring, then the force upon the free end along the tangent to the
arc is always proportional to the length of the arc measured from
the unstrained position. This elegant property it is suggested
might be used to obtain isochronous oscillations in the balance
wheel of a watch.

[104.] In the following sections differential equations are
obtained connecting the forces R and T with the constants of the
problem ; they are extremely complex and as Lagrange himself
admits throw no light on the nature of these forces. The better
method would now be to solve the equations in terms of elliptic
functions,

1 To an error in Lagrange’s analysis at this point (on his p. 88) we shall return
later when disoussing a memoir by Plana (see Art. 153).
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[105.] Hitherto the free end has been acted upon by a system
. of concurrent forces only; in sections X—XxI1. Lagrange considers
the case where the free end is in addition acted upon by a couple.
If there is a couple only the curve of the spring will be a circle ; if
the forces on the free end in addition to the couple are only very
small, the figure will be very nearly circular. These results are
then in sections XIV—XxVI. applied to the case of a spiral spring
which produces oscillations in a drum or balance wheel similar to
those of a simple pendulum.

Lagrange concludes:

Anu reste, il faut toujours se souvenir que ces conclusions sont
fondées sur Ihypothse que la lame du ressort soit naturellement droite
et que sa longueur soit trés.grande; c'est ce qui fait qu’elles n’ont
pas lieu dans les ressorts ordinaires qu'on applique aux horloges,
mais il n’est pas impossible qu'elles puissent étre d’usage dans quelques
occasions.

[106.] Sur la figure des colonnes. Muscellanea Taurinensia,
Tomus v. This memoir of Lagrange’s appears in the mathematical
section of the volume of the memoirs of the Royal Society of Turin
which embraces the years 1770—1773, p. 123.

The memoir is an important addition to a subject already
considered by Euler and Lagrange himself.

On a coutume de donner aux colonnes la figure d’'un conoide qui ait
sa plus grande largeur vers le tiers de sa hauteur, et qui aille de
1A en diminuant vers les deux extrémités ; d’oll résulte ce qu'on appelle
vulgairement le renflement et la diminution des colonnes.

Lagrange notes that the authors who recommend this seem to
have no better argument in its favour than to quote the shape of
the human body. A better reasoning from analogy would,
Lagrange thinks, have been from the shape suggested by the trunk
of a tree. Vitruvius ‘le législateur des Architectes modernes’ had
prescribed the renflement and all architects have followed his dictum.
Since this rule as to the form of a column has such an arbitrary basis,
Lagrange in the present memoir proposes to consider the proper
figure from the mathematical standpoint.

[107.] Reference is made at the commencement to Euler’s
memoir of 1757.
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Cependant comme le point de vue sous lequel cet illustre Awuteur
a discuté cette matitre est différent de celui dans lequel mous nous
proposons de la traiter, nous croyons faire quelque plaisir aux Géomeétres
en leur communiquant les recherches que nous avons faites sur un sujet,
qui interesse également la Mécanique et I'Analyse. (§ 3.)

[108.] Lagrange starts by obtaining in the same fashion as

Euler the equation
. P
y=fsin (a: ;\/ 1_()

for the bent column. Here y is the displacement at vertical
distance # from the base; P is the superincumbent weight, K
the ‘moment of stiffness’ (or the Ek* of Euler's notation); while f
is some constant.

Lagrange’s treatment of the equation is more satisfactory than
Eulers. If a be the height of the column, y = 0 for = a, hence

aVP/K =mm,
where m is an integer, or

P=m'n*K/a’,
and y =fsin (mwz/a),

J being an arbitrary constant which is equal to the maximum
value of y.

[109.] The next paragraph may be cited at length, for it
points out results which seem to have escaped Euler.

B B —_—1D
D
N C
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Fig.1. Fig.2. Fig.3.
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8i on fuit m =1, on aura y=/sin (xx/a), d’od I'on voit que la courbe
ANB ne coupe l'axe quaux deux extrémités 4 et B; et le poids
requis pour donner & la colonne cette courbure sera =*K/a’. 8im=2,
on aura y=fsin(2xz/a), et la courbe coupera l'axe au point od
z=a/2, c'est-d-dire au point du milieu C, en sorte que la colonne
prendra la figure 2; mais il faudra pour cela que le poids P soit
4x"K/a’, c’est-s-dire quadruple du précédent. Si on faisoit m=3, on
auroit y=/sin (3xx/a), de sorte que la courbe couperoit I'axe aux points
ol x=a/3 et x=2a/3 et seroit semblable a la figure 3, or pour que la
colonne soit pliée de cette manitre il faudra que le poids P soit = 97" K/a®,
c’est-a-dire neuf fois plus grand que le premier; et ainsi de suite. (§6.)

[110.] After remarking that no force less than #*K/a* will
bend the column, Lagrange proceeds to consider what happens
when P is not equal to one of the quantities m'm*K/a’. For this
purpose he takes the rigorous equation to the curve and easily
deduces for an arc 8 measured from the base

f' dy
*= ) JP-9)PIE-(f -y P'/4K*’
and assuming y = fsin ¢, he finds
¢ d¢
’ —f., JP/E — (PF 4K cos’ ¢

Here s must equal @ when ¢ = mm, m being an integer which
determines the number of times the bent column cuts the vertical
between base and summit (=m —1) or m is equal the number of
bulges (nombre des ventres). Lagrange integrates this equation by
means of a series, and ultimately obtains
g =7 { Vi 9P'f‘ + 9.25P.f°

JPEl 7% @r) T 216 (16K%) T 3. 16. 36 (64K
which gives the value of fso soon as F and a are known'. A
discussion of the roots of this equation for f is then entered upon
(§ 10). The quantity f* can only have a real value when

1—-——,\/K<0

and then only one positive real value. Hence if P<m'n*K/a’,

+etc}

! Lagrange’s result differs slightly from this, but I think his numbers are wrong.
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f will have only two real roots equal and opposite ; if P be less
than this quantity, none at all.

Dol il gensuit que tant que P sera < n°K/a’, la colonne ne pourra
pas étre courbée; que tant que P sera renfermée entre les limites
n°K/a* et 47" K/a’, la colonne sera courbée, mais en ne formant qu’un
seul ventre ; que tant que P sera entre les limites 4n'K/a® et 92"K/a’,
la colonne sera nécessairement courbée et pourra former ou un seul
ventre ou deus, et ainsi de suite. (§ 10.)

[111.] Hitherto the column has been supposed cylindrical,
Lagrange now proceeds to treat it as a surface of revolution and
accordingly replaces K by a function X of «, and obtains the

equation Py + X %: 0. He assumes as the solution of this

equation y = Esin ¢ where § and ¢ are arbitrary functions of z, and
finds that the above differential equations will be satisfied if he takes

Pf+x{d'f (‘z)} 0,and 2209, T9_,

The second of these equations is integrable and gives p = h (fd=/EY),
where k is an arbitrary constant. Putting £ =hu we have the
following equations determining % and then y when X is given:—
d'u  (du\'
3 — — — — -
4Py +X{2udz, (%) 4} 0,
= Jhu sin (Jdz/u).
With regard to these equations Lagrange makes the following
remarks. The expression for y contains two arbitrary constants.

L'une c'est la constante & qui ne 2 trouve point dans I’équation en
% ; Pautre cest celle qui est virtuellement renfermée dans l'intégrale
[dac/u, c'est pourquoi il suffra d’y substituer une valeur quelconque de u
qui satisfasse & I'équation en u sans s’embarasser si elle est une intégrale
complette de cette équation ou non.

This expression is also very convenient for determining the
weight P, for since y =0 when z =0, we can take the limit of the
integral fdz/u, 8o that it vanishes with z. Further y must vanish
when z = a, hence Jdz[u = mar.

Or comme la quantité u ne doit point contenir de constantes
arbitraires, il est visible que cette dernitre condition donnera une
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équation entre les quantités P et a, par laquelle on pourra déterminer
P. Quant au nombre entier m qui demeure indéterminé, il est clair,
par ce qu'on a vu plus haut, qu'il sera toujours égal au nombre des
ventres que la colonne formera en se courbant par la pression du poids
P; donc pour avoir la limite des fardeaux que la colonne pourra
supporter sans se courber d’'une manidre queloonque, il faudra toujours
prendre pour m le nombre entier qui rendra la valeur de 2 la plus
petite ; et cette valeur sera la limite cherchée. (§ 14.)

[112] We have thus a complete theory for the slight
bending of a column of any kind whatever formed by a surface
of revolution about its axis. Lagrange proceeds to apply this
to various cases, which we shall summarise in the following para-
graphs.

L To the surface generated by the revolution of a conic
section about a line in its plane. If z be the distance of any point
of the conic from the axis, its equation will be of the form

F=a+ Bz +ya'.
Now, ‘il paroit que la théorie et I'expérience s'accordent assez &
faire X proportionnelle & 2=K(a+ Bz +9s")"’ where K is a
constant.
Lagrange easily finds that v =g (z + Bz + v2"), where

9 =JP/K +ay~- B[4
is a suitable value for u.
Hence he deduces from the equation mm = [dz/u,
P={g'4—ay +m'n’/4%} . K,
. . a dz

where A4 is the value of the integral f @t Bat oy the lower
limit being chosen so as to make it vanish for =0. This
value of course depends upon the relations which may exist
between a, 8, 1.

To obtain the weight which a column will support without
bending, we must put m=1. If we make P a maximum by
varying g, 3, vy, and consequently A which is a function of them, we
shall have the character of the column which will support a maxi-
mum weight. Lagrange remarks however that, if we increase the

T. E. 5
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dimensions of the column, we shall obviously increase the weight
it is capable of carrying, and thus, supposing the height given, it
is necessary to find a maximum 7relative to the mass of the column.
Now the order of P is the fourth power of the linear dimensions
of section by the second power of the height (thus, the least weight
which will bend a cylindrical column =#*Kb‘/a* where b is the
radius), hence Lagrange proposes to measure the efficiency of the
column by the ratio P : 8" where § is its mass and thus S* of the
fourth order in tbe linear dimensions of section. This measure of
the efficiency of a column frees us from the indeterminateness which
would otherwise arise from the possibility of infinitely increasing
the magnitude of P by simply increasing the dimensions of the
column. Lagrange terms P : S* ‘la force relative d’'une colonne’

(§ 19).
Case (i). '%‘ —ay=0. The column is a right cone; Lagrange

finds that its efficiency is greatest when the cone degenerates into a
right circular cylinder (§§ 18—20).

Case (ii). o =0. The column is generated by a parabola.
Here again the only maximum found for the efficiency is when the
surface degenerates into a right circular cylinder (§ 21).

Case (iii). The general equation 2*=a+ Bz +x* is con-
sidered. The efficiency is found to be greatest when the conic
becomes a straight line or the column is conical. Hence we are
thrown back on Case (i), or the column is again a right circular
cylinder (§§ 22—26).

Lagrange thus conceives that he has disposed of Vitruvius’
dictum as to ‘bellied’ columns so far as surfaces of revolution of
the second order are concerned.

[113] II. In § 27 the general problem is attacked: to find
the curve which by its revolution about an axis in its plane
determines the column of greatest efficiency. Lagrange thus
expresses the problem analytically :

I1 ’agit de trouver une équation entre les ordonnées z et les abscisses
, telle que la quantité P/S® soit la plus grande qu’il est possible, S étant

égale & lintégrale = ] 2*dx prise depuis =0 jusqu'a z ~a, et P étant
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une constante qui doit étre déterminée par cette condition, que I'intégrale
f dx/u prise ensorte qu'elle soit nulle lorsque z =0, devienne = r lorsque

x=a, en supposant » donnée par I'équation différentielle
4Py’ + X{?uf—é‘ - du) —4}:07

oi X est une fonction donnée de =z que nous avons supposée plus haut
=K2*

Lagrange’s solution of this problem (§§ 28—31) is chiefly

interesting as an early application of the Calculus of Variations.
His conclusion is that a right circular cylinder is one but not the
only solution. It is the only solution in the case where the
required curve must pass through four points equally distant from
the axis, or again where the extreme sections of the column are to
be equal and the directions of the tangents to the generating curve
at those sections parallel to the axis.

§ 33 treats of a practical case, namely that in which there
is a small variation from the cylindrical form. Lagrange by a
somewhat laborious calculation finds a class of curves (a curve
with variable parameters) for which the efficiency will be a
maximum. Causing these parameters to vary (just as in treating
of the conic sections in L), he finds that the gylinder is again the
column of greatest efficiency. “D'od I'on doit conclure que la
figure cylindrique est celle que donne le mazimum mazimorum
de la force” (i.e. efficiency). With these words Lagrange
concludes his memoir, which may fairly be said to have shaken the
then current architectural fallacies,

[114] A memoir of 1777 by Lindquist entitled: De inflex~
tonibus laminarum elasticarum Aboae, 1777, which would pro.
bably contribute something to our subject, I have searched
for in vain.

115. Saint-Venant draws special attention to a few pages
which oceur in a memoir by Coulomb; see Liouville’s Journal
de Mathématiques, 1856, page 91. Coulomb’s memoir is in the
volume for 1773 of the Aémoires...par divers Savans, published
at Parisin 1776. The memoir is entitled Essar sur une application

5—2
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des régles de Maximis et Minimis & quelques Problémes de
Statique, relatifs d T Architecture. The memoir occupies pages
343—382 of the volume.

116. The Introduction finishes with the following sentences :

Ce Mémoire, composé depuis quelques années, n’étoit d'abord destiné
qu'a mon usage particulier, dans les différens travaux dont je suis chargé
par mon état; si jose le présenter i cette Académie, c’est qu’elle
accueille toujours avec bonté le plus foible essai, lorsqu'il a I'utilité
pour objet. D’ailleurs les Sciences sont des monumens consacrés au
bien public; chaque citoyen leur doit un tribut proportionné & ses
talens. Tandis que les grands hommes, portés au sommet de l'édifice,
tracent et élévent les étages supérieurs, les artistes ordinaires répandus
dans les étages inférieurs, ou cachés dans l'obscurité des fondemens,
doivent seulement chercher & perfectionner ce que des mains plus
habiles ont créé.

117. The section of Coulomb’s memoir to which Saint-
Venant draws attention is entitled Remarques sur la rupture des
Corps; it occurs on pages 350—354. This substantially amounts
to a short theory of the flexure of a beam, and the merit of
Coulomb is that he places the neutral line at the middle of the
transverse section, supposed rectangular; and that he makes an
accurate calculation of the moments of the elastic forces over a
transverse section’. Saint-Venant says:

C'est dans notre siécle seulement que son Mémoire, qui contient saur
co sujet tant de choses dans les trois pages intitulées Remarques sur
la rupture, a 6t6 enfin étudié et compris.

Saint-Venant names Duleau, Barlow, and Tredgold as having
fallen into error in the present century in spite of what Coulomb
had written.

The section of Coulomb’s memoir finishes thusﬁ

M. ’Abbé Bossut, dans un excellent Mémoire sur la figure des digues,
ouvrage ol lon trouve réunie, & l'esprit d’invention, la sagacité du
Physicien, et 'exactitude du Géométre, paroit avoir distingué et fixé le

1 [He considers the problem of flexure by a force perpendicular to the beam, so

that in this case his position of the neutral line is correct. Belgrado’s method was
equally correct and earlier.] Eb.
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premier la différence qui se trouve entre la rupture des bois et celle des
pierres’.

118. Dr Thomas Young wrote a life of Coulomb for the
Supplement to the Encyclopmdia Britannica, and in it he makes
a few remarks on the present memoir, which be styles admirable.
See Young’s Miscellaneous Works, Vol. 11. page 529.

119. 1784. A memoir by Coulomb is contained in the
Histoire de U Académie...for 1784, published at Paris in 1787,
entitled Recherches théoriques et expérimentales sur la force de
torsion, et sur Uélasticité des fils de mstal : Application de cette
théorie @& lemplot des métaux dans les Arts et dans différentes
expériences de Physique: Construction de différentes balances de
torsion, pour mesurer les plus petits degrés de force. Observations
sur les loix de Uélasticité et de la cohérence. The memoir was read
in 1784; it occupies pages 229—269 of the volume.

The theory is very simple. Imagine a thread of metal or of
silk, fixed at one end; and let the other end be attached to a
cylindrical weight so that in equilibrium the string is vertical and
its direction in the same straight line with the axis of the
cylinder. Let the cylinder be turned through any angle round
its axis, and left to itself: it is required to determine the motion.
Suppose that a vertical section of the cylinder through its axis
makes an angle @ with its equilibrium position, and assume that
the force of torsion varies as : then the equation of motion is

a0

where MEK* is the moment of inertia of the cylinder round its
axis, and u is some constant. From this equation the time
of an oscillation can be found; then by comparing this with
the observed time such an agreement is obtained as shews that
the assumption made with respect to the force of torsion is correct®.

1 [This probably refers to a book published in Paris in 1764 entitled : Sur la
construction la plus avantageuse des digues. Ihave been unable to find a copy.] Eb.
3 [Coulomb first gave his theory of torsion for hairs and silk threads in a Mémoire
sur les boussoles de déclinaison in the Mémoires des Savans étrangers, Tom. x. 1777.
This theory was extended to metal threads in the above-mentioned memoir of 1784,
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I presume that this is the memoir which Saint-Veunant has
in view when he speaks of Coulomb and the ancient theory of
torsion, though he does not give any reference: see pages 331,
340, 341 of Saint-Venant's Torsion.

Dr Young gives a brief account of Coulomb’s memoir on
torsion : see Young's Muscellaneous Works, Vol. 11. pages 532, 533.

[120.] An important conception arrived at by Coulomb is
that of cokesion, which he defines as follows:

Si l'on suppose un pilier de magonnerie coupé par un plan incliné a
I'horison, ensorte que les deux parties soient unies dans cette section
par une cohésion donnée, tandis que tout le reste de la masse est
parfaitement solide, ou lié par une adhérence infinie; qu’ensuite on
charge ce pilier d’'un poids, ce poids tendra & faire couler la partie
supérieure du pilier sur le plan incliné par lequel il touche la partie
inférieure. Ainsi dans le cas d’équilibre, la portion de la pesanteur qui
agit paralltlement A la section, sera exactement égale 2 la cohérence. Si
I'on remarque actuellement dans le cas de I’homogénéité, que I'adhérence
du pilier est réellement égale pour toutes les parties, il faut pour que le
pilier puisse supporter un fardeau qu'il n’y ait aucune section de ce
pilier sur laquelle I'effort décomposé de sa pression puisse faire couler la
partie supérieure. Ainsi, pour déterminer le plus grand poids que
puisse supporter un pilier, il faut chercher parmi toutes les sections
celle dont la cohésion est en équilibre avec un poids qui soit un
minimwn : car, pour lors, toute pression au-dessous de celle déterminée
serait insuffisante pour rompre le pilier.

Girard after pointing out the distinction between “substances
fibreuses ” and “les corps formés de molécules agglutinées” quotes
the above with great praise as the ingenious hypothesis of
‘citoyen Coulomb.” (Cf. Z’raité, Introduction, p. xxxvi.)

[121.] Giordano Riccati: Delle vibrazioni sonore dei cilindr.
This memoir occurs on pp. 444—525 of the Memorie di Matema-
tica e Fisica della Societa Italiana, Tomo 1., Verona, 1782.

The basis of this memoir is the appendix to Euler's Methodus
inventends ; '
and the same subject was still further considered in a paper entitled: Ezpériences,

destinées a déterminer la cohérence des fluides, in the Mémoires de UInstitut National
des Sciences, Tom. 1. p. 256 (1806), Paris. Prairial An 1x.] Eb.
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Quantunque io abbia preso I'ezssenzial di questa soluzione dall’ appen-
dice sopra le curve elastiche aggiunta dal dottissimo Sig. Leonardo Eulero
alla sua profonda opera Methodus inveniendi...... ; nulladimeno non
isdegnino di leggerla i Matematici, si perché ho procurato di rischiarare
la materia per 8% stessa oscurissima, si perchd meé riuscito di farci per
euntro qualche non dispregevole scoperta, e di notare altresi alcun picciolo
neo, che anderd opportunamente segnando, nelle speculazioni per altro
sublimi del chiarissimo autore.

Riceati still labours under the old error which placed the
neutral surface in the lowest fibre of a beam subjected to a
perpendicular deflecting force. He also corrects Euler in the
same point as Girard (see Art. 130) by stating that the
‘absolute elasticity’ of a cylindrical beam is proportional to the
cube of its thickness;

Se col metodo di me tenuto rispettivamente ai cilindri avessi cercato
il valore della forza E nelle lamine elastiche, mi farebbe riuscito di
trovarlo in ragione composta della rigidita della materia, della larghezza
della lamina, e del cubo della sua grossezza. Alla forza F il Signor
Eulero da il titolo di elasticit3 assoluta della ]Jamina, e senza dimostrarlo,
I’ asservisce proporzionale al prodotto della rigiditd della materia, della
larghezza della lamina, e del quadrato della grossezza. Questo sbaglio
influisce nella legge dei tempe delle vibrazioni delle lamine elastiche
determinata dal nostro Autore, la quale non corrisponde ai fenomeni,
salvoché nella circostanza, che le diverse lamine sieno di pari grossezza.

The correction of Riceati, like that of Girard, seems to me
to arise from a misunderstanding of Euler. Euler makes his
E¥%* (=Riccati’s E) proportional to the square of the dimension of
the beam in the plane of flexure multiplied by the area of its
section, and in the case of a beam of circular section this is
proportional to the fourth power of the diameter. (See Art. 75.)

Riccati arrives at the same result for his cylindrical beams
-also although he uses (§ 111.) a very unsatisfactory proof. In
Section X. the equation d‘y/dz*=m'y is found for the vibrations
of the beam, by a method which resembles Daniel Bernoulli’s or
the earlier work of Euler in not introducihg D’Alembert’s Principle.
Equations are obtained similar to those of Euler (see Art. 87 et
seq.), and Riccati solves them by somewhat lengthy numerical calcu-
lations in order to determine the times of vibration. Reference is
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made on & minor point to the memoir of the father, Jacopo Riccati,
which we have considered in Art. 30.

In Section xxvII. the nodes are determined for any mode of
vibration. Finally the results of theory are compared with ex-
periments made on cylinders of steel and bronze.

Viewed as a whole Riccati's memoir contributes little or
nothing new to the mathematical theory of a vibrating beam, yet
his calculations are more complete than those of Daniel Bernoulli
(see Art. 50) and the paper has considerable value as a contribution
to the theory of sound.

[122] James Bernoulli: Essai théorétique sur les vibrations
des plaques élustiques rectangulaires et libres. This memoir was
presented to the Academy of St Petersburg in Oct. 1788. It
is printed in the Nova Acta Academiae Scientiarum Petropolitanae,
" Tomus v. This is the volume for the academic year 1787, and
was published at St Petersburg in 1789, The James Bernoulli
in question was the nephew of Daniel and grandson of the John
Bernoulli mentioned in Art. 35

The author expresses a desirein § 1 to find a theoretical basis
for Chladni’s experiments on sound. He notes that the attention
of the great ‘geometricians’ has hitherto been confined to the
examination of the vibrations of bodies which can be regarded
as having only one dimension, strings and elastic laminae.

Si M. L. Euler a 0sé passer plus loin, & traiter du son des cloches, il
a reconnu lui-méme, que I'bypothése, qu'il fuisoit servir de base & ses
calculs, étoit précaire.

(See our Art. 94.)

Even in this case Chladni has shewn that Euler’s hypothesis is
inadmissible because it leads to results not in accordance with
experience. '

1 The following scheme may aid the reader in forming some idea of the

relationship.
Nicolaus (b. 1623, d. 1708)
(A merchant of Basel)

James (Firfth Son) . John (T‘enth Son)
(Elastic Curve) (Discourse on Motion)
Daniel (Sercond Son) John (Youn‘gest Son)
(Vibrations of a beam) |

—ee
James (of this memoir)
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Bernoulli however, having read Euler’s essay on the vibrations
of membranes’, believes that the very plausible hypothesis, therein
made use of, might be applied to the case of elastic plates. In the
case of membranes no experiments have been made which would
enable him to verify Euler’s theory, but in the case of vibrating
Pplates, since,

Les sons et les vibrations de ces sortes de corps sont un des
principaux objets du livre de M. Chladny, & qu’ainsi il y a une ample
provision d’expériences. qu’on pourra confronter avec les résultats de la
théorie.

Bernoulli, to obtain an equation for the vibrations of a plate,
assumes practically that a curved surface, such as that of a plate
in vibration, may be considered as built up of an infinite number of
curves of simple curvature. He divides his plate into two series of
annuli (like Euler divides his bells) at right angles to each other,
and considers the separate motions of these annuli to be the same
as those of elastic rods. He then combines these two results to
obtain an equation of the form

d'z ds _ dz

Ay o dr
or, as he writes it, =Az.
It will be seen at once that his method leads him to an equation
which wants the term d'z/dz’dy* and is therefore worthless.

In § 31 he proceeds to consider whether the results of his
theory are in accordance with the experiments of Chladni, and finds
naturally that, with a certain general resemblance, the results of
experiment and theory do not accord in any detail. He leaves
the question of the validity of his theory to the intelligent reader,
who can judge with greater impartiality than the author. (§ 37.)

{128.] P.S. Girard. Traité Analytique de la Résistance des
solides, et des solides dégale Résistance, Auquel on a joint une

1 Euler's paper appears in the Novi Commentarii of the St Petersburg Academy for
the year 1766 (Tomus x). It is entitled De motu vibratorio tympanorum, pp. 243—260.
A memoir by Giordano Riceati, entitled Delle vibrazioni sonore del tamburo, is con-
tained in the first volume of the Saggi scientifici dell’ Accademia di Padova. Padua,
1786. To Euler seems due the equation %: =e? % +f3 g_“y_z’ for the vibratory
motion of & membrane.
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suite de nouvelles Expériences sur la force, et Uélasticité spécifique
des Bois de Chéne et de Sapin. Paris, 1798. (A German trans-
lation appeared at Giessen in 1803.) This work very fitly closes
the labours of the 18th century. It is the first practical treatise on
Elasticity’ ; and one of the first attempts to make searching experi-
ments on the elastic properties of beams. It is not only valuable
as containing the total knowledge of that day on the subject,
but also by rcason of an admirable historical introduction, which
would materially have assisted the compilation of the present
chapter had it reached the ecditor's hands in time. The work
appears to have been begun in 1787 and portions of it presented
to the Académie in 1792. Its final publication was delayed till
the experiments on elastic bodies, the results of which are here
tabulated, were concluded at Havre.

[124.] It is interesting to note an Extrait du rapport fait d
la classe des Sciences physiques et mathématiques de UlInstitut
national des Sciences et Arts.

Séance du 11 Ventose an 6.

Le citoyen Prony lit le rapport suivant :

Nous avons été chargés, le citoyen Coulomb et mot, de fuire un rapport
a la classe sur un ouvrage que lut a présenté le citoyen Girard, Ingénieur
des Ponts et Chaussées, etc. etc.

We are reminded even here that we are considering the period
of the French Revolution. In the memoir referred to in Art. 115
Coulomb is ‘ Ingénieur du Roi.’

[125.] The book is divided into four sections with an intro-
duction. The introduction is occupied with an historical retrospect

1 The eighteenth century textbooks of Mechanics had usually a chapter on the
strength of materials, but they can hardly be said to have been treatises on elasticity.
A very popular English book, which may be taken as a sample of the type, was
W. Emerson’s, Mechanics or the Doctrine of Motion. It ran through several
editions (2nd Edition, London, 1758); and is quoted with approval as late as 1806.
Section vim. (pp. 98—116) is entitled: ‘The strength of beams of timber in all
positions; and their stress by any weights acting upon them, or by any forees
applied to them.” It labours under the old error as to the position of the neutral
line, and discusses the old problems as to solids of equal resistance, etc. There is no
sign of the author’s acquaintance with the later work of Euler, and the only
interesting part of the book is a quaint and characteristic preface.
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of the work already accomplished in the field of elasticity. It is
written in a clear style and is of great value. The introduction
concludes with an analysis of Girard’s own work. The original part
of this seems to be confined to the fuller consideration of a rod
built in at both ends, to a more detailed account than had before
been given of the ‘solids of equal resistance’ and to numerous
experiments on the resistance of beams of wood.

[126.] A remark made (p. lii) with regard to these experi-
ments ought to be quoted : —

On a négligé duns la théorie de la résistance des corps la
cohérence longitudinale de leurs fibres. Il est évident cependant
que cette cohérence doit rendre leur inflexion plus difficile. Aussi
avons-nous reconnu dés nos premidres expériences que l'élasticité
absolue qui, dans I'hypothése des géomatres sur l'organisation des corps
fibrenx devrait dépendre uniquement des dimensions de leurs bases de
fracture, dépendait encore de la longueur de leurs fibres intégrantes.
En conséquence, nous avons recherché la fonction de cette longueur qui
représente la cohérence longitudinale dans différentes espéces de bois
afin d’en conclure leur élasticité absolue spécifique.

This remark shews us exactly how far the 18th century had
got; it shews us also where the next steps must be made ;—“la
cohérence longitudinale” must be recognised in the equations
which determine the equilibrium of an elastic body.

[127.] The first section of Girard’s treatise is concerned with

the resistance of solids according to the hypotheses of Galilei,

Leibniz and Mariotte. He notes Bernoulli’s objections to the
Mariotte-Leibniz theory; but remarks that physicists and geo-
metricians have accepted this theory :

Non-seulement & cause de sa simplicité, mais encore parce qu’elle
s’accorde si heureusement avec les observations, et s’éloigne si peu de la
vérité, que dans le cas méme ol la nature nous aurait revélé son secret
sur la contexture des corps, elle a tellement multiplié les accidens dans
ses productions que des connaissances certaines sur cette contexture ne
nous conduiraient pas & des résultats plus avantageux i la pratique
des arts que ceux auxquels on parvient i l'aide de cette supposition.
(Introduction, p. xxix,)
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[128.] At the same time he thinks it probable that Galilei’s
hypothesis of non-extension of the fibres may hold for some bodies—
stones and minerals—while the Mariotte-Leibniz theory is true for
sinews, wood and all vegetable matters (cf. p. 6). As to Bernoulli’s
doubt with regard to the position of the neutral surface, Girard
accepts Bernoulli’s statement that the position of the axis of equi-
librium is indifferent, and supposes accordingly that all the fibres
extend themselves about the axis 4 C (see our figure p. 7).

[129.] In this first section Varignon’s method is used to
obtain a result true for either hypothesis; the only point of
interest is an ingenious arrangement of weights and pulleys by

which both hypotheses can be represented (pp. 7—9).

[130.] § 15—34 discuss various problems on Galilei’s hypothesis.

§§ 35—49 treat the same problems on the Mariotte-Leibniz
theory.

In §§ 64—68 results are considered which are true on either
supposition.

Then follows a discussion on elastic curves, beams and columns,
drawn from the various memoirs of Euler and Lagrange. It
contains nothing new and is often mere verbal reproduction
(§§ 76—124). There is however a remark and footnote as to a
supposed error of Euler (see Art. 75, and for the matter of fact of
Lagrange too : see Art. 112), in measuring the absolute elasticity
of a beam (in Euler’s notation Ek") by the fourth power of the
diameter of the beam supposed cylindrical and not by the third
. power, which James Bernoulli had employed and “ celle que nous
ont indiquée le raisonnement et l'expérience.” Euler was un-
doubtedly right in his value for the case of a beam of circular or
square section, and of these he appears to be treating (see Art. 121).

[131.] The second section of the work treats of solids of
equal resistance, it is a reproduction and extension of the results
of Galilei, Varignon and Parent, but does not really belong to the
theory of elasticity.

The third section considers the long series of experiments
undertaken by Girard at Havre on the resistance of oak and deal
beams, with an account of his peculiar apparatus.
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The fourth section is a not very satisfactory discussion of the
oscillations which accompany the flexure of beams, together with
some general remarks on subsidence.

[132] The whole book forms at once a most characteristic
picture of the state of mathematical knowledge on the subject
of elasticity at the time and marks the arrival of an epoch when
science was to free itself from the tendency to introduce theologico-
metaphysical theory in the place of the physical axiom dedaced
from the results of organised experience.

[133.] General summary. As the general result of the work
of mathematicians and physicists previous to 1800, we find that
while a considerable number of particular problems had been
solved by means of hypotheses more or less adapted to the
individual case, there had as yet been no attempt to form general
equations for the motion or equilibrium of an elastic solid. Of
these problems the consideration of the elastic lamina by James
Bernoulli, of the vibrating rod by Daniel Bernoulli and Euler, and
of the equilibrium of springs and columns by Lagrange and Euler
are the most important. The problem of a vibrating plate had
been attempted, but with results which cannot be considered
satisfactory. (See Articles 96 and 122)

A semi-metaphysical hypothesis as to the nature of Elasticity
was started by Descartes and extended by John Bernoulli and
Euler. It is extremely unsatisfactory, but the attempt to found a
valid dynamical theory by Jacopo Riccati did not lead to any more
definite results.

[Addenda. References to the following academic dissertations
reached me too late for any notices of them to appear in their
proper places in this first chapter.

(a). Dussertatio Physica de Corporibus Elasticis, quam ..
publicae Eruditorum ventilationt submittit Heinricus von Sanden,
Anno Mpcciv, Regiomonti.
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The author classifies the chief tactile properties of bodies under
hardness, softness, and elasticity. He defines the latter thus:

Elasticorum denique corporum talis est structura, quod illorum
partes tali modo sint locatae, si aliquantulum a se invicem fuerint
separatae, distentae aut elongatae violenter ac praeter solitum fuerint,
cessante violentida hac se reuniant aut in pristinam laxitatem sese
restituant.

§ 11 is devoted to a philological discussion on the derivation of
elasticity with references to Aristotle, Pliny, Galen, etc.

The sections immediately following divide elastic bodies into
natural and artificial ; under the latter are described cross-bows
and children’s spring-guns, etc. Francesco de Lama, Sturm and
Mariotte are the chief authorities quoted. Then we find the
elasticity of glass, membranes, musical strings, eiderdown, water
etc., touched upon. For the compressibility of water experiments
of Bacon', Boyle and the author himself are cited.

In § x111—§ X1V the second part of elastic action, viz. restitu-
tion after compression, inflexion or extension is discussed. Sanden
believes that the hypothesis of an @ther is better calculated to
explain this restitution than the hypothesis of repulsive and
attractive forces inherent in the ultimate particles of matter. He
thinks the Newtonian theory rather obscures than elucidates the
subject and quotes Halley as of the same opinion. His theory is
similar to that of Hooke, but his source seems to be the some-
what later work of Francesco de Lama. It is the extrusion and
intrusion of the medium into the pores of bodies which produces
the phenomena of elasticity. Sanden’s theory however differs
from that of Hooke and other writers I have met with, in supposing
the medium to be neither air nor ®ther, but a mixture of the two:

Est itaque corporum elasticorum causa aer gravis, hujus verd
aether, cui Deus primus motor immediat® impulsum impressit (p. 19).

The concluding sections apply this theory to particular ex-
amples in the usual vague descriptive method characteristic of the

1 Bacon's experiment with a leaden sphere containing water is described in the
Novum Organum L, 11, Aph, xrv. and in the Historia Densi et Rari. (Spedding and
Ellis 1v. p. 209 and v. p, 395.) Bacon's views on compression will be found at the
places indicated. Born three years before Galilei, he is the father of the physieal,
as Galilei of the mathematical school of elasticians,
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period. The air is elastic owing to the presence of ather in it,
and any other substance, for example water, is elastic owing to
the presence of air in the interstices between its particles.

The dissertation has no scientific but undoubted historical
interest.

(8). S. Hannelius: De causd elasticitatis. Aboae, 1746. I
have been unable to find a copy of this. It is mentioned in
Struve’s catalogue of the Pulcova Library.

(y). Dussertatio academica de corporum naturalium cohwrentra
Tubingae, 1752. This dissertation seems to have been submitted
for public ‘ wrangling’ by G. W. Krafft, Professor of Physics and
Mathematics at that time in the University.

It contains nothing of the slightest original value. There is a
superficial discussion of the work of Galilei, Mariotte, Leibniz,
Bernoulli, Biilfinger and Musschenbroek. It concludes with a
suggestion that the results of these writers—regardless of their
discordance inter se and with experiments—should be applied
somehow in the construction of bridges and roofs.] Eb.



CHAPTER II

MISCELLANEOUS INVESTIGATIONS BETWEEN THE
YEARS 1800 AND 1822,

[1834] 1802, Thomas Young: A Syllabus of a Course of
Lectures on Natural and Exzperimental Philosophy. London, 1802.

In Section XI. of the third part of this work, which is de-
voted to Physics, Young discusses some: Of the general Propertm
of Matter. Without making any very definite statements he
would appear to ascribe the properties of cohesion and elasticity
to the existence of the ultimate material particles in an ethereal
medium, which in some fashion produces between them apparent
repulsive and attractive forces. (p. 144.)

Sections X1X. and XX. of the first part of the book, entitled
Of passive strength and Of Architecture, are also more or less con-
cerned with our subject (pp. 30—46). We may note the following
paragraphs:

The strength of the materials employed in mechanics depends on the
cohesive and repulsive forces of their particles. When a weight is
suspended below a fixed point, the suspending substance is stretched,
and retains its form by cohesion; when the weight is supported by
a block or pillar placed below it, the block is compressed, and resists
primarily by a repulsive force, but secondarily by the cohesion required
to prevent the particles from sliding away laterally. When the strain is
transverse both cohesion and repulsion are exerted in different parts
of the substance (p. 39).
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When a body is broken transversely by a force applied close to the
place of fracture, it appears to bear more than twice the weight which
might be suspended by it. :

When a transverse force is applied to a bar at a distance from the
place where it is fixed, the parts nearer the one surface resist by their
cohesion, and the parts nearer the other surface by their repulsion ;
and these forces balance each other; but accordingly as the body is more
easily extensible or compressible the depth to which each action extends
will be different; in general, the neutral point is nearer the concave
surface, the incompressibility being the greater (p. 40).

If each end of a beam be firmly fixed, instead of being barely
snpported, its relative strength will be doubled ; for the flexure at each
end now adds to the strength a force capable of supporting half as much
as the whole weight, and the sum of these additional forces is equal to
the whole weight (p. 41).

On the whole there is little to be learnt from these lecture-
notes, except that Young supposed that there were different
moduli for compression and extension, and that he was not very
certain as to the position of the neutral axis. He states, I may
add, that there is some difficulty in reconciling the results of
various experiments as to the cohesion of materials.

[135.] In 1807 there appeared for the first time the lectures
of which the above-mentioned work was the syllabus. They are
entitled: A Course of Lectures on Natural Philosophy and the
Mechanical Arts. This book is in two quarto volumes.

We may first note a very valuable classified list of works
on Natural Philosophy and the Mechanical Arts on p. 87 of the
second volume. Under the headings Equiltbrium of FElastic
Bodies (p. 136), Passive Strength (p. 168), Columns and Walls:
their strongest forms (p. 173), and Vibrations from Elasticity
(p- 268), Young gives a nearly complete bibliographical list of
memoirs on the subject of elasticity written during the 18th

century ', :

1 The editor did not discover this list till revising Dr Todhunter’s account of
Young’s work. He has endeavoured to supply some omissions discovered by its
aid. The list ought to be consulted by all stadents of the history of mathematics.
It is superior in many 1-espects to Reuss’s Repertorium,

T. E. 6
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136. On pages 46—350 of the second volume is a section (IX.)
entitled: Of the equilibrium and strength of elastic substances.
This section is reproduced in the Miscellaneous Works of Dr Young:
it oceupies pages 129—140 of the second volume, and the following
note by the editor is placed on page 129 :

This article has been reprinted in consequence of the originality and
importance of some of the propositions which it contains. It was not

included in the new edition of Dr Young's lectures which was edited by
Professor Kelland.

[137.] Young commences the section by one or two defimitions,
of which the second relates to that constant of elasticity which has
since been named Young’s modulus. It runs thus:

The modulus of the elasticity of any substance is a column of the
same substance, capable of producing a pressure on its base which is
to the weight causing a certain degree of compression as the length of
the substance is to the diminution of its length.

It will be seen that the modulus as thus defined by Young
does not agree with what we now term Young’s modulus. In fact
the product of the latter and the area of the section of the beam is
equal to the weight of the modulus adopted by Young'.

[138.] The definition of the modulus is followed by a series of
theorems which in some cases suffer under the old mistake as
to the position of the neutral surface. Thus in § 321, when a
force acts longitudinally on & beam Young places the neutral
surface, or as he here terms it ‘the point of indifference,” in the
surface of the beam.

In § 332 Young defines the ‘stiffness of a beam’ and makes it
directly as the breadth and as the cube of the depth, but inversely
as the cube of the length. It will thus be seen that his ‘stiffness’
is not the same as that of Euler, Riccati or Girard.

139. The whole section seems to me very obscure like most of
the writings of its distinguished author; among his vast attair Afents
in sciences and languages that of expressing himself cleea Ly in the

the

1 That Young originally defined his modulus as a volume do‘e' diﬂ'a! ot seem quite
clearly brought out by Thomson and Tait, Treatise on Natural Philosophy, Part o.
§§ 686 and 687. See also the Article Elasticity, Encycl. Brif L34

!
|
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ordinary dialeet of mathematicians was unfortunately not included.
The formula® of the sectior were probably mainly new at the time
of their appearance, but they were little likely to gain attention in
consequence of the unattractive form in which they were presented.
They relate to the position of the neuéral line when a beam is
acted on by a given force, to the amount of deflection, and to the
form assumed by the beam ; also to various points connected with
the strength of beams. Saint-Venant alludes to Dr Young’s investi-
gations in Liouville’s Journal de Mathématiques, 1836, page 92:

...La simple flexion sans rupture, dont I'illustre physicien Th. Young
avait en 1807, présenté les formules pour les cas les plus simples,...

and in a note he adds
Ces formules ont été repreduites par le Dr Robison, article Strength
of Materials de I’ Encyclopédie Britannique.

140. As a specimen of Dr Young’s manner I give one of his
Theorems, which can be conveniently extracted as it does not refer
to any of the others'.

Theorem. The force acting on any point of a uniform elastic rod,
bent a little from the axis, variee as the second fluxion of the curvature,
or as the fourth fluxion of the ordinate.

For if we cousider the rod as composed of an infinite number of
small inflexible pieces, united by elastic joints, the strain, produced by
the elasticity of each joint must be considered as the eause of two
effocts, a force tending to press the joints towards its conmcave side,
and a force half as great as this, urging the remoter extremities of the
pieces in a contrary direction; for it is only by external pressures,
applied so as to counteract these three forces, that the pieces can be
held in equilibriura. Now when the force acting against the counvex
side of each joint is equal to the sum of the forces derived from the
flexure of the two neighbouring joints, the whole will remain in
equilibrium ; and this will be the case whether the curvature be equal
throughout, or vary uniformly, since in either case the curvature at any
point is equal to half the sum of the neighbouring curvatures; and it is
only the difference of the curvature from this half-sum, which is as the
second fluxion of the curvature, that determines the accelerating force.

! [This appears as ax addition on p. 83 of the first edition of the Conrze af
Lectures.] Ep.
6—2
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The result which is in view is, I presume, that which forms
equation (f) of Poisson’s Mécanique, Vol. 1. page 632; but
I cannot regard Dr Young's process as offering any intelligible
demonstration.

141. Whewell, in the second edition of his Elementary
Treatise on Mechanics, published in 1824, made use of Dr Young’s
results. He says on page X. of his preface :

I have also added in Chap. X. some important and interesting
theorems on the Elasticity and Compression of Solid Materials, partly
adapted from Dr Young's Elements of Natural Philosophy. 1 would
gladly have given a section on the strength and fracture of beams, had
there been any mode of considering the subject, which combined
simplicity with a correspondeuce to facts....

The section in the work occurs on pages 195—201; it is
entitled Elasticity and Resistance of Solid Materials. In this
section Whewell gives the essence of Dr Young’s results, so
far as they relate to the equilibrium of elastic substances; and
by using ordinary mathematical language and processes he renders
the investigations intelligible. But he does not reproduce those
parts which relate to the strength of elastic substances; and it may
be inferred, from the second of the sentences which I have quoted
from his preface, that he was not satisfied with them.

[142] In Lecture L. (Vol. 1) Young treats of Coheston and
on p. 628 of elasticity in particular. He writes:

The immediate resistance of a solid to extension or compression is
most properly called its elasticity ; although this term has sometimes
been used to denote a facility of extension or compression, arising from
the weakness of this resistance. A practical mode of estimating the
force of elasticity has already been explained, and according to the
simplest statement of the nature of cohesion and repulsion, the weight
of the modulus of elasticity is the measure of the actual magnitude of
each of these forces ; and it follows that an additional pressure, equal to
that of the modulus, would double the force of cohesion and require the
particles to be reduced to half their distances in order that the repulsion
might balance it ; and in the same manner an extending force equal to
the weight of half the modulus would reduce the force of cohesion to
one half and extend the substance to twice its dimensions. But, if, as
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there is some reason to suppose the mutual repulsion of the particles of
solids varies a little more rapidly than their distance, the modulus
of elasticity will be a little greater than the true measure of the whole
cohesive and repulsive force; this difference will not, however, affect
the truth of our calculations respecting the properties of elastic bodies,
founded on the magnitude of the modulus as already determined.

Young then proceeds to discuss stiffness and softness, and at
the conclusion of his lecture remarks, that if an ultimate agent for
cohesion is to be sought outside a fundamental property of matter,
it might perhaps be found in a universal medium of great elasticity.
All suppositions founded on analogy in this case (as for example
that of the Magdeburg hemispheres) must however be considered
as merely conjectural. ‘Our knowledge of everything which relates
to the intimate constitution of matter, partly from the intricacy of
the subject, and partly for want of sufficient experiments, is at
present in a state of great uncertainty and imperfection.’

[143.] Besides the semi-mathematical section on the strength
of elastic substances (see our Art. 136) and this lecture on cohesion,
Young has a separate lecture on Passive Strength and Friction
(Lecture 11 pp. 135—156 of Vol. 1). This contains a purely
physical discussion of the elastic properties of bodies. The
modulus of elasticity is defined, Hooke’s Law is expressly assigned
to its discoverer, and references are made to the labours of Coulomb
and Musschenbroek. Young also states in ordinary language some
of the results of the mathematical theory, for example on p. 139,
where he reproduces Lagrange’s results for a bent column.

The important subject of ‘lateral adhesion’ is also discussed,
and Young notes that Coulomb makes it nearly equal to the direct
cohesion of the same substance or a little greater, while Robison
makes it twice as large (p. 146). Young appears to have been
among the first, who laid marked stress on the distinction between
these two elastic properties of a body. There is as yet however
no sign of any attempt to introduce this conception into the
mathematical theory of elasticity. Its omission in the con-
sideration of the beam problem before and at this date, does not
appear to have arisen from a consciousness that its effects were
negligible, but rather from a dogmatic assumption that the curva-
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ture of a beam must vary as the moment of the bending force.
When this assumption was replaced by considering the beam as
made up of individual fibres suffering extension or compression, the
question of their lateral adhesion does not seem to have at once
occurred to the first investigators.

{144.] Besides the Course of Lectures on Natural Philosophy
Young wrote a number of articles connected with the subject of
Elasticity. Thus the articles Bridge and Carpentry were contri-
buted by him to the Encyclopaedia Britannica. These articles are
equally obscure, and, so far as I have been able to comprehend
them, do not treat satisfactorily the position of the neutral line
The term ‘neutral line’ is, I think, due to Young. It certainly
owes its general adoption to his constant use of it.

[145.] Closely associated with these Encyclopaedia articles of
Young are several articles contributed to the same work by Robison.
They were written shortly before the death of the author in 1803,
and are collected by Brewster in Vol. I. of his edition of Robison's
papers entitled : 4 System of Mechanical Philosophy. Edinburgh,
1822. The articles in question are headed : Strength of Materials
and Carpentry (pp. 369—551). They are followed in Brewster’s
edition by papers on the construction of roofs and arches, which are
also connected with our subject.

Robison finds that very few experimental results of 1mportance
have yet been obtained. He considers Musschenbroek’s investiga-
tions to have been made on poor material, and, with the exception
of the experiments of Buffon on the strength of timber, holds that
nothing can be found from which absolute measures might be
obtained that could be employed with confidence. He quotes
Hooke's Law and mentions Coulomb’s experiments in confirmation
of it. James'Bernoulli’s experiments, which seem to deviate from
it, do not do so on closer examination (see Art. 22). Robison
does not appear to have had any extended mathematical knowledge
and his off-hand treatment of Euler (p. 406) is hardly satisfactory.

On p. 411 he returns to his criticism of Euler:

In the old Memoirs of the Academy of Petersburgh for 1778,
there is a dissertation by Euler on the subject, but particularly limited
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to the strain on columms, in which the bending is taken into sceount.
Mr Fuss has treated the same subject with relation to carpentry in
& subsequent volume. But there is little in these papers besides s dry
mathematical disquisition, proceeding on assumptions whieh (to speak
favourably) are extremely gratuitous. The most important consequence
of the compression is wholly overlooked, as we shall presently see. Our
knowledge of the mechanism of cohesion is as yet far too imperfect to
entitle us to a confident application of mathematics.

[146.] Such criticism is very idle in a writer, who on the
very next page places the neutral line on the concave surface of a
‘beam subjected to flexure! But what we bave hitherto quoted is
not a tithe of the strong language which Robison applies to Euler.
He accuses him with using his great power of analysis regardless
of physical truths and merely for the purposes of display :

‘We are thus severe in our observations, hecause his theory of
the strength of columns is one of the strongest evidences of this wanton
kind of proceeding and because his followers in the Academy of
St Petersburgh, such as Mr Fuss, Lexell and others, adopt his con-
clusions, and merely echo his words. We are not a little surprised to
see Mr Emerson, a considerable mathematician, and a man of very
independent spirit, hastily adopting the same theory, of which we doubt
not our readers will easily see the falsity (pp. 465—6).

Now Euler's theory of bent columns does not agree with
experiment, and of this Robison was well aware. His considera-
tion of Euler’s error (pp. 466—7) is perfectly clear and fair; he
shews, in fact, that the neutral line in the case of a bent column
does not lie on the concave surface (see our footnote p. 44). But
then this 18 the very error he had himself fallen into in the
case of a beam subjected to flexure by a force perpendicular to its
axis. It is Robison himself who perpetuated in the English text-
books this error already corrected by Coulomb (see Art. 117).
Besides this correction of Euler, I can find nothing of originality
in this or any other of Robison’s papers.

[147.] The following English and German text-books require
a few words of notice.

1803. John Banks: On the Power of Machines. Kendal, 1803,
This book contains a section entitled : Euperiments on the strength
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of oak, fir and cast-iron, with many observations respecting the
form and dimensions of beams for steam engines etc. (pp. 73—108).
Its author describes himself as a ‘lecturer on philosophy.” The
section in question contains a set of practical rules for engineers.
How far they were of value is doubtful, as the author still makes
use of Galilei’s hypothesis and also of the erroneous position of
the neutral line.

[148.] 1806. Olinthus Gregory: A Treatise of Mechanics,
Theoretical, Practical and Descriptive. London, 1806. Book I
Chapter V. (p. 104) treats of the strength and stress of materials.
This author reproduces the whole of Galilei’s results, apparently
only for the reason ‘that they are comparatively simple,—and this
notwithstanding that a century previously they had been recog-
nised as erroneous! Nothing shews more clearly the depth to
which English mechanical knowledge had sunk at the commence-
ment of this century. The same section is reproduced in the
edition of 1815.

[149.] 1808. Eytelwein: Handbuch der Statik fester Korper.
Berlin, 1808. The fifteenth chapter of this book (Bd. 11. pp. 233—
424) is entitled: Von der Festigkeit der Materialien, and concludes
with a bibliography of the more important works on elasticity
published antecedent to 1808. The first section of the chapter,
headed: Von der absoluten Festigkeit, is principally occupied with
experimental results drawn from Musschenbroek, Girard and others.

In the second section of the chapter, headed : Von der respectiven
Festigkeit, we have (pp. 275—278) a correct consideration of the
position of the neutral line for a beam subjected to flexure by a
force perpendicular to its axis. There is nothing original in this
section, but its author possesses the advantage over Banks and
Gregory of being abreast of the mathematical knowledge of his
day. In this second section also (p. 302) Eytelwein makes a
true statement of the problem of a beam subjected to flexure,
but finds the difficulties of analysis too troublesome and ultimately
relapses into the old theory which rejected the compression.

Weil alle Korper vor dem Brechen, wenn auch noch so wenig,
ausgedehnt werden, so kann hier nicht die Rede davon seyn, die
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allgemeineren Untersuchungen iiber die respective Festigkeit anf die
Galileische Hypothese zu griinden, sondern da jede Materie als aus-
dehnbar und compressibel anzunehmen ist, so mitssen diese Untersuchun-
gen auch auf diese beiden Eigenschaften der Korper ausgedehnt werden.
Allein die nachstehende Auseinandersetzung zeigte, wie weitliuftig die
Rechnung wird, wenn man zugleich auf Compressibilitit Ricksicht
nimmt, und weil diese Eigenschaft denjenigen Korpern, welche hier
untersucht werden, nur sehr wenig zukommt, so wird man solche um so
mehr bei Seite setzen kinnen.

The results of the second and third sections on prismatic
beams and beams of varying sections are in consequence far from
satisfactory. The fourth and concluding section of the chapter
treats of experiments on the relative strength of beams; Mus-
schenbroek and Girard are the author’s chief authorities.

[150.] It may be noted that the subject of compressibility in
beams has not even in the present day been reduced to accurate
mathematical treatment. Notwithstanding Saint-Venant’s classical
memoir on the flexure of prisms, the application of the general
equations to special cases of the bending of beams under longi-
tudinal pressure still presents difficulties which have not been
generally surmounted.

151. 1809. Plana. A memoir by Plana is published in
Tom. 18 of the Turin Memoirs for 1809—1810; and is entitled :
Equation de la courbe formée par une lame élastique, quelles que
sotent les forces qui agissent sur la lame. The memoir occupies
pages 123—155 of the mathematical part of the volume. It
was read on the 25th of November, 1809.

152. The memoir, which is confined to the case in which the
elastic curve and the forces acting on it are all in one plane,
is divided into two parts. The first part occupies pages
123—136; here the investigation of the differential equation to
the curve is given, the result being the same as had already been
obtained by Euler and Lagrange. Plana says on his page 125:

Les moyens que ces deux auteurs emploient pour parvenir & cette
équation ne m’ont pas paru doués de toute la clarté et la simplicité
quon pourrait souhaiter, et c’'est dans lintention de la démontrer,
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en suivant une marche précise et naturelle, que je n’'ai pas cru inatile
d’offrir ce mémoire & 1'Académie, quoiqu’il ait pour but de déterminer
une équation déja connue par les géométres,

Plana’s investigation is simple and intelligible; he states
distinctly what forces he supposes to be acting, and uses only
common mechanical principles.

153. The second part of the memoir occupies pages 137—
155 ; this is entitled: Application de la théorte précédente d un
cas particulier traité par Lagrange dans les mémoires de U Acade-
mie de Berlin (année 1769). The memoir by Lagrange to which
this refers is the one we have considered in Art. 97. Plana’s pro-
cess amounts to the integration of the differential equation

K/p =Tz + Ry,

where p is the radius of eurvature at the point (z, y) and K, T, R
are constants. Plana begins by finding an exact integral of the
first order, after which he proceeds through a long course of
approximations until finally he obtains a result which disagrees
with one given by Lagrange in the memoir cited. Plana in-
dicates the point where an error occurs in Lagrange’s process.

154. In his approximations Plana follows closely the path
traced out by Lagrange, so that in fact the memoir offers nothing
new except the correction of Lagrange’s mistake. Nevertheless
in the new edition of the works of Lagrange published by the
French government the mistake remains uncorrected (see pages
85—90 of Vol. 11r. 1869). It is obvious that there is a mistake,
for on the fourth line of page 88 there is an equation in which the
left-hand side consists of

l 2 ’

this is less than unity, for » is the chord of an arc [; but the
right-hand side will be found to be greater than unity in the case
under investigation. Afterwards r/l is by mistake changed into
l/r. The error first enters on page 85, at the sixth line from the
foot; here P* is practically taken as equal to the product of P*
into + /%, which as P is a negative quantity is incorrect.

r{ _(m—a
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155. 1811. Delanges: Analisi e soluzione sperimentule del
problema delle Pressioni. This occurs in the Memorve...della
Soctetd Italtana : it occupies pages 114—154 of the first part of
Vol. xv. published at Verona in 1811, The memoir was received
on the Sth of March, 1810.

I allude to this memoir as the title might suggest some
relation to our subject, with which however it is totally un-
connected. If a heavy body is supported at three points in a
horizontal plane, but not in the same straight line, the pressure
at each point can be found by ordinary statical principles. But if
there are more than three points the problem becomes indeter-
minate; works on Statics generally notice this matter. Delanges
in fact renders the problem determinate by an arbitrary hypothe-
sis. It will be seen from the Catalogue of Scientific Papers
published by the Royal Society that Delanges wrote other
memoirs on the subject; in the present, which is the last he
wrote, he alludes to these and to the discussion and controversy to
which they had given rise.

156. 1811. The first edition of Lagrange’s Mécanique
Analytique was published in 1788; the first volume of the
second edition appeared in 1811, and the second volume in 1815
after the death of Lagrange. I shall use the reprint of the work
which was edited by Bertrand in 1853.

157. There is nothing to be found here which belongs
strictly speaking to our subject; but some of the problems
which really form part of the theory of elasticity are here treated
by special methods. The pages 128—151 of the first volume
contain all that it is necessary to notice; they form three sections
of a chapter entitled: De Uéquilibre d'un fil dont tous les points
sont tirés par des forces quelconques, et qur est supposé flexible ou
inflezible, ou €lastique, et en méme temps extensible ou mon. The
method by which the problems are treated is that for which
Lagrange’s work is famous, and which amounts to rendering Me-
chanics a series of inferences drawn from the principle of Virtual
Velocities by the aid of the Calculus of Variations.

158. The first problem discussed is the equilibrium of a
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string (pages 129—138); the results coincide with those ob-
tained in ordinary works on Statics. Bertrand notices on page
135 that Lagrange considers a part of this problem to be difficult
by ordinary methods while it is really easy.

The second problem discussed is the ethbnum of a
membrane, called a flexible surface (pages 139—143). The
principal result obtained is that, when gravity is the only force
and the membrane deviates but little from a horizontal plane, its
form is determined by the equation

(da:' dyt) =9
where a i8 a constant. This agrees with later investigations ; but
the process of Lagrange is unsatisfactory, as is acknowledged

by Bertrand, supported by the authority of Poisson, in a good note
on page 140.

159. The third problem discussed is the equilibrium of an
elastic wire or lamina (pages 143—151). The process is un-
satisfactory, as is acknowledged by Bertrand in a note (page
143). In fact one difficulty is that two of Lagrange’s indeterminate
multipliers are found to be infinite. Here, as in the discussion of
the second problem, Lagrange assumes without adequate ex-
planation that the internal force called into action is of a certain
kind; and in the present problem it has been found that
Lagrange has omitted a part of the force. The error has been
corrected by Binet and by Poisson, as we shall see hereafter.
Bertrand supplies the necessary correction in a note ; and he shews
after Binet, that an integration can be effected which Lagrange .
says est peut-¢tre impossible en général -(pages 401—405). I do
not see why the limitation la courbe €tant primitivement droite
is introduced on page 403. Yet this is involved in Lagrange’s
page 148; the curvature is supposed to arise entirely from the
action of the forces.

160. The discussions of the first and the third problems in
the second edition are reproduced, with some additions, from the
first edition; the second problem was not discussed in the first
edition.
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161. The notes of Bertrand throw no light on the error
attributed by some writers to Poisson. Thus on page 402 we
have the moment of torsion held to be constant at this date (1853),
while in the Dublin Calendar for 1846 this is contradicted’.

[1812. A memoir by Poisson belonging to this year is noticed
in the chapter devoted to his works.]

[162.] 1818. C. Dupin: Ezpériences sur la flexibilité, la
Jorce et Uélasticité des Bos, avec des applications auz constructions
en général, et spécialement d la construction des vaisseaux. This
meunoir occurs on pp. 137—211 of the Journal de UEcole Royale
Polytechnique, Tom. X. Paris, 1815. The experiments were made
at the arsenal of Corcyre in 1811, and are commended with
those of Duleau by Saint-Venant in his memoir on the flexure of
beams. They are concerned only with wood, while Duleau’s are
on iron (see below Art. 226). There is nothing of mathematical
value to note in the paper.

163. 1814. G. Belli: Osservazion: sull’ attrazione molecolare.
This memoir is published in the GXornale di Fisica, Chimica ec.,
di L. V. Brugnatelli, Vol. vi1, Pavia, 1814 ; it occupies pages
110—126, and 169—202 of the volume.

164. According to Belli two opinions have been held as to
molecular force; Newton and his followers maintained that mole-
cular force was quite distinct from the force of gravity or universal
attraction ; while more recently Laplace had suggested that it
was only a modification of gravity. The memoir begins thus:

L’ attrazione molecolare, quantunque dall’ immortale Newton e dai
posteriori Fisici si fosse creduta distinta dalla gravitazione o attrazione
universale, nondimeno, in questi ultimi anni dal celebre Sig. Laplace
venne sospettata non esserne che una semplice modificazione. Fra
queste due opinioni per discernere la vera, e per ispargere qualche
debole lume su questa oscura ed importante materia, io ho instituite le
presenti ricerche.

165. The memoir opposes the suggestion attributed here to
Laplace. Calculations are made on the supposition of the or-
dinary law of gravity in order to shew that the forces according

1 Bertrand seems to imply that Binet and Poisson join in eorrecting Lagrange;
but Saint-Venant, Comptes Rendus, xvii. 953, seems to imply that Poisson went
wrong though cautioned by Binet. See our account of Saint-Venant.
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to this law are too feeble to produce the results obtained by
observation and experiment. The problem respecting the form of
the solid of greatest attraction which I called Silvabelle’'s Problem
in my History of the Theories of Attraction is very well discussed on
pages 112—115, and numerical results are obtained respecting it.
Other numerical results are also worked out. Thus, suppose a
sphere to attract a particle at its surface; let the sphere be
changed into a circular cylinder of equal volume, the height of
which is equal to the diameter of the sphere, and let the attracted
particle be at the centre of the base of the cylinder: then the
attraction of the cylinder is about §3 of that of the sphere. If
the height of the cylinder instead of being equal to the diameter
of the sphere is equal to the product of the radius of the sphere

into /4ar/3, then the attraction of the cylinder is about $§% of
that of the sphere.

166. The argument on which Belli mainly relies is fur-
nished by the fact that a drop of water will remain in equilibrinm
hanging from a horizontal surface. Suppose the molecular action
of the contents of the drop to fullow the law of gravitation, and
for a rough approximation take the drop as spherical. The
attraction of the drop on its lowest particle must be strong
enough to overcome the attraction of the whole earth. Let » be
the radius of the drop, R that of the earth; let p be the density
of the water assumed to be without pores, and o the mean density
of the earth: then, according to the ordinary expression for the
attraction of a sphere on a particle at its surface we must have
rp greater than Ra, and therefore p greater than Ro/r. Suppose
r to be a millimetre; then as R is greater than 12000000 metres
we must have p greater than 12000000000s. This is altogether
inadmissible. Belli says that the density of the earth is really 8
or 9 times that of water; but this is an exaggeration, even
according to the state of knowledge at the epoch, for the Schehallien
observations and Cavendish's experiment had been made an<
discussed (see the History of the Theories of Attraction, Arts.
730 and 1015).

167. The first part of the memoir concludes on page 126
with the opinion that the true Law of molecular action is yet
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unknown, and the writer proposes to attempt to draw from the
phenomena some indications respecting it. His words are :

Da tutte queste cose mi sembra che la vera legge dell’ attrazione
molecolare non sia stata finora interamente comosciuta. Percid io monm
eredetti inopportuno il tentare se non di scoprire qual sia questa legge,
almeno di cavare dai fenomeni tutte quelle notizie, che intorno a lei essi
ci possono dare.

168. Aeccordingly in the second part of his memoir Belli
examines some phenomena in detail; those of cohesion he treats
on his pages 172—188. Suppose we take two equal thin circular
plates of metal of the same substance; experiment shews that the
attraction between them is insensible so long as the distance
between them is sensible, but becomes very great when they are
in apparent contact; also it is tndependent of the thickness.
Belli calculates the whole attraction between the plates for the
cases in which the attraction between particles varies inversely as
the second, third, and fourth powers of the distance respectively ;
be finds that not one of these suppositions will agree with the
facts; they do not make the result large enough at apparent
contact, and they all assign a very great influence to the thickness.
Belli also gives general formule for the case in which the at-
traction between two particles varies inversely as the nth power of
the distance; he comes to the conclusion that from the facts of
cohesion we learn ouly this, that » must be greater than 4.

169. A note on pages 182 and 183 deserves notice; it
resembles, as Belli says, the Prop. 87, Lib. 1. of Newton's
Principia. A single example will be sufficient to illustrate it:
Suppose that the attraction between two particles varies inversely
as the nth power of the distance, we require the limit of # in order
that the resultant attraction between two spheres in contact may
be finite. Imagine the spheres to remain in contact, but each
sphere to be enlarged in linear dimensions in the ratio of p to 1;
then each particle becomes enlarged in the ratio of p* to 1, so that
on this account the resultant attraction becomes enlarged in the
ratio of p* to 1: on the other band as the distance between
any two particles is enlarged the attraction between them is
diminished, and becomes 1/p" of what it was originally. Thus on
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the whole by this enlargement of dimensions the resultant
attraction becomes p*™ times what it was originally. Aslongasn
is less than 6 the resultant attraction then is increased, but when
n=26 it remains unchanged; thus in this case the additional
matter obtained does not augment the attraction of the old:
the conclusion is that if n=6 the attraction of the spheres in
contact must be infinite, and a fortiors if n be greater than 6.

170. On pages 188—191 Belli considers the refraction of
light on the corpuscular theory, and draws the same inference as

from the facts of cohesion, namely that n must be greater than 4
(see Art. 168).

171. On pages 191—202 Belli considers capillary attraction ;
from the comparison of calculation with observation he draws the
conclusion that » must be greater than 5: this extends, without
contradicting, the results he had obtained from the consideration
of cohesion and refraction. He then says:

Non ci palesa perd nemmeno essa quale sia la vera legge se sia quella
delle seste potenze o un’ altra ancora pil rapida. Ma noi ci fermeremo
qui, “arrestando la Teoria ove si ferma I' osservazione,” ed aspettando
che nuovi fenomeni si manifestino, i quali ci guidino pid avanti per
questa scabiosa via.

172. All the conclusions obtained by Belli rest, as he allows,
on the hypothesis that the law of attraction between particles can
be expressed by some single power of the distance. The whole
memoir forms an interesting exercise on the ordinary theory of
attraction though it cannot be considered as an important con-
tribution to molecular mechanics',

1 The following slips may be noted :
Page 112. He does not define p; it must be the density.
118. For x in the denominator of & fraction read /.
115. ‘Ad una sfera:’ he should say that if the figure is changed from a sphere
to that of the solid of greatest attraction the increase is only }§.
123, For oos KA read cos KAO.
176. For AB/AP read AC/AP.
189. Note line 4; for z® read vt.
192. In the fig. 12 there is no Al; but KC apparently by mistake.
198. In the fig. 14 supply letters P, Q, E vertically below C.
199. ‘nella ragione di 1 a 1/R’: he should say, diminishes in the same
ratio as 1/R.
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173. 1814. J. Binet. A memoir by this writer is published
in the Journal de I’Ecole Royale Polytechnique, Vol. x. 1815 ; it is
entitled Mémoire sur Uexpression analytique de Uélasticité et de la
ravdeur des courbes d double courbure: it occupies pages 418—4356
of the volume. It was written in the year preceding publication.

174. As we have seen in Art. 159, Lagrange had treated
imperfectly the problem of the equilibrium of an elastic curve of
double curvature ; in the present memoir the attention of mathe-
maticians was drawn for the first time to this imperfection.
The memoir may be conveniently divided into three parts. The
first part occupies pages 418—428; this belongs to pure mathe-
matics, and investigates various formulae which now find a place
in works on Geometry of Three Dimensions, as for instance an
expression for the radius of torsion at any point of a curve of
double curvature. The second part occupies pages 428—443;
this relates to the equilibrium of forces acting on polygons the
sides of which are rigid straight rods. The third part occupies
pages 443—456; this applies the results of the former sections to
the case of a curve of double curvature.

175. The memoir does not seem to me of much direct
service; the author's design apparently was to comment on
Lagrange’s treatment of the subject, rather than to supply the
best independent investigation. He notices the fact that in
Lagrange’s own process ten of the multipliers are infinite and
of different orders: see the note on page 153 of Vol I of
Bertrand’s edition of the Mécanique Analytique. The language
in which mechanical principles are stated seems to me deficient
in precision; and the problems discussed in the second part are
not very clearly enunciated. I will give an example of each of
these points. On page 419 we read :

Qu'on se figure, par exemple, un fil métallique pli¢ en forme
d’hélice comme le sont les ressorts appelés ‘ressorts & boudins’. Si une
force agit de maniére & rapprocher ou A éloigner les deux extrémités
de ce ressort, on voit assez que le changement de forme qu'’il éprouvera
aura lien surtout aux dépens de la torsion du fil métallique.

Here the last few words are too metaphorical. On pages 428
and 429 the first mechanical problem discussed begins thus:

T. E. 7
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Maintenant prenons un systéme de trois points 1, 2, 3, auxquels
sont appliquées trois forces P, P, P”, dont nous désignerons les compo-
santes par X, ¥, Z, X', Y, &c., dans le sens des trois axes coordonnés.
Nous supposons que les verges a, a’, qui séparent ces points, soient
susceptibles d'extension ou de contraction, quoique restant inflexibles
et droites ; que les forces longitudinales de ces verges, lorsque Iéqui-
libre sera établi, soient 4, 4’; et quelle’ que soit la réaction du
troisi®me point sur le premier, nous la supposerons remplacée par une
force intérieure B, agissant dans la direction d’une droite b qui joint le
point 1 an point 3’, que I'on trouve en prolongeant de toute sa longueur
le c6té inflexibla o',

Here in the first place the body on which the forces act is not
well defined ; and the part which begins et quelle que sot, is very
obscure, though as we see afterwards it is the essential part of the
process. Binet himself admits that the way in which he supposes
his rods connected is not very natural (pp. 420 and 435: see
my account of a memoir of Bordoni, Art. 216)

It is remarked by Thomson and Tait in Art. 608 of thelr
Natural Philosophy (2nd Ed.):

The fundamental principle that spiral springs act chiefly by torsion
seems to have been first discovered by Binet in 1814.

They cite Saint-Venant in the Comptes Rendus for September,
1864.

176. 1815. Plana. In the Journal de I'Ecole Royale
Polytechnique, Vol. X. 1815, we have a Mémoire sur les oscillations
des . lames élastiques; par M. Plano, ancien éléve de UEcole
polytechnique, et Professeur d’'Astronomie & Vuniversité de Turin.
The memoir occupies pages 349—395 of the volume. After a
brief introduction on pages 349—351 the memoir is divided into
three parts.

177. The first part is entitled Kquations générales du
Mouvement d'un Fil ou d'une Lame inéxtensible et dlastique; it
occupies pages 351—360. The method of investigating these
equations is that of Lagrange which cannot be considered quite
satisfactory : see Art. 159,

178. The second part of the memoir is entitled Intégration
de T Equation du Mouvement d'une Lame élastique considérée comme
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non pesante: it occupies pages 360—391. The differential
equation to be integrated is
‘z,/+ Z:{ =0 .iiiiiiiennrenrenneenns(8)

By assuming for y a series in ascending whale powers of ¢,
where the coefficients are functions of , an integral is obtained
involving the arbitrary functions of . Plana however wishes to
have the integral in a finite form, and this is the easential design
of his memoir; accordingly he transforms the two infinite series
into double integrals, The prooess is very laborious, and is
unfortunately damaged by important mistakes which are acknow-
ledged on pages 633 and 634 of the volume: I have not verified
the whole. The principal point in the investigation is the em-
ployment of Parseval's Theorem : see Lacroix Traité du Calcul
Différentiel et du Calcul Intégral Vol mr 1819, pages 393—395 ;
or Boole’s Differential Equations, Chapter xviII,

The value of y obtained by Plana is excessively complex;
by using abbreviations he brings it within the compass of sixteen
long lines of a quarto page, but if expressed at full it would occupy
double the space. He adds somewhat rashly on his page 384 :

Telle est, &i je ne me trompe, la forme la plus simple dont est
susceptible I'expression générale de y, qui satisfait & 'équation (3).

Poisson in the Memairs of the Institut for 1818 puts the value
in the following simple form

9= [ S ) o= e

o, a5 0) o e

179. Plana passes on to the more general differential equation

dy +a d‘y =p dy
ae da* da*’
be proceeds a certain way and then says, on his page 391 :

11 ne reste plus maintenant qu’a chercher la partie réelle contenue
dans le produit..,.., ; mais nons n’entreprenons pas d’achever ce calcul,
parce qu'il nous paraft gue le résultat ﬁnal doit étre exoessivement
compliqué.

7—2
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180. The third part of the memoir is entitled Intégration de
U Equation du Mouvement d’une Lame élastique pesants : it occupies
pages 891—395. The differential equation to be considered now is

dy  ,dz_ ., d

TG At
Plana proceeds to a certain distance in the investigation, and
then concludes his memoir thus:

Nous n’entreprendrons pas de pousser plus loin ces recherches qui
se compliquent toujours de plus en plus, et nous nous contenterons
d’avoir indiqué parld la possibilité d'exprimer, par des intégrales
définies, l'intégrale de I'équation aux différences partielles du qua-
triéme ordre, qui renferme la loi des oscillations d’une lame élastique
pesante.

[1816. An article by Poisson belonging to this year is noticed
in the chapter devoted to him.]

[181] 1816. J. B. Biot: Traité de Physique Ezpérimentale
et Mathématique. Paris, 1816. This well known work contains
a chapter: De UElasticité (Tom, 1. Chap. XX pp. 466—528)
which treats of our subject.

[182.] Biot attributes the elastic properties of bodies to their
molecular construction and to forces between these molecules.

Nous avons montré les corps comme des assemblages de molécules
matérielles extrémement petites, maintenues en équilibre entre deux
forces, savoir une affinité mutuelle, qui tend & les réunir, et un principe
répulsif, qui est probablement le méme que celui de la chaleur, et qui
tend & les écarter. Quoique ces molécules soient si petites que nous ne
puissions absolument pas observer leurs formes, nous avons cependant
découvert qu'étant placées & de certaines distances les unes des autres,
elles exercent des attractions diverses selon les cdtés par leaquels elles se
présentent.

He thus adopts, what we may term, the Newtonian hypothesis,
and the usual description of the difference in construction between
gaseous, liquid, and solid bodies follows. A general explanation
of elasticity, of the limit of elasticity or permanent distortion, as
well as of the elasticity of crystals is then easily deduced from
the above molecular hypothesis.
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[183.] Biot first considers the elasticity of threads or fibres
citing the experiments of ’s Gravesande (que l'on sait avoir €6 un
physicien fort exact), which lead him to the law of extension.
Coulomb’s experiments on torsion are then discussed at considerable
length. There follows a slight discussion of the action of elastic
laminas and further somewhat vague statements as to the mole-
cular condition, and consequent elasticity of bodies acted upon by
heat. The chapter concludes with a description of the torsion-
balance and the theory of the rotatory oscillations of bodies sup-
ported by twisted elastic wires.

[184.] In the portion of his work devoted to sound Biot repro-
duces some of the known results for the vibrations of elastic bodies.
Thus in Chap. 1v. Tom. 11 (p. 72) we have the transverse
vibrations of elastic rods with the statement of the six cases
of varied terminal conditions (see Art. 88). The following chapter
is devoted to the longitudinal vibrations of rods; the sixth to
the torsional vibrations (vibrations circulaires des verges droites)
the seventh to the vibrations of curved rods; the eighth to various
forms of vibration in solid bodies, including plates. There is little
if any mathematical theory and the experimental results are
chiefly drawn from Chladni.

The various editions of Biot's Précis élémentaire de Physique
Ezpérimentale (1st in 1817, 3rd in 1824) present only an abridg-
ment of the Traité,

[183.] 1817. George Rennie: Account of experiments made
on the strength of materials. Phil. Trans. 1818, p. 118.

This communication to the Royal Society is in the form of a
letter to Dr Young. -

The author remarks on the somewhat vague and contradictory
character of the results obtained by different experimenters. He
refers to the work of Emerson, Robison, Banks, Anderson, Beaufoy
and Reynolds in this country ; of Musschenbroek in Holland and of
Buffon, Rondelet, Gauthey, Navier, Aubry and Texier de Norbeck,
together with Prony’s researches at the Ecole Polytechnique, in
France. He remarks also on the discordance between the Euler-
Lagrange theory of columns and actual experiment. The first
recognition of this discordance he attributes to Coulomb.
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[186.] The experiments eommence with a set upon the crush-
ing of metal blocks, in particular of cast iron. Rennie finds ‘ that
vertical cube castings are stronger than horizontal cube castings.’
The second set of experiments are on the cohesion of metal bars
subject to longitudinal tension. In this case the fracture of cast
bars was attended with very little diminution of section, one, in
fact, scarcely perceptible. Then follows a set of experiments on
the twist of different materials and another set on the crushing of
wood and stone. It would appear that ¢ hardness is not altogether
a characteristic of strength, inasmuch as the limestones, which yield
readily to the scratch, have nevertheless a repulsive powet ap-
proaching to granite itself’.

[187.] The paper concludes with experiments on the transverse
strain of cast bars, The paradoxical experiment of Emerson was
tried ; namely, by cutting off a portion of an equilateral triangle
(Emerson’s Mechanics, p. 114) a bar of this section is made stronger
than before, that is, a part stronger than the whole. The experi-
ment was confirmed. In this case the bar was supported at both
ends and the weight applied at the centre, the base being upper-
most in both cases’.

In a postseript there is a reference to the then recent experiments
of Barlow. .

[188.] 1817. Peter Barlow: An Essay on the strength and
stress of timber. The first edition of this work appeared in 1817,
but I have been unable to find a copy of it either in the British
Museum or in the Graves Library at University College. My
remarks will therefore be based upon the third edition of 1826,
the earliest which I have been able to examine.

[189.] Part I. contains an historical sketch of former experi-
ments and theories, which is fairly clear though in the latter part it
seems to be rather based upon Girard than on an exhaustive study
of the original memoirs. 'With regard to the labours of Euler
and Lagrange, Barlow is of opinion that their instruments of analysis

1 T have referred to these, as well as to other experimental results, because they
stale physical facts which seem to me quite unheeded by mathematical elasticians
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have been too delicate to operate suceessfully upon the materials to
which they have been applied; so that while they exhibit, under the
strongest point of view, the immense resources of analysis, and the
transcendent talents of their authors, they unfortunately furnish but
little, very little, useful information. (p. 64.)

-The real reason why Euler’s and Lagrange’s results are not
satisfactory is that they integrate the equation for the equilibrium
of the beam on the supposition that the ‘absolute elasticity’
(E%* in Euler’s notation: see Art. 65) remains constant for all
sections of a beam under longitudinal stress, with the additional
assumption that it is independent of the length of the beam. The
first point, which is intimately associated with the position of the
neutral line, Barlow does not seem to have clearly recognised ; the
second point is considered on p. 75, but is utterly obscured, because
the author has not observed that the ‘absolute elasticity’ for a
beam under transverse stress differs from that for a beam under
longitudinal stress. This of course follows from the fact that the
neutral line is not in the latter case coincident with the ‘line of
centres.’ This error of Euler's seems nowhere to have been clearly
explained, although Coulomb had long since pointed out the true
method of finding the neutral line and Robison had indulged in
the strongest invective against both Euler's method and its
results.

[190.] Barlow also mentions in this historical introduction
the discrepancy between Girard’s theoretical results and those of
experiment in the case of beams subjected to transverse stress.
This discrepancy of course arose from Girard’s misplacement of
the neutral line. Barlow however seems to think that Leibniz's
erroneous placing of the neutral line in the extreme fibre on the
concave side was the accepted view of the theorists in his own
day. Robison’s, he writes, ‘is the only theory of any importance
in which the position of the neutral axis, or that line in & beam
which suffers neither extension nor compression is introduced as a
necessary datum.’ Considering that Biilfinger, Riccati and Cou-
lomb had all given this line its true position in the case of
transverse strain, Barlow's claim to any merit of discovery in this
matter may be at once dismissed.
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[191.] In Part 111. On the Deflection of Beams an obvious error
attributed to Girard is corrected ; that the deflection varies as the
cube and not as the square of the length in the case of a beam
subject to transverse strain is of course an obvious result of
Bernoulli’s theory of the elastic curve’.

[192.] On p. 164 (§ 117) the writer commences his discussion
as to the position of the neutral axis. Although he corrects the
misplacement adopted by Leibniz and Girard he falls into an
equally serious error himself. He does not make use of the clear
principle stated by Coulomb, but assumes that the sum of the
moments of the tensions of the extended fibres about the neutral
point of any section must be equal to the sum of the moments
of the compressed fibres. This is the same erroneous principle
as is made use of by Duleau (see Art. 227). There is a footnote
to the third edition (p. 167) stating that the above principle is
objected to by Hodgkinson (see Art. 233), but the author still
thinks his own results correct. He, however, finally accepts Cou-
lomb’s principle (or as he terms it Hodgkinson's) in the edition of
1837 (Entitled: A Treatise on the Strength of Timber and Cust
Iron, Malleable Iron and other Materials, p. 63). The most curious
part of the earlier statement however is, that Barlow is led by
means of it to deduce from his experimental results that Galilei’s
theory is more correct than that of Leibniz; he even goes so
far as to assert (p. 26), that Leibniz ‘rather retrograded than
advanced the science’ The discrepancy between the results of
Leibniz's theory and his own experiment was of course due to
the misplacement of the neutral line, which Barlow had found
from experiment practically coincided in the case of transverse
stress with the line of sectional centres.

[193.] There is however in this work, as in all the ‘ practical’
English text-books of the period, no clear recognition of what
the errors of Leibniz and Euler exactly consist in, although the
writers are conscious that the results of these mathematicians do
not accord with experience.

1 Barlow does not state exactly where Girard has made this error. Girard gives
the correct value of the deflection on p. 125 of his Traité and cites that value
correctly at the end of Table II. of his experimental results.
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[194.] In the edition of 1837 (pp. 62, 63), Barlow seems still
ignorant that Coulomb had fifty years before correctly considered
the position of the neutral axis, and attributed the first determina-
tion of the correct position to s own experimental researches, and
the first accurate theoretical calculation to Hodgkinson in his
Manchester memoir!

Of the value of Barlow’s experimental results this is not the
place to judge; as a theorist he is another striking example of
that want of clear thinking, of scientific accuracy, and of knowledge
of the work accomplished abroad, which renders the perusal of the
English text-books on practical mechanics published in the first
half of this century, such a dispiriting, if not hopeless, task to the
historian of theory.

[195.] Two short papers, mainly experimental, by Thomas
Tredgold in Tillock’s Philosophical Magazine, Vol. L1 1818,
entitled: On the transverse Strength and Resilience of Timber
(p- 214) and On the Resilience of materials, with Experiments
(p. 276) present nothing of interest or of original value,

[196.] The Elementary Principles of Carpentry. London, 1820,
by the same author, contains in Section 11 :—On the Resistance of
Timber, or the Stability of Resistance (pp. 25—60) some considera-
tion of the flexure and compression of beams. The experimental
results are principally drawn from Rumford, Musschenbroek and
Girard ;—the theory contains nothing original and is often
completely confused. Thus (p. 48) the author finds from ex-
perience that there is a certain force which will just bend a piece of
timber when acting in the direction of its length. He continues:

The strain will be directly as the weight or pressure ; and inversely
as the strength, which is inversely as the cube of the diameter. The
strain will also be directly as the deflexion, which will be directly
as the quantity of angular motion, and as the number of parts strained ;
that is, directly as the square of the length, and inversely as the
diameter. Joining these proportions, and retaining the same notation
a8 in the preceding investigations we have L* x W/D"* as the strain,

(L = length of column, D its diameter and W superincumbent
weight.) On p. 50 Tredgold deduces the following exu'aordmary
result from the above obscure statement :
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A column or pillar that shall be equally strong throughout will be
generated by the revolution of two parabolas round the axis of the
column, the vertices of the curves being at the extremities ; for when all
other quantities are constant L* varies as D‘or L : D" a property of
the parabola. But the figure of a column depends on two conditions ;
the one, that it shall rest firmly on its base, and offer a solid bearing
for the load to be supported ; the other that it shall be capable of the
greatest degree of resistance. To fulfil the first condition, it should be
a frustrum of a cone; to fulfil the second, it should be of the form
generated by the revolution of two parabolas: and combining the forms
which fulfil these conditions, we produce nearly that form which has
been adopted for columns ; that is, a column with a slight swell in the
middle. But where the form of the column is considered rather as the
most beautiful than the strongest, one thut gradually diminishes from
the base to the capital appears preferable.

It is difficult to picture the remarkable scientific ignorance of
practical men in England in the first quarter of this century.
One can only trust that there may be a closer union of practice
and theory in our own day.

~ [197]) A Practical Essay on the strength of Cast Iron, London,
1822. This book contains a number of practical rules founded
partly on a not very rigid theory, and partly on experimental
results. Tredgold exhibits here as in his Treatise on Carpeniry
the same ignorance of theoretical elasticity, and seems to be
acquainted only with the works of Thomas Young. A footnote in
his preface is so characteristic that it deserves reproduction :

I have rejected Fluxions in consequence of the very obscure manner
in which its (sic /) principles have been explained by the writers I have
consulted on the subject. I cannot recomcile the idea of one of the
terms of a propertion vauishing for the purpose of obtaining a correct
result; it is not, it cannot be good reasoning; though, from other
principles, I am aware that the couclusions obtained are correct. If
the doctrine of Fluxions be freed from the obscure terms, limiting
ratios, evanescent increments and decrements, etc.,, it is in reality
not very difficult. If you represent the increase of a variable quantity
by a progre:sion, the first term of that progression is the same thing as
what is termed a fluxion ; and the sum of the progression is the same
as a fluent. A fluxion is, therefore the first increase of an increasing
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variable quantity, and the last decrease of a decreasing one ; and the ex-
pansion of a variable quantity intoa progression is the best and most clear
comment that can be added to the Lemmas of Sir Isaac Newton. (p. x.)
Such is the scientific capacity of the man whose works re-
mained for years the standard text-books of English engineers!

[198] There is however one paragraph of the work (§ 233, p.
121) which contains something I bave not met with elsewhere. Not-
withstanding that Robison and others had expressed their dissatisfac-
tion with Euler’s theory of columns subjected to longitudinal strain,
it seems to have been left to Tredgold to attempt the determination
of the position of the neutral line’. Now although Tredgold’s final
result for the compressing force in terms of the deflection does not
seem to me accurate, for he has neglected the fact that a horizontal
force would have to be applied to keep the bent column with its
base and summit in the same vertical ; although his method of
deduction seems to me obscure, if not inexact, still the expression he
obtains for the distance between the neutral line and the axis of the
column at their middle points agrees with the result I have deduced
by a more accurate method. If d be the diameter of the section
of the column in the plane of flexure, # the distance from the
neutral axis to the axis of the column, and y the deflection of
the axis of the column, measured at a point midway between
its base and summit, Tredgold finds #=d'/12y the section of
the column being supposed rectangular.

199. 1817. Cisa de Gresy. A memoir by this author is
published in the Turin Memoirs, Vol. Xxmn1. 1818: it is entitled
Considérations sur Uéquilibre des surfuces flexibles et inextensibles;
and occupies pages 259—283 of the volume. It was read on the
1st of April, 1817*

200. Lagrange had treated the problem of the flexible
membrane in a manner which involved the supposition that the
tension is the same in all directions; he bhad employed bis

1 Here, as in the footnote p. 44, I use the term ‘neutral line’ following Tredgold.
The line in question however does not correspond to a real or supposititious unstrained
fibre; one or more points of it lie at an infinite distance.

? [ have retained this account of Cisa de Gresy’s memoir although it hardly
belongs to the subject of elasticity.] Eb.
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peculiar method which depends on the Calculus of Variations :
see Art. 158. Poisson had treated the problem on the supposition
that the tensions in two directions at right angles to each other
are different ; he had employed ordinary mechanical principles: see
Chap. 1v. The main design of the present method is to apply
Lagrange’s method to Poisson’s form of the problemn. After some
introductory remarks, the memoir is divided into two parts.

201. The introductory remarks occupy pages 259—264.
Here we have some valuable criticisms on the solutions of Lagrange
and Poisson, shewing that both are deficient in generality. The
following is given, on page 261, as the enunciation of the
problem treated by Lagrange:

Trouver I'équation d’équilibre d’une surface sollicitée par autant
de forces qu'on voudra, la condition du systdme étant que chaque
€lément de la surface se trouve également tendu dans tous les sens.

The following is given, on page 262, as the enunciation of the
problem treated by Poisson :

Trouver I’6quation d’équilibre d’une surface sollicitée par autant de
forces qu'on voudra, la condition du systéme étant que chaque élément
de la surfuce soit inextensible suivant deux directions données respective-
ment perpendiculaires aux c0tés adjacents de I'élément.

202. The author enunciates on his page 260 a problem
which does not fall within the range of either Lagrange’s or
Poisson’s treatment :

Si on suppose, par exemple, une surface en équilibre, sollicitée
uniquement par la gravité, et suspendue & la circonférence d'un
cercle fixé horizontalement, il est clair que les éléments de cette surface
n’éprouveront qu'une simple tension dans le sens des méridiens ou de
la courbe génératrice.

The introduction concludes thus:

L'objet de ce mémoire n’est que de parvenir aux équations données
par M. Poisson suivant son hypothise de deux tensions, mais en y
employant le principe des vitesses virtuelles je commencerai cependant
par exposer la solution de La-Grange, afin de mieux rapprocher les deux
solutions de ces deux illustres géométres. :
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Ces sortes de rapprochemens, dit quelque part La-Grange, sont
toujours utiles; souvent la véritable métaphysique du probidme est
renfermée dans ce qu'ont de commun les différentes méthodes que
T'on peut employer pour le résoudre.

203. The first part of the memoir is entitled Hypothése de
Mr La-Grange; it occupies pages 264—283. This substantially
reproduces Lagrange’s process; there are some modifications
arising from the fact that a difficulty which once existed in the
Calculus of Variations is here tacitly overcome :" see my History of
the Calculus of Variations, Arts. 39, 102, and 304. The point
is this: we require correct values of &p and 8y, in the notation of
this Calculus; such values are given by Cisa de Gresy on his
pages 266—269, and in a note on his pages 202—294, he refers to
the investigation by Poisson in the Bulletin Philomatique 1816,
and supplies another investigation due to Plana. The names
of Cisa de Gresy and Plana should therefore have found a place
in my History. '

204. On his page 271 Cisa de Gresy arrives at results which
coincide with those given by Lagrange on pp. 103 and 149 of
the second edition of the Mécanique Analytique; these pages
correspond respectively to 98 and 140 of Bertrand’s edition. He
says that there is an error at the second place, for the terms

flg) Sz + ( dU) 8y are omitted in the value of 8U; the mistake

is silently corrected in Bertrand's edition, though the appropriate
brackets are omitted.

205. We will extract from the memoir the solution which is
given, in Lagrange’s manner, of the problem enunciated at the
beginning of our Art. 202: see pages 280 and 281 of the memoir.
In this case we may assume, on account of symmetry, that the
surface will be one of revolution, so that we have only to find the
equation to the generating curve. Let # and z be the coordinates
of any point of it, # being measured vertically downwards. The
element of surface, dS may be denoted by zudzdf, where u

stands for ,\/ 1+ , and d denotes an infinitesimal angle in

the horizontal plu.ne Now as the surface experiences tension



110 CISA DE GRESY.

only in the direction of the meridian the element dS will be
invariable provided the surface is inextensible in the direction of
the meridian ; hence it follows that in taking the variation of dS
it is sufficient to vary the element udz of the arc of the generating
curve: thus 4
3d8 = 8 (zudxdf) = xdf & (udz).
Multiply this expression by an indeterminate quantity ¥, and add
it to the equation of equilibrium: then by Lagrange’s well known
method we have  the following equation as the condition of
equilibrium _
[fgdzzudzdl+ [[Fzd 8 (udz)=0............ 1);
this must be developed by the ordinary processes of the Calculus
of Variations, Put p for dz/dz; we have
oo =42 (Z-rZ):
thus (1) becomes
[lg82 xu da d8 + [[Fz df u ddz

+fwadeP (‘%’- %’”)dw 0.

All the terms except the first are to be integrated by parts, then
finally we equate to zero the coefficients of 8z and &z in the
expression which remains under the double integral sign : thus

gm-%(@)w .................. @),
(%(qu)- L3 (Ii"l) 0. rerrerereeseesene @3).
From (3) we obtain
Fou= Fzp*lu+ C,
where C is an arbitrary constant ; _
therefore Fzfu=C ......ccovuvvuuennen. (4).
Substitute from (4) in (2); thus
gxu= Cdp/dxs,
so that
gr= c % ........... verens(B).

Ji+r
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Hence by integrating we obtain
ga*/2= Clog {p + /1 + p'} + constant ;
this is a differential equation of the first order for the required curve.

Cisa de Gresy shews that if we follow Lagrange’s own solution
we obtain instead of (5) the equation

gz (1 +p") =(92+C) {p + p* + x dp/d=}.

206. The second part of the memoir is entitled Hypothése de
M? Potsson; it occupies pages 283—291. Here Poisson’s results
are obtained by the use of Lagrange’s method ; the process seems
to me rather arbitrary, as does also that of Art. 205. Lagrange
himself says, without assigning any adequate reason, that, if F
denote the elastic force, the sum of the moments of all these forces
is expressed by [[FSdzdy.J1+p’+¢. Now in the present
investigation we have instead of his term the two terms

[Tdyddz J1+p°+ ¢ +[[T doddy JT+p+ ¢,
where in the first term ¢ is to be considered constant in the
variation, and in the second term p is to be considered constant in
the variation. But the introduction of these two terms seems to
me very inadequately justified’.

207. 1818, Fourier: Note relative aux vibrations des sur-
Jfaces élastiques et au mouvement des ondes. This is published
in the Bulletin des Sciences par la Société Philomatique de Paris
for 1818 ; it occupies pages 129—136 of the volume.

The note commences thus:

Jai présenté & I'Académie des sciences, dans sa séance du 8 juin de
cette année, un Mémoire d’analyse qui a pour objet d'intégrer plusieurs
équations aux différences partielles, et de déduire des intégrales la connais-
sance des phénoménes physiques auxquels ces équations se rapportent.
Apres avoir exposé les principes généraux qui m’ont dirigé dans ces recher-
ches, je les ai appliqués & des questions variées, et j'ai choisi & dessein des
équations différentielles dont on ne connaissait point encore les inté-
grales générales propres & exprimer les phénoménes, Au nombre de ces
questions se trouve celle de la propagation du mouvement dans une
surface élastique de dimensions infinies,

! [P. 269, line 6 for d3y/dr read d3y/dy. P. 373, line 10 for + read - twice.]
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The memoir to which he refers does not seem to have been
published. Much of Fourier’s note is in controversy with Poisson
a8 to the motion of waves and other matters; we shall confine
ourselves to what relates to our own subject.

208. Fourier refers to the fact that Poisson had some years
before obtained the differential equation for the vibrations of an

elastic lamina, which was already known, but that he had not:

integrated the equation. Fourier quotes the words in which
Poisson speaks of Plana’s solution for the case of a simple
plate as very complicated: see his words in our account of
Poisson’s memoir of August 1814. Fourier then gives without

demonstration his own form of the integral; he confines himself

to the case in which the initial velocity is zero, and his form
coincides with that obtained by Poisson at the end of his paper in
the Bulletin for 1818: see our Chap. 1v. The only difference is
that Fourier omits the constant factor 1/47ra, or rather 1/4w as he
takes a to be unity. This however is of no consequence for his
purpose, as his form satisfies the differential equation.

209. Fourier then proceeds to the equation which relates to
the vibrations of a simple lamina; as we have seen in Art. 178,
Plana despaired of any solution more simple than his own which
expressed at full would occupy more than a quarto page. Fourier
also cites from Euler’s memoir of 1779 (see our Art. 86) the words:

Ejus integrale nullo adhuc modo inveniri potuisse, it ut contenti
esse debeamus in solutiones particulares inquirere....

The equation is:

'z ,d'z

P~
If we proceed precisely as in Poisson’s paper in the Bulletin for
1818, and suppose the velocity to be initially zero, but the initial
displacement to be given by z= ¢ (2), we shall obtain

z——-f sm( ) (a;+2zJat)da,

and if we put z+ 27J at = £ this becomes
= (34 ) s @

=0.
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This coincides with the result which Fourier gives without
demonstration, except that he supposes a to be unity, and he
omits the factor } which is of no consequence for his purpose.

210. If instead of supposing that dz/d¢=0 when t=0 we
suppose that dz/dt=F (z); then instead of the value first given
to z we bhave

2= sin (F+at) ¢ (o + 2 Jat) da
f[ﬂs‘“( +°) (‘”+21~/a—t)dtda.-

This is obvxous by what has already been shewn; for the second
term in the value of z just given satisfies the equation

dr (Z) +d %‘(%) =0

also it vanishes when ¢=0, and gives dz/dt=F(z) when t=0.

Thus this second term also satisfies the equation .
&z, ,d'%
FRR =o

and makes z=0, and dz/d¢t= F (z), when t =0. -

=0,

211. 1818. Nobili: Sopra U identitd dell' attrazione mole-
colare coll’ astronomica ; Opera del Cavaliere Leopoldo Nobili. This
consists of 84 quarto pages with 4.plates; I have given a notice
of it in my History of the Theories of Attraction, Art. 1615.
The author holds that the law of attraction according to the
inverse square of the distance will suffice for the explanation of
the phenomena of molecular action as well as for the phenomena
of astronomy: but he completely fails in his attempts to maintain
bhis opinion.

[1818. A paper by Poisson belonging to this year is noticed
in the Chapter devoted to him.]

[212] 1818. J. P. 8. Voute: Dissertatio Philosophica in-
auguralis de Cohaerentia Corporum et de Crystallisatione. Leyden,
T. E. 8
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1818. This is a dissertation for the degree of doctor in mathe-
matics and natural philosophy at the University of Leyden. To
the dissertation are affixed 15 Theses, which the author was
prepared to defend in the greater hall of the University on
January 24 of the above year. They contain a number of rather
doubtful assertions on a variety of topics, which are singularly
characteristic of the time.

The essay itself is divided into three parts; the first treats of
that principle of motion which is termed Attraction, and of the
nature of particles (those like parts into which a body may be
dissolved); the second, of Cohesion, and the last of Crystallisation.

[213] The first part which might be termed a defence of
‘action at a distance’ contains nothing touching upon our present
subject, nor in fact anything of value.

In the second part on cohesion the writer tells us that in order
to understand the wis cokaerentiae, which he attributes to at-
traction, it is needful to compare it with other things:

Cujus quatuor genera potissimum fuisse adhibita reperio: unum,
quo vis cohaerentiae cum attractione generali comparatur; alternm,
ubi vis contraria, qualem calor efficit, adversus eam opponitur, et
invenitur utrum momentum plus polleat; tertium, cum corpora dura
ipsa inter se conferuntur, conflictu aut tritu, ex quo appareat quaenam
facilius cedant et penetrentur; quartum, cum partes divelluntur pon-
deribus vel aliis modis. (p. 15.)

The comparison with gravitation does not lead to any definite
results, but the author finds that the vis cohaerentiae is exactly
opposed to the vis repulsionis which arises from heat, but then heat
produces other, viz. chemical changes which are totally different
from cohesion. A further not very lucid investigation leads
Voute to reject this explanation of cohesion.

" The following chapters are devoted to hardness and firmness;
the discussion of these subjects is of the most general kind; re-
ference is made to the .experiments of Musschenbroek, Buffon,
Emerson, &c., but there is no theory of any value deduced from
them, nor is there any originality of thought. The third part
treats of the forms of the various particles under the head of cry-
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stallisation. The disputator concludes that the forms of particles
are closely connected with the forces which act between them, and
that the two questions must not be separated, if we would learn
the true nature of bodies:

Attamen nos eas separamus; loquimur enim de viribus ubi formae
partium penitus latent; cum vero formae fiunt manifestae, has com-
plectimur, nescimus quae vis partes adducat. Quantum igitur abest ut
scientiam illam nacti simus! (p. 88.)

[214.] The whole dissertation is of a negative character, and
although occasionally referred to by later writers is practically
worthless It reads more like a mediaeval disputatio quodlibetaris
than a scientific memoir of the 19th century.

215. 1818. Antonio Bordoni: Sull' equilibrio delle curve a
doppia curvatura rigide, ovvero completamente o solo vn parte elas-
ticke. This memoir is published in the Memorte...della Societd
Italiana... Vol. XI1x., p. 1, Modena, 1821 ; it was received on the
22nd of May, 1818,

216. We have already noticed that Lagrange treated in
an unsatisfactory manner the problem of the equilibrium of a
curve of double curvature, and that Binet turned his attention
to the same subject: see Arts, 159 and 174. Binet investigated
the value of the torsion, but left undetermined two of the elements
of the problem, namely the tension and the elasticity, on account
of the complexity of the calculation and of the results, Bordoni
accepts the challenge thus, as it were, thrown out, and completes
the investigation which Binet had left unfinished; but as we
shall see in Art. 5, he does not precisely follow the line traced
out by Binet. The following is Bordoni’s own statement :

11 SBig. Binet Jaoques, il primo che dilucidd questo passo della
Meccanica di Lagrange, con una Memoria inserita nel tomo decimo
del giornale della scuola politecnica di Francia, scrivendo altrimenti la
invariabilita della curva, trovd tre altre equazioni indefinite, nelle
quali vi sono oltre le forze esteriori e le coordinate della curva, tre
nuove quantitd atte a misurare, una la vera tensivne, I’ altra la
elasticitd, e la terza la torsione; e desunse anche da queste equazioni

8—2
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quella espressione delle forze esteriori, che rappresenta la torsione;
‘ma per rispetto alla tensione ed alla elasticith dichiard, che “On ne
parvient aux valeurs générales de tension et d’élasticité que par des
calculs pénibles, dont les résultats paraissent fort compliqués.”

In questa breve Memoria, nella quale si parla dell’ equilibrio delle
curve a doppia curvatura siano rigide, o siano elastiche completamente
o solo in parte, si troveranno tre equazioni indefinite fra le coordinate
della curva nella posizione di equilibrio, le forze esteriori, la tensione,
la elasticitd, e la torsione, colle quali si otteranno con facilit, mediante
alcuni stratagemmi, queste ultime tre quantit, ciot la tensione, la elastici-
th, ed anche la torsione, espresse tutte colle forze esteriori e le coordinate
della curva nella posizione di equilibrio di esso,

217. Before coming to the mechanical problem, Bordoni
investigates the value of what we now call the angle of forsion;
his method is unsymmetrical and laborious, but he finally gives
the correct result in a symmetrical form. It is referred to on
page 178 of the work of G. Piola, 1825, hereafter to be noticed.

218. The mechanical problem is treated after the manner
of Lagrange. Let ds denote an element of the arc of the curve
at the point (, g, 2); let de denote the angle of contingence,
and di the angle of torsion; then Bordoni says that the sum
‘of the virtual moments is the -integral of the following ex-
pression,

(X8x+ Y&y + Z3z) dm + \ods + udde + £8d: ;

-and that such sum must be zero.

But what are A, u and §£? It seems to me that the great
objection to his method of treating the problem is that we do
not start with any clear notion on this point. Bordoni says
vaguely that A is the tension, u the elasticity, and £ the torsion;
it turns out in the course of the investigation that X is equal to
the sum of certain external forces resolved along the tangent at
(¢, y, 2), that u is equal to the sum of the moments of such forces
round the straight line at (x, y, 2) which is at right angles to
the osculatory plane,and that £ is the sum of the moments of such
forces round the tangent at (x, vy, 2).
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219. In Binet's treatment of the problem the expression
for the virtual moment is put in a different form, namely
(X 8z + Y8y + Z32) dm + a (dxddx + dyddy + dzddz)
+b (dzdd’x + dydd'y + d'z8d's) .
+k (P°28dx + d*ydd’y + d’23d’z) ;
and the de and di which Bordoni uses are subsequently introduced.

220. Bordoni’s investigation is of a most laborious kind,
and forms a good testimony to the patience of the author. There
is sufficient detail given to enable the reader to follow the steps
without much difficulty, except in one case which occurs on
page 16. Here a certain integral has to be found; the author
states the result, adding ¢ come facillissimamente si verifica’... It
is only a part of the result which I wish to notice, and expressed
in Bordoni’s notation it is

J(Cdy — Cda) =dz/ds:
I shall be glad if any reader can be induced to examine this
point and shew how this result can be easily obtained; for my
own part I find for the integral after a very tedious investigation
the value :
’ dz/ds - B (cdy - ¢'da),
where B = (dxd’z + dyd’y + dzd*z)[r*ds*;
this agrees with Bordoni’s result if we suppose s to be the
independent variable, a supposition which he has not stated. The
notation is the same as Bordoni’s, except that my ¢ and ¢’ are
to be obtained by multiplying his ¢ and ¢’ by ds: it will be
observed that at the place where he first introduces this notation,
namely near the bottom of page 10, he has omitted ds, and this
must be restored in order to give correct dimensions in infinitesi-
mals to the expressions.

221. The following are the values which Bordoni obtains for
A, p, £; these values do in effect assign the meanings to these
symbols, about which nothing was really known at the beginning
of the investigation

A= —fXd m+ dnydm +dszJm,



118 BORDONI.

p=2L+ M+2 N,
@ W @

E=2r Wui B

Here L= dem—nyim—f(zY—yZ) dm; and M and N

are obtained by symmetrical changes in the variables. Also
c¢=(dyd'zs — dzd'y) ds; and ¢’ and ¢’ are obta.ined by symmetrical
changes in the variables; while o*=¢"+¢*+ ¢

The value of u corresponds with that which had already been

obtained by Binet.
222. It may be easily shewn that

dz dz
| —dL+dde+3;dN=0
and therefore
dy dz
dE= + Md - s + Nd o

[This formula is in fact given in the Comptes Rendus,
XI1x,, 182]

223. In the last three pages of the memoir Bordoni notices
the paper by Poisson concerning the problem (see our chapter 1v).
Bordoni perceives that Poisson has given one result which he
himself has not, namely that d¢ =0, so that the moment of torsion
is constant; and he tries to explain how it happens that he
himself has not obtained this result: but it does not seem to
me that he is very successful. I will offer a few remarks on the
point.  Poisson treats the problem on ordinary mechanical
principles, and so it is easy to understand his process. Suppose
a normal section of the curve made at any point; the piece
between this section and one end must be in equilibrium; the
forces acting are the external applied forces and the molecular
action at the section, which Poisson assumes to be normal to the
section, Poisson then forms the three equations of statical
equilibrium with respect to moments which we know must hold.
Granting these then, we find that df must follow, as Bordoni
admits.
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Bordoni’s account of the absence of the result df=0 from
his own investigations amounts in fact to this: he does not
consider the equation of moments round the principal normal
at (z, y, 2), holding that motion round such a line would change
the nature of the system. -

224. It is difficult in the treatment adopted by Bordoni to
understand what forces really are supposed to act, but I think
Poisson and he really differ as to the nature of the molecular
force; Poisson determines his force as altogether normal to the
transverse section, while Bordoni apparently does not. With
Bordoni A denotes that part of the molecular action which is
normal, but he does not necessarily assume that this is the total
action ; there may be other actions in transverse directions, that is,
in the plane of the section. It is, I believe, certain that Bordoni’s
method does not give all the conditions of equilibrium, and
it is for those who understand and adopt the method to explain
and supply the omission. Transverse forces will enter into the
moment which Bordoni calls £ and Poisson in his Mécanique calls
7; they will not occur in the moments round the two axes in
the plane of the section®.

[225.] C. J. Hill: De elasticitate torsionis in filis metallicis.
Lundae, 1819. This tract will be considered in the following
chapter together with a later work of the same writer.

[226.] A. Duleau: Essas théorique et ewpérimental sur la
résistance du fer forgé. Paris, 1820.

This essay arose from experiments made by Duleau on forged
iron, when entrusted with the construction of an iron bridge over
the Dordogne. It received the approval of the Academy of
Sciences after a report upon it by Poisson, Girard and Cauchy.

[227.] The first section only is concerned with theoretical, the
remaining three with experimental results.

On p. 2, Duleau defines the neutral line of a beam under
flexure ; he terms it the ligne de passage de la tension d la com-
pression, and makes the following statement concerning it :

. d. d;
1 Page 27 middle of the page; forgp, d—ffread —-Ep, —a—f&
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Coulomb a supposé que, lorsque la courbure de la pitce élastique est
trés peu considérable, cette ligne est tellement placée que la somme des
momens de tensions des fibres supérieures est égale & celle qu'on
obtient en ajoutant les momens des compressions des fibres inférieures.
Ce principe, qui n’a pas encore été démontré d’une maniére rigoureuse,
a 6t6 adopté par tous les auteurs qui ont traité ce sujet. Il est inutile
d’y avoir recours, 8'il agit d’'un solide dont la section transversale est
divisible par une ligne horizontale en deux portions symétriques; cette
droite est alors évidemment celle ol existe le passage de la tension a
la compression. Il est trés rare que dans la pratique on ait & considérer
des corps d’une autre forme.

It will be obvious from this quotation that Duleau has mis-
understood Coulomb, and adopted a false principle. Coulomb
(see Art. 117) placed the neutral line along the axis or middle line
of the beam, because he argued that the sum of the longitudinal
tensions or resistances of the fibres across any section must be
zero if the beam be only acted on by a system of transverse forces.
This is a clear result of an elementary principle of statics—the-
sum of the forces resolved parallel to the axis of the beam must
be zero. But Duleau’s statement that the moment of the com-
pressions must be equal to the moment of the extensions, is a false
principle which only places the neutral line in its right position in
the particular case of symmetry mentioned by him at the end
of the paragraph cited.

[228.] The following sections are devoted to the problems:

Of a lamina built in at an end and weighted at the other.

Of a lamina supported at both ends and uniformly weighted.

Of a lamina subject to longitudinal pressure.

The treatment of the first two problems contains nothing
original, that of the third follows Euler's memoir of 1757, and is
liable to the same objections. Duleau does not seem to have been
acquainted with Robison’s criticism of Euler (see Art. 146), but he
has a section entitled : Application des résultats trouvés pour une
lame élastique & un solide prismatique, which contains his views
as to the practical value of Euler's theory. He remarks that
the results obtained for the elastic lamina may be extended to the
neutral line of an elastic beam, when the flexure of the beam
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is produced by transverse forces, but when the beam is under
longitudinal stress, it cannot with exactitude be treated as an
elastic lamina. He observes however that the pieces of iron to
which he is about to apply his theory are in practice of great
length as compared with their section, and hence their resistance
approaches sufficiently that of an elastic lamina, He places the
neutral line of such large iron .bars at their line of centres, and
thus falling into the same error as Euler, is therefore (as a practical
engineer) still more deserving of Robison’s censure.

[229.] The curious fact remains that he considers Eulers
method sufficiently exact for practice, “as experiment confirms”
(p. 16). ’

Note 1. p. 79 gives a comparison of the results of experi-
ment and calculation, the mean ratio of the results of experi-
ment to those of calculation equals 116. A further section
treats of torsion, and contains results of the same character as
Coulomb’s. The rest of the book is occupied with the discussion
of experiments on iron bars.

[230.] 1822. E. Hodgkinson: On the transverse strain and
strength of materials. Memoirs of the Literary and Philosophical
Society of Manchester. Second Series, Vol. 1v. London, 1824.

‘This memoir is contained on pp. 225—289 of the volume,
and is divided into two parts: Theoretical and Experimental.
The author commences with the following statement of his aims,—

The lateral strength of materials is a subject which has engaged the
attention of the greatest mathematicians; but our knowledge of the
action of the fibres or particles of bodies during their flexure, chiefly
perbaps for want of sufficient experiments, seems still to be imper-
fect...... ... The intention of the writer is first to unite in a general
formula the commonly received theories, in which all the fibres (with
the exception of those on the edge of a bent body) are conceived to be in
a state of tension ; and next to adapt the investigations to the more
general case, where part of the fibres are extended, and part contracted,
and to seek experimentally for the laws that regulate both the extensions
and the compressions.

[231] On pp. 226—233 the writer obtains his general
formula, and discusses several cases of it. The ‘general formula’
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turns out to be nothing but a very special case of Varignon’s
formula (see Art. 14), but still sufficiently general to include
Galilei'’s and the Mariotte-Leibniz hypotheses. Throughout this
investigation the author supposes the neutral line to be in the
lowest fibre of a beam subject to transverse stress,—

And this may probably be not far from the case in such bodies as
glass or marble: but (as Dr Robison has shewn in his valuable essay on
the Strength of Materials in the Encyclopaedia Britannica) it is, when
applied to timber, highly erroneous.

[232.] The author cites various experiments in confirmation
of this view, and then proceeds to a method for determining
the position of the neutral line, when compression as well as
extension takes place. He arrives by a somewhat artificial and
cambrous process at Coulomb’s result, namely that the sum of the
forces of extension must be equal to the sum of the forces of
compression across any section. The author attributes this result
to Robison, whereas it had long before been stated by Coulomb
and something extremely like it by both Bulﬁnger and Belgrado
(Art. 29).

[233.] Ina footnote the error of Barlow’s method (see Art. 192),
is pointed out, it consists in making the moment of the com-
pressing equal to the moment of the extending elastic forces;
precisely the same error as Duleau had fallen into. (See Art. 219.)
Hodgkinson also criticised Barlow’s error in a paper which will be
found in Vol. v. of the Edinburgh Journal of Science.

[234.] It may be noted that Hodgkinson in the examples he
gives of the flexure of beams of various section, supposes the forces
necessary to produce the equal extension and compression of a
fibre to be unlike; he likewise supposes the relation between
tension and extension not to be expressed by Hooke’s Law, but
the tension to be proportional to some power of the extension.
This power, for still greater generality, he treats as having a
different value for the relation between pressure and compression.
Thus he assumes relations of the form suggested by Biilfinger
(Art. 29, B):

Tension = u (extension)®,
Pressure = u’ (compression)™.
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Very little is practically gained by this generality so far as it con-
cerns the power of the strain, but the adoption of the two moduli
is undoubtedly right for some materials, e.g. cast iron (see Art.
239); in the case of a prismatic beam, the neutral line would in
general not coincide with the axis of figure (see p. 249).

[235.] We may note the following lemma (p. 247):

In the bending of any body this proportion will obtain: as the
extension of the outer fibre on one side is to the contraction of that on
the other, 80 is the distance of the former from the neutral line to that of
the latter.

This is exactly the same method for finding the position of the
neutral line as had been given by Belgrado just seventy-gix years
earlier. So long does it take for the results of mathematical inves-
tigation to find their way into practical text-books or to be
rediscovered by the practical engineer !

The rest of the memoir contains a detailed account of experi-
mental investigations on beams of wood (yellow pine, fir, etc.),
with special reference to their extension and compression, and to
the position of the neutral line, The author found extensions
and compressions to be as the forces, till permanent deformation

began.

[236.] The merit of Hodgkinson’s paper consists in the fact
that it led to practical men in England (notably Barlow, who
corrected his mistake in later editions, see Art. 185), placing the
neutral line in its true position. Hodgkinson was of course only
adopting Coulomb’s work of half a century earlier, but he may be
said to have done for England what Eytelwein did for Germany,
namely he gave Coulomb’s theory its true place in works on
practical mechanics.

[237] A second paper by Eaton Hodgkinson on the same
subject may be perbaps best referred to here. It appearsin Vol.
5 (1831) of the Manchester Literary and Philosophical Society,
pp- 407—544. It is entitled: Theoretical and Experimental Re-
searches to ascertain the Strength and best Forms of Iron Beams,
and was read April 2nd, 1830.
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Hodgkinson begins by recognising the importance of the work
of Bernoulli, Euler, Lagrange, Coulomb and Robison,

They have done much, but owing perhaps to a disinclination
to the labour and expense of making sufficient experiments, much
was left undone for later inquirers.

The author proposes to develop further the results of his
previous paper, the theory of which he finds in agreement with
those of Robison and Coulomb so far as they have gone.

[238.] The theoretical investigation of the weight which a
beam will support and of the position of the neutral line (pp. 410
—417) offers nothing of importance. We may note however
Hodgkinson’s remark that the position of the neutral line may
change, if the ratio of the moduli of resistance to compression
and of resistance to extension should change owing to the body
approaching the limit of elasticity. He quotes (p. 417) an experi-
ment of Tredgold’s in confirmation of this,

[239.] On pp. 419—425 he corrects the error of Duleau we
have noted in Art. 219, and gives an experiment of his own on the
point. These pages are followed by an experimental investigation
of the laws which connect the extensions and compressions with
the forces in cast iron. The first deduction of importance is
obtained on p. 432, namely, that deflections from extension are
greater than those from compression, the forces being equal, and
this whether the elasticity be perfect or not. This result was
obtained by measuring the deflection of a T-shaped beam under
the same force, first with the more massive head upwards and so
subject to extension, and secondly with it downwards and so
subject to compression,

Still the difference is not so great, but that the deflections may in
most cases, without material error, be assumed as the same. Hence the
extensions and compressions from equal forces in cast iron are nearly
equal. This is a very interesting fact; it is most likely a property
common to tenacious bodies, when not over-strained generally: it has
often been assumed by writers, but I have not before seen any proof of
it, except in an experiment of M. Duleau, which renders it very
probable that it is the case in malleable iron.
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[240.] We may note that there are three things to be
compared when we are considering the extension and compressions
of any substance.

(i) We may note whether the moduli for extension and
compression are equal.

Hodgkinson finds that they are not exactly equal for cast iron.
This result has been confirmed by later investigators. Hence
the neutral line does not exactly pass through the centres of
gravity of the sections. The difference however is so small that it
does 80 very approximately.

(il) We may inquire whether the limits of elasticity are
the same in the two cases. This is somewhbat difficult to
determine in the case of cast iron, because a certain amount of
permanent set is found to have arisen from almost any stress we
may have applied to the material, although the body of course
after removal of the stress returns very nearly to its primitive
shape.

Hodgkmson is of opinion that in cast iron a much greater
force is required to destroy its elasticity in the case of compression
than by extension. It must be noted however that there is an im-
portant point to be considered here. Is it the force which will
produce any the least permanent set, which is to be taken as that
which destroys the elasticity? Or shall we term that the de-
structive force for which the extension ceases to obey Hooke’s
Law?

(iti) Lastly we may investigate whether the absolute
strength in the two cases is the same. Will the same stress tear 3
metal by tension and crush it by compression®?

[241.] An interesting experiment described on pp. 434—435
gives the reason of Hodgkinson’s opinion on our second point.
He found in the case of a T-shaped bar of cast iron supported on
two props at its ends and weighted at the centre that it required
nearly four times as great a weight to break it with the head

1 The consideration of the limits mentioned in the above remarks is of such im-
portance, that I shall add a note on the subject at the end of this volume and will

suggest a terminology.
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downwards (j) as with the head upwards (T). Hence the
absolute strength is different in the cases of extension and com-
pression, being greater in the latter. We must observe however
that this rather answers the question we have asked in (iii) than
in (ii). It does not necessarily follow that because the absolute
strength is greater in one case than the other, that the limit of
elasticity is greater for compression than for extension. It might
happen that the range of imperfect elasticity (partial set) was
much greater in one case than the other.

[242.] Hodgkinson next turned his attention to malleable
iron, and came to the conclusion that throughout the whole range
(by which I suppose he means the ranges of perfect elasticity, and
of imperfect elasticity or partial set) the extensions and compres-
sions were nearly equal from the same forces, a result very
different from what had been obtained for cast iron. The experi-
ment he gives (p. 437) and the additional one he quotes from
Duleau cannot however be considered as conclusive.

[243.] The major portion of the remainder of the paper is
devoted to an experimental investigation of the best form for
a cast iron beam, in’ order that for a given mass of material it may,
when supported at the ends on two props, best resist transverse
stress. The form principally investigated is that composed of two
strong ribs united by a thin sheet of metal thus . Hodgkinson
remarks :

As to the comparative strength of these ribs, that appears to me to
depend upon the nature of the material, and can only be derived from
experiment. Thus, suppose it was found that it required the same
force to destroy the elasticity of a piece of metal, whether the force
acted by tension or compression. In this case the top rib ought to be
equal to the bottom one, supposing it was never intended to strain the
beam 80 a8 to injure its elasticity. And if it were found that the same
weight would be required to tear asunder or to crush a piece of metal
according as it acted one way or the other, the beam should have equal
ribs to enable it to bear the most without breaking. Now, from the
experiments given above, it appears that these qualities are in a great
measure possessed by wrought iron; and therefore, whether it was
intended to strain a beam of it to the extent of its elasticity or
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even to the breaking point, there ought to be equal ribs at top and
bottom.

If, however, the metal were of such a nature that a force F was
needed to destroy its elasticity by stretching it, and another force @ to
do the same by compressing it, it is evident that the ribs ought to be to
one another as F to @, in order that the beam might bear the mosat
without injury to its elasticity. And if it took unequal weights #” and
@ to break the piece by tension and compression, the beam should have
ribs a8 #” and G to bear the most without fracture.

Our experiments on cast iron were not well adapted to shew what
relative forces would be required to destroy the elasticities; but it
appears, by the experiments of Mr Rennie', that it would take many
times the force which would draw it asunder to crush it. The bottom
rib must then be several times as large as the top one to resist best an
ultimate strain.

[244.] Hodgkinson commences his experiments on beams
with equal top and bottom ribs, which he notes had been con-
sidered the strongest form so long as the stress did not produce a
strain greater than the limit of elasticity. It results however
from these experiments that a beam can be found in which the
ratio of the top and bottom ribs is such that its absolute strength is
2/5 greater than that of a beam of the ‘common shape’ (an
inverted T () with a somewhat tapering vertical stroke), while
the ‘common shape’ is itself 1/12 stronger than a beam with
equal top and bottom ribs. (Cf Experiments I, 1v. and XIX.).
The shape of this beam was as follows: top rib 2:33 by -31,
bottom rib 667 by ‘66, vertical part ‘266 by 4°15, the vertical
part being slightly spread out where it met the ribs so that the
total area of section was 64.

The great strength of this section is an indisputable refutation of
that theory, which would make the top and bottom ribs of a cast iron
beam equal.

[245.] We have referred thus at length to Hodgkinson’s
second paper because it suggests several points which have not
received full treatment at the hands of the mathematician.

1 See our Art. 185,
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Notably the difference in character between cast and malleable
iron, the range of imperfect elasticity and the shape of the beam
of greatest absolute strength, are all points which seem capable
of mathematical treatment with advantage to both theory and
practice. The mathematician cannot fail to be struck with the
very small portion of the phenomena presented by a material
subjected to continuously increasing strain, which is covered by
the current theory of elasticity.

To other work of Hodgkinson’s we shal] have occasion to refer
later.

[246.] In the Nouveaux Mémoires de U'Académie Royale des
Sciences (Acad. An. 1781), Berlin, 1783, will be found (pp. 347—
876) a memoir by John and James Bernoulli' entitled : Mémoire
sur U'Usage et-la Théorie d'une machine qu'on peut mommer
Instrument ballistique. This paper is not of any value, and would
not be mentioned here, had the writers not given a first, although
erroneous, theory of a spiral spring in their third section: Théorie
de la Machine ballistique (pp. 354—358). Their work however
led the Italian physicist O. F. Mossotti to a more complete
consideration of the problem. His memoir: Sul movimento di un’
elice elastica che st scatta, was presented to the Soctetd Italiana
delle Sctenze in 1817 and published in the mathematical part of
Tom. xviiL pp. 243—268 of their Memorie di Matematica e di
Fisica. Modena, 1820. Owing to the fact that this and other
memoirs of the same volume are unrecorded in the Royal
Soctety’s Catalogue of Scientific Papers, I did not discover its
existence till it was too late to insert any account of it in its
proper place in this chapter. The memoir appears to me of
considerable interest and remarkably clearly expressed.

[247.] The author describes his method in the following
words :

Per risolvere i problemi che mi sono proposti ho a.ssunfo due
ipotesi, le quali sono perd cosi da vicino verificate dagli sperimenti
che, piuttosto che ipotesi, possono risguardarsi come regole di fatto. La

! This James Bernoulli is the same as that mentioned in Art. 122. John was his
brother,
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prima di queete ipotesi ¢ riposta in cid, che I’ elice elastica debba
in tutto il tempo dello scatto o dilatazione conservare la figura d’ elice
ed un egual numero di rivoluzioni, talmente che nell’ allargarsi i
passi delle spire, sia soltanto il diametro dell’ elice che venga succes-
sivamente a diminuire. Colla seconda ipotesi stabilisco ad imitazione di
Daniele e Giacomo Bernoulli che gli accorciamenti o costipazioni che
possono farsi soffrire all’ elice siano proporzionali alle forze o pesi
comprimenti atti a produrle.  Allorch? nella goluzione dei problemi mi
occorrerd di assumere per la prima volta alcuna di queste ipotesi
avrd cura di far conoscere gli esperimenti che mi hanno persuaso ad
adotarla, accid il lettore sia egualmente convinto della legittimitd della
medesima.

I Bernoulli ed altri autori, che hanno considerato il movimento
degli elastri piegati in forma d’ elice, hanno per semplicitd supposto nei
loro calcoli che il movimento oscillatorio di un’ elice fissa in un
estremo sia eguale a quello di una fibra rettilinea ed omogenea dotata
d’ una stessa massa e d’ una pari elasticit, e la cui lunghezza fosse
rappresentata dall’ asse stesso dell' elice. Alla fine della presente
Memoria fard vedere comme questa supposizione & giusta, e come
le equazioni che rappresentano il moto di una fibra rettilinea ed
omogenea sono le stesse di quelle apparteneunti alle oscillazioni di
un’ elice elastica. 'V’ & perd una notabile differenza fra i miei risulta-
menti e quelli degli autori che mi hanno preceduto. Secondo questi se
si suppone che la fibra elastica sia spogliata in tutta la lunghezza
della sua maasa, e si imagini che il terzo della medesima sia concentrataq
nell’ estremitd mobile, i moti di quest’ elastro immaginario devona
accompagnare esattamente quelli dell’ elastro vero ; secondo me non & il
terzo della massa dell’ elastro che deve supporsi concentrato nell’ es-
tremitad mobile, ma la meth. (pp. 244 —5.)

[248] Mossotti supposes his spiral wire to be without weight,
to be placed perpendicular to a rigid plane and compressed by a
superincumbent weight ; this weight is removed and the motion
of the expanding spiral ig then required.

Let the axis of the spiral be taken as axis of 2, and let the
axes of # and y be in the rigid plane perpendicular to the axis of
the spiral and such that the axis of # passes through one end of
the spiral wire. Let xyz be the co-ordinates of & point on the
sectional axis of the wire distant s from its extremity; f, f', /" are
the ‘accelerating forces’ at the point zys parallel to the axes;

T. E. 9
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A is the density and 7s* the section of the wire, Mossotti deduces
the equations

» dz_df
A 36 = ds’
dy df
Amr o= ds
d'z _df”’
AW"._(Tt_’= 78-.

The equations of the helix formed by the sectional axis of the
wire are

&= g cosd z=gsine
y= asin§ ; and again, ’

af=scose,
z=altane

where @ is the radius of the cylinder upon which the helix lies,
e the angle the tangent at any point makes with the plane of zy,
and tan 0 =y/z. .

[249.] The éxperiment made by the author to aid him in the
solution of these equations was the following: A steel spiral with
one extremity fixed in an immoveable plane was compressed till it
formed a continuous cylindrical surface, a white line was then
marked upon it parallel to the axis. Being released the wire
oscillated so that the series of white marks on the different turns
always remained in the same straight line parallel to the axis.
Further when the oscillations were slow enough to render each
white mark individually visible, they appeared always to be at
equal distances from one another. From this experiment Mossotti
draws the following conclusions. (1) The wire retains the form of
a helix; (2) the number of turns in the helix remains unaltered,
in other words, @ and e are functions of the time, but not of the
arc of the spiral; 6 and s are independent of the time. Since
8/6 =ajcose, it follows that either of these ratios is a quantity
independent alike of the time and of the position of the point
(zye) on the spiral. Terming either of them 1/A, and substituting
for zyz in the equations of motion, we find, after an integration
with regard to s,

Amr* d*cose

—"X,— —‘th— sinM=f+c
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- Av;?: i"-’dcz"f—“ cosAs=f +¢,

d*sines

Anrr* 7‘ § = f +c,
where ¢, ¢/, ¢” are constants independent of 8, but may be functions
of t. To determine them put 8=0; at this point f=f =f"=0,

"_ . Amr* d'cose
thus c=c"=0and ¢ i

Let o be the length of the wire supposed to contain a complete
number of turns, then putting s =o we deduce for the extremity
of the wire

d*¢in ¢ o* ,
= =0, Am* —de §=f.

[250.] In order to continue the discussion we must now make
some hypothesis as to the nature of f”. Mossotti argues as
follows :

E evidente che, se supponiamo I' elastro costipato e posto verti-
calmente, sovrapponendo un peso che impedisca che piu si allunghi,
questo peso misurerd la somma delle forze acceleratrici verticali colle
quali I’ elastro si distenderebbe in quell’ istante essendo in libertd, ossia
la forzia f”. Questa forza sard poi diversa anche nello stesso elastro
variando la sua lunghezza ossia secondo i diversi stati di compressione, e
la sola esperienza pud somministrare la legge della variabilita della
medesirma.

The experience to which the author appeals is that of the
above John Bernoulli, of ’s Gravesande and of Francesconi. He
might also have cited Hooke (see Art. 7).

Let & be the height of the unstrained spiral spring, 2’ its height
at time ¢, and p a constant; then, f’'=pu(h—24") is the form
of the force f” he assumes. Here x must be determined in each
case by experiment. Hence, since 2/ = o sine, we have

O (h-2),
where m = A’ = the mass of the wire.

[251.] It is obvious that this is the same equation as would
hold for the motion of a non-gravitating mass half that of the
9—2
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spiral supported by an elastic string of length equal to the axis of
the spiral and modulus of elasticity equal to x.  This is shewn at
somewhat unnecessary length in the second part of Mossotti’s
memoir entitled: Problema II. The conclusion of the first part is
devoted to the discussion of the simple harmonic motion given by
the above equation and its application to the ‘ballistic machine.’
Although I am not entirely satisfied with Mossotti’s method or
results, the paper seems to me suggestive.

[252] Summary. It will be seen that these miscellaneous
investigations of the first quarter of the nineteenth century were
principally occupied in extending or correcting the labours of the
previous century. We note also how the results .of mathematical
investigation by a long process were finding their way into
practical text-books and being put to the test of every-day
experience. From this time onwards Galilei’s Problem will cease
to occupy so much of the energy of the mathematical world. This
energy will be directed to the wider question of the equilibrium
and motion of elastic solids.




CHAPTER IIIL

MISCELLANEOUS RESEARCHES 1820—1830.
NAVIER, GERMAIN, SAVART, PAGANI, AND OTHERS!,

253. NAvVIER Navier more than any other person is to be
regarded as the founder of the modern theory of elastic solids.
In a memoir presented to the Institut on the 14th of May
1821 he gave for the first time the general equations of equi-
librium and motion which must hold at every point of the
interior of a body, as well as those which must hold at every point
of the surface. This memoir is published in Vol. vir. of the Paris
Memoirs, dated 1827. Navier had previously presented a memoir
to the Institut, namely on the 14th of August 1820, in which
he treated of the flexure of elastic plates; only an abstract of this
seems to have been published. We shall now give an account
of the writings of Navier which bear on our subject, taking
them in the order of their composition, and not in that of their
publication. There are other important memoirs on which we
do not touch, as for instance one on the motion of fluids: see
Saint-Venant in Moigno’s Statique, page 695.

254. Sur la flexion des verges élastiques courbes, par
M. Navier (Eztrait dun Mémoire présenté d UAcadémie des
Sciences, le 25 novembre 1819). This is published in the Bulletin...
Philomatique for 1823, pages 98—100 and 114—118. The
abstract consists of two parts; in the first, Navier considers the
flexure of rods which are naturally straight, and in the second the
flexure of rods which are naturally curved; the memoir was

1 Memoirs of this period by Poisson, Cauchy and Lamé are considered in the
chapters especially devoted to those writers.
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written before Navier had commenced the modern theory of
elastic bodies, and does not bear on that subject’.

255. In the first part of the abstract Navier adopts the
ordinary principle that the curvature of an elastic lamina at
any point is proportional to the moment of the forces round this
point. He supposes the rod to be originally horizontal, to be
built-in at one end (encastrée), and to be acted on by forces at
the other end. Take the axis of z horizontal, and that of y
vertical, the origin being at the fixed end; and in the expression
for the curvature neglect (dy/dz)* in comparison with unity; then
from the assumed principle we have the equation

edyl/de’=—Pc—2)+Q(f—¥).ecereee.nn. 1).

Here e is a constant proportional to the force of elasticity ; ¢ and f
are respectively the horizontal and vertical co-ordinates of the
other end; and P and @ are the forces acting there, parallel
to the axes of y and x respectively. This equation is well known,
allowing for possible differences as to the directions in which P
and @ act, and also for the neglect of (dy/dz)*: see for instance,
Poisson’s Mécanique, Vol. 1. page 606"

256. Put p* for Ple and ¢' for Q/e; then the integral of
(1) is
= f+fi’ {S,iESL(‘_’_-_").. c— .z-)} (2)
y= ¢ | cosgo q . ,
where the constants are determined so that y and dy/dz may
vanish when z = 0; also the following condition must hold among
the quantities

tan ge=¢qc — @* /P eeeiniiinniniiiiinn. (3).
The length of the curve into which the straight rod is transformed

! [Before 1819 Navier appears to have held an erroneous theory as to the position
of the neutral axis of a beam. This he corrected in a lithographed edition of his
lectures on applied mechanics given at the Ecole des ponts et chaussées 1819—1820,
No. 60 is entitled: De la résist & la flexion des corps prismatiques etc. I have
not been able to examine this work, but its substance doubtless appears in the later
Legons: see Art. 279. Ebp.]

2 [The equation is, I believe, based upon a wrong assumption: see the foot-
note to Art. 75. Ebp.]
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this is approximately ]: {1 +3 (%)'} do. Tt will be found that if

we neglect the square of qfﬂp' this gives
c 3 4
e+h+ (-5
It must however be admitted that it is not quite consistent to
regard (dy/dz)* as small in comparison with uuity in oune part of an
investigation, and to retain it in another™.

257. In the case of rods originally curved, Navier assumes
that the moment of the force is proportional to the difference
between the curvature of the original rod, and the curvature
of the rod as transformed by the action of the forces applied to it.
He calls this a new principle; it is in fact that adopted by
Euler in 1744. For the original rod let s denote the length from
the fixed end up to the point (z, y), and let ¢ be the inclination
to the axis of # of the tangent at this point; let letters with
accents have a similar meaning with respect to the transformed
rod ; then the new principle leads to an equation of the form

€(d¢'/ds~dg/ds) =~ P (c—x) +Q (f~y)
= T, let us suppose,

where the notation is the same as that of the preceding article.
Hence ¢ - ¢_— T\/l+ W\ 75,
Now  cosg'=cos($+¢— ¢)=oos4> (¢ —$)sin g

approximately ; similarly

sin ¢’'=8sin ¢ + (¢’ — P) cos ¢.
Also cos ¢ = dz/ds, sin ¢ = dy/ds, cos ¢"=dx'[ds, sin ¢ dy /ds.
Hence we have approximately

ds —dx=—;dy[{l +;(d;)}1'dw,
&y —dy = %dzf{l +3 (Z_Z)} Td.

Navier makes some interesting applications to the case in which
the original curve is the parabola y = lz*/a’.
1 On p. 100 in the value of 2P for ¢’ read o,.
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258. Eatrait des recherches sur la flexrion des plans
élastiques. This is published in the Bulletin...Philomatique for
1823, pages 95—102. We have here an abstract of the memoir
sent to the Instifut on the 14th of August 1820; it consists of
11 sections.

259. In the first section Navier adverts to the prize essay
by Mdlle Germain, to Poisson’s memoir of 1814, and to the
integration of the partial differential equation by Fourier (see
Art. 209) ; he then states the object of his own memoir thus:

Les recherches dout cet article contient l'exposé avaient pour
ohjet principal les lois suivant lesquelles s’optre la flexion d’'un plan
éiastique, soutenu sur des appuis dans une position horizontale, et
chargé par des poids. [Elles sont contenues dans un Mémoire présenté
& 'Académie des Sciences, le 14 aofit 1820, et dans une Note manu-
scrite, remise quelques mois aprés aux commissaires chargés d’examiner
ce Mémoire.

260. In his sections 2 and 3 Navier investigates the general
equation which must hold for the equilibrium of an elastic plate
that deviates slightly from a plane, aud also the conditions which
must hold at the boundary; but his process is very obscure.
With respect to the elastic forces he appears to adopt an hypothesis
like that of Mdlle Germain ; but he does not explain it clearly.
He seems to present as exact the following expression for the
virtual moment

(/11 1 1 2
#|(z+%)* &+ 7)-*s2R)

where ¢ is a constant coefficient, & is the thickness, and R’ and
R are the two principal radii of curvature: but I do not under-
stand how he obtains this. Then he says that this is ap-
%+%; but
here again I do not follow his reasoning. Starting with this ex-
pression and proceeding as in Lagrange’s Mécanique Analytique
(Vol. 1. pages 140—142 of Bertrand’s edition), Navier obtains
the general equation of equilibrium, and also the equations which
must hold at the boundary. The general equation coincides in
SJorm with that given by Poisson on page 219 of his memoir

proximately equal to ek’ ESE, where E stands for
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of 1814. Navier puts it thus, where T stands for f(Xdxz + Ydy):

dz dz s d'z s (B2 dz | d'%
Z-X3-YT- T(M e o) +eh (dz.+2dw,dy,+d ) 0,
This equation does not agree with that obtained by Poisson in
his later researches: see our account of the sixth section of the
memoir of 1828.

As to the equations which must hold at the boundary we
may observe that Navier has expressed them in a form which
18 almost unintelligible, and as we shall see hereafter, Poisson
would not accept them: when we express them in the notation
which Navier ought to have used we find that Poisson’s objection
does not hold. But these boundary equations do not agree with
thoze obtained by Poisson in his memoir of April 1828, nor with
those since proposed by Kirchhoff in opposition to Poisson’s.
Suppose the boundary of the surface to be entirely free, then
Navier has four equations which ‘must hold; but two of these
apply to forces in the plane leaving fwo to apply to the case
for which Poisson has three. We shall find that the matter was
noticed in a controversy which arose between Poisson and Navier.

261. Navier in his sections 4—9 applies his formula to the
case of a horizontal rectangular plate, acted on by no force
except weights, disposed in any arbitrary manner over the surface.
He obtains a general solution in the form of expressions involving
sines and cosines of multiple angles, and illustrates it by con-
sidering two special cases, namely, first that in which the weight
is diffused uniformly over the whole plate, and next, that in
which the weight is concentrated on an indefinitely small area
close to an assigned point.

262. By suppressing one co-ordinate Navier renders his
equations applicable to an elastic lamina; and for an example
takes the case of a horizontal lamina supported at each end; he

3
thus obtains known results, namely the equation, f= ﬁiz%‘fﬁ , of

Poisson’s Mécanique, Vol. 1. page 636, and the equation, f= 4—8 3 of

the same volume, page 641.
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263. Navier in his section 10 draws from his formula some
inferences as to the conditions for the rupture of the plate, in the
two cases mentioned in Art. 261 of the weight uniformly diffused
and the same weight concentrated at the middle point of the
plate. Suppose that in the former case a weight W will produce
rupture, then he says that a weight W/4 will produce rupture in
the second case ; but it seems to me that according to his formula
it should be 4 W/=".

264. In the differential equation given in Art. 260 it will be
seen that the third power of the thickness occurs as a coefficient ;
Navier says in his last section that persons who have attended to the
subject are not all agreed as to the power of the thickness which
should occur; but he seems confident that he is right in using the
third power. It is however certain that he is wrong in using A*
instead of &' if he gives to X, Y, Z their usual significations:
see the equation (10) in our discussion of the sixth section of
Poisson’s memoir of 1828, confirmed by Clebsch on page 307 of
his work when we recur to page 289 for the values of €, 4", B".
This is quite consistent with the fact noticed by Navier that the
expression for the equilibrium of an elastic lamina involves the
cube of the thickness.

265. Mémorire sur les lois de Uéquilibre et du mouvement des
corps solides élastiques. This memoir occupies pages 375—393 of
the Mémoires...de UInstitut, Vol. viL. published in 1827; the
memoir was read to the Academy on the 14th of May 1821.

266. This memoir is justly famous as being the real
foundation of the modern theory of elastic solids. Ou pages 375—
38+ an investigation is given of the three equations which hold at
any point of the interior of an elastic body; they are obtained in a
form equivalent to that given by Lamé, Legons, p. 66, supposing
A=pu. Let p denote the distance between two particles in the
natural state of a body, and p, the distance when forces have been
applied to the body; then Navier assumes that the mutual action
between the particles is (p, — p) f(p), where f(p) denotes some
function which decreases rapidly as the distance p increases;
the direction of the force is assumed to be that of the original
direction of p: then the constant A or x of Lamé is replaced by e,
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where € =§_75r f p'f(p)dp. The investigation though of great
0

interest as being the first of the kind would not now be accepted
as satisfactory. Instead of (p,—p)f (p) the expression of the
force would now be taken to be ¢ (p,), that is ¢ (p + p, — p), that is
approximately ¢ (p) + (p, — p) ¢’ (p), where ¢’ (p) would correspond
to the f(p) of Navier. Also the assumption that the body is
continuous, so that summation may be replaced by integration, is
not now accepted : see Art. 436 of my account of Poisson’s memoir
of April 1828.

267. Another idvestigation is given by Navier on bhis
pages 384—393, which furnishes not only the general equations
which must hold at every point of the interior, but also the special
equations which must hold at every point of the boundary. The
general equations thus obtained agree in form with those obtained
by the first investigation; the special equations agree practically
with those given by Lamé, Legons, p. 20, though in expressing
them Navier, by not giving sufficient generality to his symbols, is
led to suppose a double statement necessary.

268. 1 have said that Navier's second investigation leads
to general equations of the same jform as the first; Navier holds
that the two forms perfectly agree, and they ought to do so if both
processes are sound. But the fact is that if a mistake is cor-
rected by removing 3 which occurs near the foot of page 387, it
will be found that in the second form of the equations we get 2¢
as a coefficient instead of e in the first form, ¢ having the value
already assigned. Thus one of the two forms must be wrong.
The second investigation is conducted by the aid of the Calculus
of Variations, but I do not understand the process. The precise
point at which the difficulty enters is on page 386, where after
saying correctly that a certain force is proportional to f, Navier
adds:

Le moment de cette force, cette expression étant prise dans le méme
sens que dans la Mécanique Analytique, sera évidemment proportionnel
a f8f, ou & 4 &/

This seems to me a purely arbitrary statement. I may observe
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that the letter fis unsuitable, for it bas been already appropriated
by Navier in the symbol f (p).

269. There is a notice of this part of Navier's memoir
by Saint-Venant in Moigno’s Statique page 717 : see also page 711.
Saint-Venant would seem to agree with me in considering the
statement I have quoted as arbitrary; for he says that Navier
‘ posait pour le travail ou virtuel moment etc.” Saint-Venant does
not notice that if we adopt this expression for the virtual moment
the result of the second investigation is inconsistent with that of
the first’.

270. Sur les lows de léquiltbre et du mouvement des corps
solides dlastiques. Extrait dun Mémoire présenté d UAcadémie
des Sciences, le 14 mai 1821: par M. Navier. This occupies
pages 177—183 of the Bulletin...Philomatique for 1823. The pre-
amble of the memoir of 1821 is here reprinted. Navier then says
that there are two ways in which the investigation can be carried
on, namely, the two employed in the original memoir; after briefly
alluding to the first he fully expounds the second.

271. Observations communiquées par M. Navier d loc-
casion du Mémoire de M. Cauchy. This occurs on pages 36 and 37
of the Bulletin... Philomatique for 1823.

Cauchy was one of the persons appointed by the Paris
Academy to examine Navier's memoir of August 1820. Cauchy
had inserted on pages 9—13 of the Bulletin for 1823 an account
of some investigations of his own relative to elastic bodies,
and in these he mentioned the memoir of Navier, and made some
brief remarks upon it. Navier alludes to these remarks, but his
main object seems to be to draw attention to his own priority, and
he mentions that he had siunce sent another memoir to the
Academy, namely on the 14th of May 1821. We learn from
the following sentence the nature of the memoir of August 1820:

La démonstration de ’équation différentielle de la surface élastique
ne forme que la moindre partie du travail contenu dans le Mémoire du
14 uofit 1820, et l'auteur n'y attache aucune importance. L’objet

1 Lamé on his page 79 is perhaps alluding to such a matter.




NAVIER. 141

spécial de ce travail est la recherche des conditions de la flexion
d'un plan chargé par des poids, recherche fondée sur I'intégration de
cette équation, comme depuis long-temps.

[272.] Mémoire sur les ponts suspendus. Paris, 1823. This
memoir is accompanied by a report of Navier to M. Becquey
on the results of his examination of the English suspension
bridges. There is little in the memoir which belongs properly
to our subject. We may note however § XL (pp. 147—160)
entitled: Des wibrations longitudinales des chaines, dues d
Udasticité du fer. This contains a somewhat lengthy discussion
of the ordinary equation for the longitudinal vibrations of a
rod. The memoir concludes with a long extract from Barlow’s
Essay on the strength and stress of timber, 1817, particularly the
experiments contained in that work on the resistance of iron.
A few additional experiments due to Brown and to Brunel
are cited at the end.

273. Note sur les effets des secousses tmprimées aux poids
suspendus o des fils ou & des verges élastiques. This occurs on
pages 73—76 of the Bulletin...Philomatique for 1823. Navier
quotes the known formula for the extension of an elastic string
suspended by one end, and having a weight at the other. He
then gives the approximate results of the following easy dynami-
cal problem : Suppose the weight suspended to be very large
compared with the weight of the string itself, and let a certain
velocity downwards be communicated to the weight; then find
the greatest extension and tension at any assigned point of the
string. The formula obtained for the tension at the fixed end is
illustrated by some numerical examples.

[274] Solution de diverses questions relatives auxr mouvements
de vibration des corps solides. Bulletin des Sciences par la Sociélé
Philomatique. Année 1824, Paris. pp. 178—181. Navier treats
here by usual methods problems which presented even at that
date no novelty. They are:

(1) Motion of two points connected by an elastic string.

(2) Longitudinal vibrations of an elastic rod with one end
fixed.
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(3) Bpecial case of the same rod when the other end is free.

(4) Special case when the same rod is treated as infinitely
long.
The paper is of no importance.

[275.] Expériences sur la Résistance de diverses substances d
la rupture causée par une tension longitudinale. Par M. Navier.
This occupies pages 225—240 of the Annales de Chimie, Vol.
XXXMOI 1826. An abstract appeared in the Quarterly Journal of
Science, Second Series, Vol. 1., page 223.

Navier describes his labours as follows :

Les recherches dont je me suis occupé ayant principalement pour
objet la résistance des tuyaux et autres vases exposés & des pressions
intérieures, j’ai soumis & l'expérience la tdle eu fer laminé, le cuivre
laminé, le plomb laminé et le verre, dont on fait quelquefois des
vases daus les appareils de physique et de chimie.

The general results of his experiments are given on p. 226,
and in a concise tabulated form on p. 240. The experiments
themselves seem too few to be of any great value. I may however
note experiments 26 and 27 (pp. 238—239) entitled: Vases
sphériques rompus par Ueffet d une pression intérieure. So far as I
am aware, these are the first experiments ever made to determine
the internal pressure which will rupture a spherical shell.
The spherical iron shells of Navier were not very satisfactorily
constructed for comparison with theory, for they consisted of
two halves riveted together. In both cases the rupture was
first manifested by the formation of a ‘trés-petite fente, through
which escaped the water, by means of which the internal pressure
was applied.

276. A controversy between Navier and Poisson was carried
on during the years 1828 and 1829; an account of this is given
in the chapter devoted to Poisson.

277. A memoir by Lamé and Clapeyron entitled: Mémoire
sur Uéquilibre intérieur des corps solides homogénes was sent to the
Paris Academy. The memoir was referred to the judgment of
Poisson and Navier; a report on it was drawn up by the latter
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and communicated to the Academy on the 29th of September
1828 : the report is printed in Crelle’s Journal fiir... Mathematsk,
Vol. vr1. 1831, pages 145—149.

Navier's report contains nothing of importance; he speaks
highly of the memoir, indicating however a certain anxiety which
seems to have been habitual in him with respect to his own claims
to priority. Two points may be noticed in the report.

Ils ont reconnn, d'une part qu'un élément de volume, dont la
figure serait, dans I'état naturel du corps, une sphére d’'un rayon trés
petit, se changeait tounjours en un ellipsoide.

No doubt this proposition is very closely connected with some
which Lamé and Clapeyron give, but I do not see it explicitly
stated in the memoir. They do give the ellipsoid of elasticity,
and the sarface of directions: see our account of the memoir in the
chapter devoted to Lamé.

After alluding to some researches of Cauchy in his Ezercices
de Mathématigues the report says:

MM. Lamé et Clapeyron remarquent que la théorie exposée dans
lenr ouvrage difftre essenticllement de ocelle qu'avait adoptée M.
Cauchy.

I see however no allusion to M. Cauchy in the memoir.

[278.] Note sur la flexion d'une prdoe courbe dont la figure
naturelle est circulaire. Annales des ponts et chaussées, 1™ série,
1= semestre. Paris, 1831, pp. 428—436.

In his Résumé des legons données a TEcole royale des ponts
et chaussées Navier devotes a section to the resistance of prismatic
beams whose axes are curved (1st edition, 1826, p. 243).

The equation he makes use of has the following form:

e(1p' = 1p)=—P(a—2)+Q(b—1).

In other words, he takes the bending moment at any sec-
tion proportional to the difference of the imposed and primitive
curvatures. He applies his equation to several cases, as where
the primitive axis is of parabolic shape. (Cf. Art. 257.)

In the note cited above Navier supposes that the primitive
shape is circular. If r be the radius of the circle, before applica-
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tion of force, tan ¢ =dy/dz, ® =whole angle of arc, he finds
equations of the form:

e(@ —a) =— 1" {P[sin P (sin ¢ — ¢ cos ¢) + § sin* P + cos ¢ — 1]
+ Q[ ¢ —§sinpcos ¢ —cos P (sin § — p cos $)]},
e(y—y)= r*{P[sinP(psind+cosdp—1)+ 4sindcos¢p
+ 4¢ —sin ¢] + @[3 sin’p — cos P ($psin ¢ +cos p — 1)1},
for the displacements of any point determined by (z, y, ¢) parallel
respectively to the directions of the forces Q and P applied at the
terminal (®). These equations are then applied to various
interesting cases on the supposition of @ being small, and the
displacements at the terminal are calculated to the 5th power
of &, '

Navier afterwards treats the case of a circular arc bent only by
its own weight, and determines values for the like displacements.
There is no reference in the paper to the work of Lagrange
(see Art. 100) or other investigators in the same field. This note
is practically reproduced in the second edition of the Résumé: see
Pp- 292—295 and pp. 209—302.

I think that Navier's assumption as to the bending moment
is invalid, although the necessary correction does not alter the
Jorm of his equations. There would in general be a longi-
tudinal force at some section, and hence, the ‘neutral axis’ not
passing through the centres of section, the moment of resistance
to flexure (¢) would not be an elastic constant.

[279.] Résumé des Legons données a Uécole des ponts et
chaussées sur Uapplication de la Mécanique @ Uétablissement des
constructions et des machines. Premitre Partie. This book was
first published in 1826. Navier himself corrected and sup-
plemented it for a second edition in 1833, while a third appeared
under the superintendence of Saint-Venant in 1863. The second
and third parts contain nothing of value for our present purpose.
We are concerned here only with the second edition as containing
Navier's final revision. It differs considerably from the first

1 This appears to be the last occasion on which Navier busied himself with
elasticity. He died in 1836 and a funeral oration was delivered in the name
of the Institut by the engineer and elastician Girard,
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owing to the progress which had been made in experimental
elasticity. The first forty-three pages of the book are devoted
principally to experimental results drawn from Rennie, Tredgold,
Barlow, Rondelet, Vicat, etc. Article 111 (pp. 43—66) contains
the usual theory of beams subject only to transverse strain,
together with further experimental results from the same sources.
Article 1v. (pp. 66—99) deals with special cases of the common
theory. Articles V. and VI. (pp. 99—112) treat of torsion with
reference to the then recent work of Cauchy, Lamé and
Clapeyron.

280. An approximate formula relating to the torsion of a
rectangular prism is quoted, on page 102 of the first volume, from
Cauchy’s Exercices de Mathématiques, Vol. 1v. page 59 : see my
account of Saint-Venant’s memoir on” Torsion. Navier adds the
following note on his page 102 ;

Les équations différentielles qui expriment les conditions de
Péquilibre et du mouvement des corps solides, et qui sont la base
des recherches dont il s'agit, ont ét4 données en premier lieu par
I'auteur, pour le cas d’un corps homogéne, dans un mémoire présenté en
1821 & PAcadémie des sciences, et imprimé dans le tome 7° de ses
Mémoires. Cette matitre a ét6 depuis le sujet de recherches trés-
étendues, qui sont contenues principalement dans un mémoire de
MM. Lamé et Clapeyron, présenté 4 I'Académie des sciences en 1828, et
imprimé dans le journal de mathématiques de M. Crelle, dans un
mémoire de M. Poisson imprimé dans le tome 8° des Mémoires de
I'Académie, et dans les Exercices de mathématiques de M. Cauchy.

On page 108 of his first volume Navier gives a formula for the
extreme torsion which can be admitted if we are to avoid rupture ;
this he says is not due to Cauchy, but may be obtained by the
analysis which Cauchy used. Saint-Venant on page 413 of his
memoir on Torsion notices the matter, and explains how Navier's
formula is obtained ; but he proceeds to demonstrate that it is not
trustworthy.

[281.] Art. vir. (pp. 112—120) contains general remarks
on the limits of safety for various kinds of stress. This concludes
the first section. The second and third sections, devoted to the
equilibrium of masses of earth, etc., and to arches, do not directly

T. E. 10
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concern us. The fourth section returns to the subject of elastic
beams, under the heading of constructions in carpentry. Art. I.
(pp. 227—245) attempts a theory of continuous beams. So far as
the results treat of beams built-tn at both ends, 1 believe them
to be erroneous, for Navier assumes in this case that the mo-
ment de la résistance @ la flexion is a constant depending on the
material of the rod, which I think impossible, as longitudinal strain
is in such cases introduced. The following article reproduces Euler
and Lagrange’s theory of columns; both this article and nearly
all the following labour under the same error as the first ; i.e. the
moment of resistance to flexure is treated as an elastic constant
although there is longitudinal strain. Various experimental results
are quoted from Girard, Lamandé, Aubry and others. A passage
“on p. 258 may be quoted with which I can hardly agree. After
giving several reasons why experiments as to the force which will
just bend a column do not agree with theory, Navier continues:

Mais, lorsqu'on prend les précautions comenables pour accorder
les circonstances de Dexpérience avec les hypothéses sur lesquelles
les formules sont fondées, le résultat est alors représenté exactement par
cette formule. _

The precautions appear to be that the terminal force shall
be applied exactly at the axis of figure.

We shall return to this work when counsidering later the 1864
edition due to Saint-Venant.

[282] One further remark may be made with regard to
Navier. He seems to have been the first to notice that problems
relating to reactions, for the determination of which elemen-
tary statics does not provide sufficient equations, are perfectly
determinate when account is taken of the elasticity of the reacting
bodies. The matter is considered by him in a note contributed
to the Bulletin...... Philomatique 1823, p. 35, and entitled:
Sur des questions de statique dans lesquelles on considére un
corps supporté par un nombre de points d appui surpassant trois.
A number of problems of this kind are solved in the Résumé
des Legons mentioned above, and were first given by Navier in
his lectures for 1824 : see Saint-Venant’s account in his edition of
the Résumé, p. cvii.
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283. GERMAIN. 1821. Recherches sur la théorie des surfaces
élastiques, par Mdlle Sophie Germain. Paris, 1821, This is in
quarto ; the title and preface occupy x. pages, the text ocoupies
96 pages, and there is one plate. A list of Errata is given on
the two last pages, but it is far from being complete’.

284. The preface gives an interesting account of the cir-
cumstances which led Mdlle Germain to devote her attention
to the subject. As soon as she became acquainted with Chladni’s
experiments she wished to determine the laws to which the pheno-
mena described by Lim are subject ; she says:

Mais jeus occasion d’apprendre d'un grand géométre, dont les
premiers travaux avaient ét6 consacrés & la théorie du sen, que cette
question contenait des difficultés que je n’avais pas méme soupgonnées.
Je cessai d’y penser.

The grand géométre was doubtless Lagrange.

The French Institut proposed as a subject for a prize: De
donner la théorie mathématique des wvibrations des surfaces
dlastiques, et de la comparer o Uexpérience. October 1st, 1811,
was fixed as the date for receiving the essays of candidates. The
programme relating to this proposition is reprinted on pages 253—
357 of Chladni's Traité d'Acoustigue 1809 : it is stated that the
prize was offered by the desire of the Emperor Napoleon. Mdlle
Germain was a competitor. for the prize; she says respecting her
essay:

J’avais commis des erreurs graves; il ne fallait qu'un simple
coup d’eil pour les apercevoir ; on aurait donc pu condamner la pitce
sans prendre la peine de la lire. Heureusement, un des commissaires,
M. de Lagrange, remarqua I'hypothése; il en déduisit I’équation que
jaurais dfi donner moi-méme, si je m'étais conformée aux régles du
caleul. :

It appears from the Annales de Chimie, Vol. 39, 1828 (pp. 149
and 207) that the following note was written by Lagrange: Note

1 [A few particulars as to Mdlle Germain’s life will be found in the Biographie
universelle, ity Supplément, in the Journal des Débats, May 18, 1833, roprodueed in
the prefatory matter to the ludy’s own Considérations sur Uétat des seiences et des
lettres, published in 18383, two years after her death, and in the Oeuvres philo-
sophiques, Paris, 1879.] Ebp,

10—2
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communiquée aux Commissaires pour le priz de la surface élastique
(décembre 1811).

L’équation fondamentale pour le mouvement de la surface vibrante
ne me parait pas exacte, et la manitre dont on cherche & la déduire
de celle d'une lame élastique, en passant d’une ligne & une surface,
me parait peu juste. Lorsque les z sont trés-petits, I'équation se
réduit &

d'z d’z d°z
@ T Gy ayar) =
mais en adoptant, comme l'auteur, 1/r+1/ pour la mesure de la
- courbure de la surface, que I'élasticité tend & diminuer, et 4 laquelle on
la suppose proportionnelle, je trouve dans le cas de z trés-petit une
équation de la forme
T ( d'z d‘z)
dt’ 2% dy y dy‘
qui est bien différente de la précédente.

Fourier giving a notice of Legendre’s second supplement to the
Théorie des Nombres, 1825, says:

Il cite une proposition remarquable et une démonstration trds-
ingénjeuse que l'on doit & mademoiselle Sophie Germain. On sait
que cette dame cultive les branches les plus élevées de l'anal
et que I’Académie des Sciences de I'Institut lui & décerné en 1825
un de ses grands prix de mathématiques. Mémotres de TAcad.
viir. 1829, page x.

The Institut proposed the subject agam fixing Oct. 1st,1813,as
the date for receiving the essays of candidates. Mdlle Germain
was again a competitor; she says:

J'envoyai, avant le 1 octobre 1813, un Mémoire dans lequel
se trouve l'équation déjd connue, et aussi les conditions des extrémités
déterminées & l'aide de I'hypothése qui avait fourni I'équation. Ce
Mémoire est termpiné par la comparaison entre les résultats de la
théorie et ceux de I’expérience.

The judges made honourable mention of her essay and approved
of the comparison between theory and observation.

The Institut proposed the subject once more, asking for a
demonstration of the equation, and fixing October 1st, 1813, as
the date for receiving the essays of candidates. Mdlle Germain
competed and gained the prize. The judges must have been far
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from severe, as they awarded the prize though they were not quite
satisfied with her demonstration; and moreover she admits that
the agreement between theory and observation was not close, as
she had taken without due examination.a formula from a memoir
by Euler, De sono campanarum, which was incorrect (see Art. 93
and footnote). Since that date Mdlle Germain bad on various
occasions given renewed attention to the subject, and had been
assisted by some explanations given to her by Fourier.

There are also various allusions to Poisson, and to his
memoir of August 1814, though he is not mentioned by name.
In my account of this memoir by Poisson I conjecture that he
refers to a memoir by Mdlle Germain (Art. 414); and as he implies
that the equation is there given correctly, I suppose that he refers
to the second memoir which she wrote. In the allusions which
Mdlle Germain makes to Poisson there is I think a rather defiant
tone, notwithstanding the elaborate praise she confers on him,
such as:

Un nom justement célebre...,...]le talent qui caractérise tous ses
ouvrages...,...ce savant auteur...,...Pautorité attuchée & son nom...,...
dont les talens m’inspirent la plus haute estime.

Poisson and Mdlle Germain had both obtained the same
equation for the vibration of a plane elastic surface, but by very
different methods. The equation is that which we shall presently
give, denoted by (B): see Art. 200.

285. Mdlle Germain’s work is divided into four sections:
The first section is entitled: Exposition des principes qui peuvent
sernir de base d la théurie des surfaces élastiques ; it occupies pages
1—12. Mdlle Germain takes the following bypothesis: let R and B’
denote the two principal radii of curvature of a surface in its natural
condition ; let » and r be the two principal radii of curvature at
the same point when the surface has been brought into a new
form by any forces, then the action of the forces of elasticity which
act on the surface is proportional to 1/r+ 1/ —(1/R+1/R’).
The authoress tries to justify this hypothesis in two ways; but
it seems to me that her statement of the hypothesis is vague,
and that the general reasoning by which she tries to support
it is quite ineffectual ; her pages 2—5 are to me specially unsatis-
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factory. She appears to regard her hypothesis as absolutely true,
and not as a mere approximation; and it is not until she arrives
at her page 20 that she begins to approximate by supposing that
the surface after the action of the forces differs but slightly
from its original form. Mdlle Germain seems to say that this
hypothesis is not that which she originally adopted. Thus we
read on her page viii. :

Dans la piéce que j'adressai & I'Institut avant le 1* octobre 1815,
jo donnai une hypothdse plus générale que celle qui se trouvait dans
mes précédens Mémoires. J'essayai de démeontrer ma nouvelle hypothése.

And again on page 27:

L'hypothese contenue dans le premier de mes Mémoires sur les
surfaces élastiques ; hypoth3se qui, ainsi que je I'ai déja dit, ne pouvait
s'appliquer qu'au seul cas des plaques élastiques.

286. On her page 8 Mdlle Germain adverts to the memoir
by Poisson of August 1814 ; she says with respect to this:

L’auteur borne ses recherches au cas de la surface élastique natu-
rellement plane, et il est facile de voir, en poursuivant la lecture de
son Mémoire, que I’hypothése qu'il admet, méne & regarder les forces
d’élasticité qui agissent sur ce genre de surface, comme proportionelles
4 la quantité 1/r - 1/,

I do not see how this statement with respect to the elastic
forces is justified by anything in Poisson’s memoir; nor can I assent
to the general reasoning by which Mdlle Germain in her next
paragraph endeavours to shew that it is practically the same thing
in this case whether we take the elastic force to be proportional to
1/r+1/r orto1/r—1/r.! She says:

8i, comme il me semble permis de le supposer ici, l¢s quantités
1/r + 1/r et 1/r - 1+’ sont proportionelles,...

Also on her page vii. she says:

11 résulte d’un théortme dfi & I'auteur méme du Mémoire dont je
viens de parler, que mon hypothése ¢onduirait également & son équation
générale,

The theorem here meant is ptobably that in the Calculus of
Variations which is given at the end of Poisson’s memoir; but

1 [Mdlle Grermain is correet in her result if not in har reasdoning: see the foot-
note I have put to Att, 419.] Ebp,
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there is no need of it for the present purpose, inasmuch as Poisson
in the course of his memoir does obtain from his hypothesis the
same equation as Mdlle Germain obtains from hers.

287. Poisson as we have just said obtained the general
equation which we may call Germain’s; but as we shall see in
our account of his memoir he postponed the determination of the
conditions which must bold at the boundary (Art. 418). Our
authoress says on her page 10:

J’ai longtemps attendu que l'auteur publidt la détermination
dont il s’agit ici; j’aurais désiré, dans l'intérét de la question, qu’il
développdt lui-méme toutes les conséquences de I’hypothise qu’il a
adoptée.

288. The second section of Mdlle Germain's work is en-
titled: Recherche des termes qui dotvent conduire d [l'égquation
de la surface élastique ; it occupies pages 12—19. The object of
the section is to obtain a general equation for the equilibrium
of an elastic surface by imitating the methods used by Lagrange ;
she however introduces difficulties of her own. The following is
the result: let N* denote a certain constant, and dm an element
of mass; then integrate by parts the expression : —

~[[wfr k-Gl (7 am

P -Gk

the terms which remain under the double integral sign must
be equated to the terms which express the action of the
accelerating forces; the terms which are outside the doubles
integral sign will determine the couditions which must hold
at the boundary. But the process by which this general con-
clusion is obtained seems to me very arbitrary and obscure,
especially pages 14, 16, 17. It is shewn by Kirchhoff in Crelle’s
Journal, Vol. 40, page 53, that the solution given by Mdlle
Germain is untenable. :

289. On her pages 13 and 14 Mdlle Germain endeavours to
shew by general reasoning that her constant N* must contain as
a factor the fourth power of the thickness of the vibrating body.
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Poisson in his memoir of April 1828 found only the second power
of the thickness, and this is confirmed by the researches of
Clebsch in his treatise on Elasticity.

She says on page 14:

Dans la suite de ce Mémoire je présenterai encore quelques ob-
servations sur la détermination du coefficient N™.

But I cannot perceive that she has kept this promise.

290. The third section of Mdlle Germain’s work is entitled :
Equations de la surface cylindrique wibrante et de Uanneau
circulaire; it occupies pages 19—75. This section consists of
various parts; the first of these extends to page 27, and in this
the differential equations of motion of the problem are definitely
obtained. By a circular ring here is meant an indefinitely short
cylinder, and the differential equation for this can be found
from that for the general circular cylinder, and so the authoress
confines herself to the latter; from this she also deduced the
" equation for the case of a plane lamina. She uses for 1/R + 1/R’
the exact value, namely — 1/a, where a is the radius of the circle;
for 1/r+1/r' she uses an approximate value obtained by the
supposition that the elastic surface deviates but little from its
original form. The process is that of Lagrange, by which the
solution of a mechanical problem is made to consist of a process
in the Calculus of Variations. The following is the form of the
result :

o (d'r dr dr d'r dr d'r
N {dg*+2dg'ds'+ds' (d?’”d?)} g = O (A).

Here 7 is the difference between the distance of a point from
the axis of the cylinder at the time ¢ and its original distance;
but from the form of the equation r may also be taken to be
the distance itself at the time f. The variables s and £ in
conjunction with 7 determine the position of the point; s is the
arc which is intercepted between the generating line of the
cylinder corresponding to the point and a fixed generating line;
for £ in the original work we have usually z", which I consider to
be inadequately defined, but practically instead of =" we have
z which denotes a distance measured along the generating line
from one end. This equation is denoted by (A) in the original
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work. When we have occasion to refer to it we shall suppose that
£ is replaced by 2.

Suppose a infinite, and change £ and s into the ordinary
rectangular co-ordinates ; also put z for »; we thus obtain

M{%+2d§%+%}+g}=o ............ (B);
this equation the authoress gives as that for the vibration of a
plane lamina.

Again in (A) efface the terms which involve £; we thus

obtain

a (d'r 1 d'r}+d’r

1@ bt (? F a—ti =0 civriiiiiiinnn (C) H
this the authoress gives as the equation for the vibrations of a
circular ring.

291. I have not found the general equation (A) in any
other place, and I cannot understand the demonstration by which
it is obtained. The process seems to have been constructed with
the express purpose that it should by proper supposition lead
to the equation for the vibrations of a plate, that is to equation
(B). The latter coincides with that obtained by Poisson on
page 221 of his memoir of August 1814, and also on page 533 of
his memoir of April 1828; this is also confirmed, at least as
approximately true, by Clebsch in his treatise on Elasticity.
Mdlle Germain states on her pages vi. and 27 that Lagrange had
deduced his equation (B) from her hypothesis; but Poisson says
on page 439 of the Annales de Chimie, Vol. 38, 1828:

Je n'ai vu nulle part que Lagrange efit déduit de cette hypotheése
Véquation relative aux petites vibrations des plaques élastiques que
Fon a trouvée dans ses papiers sans aucune démonstration, et qu'il
n'a pas insérée dans la seconde édition de la Mécanique analytique,
ol il a seulement donné I'équation d’'équilibre de la membrane flexible.

See however our Art. 284, page 148.

292. One point connected with the Calculus of Variations
must be noticed. Consider the term

ﬁQpSp;crqudxdy,
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where p stands for dz/dz, and g for ds/dy; also k=J1 + p*+ ¢*.
This term occurs on page 25; the notation is the same as Mdlle
Germain’s, except that she has accents on the variables which are
unnecessary for our purpose. @ may be regarded as a function of
2 3,
« and y; in her notation it represents% (1777,‘, + g;:) . Now the
above term is to be transformed; it is sufficient for our purpose
to attend to 8p only. We have then, according to well-known

principles,
dp - f @p d (Qp
ﬂT 8p do dy = [ Szdy—ffd—x(—k—) 82 dw dy.
Now Mdlle Germain instead of a%: (@p/k) uses @ ‘%:(p/k) ; SO

that she omits (p/k) gg ; and for this she offers no justification

whatever.

293. I will notice two other points as specimens of the
unsatisfactory way in which the process is conducted. On her
page 23 she wishes to shew that a certain angle w is equal to
another angle v; this she infers from the fact that the straight
lines which form  are respectively at right angles to those which
form »: the argument would be sufficient if the four straight lines
were all in the same plane, but they are not. However in a
subsequent publication by the authoress, she seems to admit that
pages 21—25 of this section are unsatisfactory’,

Again, on page 26 she has an equation :

87/ d’ dy =cos’ v ér dx ds;
she wishes to change cos» into unity and justifies the step thus:

Mais il est évident que la valeur de cos v dépend uniquement du
choix des coordonnées, c’est-a-dire de leur situation autour du centre
du cercle qui a été pris pour origine; or, la valeur de v ne peut varier
qu’entre les limites O et 7/2; la valeur de cosv prise entre ces limites, se
réduit @ Punaité.

The words which I have put in italics have no meaning as they
stand.

1 Instead of her process on page 28 it would have been better to assume a new
variable z” connected with the old z by the relation z=2z"cos». Then on page 24
it is assumed that dr/dz” is constant, which is not in harmony with the meaning
of ».
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294. We have seen in Art. 290, that Mdlle Germain gives a
certain equation (C) as belonging to the vibrations of a circular
ring. According to her this equation was given by Euler in
Vol. x. of the Memoirs of St Petersburg in a memoir De sono
campanarum, but with +1/a” instead of —1/a*: see the footnote
Art. 93. She says on her page 29:

Je ticherai de prouver, dans les numéros suivans, que 1'équation
de Vanneau donnée par Euler, dans le Mémoire De sono campanarum,
n'est affectée que d'une simple erreur de signe, et que cette erreur
qui, analytiquement parlant, est peut-étre la plus légére qu'un géometre
puisse commettre, suffit cependant pour €loigner entitrement la théorie
de I'expérience.

All that she gives in the subsequent articles as to the
difference between herself and Euler seems to amount to the
consideration that her formula agrees fairly with experiment
and therefore Euler’s cannot be correct.

But the most curious thing connected with this equation
is that Mdlle Germain would agree with Euler had it not been for
a mistake in her own work, assuming her process to be otherwise
satisfactory. The mistake occurs at the fifth line of her page 25,
where she goes wrong in the Calculus of Variations. Using
ordinary notation she puts in eﬁ'ect

S/ idmdate
VItp g == s +q,{p&p+98q}
the negative sign should be cancelled.

295. On page 32, Mdlle Germain says:

Revenant A I'objet principal des présentes recherches nous nous
bornerons & considérer, parmi les différens mouvemens qui peuvent
se manifester, ceux qui intéressent la théorie du son.

Accordingly pages 32-—57 are devoted to the integration of the
equation (C) of Art. 200, and to numerical deductions from the
integral. She assumes for the integral a formula

r = Msin (§+ t/Vk),
where { is a constant and M a function of s. Then to determine
M we get the equation

oM 1 oM M

S @ ds kN
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this is an ordinary differential equation which can be easily
integrated. The result will be of this form:

r=sin ({+ t/vk) {de™ + Be™™ + Csin wBa + D cos wBa},

where o is put for s//, and ! is the extreme value of s. Here
A, B, C, D are arbitrary constants, also a and 8 are constants. This
is the equation (G) of our authoress on her page 36. The only
difference in notation is that she uses A for our [, which is bad,
since 4 has been already used in a different sense; she also puts
two accents on a and on 8 which are unnecessary for our purpose.
Now to determine the arbitrary constants she has obtained the
conditions that d'r/ds® and d’r/ds® must vanish both when =0
and when s=10. These give four equations, and unfortunately she
goes quite wrong in them. For example, the two which arise
from putting s =0 she expresses thus,
A+B-D=0, A-B-C=0,
instead of
(4+B)a’-DB*=0, (A-B)a"-C8 =0;
and she makes the same mistake in the two equations which
arise from putting s=1. It is not too much to say that the
whole of the rest of the work is ruined by these mistakes, as
almost every formula will have to be corrected. For example
instead of the equation
4—-2("+e ") cosmB=0,
which immediately follows, we must have

—BB' (€ — 6™ sin w8 = 0.

a’
4—-2("+e ")cosmB+—

296. I may just notice a small mistake which occurs at the
top of page 37. Mdlle Germain says that we have three equations;
they are of the form

Hb (dr/ds)=0, Jér=0, Kér=0:
but she is wrong, for the principles of the Calculus of Variations
would give only two equations, namely
Hg (dr/ds) =0, (J+ K) & =0.
The lady does not appear to have paid that attention to the
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Calculus of Variations which might have been expected from the
pupil and friend of its great inventor Lagrange.

297. The serious mistakes which are made in determining
the values of the constants A4, B, C, D destroy the interest
of a reader in the inferences she draws from the value of r;
and especially I have not examined the numerical results on
pages 52—56. Two other mistakes which present themselves
may be noted. .

On page 39 it is said that cos 8 will be positive provided
B" = (4n £ 1/2 4 8) m, where n is any integer, and & is less than §:
this however is insufficient, for we must add the condition that &
is to be negative if the upper sign is taken, and positive if the
lower sign is taken. )

Again, on page 36 a formula is given which is said to apply to
the case of two-thirds of the circumference, and which involves the
factor /8™ + §; instead of two-thirds we must read three-fourths ;
when the formula is employed on page 52, instead of § by a mistake
$ has been taken.

298. On her page 57 the authoress proceeds to consider
equation (B) of Art. 200; she obtains a particular integral and
deduces numerical results as to the nature of the sounds caused by
the vibrations. These pages are not affected by the mistakes
which I have noted in Art. 295.

On her page 63 the authoress takes a more general form of
the integral of equation (A); this is

r = cos %-Msin@'i‘t/‘ﬁz)’

where A’ is a constant and M is of the same form as in Art. 295.
For M a value is obtained like that of Art. 295, only a and B8
are not the same as before. Mdlle Germain has to determine the
four arbitrary constants which occur in M by the condition that
both when 8=0 and when s =1

d'r d'r d /d'r dr
@"‘a{;’—o, and %(I’,-+d—“,)—0

She merely states the values, and I cannot verify them : she seems
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to me to make the same mistake as I have noticed in Art. 294,
and also to neglect altogether the presence of the term d*r/d.r*.

On page vi. of her preface Mdlle Germain says:

J'eus occasion de faire remarquer, contre l'opinion énoncée au
programme, qu’il s'en fallait beaucoup que les lignes de repos observées
par M. Chladni fussent toujours analogues aux noeuds de vibration
des cordes vibrantes.

She seems to return to this matter on pages 81, 64, 65, but I
cannot understand exactly what she wishes to establish. She says
on page 64:

J’insiste sur cette observation, parce qu'Euler, et aprés lui plusieurs
autres auteurs, ont regardé le mot libre appliqué aux extrémités,
comme designant un certain état analytique & I'exclusion de tout autre.

299. The fourth section of Mdlle Germain's work is en-
titled : Comparaison entre les résultats de la théorie et ceux de
Vexpérience; it occupies pages 75—96. I have not examined this
very carefully, having little faith in the tﬁgpretical formulae. It
does not appear that the authoress found any very close agreement
between her theory and her experiments. It is curious that
the deviations were all in one direction ; she states on her page
76 that in a large number of cases the sound obtained was
graver than it should have been according to theory, and she
never observed the inverse phenomenon.

300. The next production of our authoress which we have
to notice is entitled: Remarques sur la nature, les bornes et
Uétendue de la question des surfaces élastiques, et équation générale
de ces surfaces. Paris, 1826. This is in quarto, and consists
of 21 pages, besides the title page. We have first some
Observations Préliminaires, and then the work is divided into two
sections. It appears from the preliminary observations that the
authoress had no doubt with respect to the accuracy of the
formulae which she had already published, though she admits in a
vague way some defects in the method she had used :

Il ne me restait aucun doute sur l'exactitude des formules que
j'avais publiées; mais je reconnaissais cependant qu’une analyse em-
barrassée et fautive otait & ces formules le caractére d’évxdence qui
leur est nécessaire,
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301. The first section of the work is entitled: Ezposition des
conditions qus caractérisent la surface; it occupies pages 2—10.
This consists of general remarks which do not seem to me of any
great interest or value. In a note on pages 5 and 6 Mdlle
Germain adopts more strongly than in her former work the
untenable opinion that a certain coefficient involves the fourth
power of the thickness: see Art. 289. With respect to her in-
vestigations on this subject she says:

Les recherches dont je fais mention ici ont été rassemblées dans
un Mémoire que j’ai présenté & I'Académie il y a environ deux ans,
et dont MM. de Prony et Poisson, nommés commissaires, n’ont pas
encore fait le rapport. Je publierai ce Mémoire lorsque I'examen
successif de tout ce qui concerne la théorie des surfaces élastiques
en amdnera Poccasion.

302. On the last page of this section Mdlle Germain says:

Au reste, je n’aurais rien d'important & ajouter aux deux premiers
paragraphes du Mémoire que j’ai déja publié; ils sont dans un parfait
accord avec ce qu'on vient de lire...... Le § u1 du méme Mémoire
doit étre réformé.

The last sentence might suggest that she was dissatisfied with the
whole of the third section of the former work; but a note on
page 15 limits the part to be given up as that on pages 21—25.
After all she does not distinctly admit any errors in her former
process, but seems to consider she is merely making some
improvements.

303. The second section is entitled: Equation générale des
surfaces élastiques wvibrantes; it occupies pages 10—21. The
result is that an equation of precisely the same form as
(A) of Art. 290 is now obtained for the vibration of any surface
whatever, and not merely for a cylindrical surface. It is assumed
that the vibrating surface differs very slightly from its original
form, and that the direction of motion of any point is along the
original normal to the surface at that point.

304. I cannot say that the demonstration convinces me.
In the first place the method is liable to the serious objections
that have been urged against Lagrange’s method, which is imitated :
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see Art. 159 of my account of Lagrange. In the second place there
are inadmissible steps due to the authoress herself. Thus for
instance the error which I have noticed in Art. 292, and that as
to signs which I have noticed in Art. 294, are reproduced ; also
corresponding to the arbitrary step of making cosy =1, which
I have noticed in Art. 293, there is an equally arbitrary step,
having the same object in view. These three difficulties are all
connected with the integration by parts of the second term in the
expression given in Art. 288. With respect to the first term she
implicitly puts dsds’ in her notation for dm; she should for
consistency have put ddsds’ for 8dm in the second term, and then
the rest of her process would have been very different from what
it is. '

305. The work closes with a few remarks as to the
possibility of deducing some results from the very general equation
which has been presented applicable to any vibrating elastic
surface. The authoress says :

Ces considérations, ainsi isolées, perdent sans doute beaucoup de
leur vraisemblance ; il m'a cependant paru que c’était le lieu d’exposer
ce premier apergu. J'attendrai, pour en développer les conséquences,
qu'un travail plus approfondi m’ait mise & méme de leur donner le
double appui du calcul et de l'expérience.

306. The last publication by Mdlle Germain which we
have to notice is entitled: Ezamen des Principes qui peuvent
conduire @ la connaissance des lois de U'équilibre et du mouvement
des solides élastiques ; it occupies pages 123—131 of the Annales
de Chimie, Vol. 38, 1828. This consists of general remarks the
object of which is to recommend the method she had adopted of
dealing with the problem of elastic surfaces, that is by starting
with the hypothesis we have stated in Art. 285 ; she holds that it
is better than the attempt to construct a theory of the action of
molecular forces. The article does not contain anything of im-
portance. The authoress seems to have been dissatisfied with the
reception given to her memoir of 1821 ; she says on her page 124 :

Je voyais s'établir une opposition redoutable, surtout en ce qu'an
lieu de procéder par la discussion elle se réfugiait dans le dédain
des généralités que j'ai toujours regardées comme incontestables.
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307. Laplace. The fifth volume of the Mécanique Céleste was
published in 1825. Livre XIL is entitled: De lattraction et de
la répulsion des sphéres, et des lois de Uéquilibre et du mouvement
des fluides élastiques. The contents of this book though not very
closely connected with our subject may be conveniently noticed
here'; they occupy pp. 87—144 of the original edition of this
volume.

308. The first chapter is entitled: Notice historique des
Recherches des Géomadtres sur cet Objet; it occupies pages 87—99.
Part of this had appeared in the Annales de Chimie, Vol. 18,
1821, pages 181—187. Laplace adverts to the two remarkable
Ppropositions demonstrated by Newton relative to the attraction of
spheres, under the ordinary law of attraction ; namely that a sphere
attracts an external particle in the same manner as if the mass of
the sphere were collected at its centre; and that a shell bounded
by concentric spherical surfaces, or by similar and similarly situated
ellipsoidal surfaces, exerts no attraction on an internal particle.
Laplace then passes to his own researches; he had shewn that
among all laws of attraction in which the attraction is a function
of the distance and vanishes when the distance is infinitely great,
the law of nature is the only law which is consistent with Newton’s
two propositions: see my History of the Theories of Attraction...
Chapter xxvIii1. Laplace’s demonstrations have passed into the
ordinary text books.

309. Laplace then speaks of researches of his own which
had for their object to establish the ordinary laws of elastic fluids
on hypotheses of a reasonable nature as to the mutual action of the
molecules. The ten pages which are spent on this consist mainly
of the substance of his mathematical processes divested of mathe-
matical symbols; they are scarcely intelligible apart from the
following two Chapters which contain the mathematical processes,
and when these have been mastered they become superfluous.

1 [T am unable to give any reason for Dr Tojhunter’s introduction here of these
paragraphs relating to elastic fluids. There is a long series of memoirs on this
subject of an earlier date, to which he has not referred, and notices of which it did
not seem to me advisable to introduce into the work. On the other hand I have
followed here my almoet invariable rule of printing all matter which Dr Todhunter
inserted in his manuscript. Eb.]

T. B 11
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Laplace himself well observes on page 186 of Vol. 18 of the
Annales de Chimae...after some verbal statements:

Les géométres saisiront mieux ces rapports traduits en languge
algébraique.

810. The velocity of sound in air is an interesting subject
which is specially noted by Laplace. He adverts, on his page 95,
to the formula obtained by Newton, and says:

8a théorie, quoique imparfaite, est un monument de son géuie.

He gives his own famous correction which, as is well known,
brings the theory into agreement with observation. This he first
published, without demonstration, in the Annales de Climie...
Vol. 8, 1816, pages 238—241. There speaking of Newton's
formula he says:

La manitre dont il y parvient est un des traits les plus remarquables
de son génie,

Laplace corrects a mistake he had made on page 166 of the
same volume with respect to the velocity of sound in water, by
which he obtained a result /3 times too large.

311. Laplace finishes the Chapter with the following sen-
tences relative to forces which are sensible only at imperceptible
distances :

Dans ma théorie de l'action capillaire, j’ai ramené & de semblables
forces les effets de la capillarité. Tous les phénoménes terrestres
dépendent de ce genre de forces, comme les phénoménes célestes dépendent
de la gravitation universelle. Leur considération me parait devoir
étre maintenant le principal objet de la Philosophie mathématique.
Il me semble méme utile de l'introduire dans les démonstrations de la
Mécanique, en abandonnant les considérations abstraites de lignes sans
masse flexibles ou inflexibles, et de corps parfaitement durs. Quelques
essais m’'ont fait voir qu'en se rapprochant ainsi de la nature, on
pouvait donner 4 ces démonstrations, autant de simplicité et beaucoup
plus de clarté que par les méthodes usitées jusqu'a ce jour.

812. The second chapter is cntitled: Sur lattraction des
Sphéres, et sur la répulsion des fluides élastiques. It occupies pages
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100—118. Laplace begins with quoting his own results for the
attraction of a spherical shell on an external particle ; from this he
derives an expression for the attraction of one sphere on another:
this might usefully be introduced into the text-books. The same
expression will hold for spheres which repel each other. Newton
supposed that between two molecules of air a repulsive force is
exerted which is inversely as the distance; Laplace examines this
hypothesis briefly, and shews that it affords no prospect of
agreement with observation. He says, on his page 105:

...aussi ce grand géométre ne donnet-il A cette loi de répulsion
qu’une sphére d’activité d'une étendue insensible. Mais la maniére dont il
explique ce défaut de continuité est bien peu satisfaisante. 11 faut sans
doute admettre entre les molécules de I'nir une force répulsive qui ne
soit sensible qu'A des distances imperceptibles: la difficulté counsiste &
en déduire les lois que présentent les fluides élastiques. Clest ce que
Ton peut faire par les considérations suivantes.

313. Laplace’s hypothesis is that in a gas we have molecules
of two kinds, which may be called matter and caloric; matter
attracts matter and caloric, but caloric repels caloric. Also for the
permanent gases the attraction of the matter is insensible
compared with the repulsion due to caloric. Starting from these
principles Laplace obtains the ordinary facts with respect to gas
enclosed in an envelope, namely that the pressure is constant
throughout, and that the laws of Mariotte and Gay Lussac hold.
The mathematical investigation is reasonably satisfactory; it
involves a certain quantity K which represents a definite integral

f ¥ (8)ds: this can not be effected because the function ¥ is not
°

known. Approximations are freely used in the investigation.

314. Much of the second chapter originally appeared in
pages 328—343 of the Connaissance des Tems for 1824, published in
1821 ; the following points of difference may be noted. A passage
on pages 103 and 104 of the Mécanique Céleste is new, beginning
with Dans les sept tntégrations,...and ending with... Newton «
démontré. Three short paragraphs from page 336 of the Con-
naissance des Tems are omitted, beginning with Il résulte...and

11—2
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ending with...développde. Pages 111—113 of the Mécanigue Celeste
. first appeared in the Connaissance des Tems for 1825 published in
1822, pages 219—223. Pages 114...118 of the Mécanique differ
from the pages 339—343 of the Connaissance for 1824.

In the catalogue of Scientific Papers published by the Royal
Society under the head Laplace No. 51 there is a reference
to the Journal de Physique XCIv. 1822, pages 84—90 ; so I presume
there is some abstract or account of what is contained in the
chapter of the Mécanique Céleste, which we are considering ; but I
have not seen the volume referred to.

315. There is also an article in the Annales de Chimie...Vol.
18, 1821, which like that just cited bears the title: Sur l'attraction
des corps sphériques, et sur la répulsion des fluides élastiques.
It occupies pages 181—190 of the volume. The same article
occurs almost identically on pages 83—87 of the Bulletin...Société
Philomatique, 1821. This is substantially embodied in the chapter
of the Mécanique Céleste which we are considering. On pages
273—280 of the same volume of the Annales is another article by
Laplace entitled: Eclaircissemens de la théorie des fluides élastiques;
this is only partially reproduced in the Mécanigue Céleste. Laplace
alludes to his article in the Connaissance des Tems for 1824, and
promises to return to the subject in the volume for 1825.

Some criticisms by Mr Herapath on the Theory of Elastic
Fluids contained in Laplace’s second Chapter will be found in the
Philosophical Magazine Vol. 62,1823, pages 61—66 and 136—139;
but they are not connected with our subject, and so we will not
investigate them. '

316. The third chapter is entitled : De la vitesse du Son et du
mouvement des Fluides élastiques. 1t occupies pages 119—144.
Here Laplace supplies the mathematical investigation of a result
respecting the velocity of sound which he had made known in
1816: see Art. 310. Laplace’s formula is now universally received,
but it is demonstrated in a more simple manner in the usual
works on the subject. Laplace compares his theoretical value of
the velocity of sound in air with that given by recent observation,
and finds that the difference is only about 3 metres in 340. This
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comparison had already appeared in pages 266—268 of the
Annales de Chimie, Vol. 20, 1322, and pages 371 and 372 of the
Connaissance des Tems for 1825 published in 1822.

317. Laplace baving discussed the velocity of sound passes
on to other subjects connected with elastic fluids under the
following heads: Equatwns générales du mouvement des fluides
élastiques; Du mélange de plusieurs gaz; Des atmosphéres; De la
vapeur aqueuse; Considérations sur la Théorie précédente des gaz.

318. The third chapter, in substance, first appeared in the
Connazissance des Tems for 1825, published in 1822: see pages
219—227, 302—323, 386 and 387; the following differences may
be noted. In the Mécanique Céleste the passage on pages 135 and
130 as to the velocity of sound in & mixture of gases is new; and
so also is the section on pages 139 and 140 entitled: De la vapeur
agqueuse. 'The passage on pages 386 and 387 of the Connaissance
des Tems is not reproduced in the Mécanique Céleste; here Laplace
alludes to the recent curious experiments by Cagniard Latour as
to the compression of certain liquids; this passage is also printed
in the Annales de Chimie...Vol. 21, 1822, pages 22 and 23. An
English translation of it is given on pages 430 and 431 of the
Quarterly Journal of Science...Vol. 14, 1823.

In pages 161—172 of the Bulletin...Philomatique, 1821, is an
article by Laplace entitled : Développement de la Théorie des fluides
élastiques, et application de cette théorie d la vitesse du son. This
corresponds very closely with pages 219—227, 302—306 of the
Connaissance des Tems for 1825.

319. The pages of the Mécanique Céleste contain several
errata which are reproduced in the National edition. On page 111
there is a formula in which we have in succession u, u, u”; here
for ' we must read 4: the National edition reads , %', 4", which
introduces another misprint. The formula is given correctly in
the Connaissance for 1823, page 221, and also in the Bulletin...
Philomatique, 1821. On page 133 we read :

La chaleur spécifique du mélange sous une pression constante, ou
sous un volume constant, est visiblement....
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Here the words ‘ ou sous un volume constant’ must be omitted.
In the Con. des Tems for 1825 page 313 the words ‘sous une
pressure constante, ou sous un volume constant’ do not occur; so
that the passage is correct, though we have to ascertain from the
context which specific heat is meant. Le Verrier drew attention to
the inaccuracy of the National edition in the Comptes Rendus,
Vol. 29, 1879, page 22. A memoir by M. Pouillet entitled:
Mémorre sur la théorie des fluides élastiques et sur la chaleur latents
des vapeurs is published in the Comptes Rendus, Vol. 20, pages
915—927. It begins thus:

Le x11° livre de la Mécanique céleste contient une théorie générale des
fluides élastiques qui repose uniquement sur les lois de I'attraction des
spheres, et sur quelques propriétés primitives attribuées aux éléments de
la chaleur ; c'est & la fois I'un des derniers et des plus beaux travaux de
Laplace. Il eut la satisfuction de voir sa théorie confirmée d’une
maniére remarquable, d'un c6té par les expériences relatives & la vitesse
du son, qu'il avait lui-méme proposées dans ce but, et d’un autre c4té
par quelques expériences de dégagement de chaleur, exécutées toutefois
comme elles pouvaient 1'dtre, dans des limites assez restreintes de tempéra-
ture et de pression.

[320] Fresnel. The important works upon Light, notably
the memoirs on double refraction of this great physicist belong
to this period (memoirs of 1821 to 1825). They can hardly
however be treated as contributions to the theory of elasticity.
So far as Fresnel treats of molecular motions, he understands by
the elasticity of his medium a cause producing a force proportional
to absolute and not relative molecular displacement; so far as
he treats of vibrations his medium possesses properties which
we cannot reconcile with those belonging to our theoretical
elastic solid. - _

Premiérement Fresnel admet, sans démonstration suffisante, que
les élasticités mises en jeu dans la propagation des ondes planes sont
uniquement déterminées par la direction des vibrations et ne dépen-
dent pas de la direction du plan des ondes (see the second memoir
on double refraction, Buvres complétes, Tome 11. p. 532). Ensuite, il
regarde comme négligeable et absolument inefficace, en vertu des
propriétés de I'éther, la composante de I'élasticité normale sur le plan
des ondes, oubliant qu’aprés avoir constitué son milieu élastique avec
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des points matériels disjuints et soumis & leurs actions régiproques,
il n’avait plus le droit de recourir 4 des suppositions auxiliaires du
genre de celles sur lesquelles on a coutume de fonder I'hydrostatique
et I’bydrodynamique, sans avoir égard & la vraie constitution molé-
culaire des fluides. Il pouvait sembler singulier que le résultat
définitif d'un raisonnement incomplet et inexact en deux points
fat une des lois de la nature dont 'expérience a le mieux confirmé
la vérité. (Note by E. Verdet to Fresnel's first memoir on double
refraction in the & uvres complétes, Tome 11. p. 327.)

Saint-Venant remarks with regard to Fresnel's relation to
the history of elasticity:

Nous ne pensons pas pour cela qu'on doive attribuer & Fresnel,
non plus qu’'a Ampére, qui a présenté & ce sujet quelyues considérations
€levées, l'invention de la théorie de Délasticité qui, aprés Navier,
doit étre regardée comme appartenant & Cauchy. Historique Abrégé,
P- cl. in the 3rd edition of Navier's Résumé des Legons.

On the contrary it seems to me that but for Cauchy’s
magnificent molecular researches, it might have been possible
for Fresnel to completely sacrifice the infant theory of elasticity
to that flimsy superstition, the mechanical dogma, on which
he has endeavoured to base his great discoveries in light.
Cauchy inspired Green’, and Green and his followers have done
something, if not all, to reconcile Fresnel's results with the
now fully developed theory of elasticity, the growth of which his
dogma at one time seriously threatened to check.

[321] SAvART. A long and most valuable series of me-
moirs by this author is spread over the pages of the Annales de
Chimie et de Physique from 1819 to 1840. They are principally
experimental and belong more especially to that portion of
elasticity which falls properly under the theory of sound. They
have been largely influenced by Chladni’s acoustic experiments,
but at the same time present the views of an original, if not very
mathematical physicist. The importance they possess for our
subject arises from the strong light they occasionally cast on the
structure of elastic bodies.

1 Not Green Cauchy, as Sir William Thomsen seems to suggest. Lectures
on Molecular Dynamics, p. 2.
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[322.] Sur la communication des mouvemens vibratoires entre
les corps solides. This paper was read to the Academy of Sciences,
Nov. 15, 1819, and published in the Annales de Chimte, Tom. 14,
pp. 113—172. Paris, 1820. The experiments to determine the
nodal lines of rods subject to longitudinal vibrations are de-
scribed in § 1 (p. 116). It would be interesting to compare the
results with those given by the theory of the longitudinal
vibrations of a rectangular plate with three free edges, but I
am not, aware that this problem has been mathematically con-
sidered.

[323.] Mémoire sur les Vibrations des corps solides considérées
en général. This was presented to the Academy of Sciences on
April 22, 1822, and it is printed in the Annales, Tom. 25, pp.
12—50; pp. 138—178; and pp. 225—269, 1824. The aim of
the author in this paper is to consider the most general character
of the vibrations which it is possible for solid bodies to perform.
He begins by recognising three different kinds of vibratory
motions: longitudinales, transversales et tournantes. It is mot
easy to see under which head he would bave included vibrations
involving contraction and expansion. Such vibrations might be
conveniently termed pulsations; they are recognised as a fourth
distinct class by Poisson : see Art. 428,

Savart believes that all these motions are of the like kind :

Les vibrations transversales d’une verge, par exemple, paraissent
avoir été considérées comme un simple mouvement de flexion du corps
entier, et non comme un mouvement moléculaire d’od résulterait le
mouvement de flexion; il en est de méme des vibrations tournantes :
les vibrations longitudinales sont les seules pour lesquelles on a admis
que les mouvemens généraux sont le résultat de mouvemens plus petits
imprimés aux particules mémes; et il faut avouer qu'on ne pouvait
guére se faire une autre idée de cette espéce de vibrations. Mon but,
dans ce mémoire, est de montrer qu'il n'existe qu'une seule espéce de
mouvement de vibration, et que selon que sa direction est paralléle
perpendiculaire, ou oblique aux arétes ou aux faces d’un corps, d’une verge,
par exemple, il en résulte des vibrations longitudinales transversales ou
obliques.

As I understand Savart here, both his longitudinal and
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transverse vibrations are in the face of the wave, and so un-
accompanied by dilatation or contraction. His paper would seem to
hint that some vibrations had previously not been attributed
to molecunlar motion. If he only means by une seule espéce de
mouvement a mere motion of molecules, his statement is correct,
but he seems to have some idea that the characteristics of that
motion are the same in all cases.

[324.] In his experiments vibrations of various kinds were
induced in the solid body by means of an oscillating cord or string
attached to it; by changing the plane of oscillation of the cord,
different vibrations were produced in the body.

I confess that I am unable to understand how by means of
a string oscillating in a plane it would be possible to give every
variety of vibration to a solid body, nor does Savart really appear
to have done so in his experiments. The kinds of vibration
classified by him have distinct analytical characteristics and I
should judge distinct physical characteristics also, especially in the
‘case of fibrous bodies like wooden bars used in these experiments.

[825.] In the first section of the memoir the author treats of
the communication of vibrations by meaus of a cord united to one
or more solid bodies. This discussion involves, the author holds,
the chief end of the memoir, namely to shew that:

Il nexiste gu'une seule espéce de mouvement vibratoire qui 8accom-
pagne de circonstances particulidres selon le sens dans lequel il a liew
relativement a la forme du corps vibrant.

In the second and last section of the memoir Savart treats of
various phenomena which present themselves in bodies, when the
motion takes place in the sense of their length, breadth, height,
or in any direction more or less oblique to these.

[326.] The first section contains a most interesting and
valuable experimental investigation of the tangential and normal
vibrations of circular and rectangular plates. The apparatus and
method of experiment are extremely suggestive, but in several
places I cannot feel satisfied with the author’s deductions. His
view that tangential and normal vibrations are the same, would I
think involve the absolute elastic isotropy ‘of all bodies, but
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further than this it does not seem to me to recognise the distinction
between a vibration which produces dilatation and one only in-
volving shear. If we take as Savart does a plate with Jree edges,
it is quite conceivable that the normal vibrations may be of the
same character as the tangential vibration in any direction in its
face. This involves only the complete isotropy of the material
of the plate, or the capacity of the particles of the plate for
vibrating in any direction in parallel lines, but that this complete
isotropy can exist in a substance like wood seems to me highly
improbable. Still more obvious is it, that, if the plate had
not free edges, there would be something quite different in the
tangential vibrations of such a plate from the normal vibrations of
a plate with free edges. I have equally strong objections to the
theory that if a string be fastened to one end of a rectangular
beam clamped at the other, then the vibrations of the particles of
the beam will be parallel to the plane of oscillation of the string ;
this seems to me at the very least to assume that the beam has a
uniform elastic character in the plane perpendicular to its axis.
Even for a beam whose sides are parallel to the fibres this can
hardly be true; there must be a distinction in the elastic character
between directions parallel and perpendicular to the ligneous
strata. Unsatisfactory also seems the discussion of the torsional
vibrations on pp. 174—177. The first section concludes with
the following paragraph, which I leave to the judgment of the
reader:

Puisque les vibrations appelées tournantes ne sont qu'une esptce de
vibrations normales, il résulte de toutes les recherches qui précédent,
que les vibrations normales, ainsi que celles qui sont obliques ou qui
sont tangentielles, svit dans le sens de la longeur, soit dans le sens de la
largeur, ne différent entre elles que par les mouvemens de ttansport ou
de flexion qui sont produits par les petites oscillations moléculaires. 1l
faudrait donc rechercher quelle est la nature de ces mouvemens secon-
daires dans les différentes espéces de corps, selon que les molécules
oscillent dans une direction ou dans une autre. Il est clair que puisque
ces diverses espices de mouvemens généraux sont produits par une
méme cause, elles doivent avoir un lieu entre elles, et qu’on ne doit pas
les isoler en cherchant & en découvrir la nature ; c’est pourquoi je les
considérerai toutes en méme temps dans la section suivante. (p. 177.)
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[327.] The second section is occupied with the experimental
discovery of the nodal surfaces for vibrations of various kinds in
prisms of circular and rectangular section. This again appears to
me extremely suggestive. The section concludes with the state-
ment of seven general results. They are briefly the following :

(1). When a body gives a sound, there is always a molecular
movement, which is accompanied by particular phenomena ac-
cording to the direction in which it takes place relative to the
faces of the body. This is indisputable.

(i1). That in all cases of vibration the molecules move in
straight lines, en ligne droite, as ‘has been admitted in the case of
longitudinal vibration.” This seems to me less obvious,

(iil). That vibrations fournantes are only a particular case of
normal vibration. I do not feel convinced by Savart’s remarks on
this point.

(iv). When a body is in vibration there are always faces or
sides upon which the nodal lines do not correspond.

(¥). Dans les cylindres rigides pleins ou creux, dans les cordes qui
exécutent des vibrations longitudinales, il existe une suite de points
immobiles dont P'ensemble constitue une ligne de repos continue, qui
tourne en rampant autour du corps.

(vi). The laws of normal vibrations have been verified by ex-
periment, when the depth of the body examined is much greater
than its breadth.

(vii). Dans un systdme de corps disposés d’'une manidre quelconque,
toutes les molécules se meuvent suivant des droites paralltles entre elles
et & la droite suivant laquelle on proméne I'archet (i.e. direction of
excitation); ce qui conduit & considérer un tel systéme comme ne
formant qu’un seul corps, puisque les molécules 8’y meuvent de la méme
maniére: toutefois il est & remarquer que cela n'est vrai qu'autant que
les parties du systéme sont unies bien intimement entre elles.

For the reasons given above I am disinclined to accept this,

[328.] The mathematical reader of this as well as other of
Savart’s papers will be struck with the amount of theoretical
investigation still wanting in the theory of sound. Particularly I
may note the need for a full investigation of every kind of
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vibration of a rectangular plate or beam of non-homogeneous
elastic structure. This of course can only be investigated from
the general equations of elasticity.

[329.] Note sur les Modes de division des corps en vibration.
Annales, Tom. 36, pp. 384—393, 1826. There is an abridged
translation of this paper in the Edinburgh Journal of Science,
Vol. vi. pp. 204—209, 1827.

This note, like the last memoir, is concerned with the modes
of vibration possible to a solid body. The author shews that there
are an infinite number of nodal systems possible to a body,
corresponding either to free or forced vibrations. The memoir is
illustrated by series of gradually changing systems of nodal lines
for square and circular membranes, for square plates and for flat
rods. We may quote the first and last paragraphs as containing
the general conclusions which Savart draws from his experiments.

Les diverses recherches qu'on a faites jusqu'ici sur les modes de
division des corps qui résonnent, conduisent toutes & ce résultat, que
chaque corps d’une forme donnée est susceptible de se diviser en parties
vibrantes dont le nombre va toujours croissant suivant une certaine loi ;
de sorte que chaque corps ne peut produire qu’une série déterminée de
sons qui deviennent d’autant plus aigus que le nombre méme des parties
vibrantes est plus considérable. D’un autre c6té, c’est un fait que j’ai
établi par une foule d’expériences, que quand deux ou plusieurs corps
sont en contact, et qu’ils sont ébranlés I'un par l'autre, ils s'arrangent
toujours pour exécuter le méme nombre de vibrations; d'oti il semble
qu’on doive tirer cette conséquence, qu’il n’est pas vrai que les corps ne
soient susceptibles que d’'une certaine série déterminée de modes de
division, entre lesquels il n’y a pas d’intermédiaire, et qu'an contraire
ils en peuvent produire qui se transforment graduellement les uns dans
les autres: ce qui fait qu’ils sont aptes & exécuter des nombres quel-
conques de vibrations. J’ai pour but dans cette Note, de faire voir que
cette dernidre assertion est la seule qui soit conforme & la vérité.

Les divers résultats que contient cette note étant réunis, on peut en
déduire cette conséquence générale, que les modes de mouvement des
corps qui résonnent sont beaucoup plus variés qu’on ne Pa cru jusqu'ici ;
ct qu'on ne doit admettre I'existence des séries déterminées de sons pour
chaque corps d’'une forme donnée qu'avec cette. restriction importaute,
que le caractére propre des modes de subdivision doit demeurer le méme.
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[330.] Savart in this paper is really stating from experimental
considerations results which are easily deduced now-a-days from
the general theory of small oscillations. He does not in this note
however appear to distinguish clearly between the free and forced
oscillations of his vibrating body.

[331.] Mémoire sur un mouvement de rotation dont le systéme
des parties vibrantes de certains corps devient le sidge. This
memoir was read before the Academy of Sciences, July 30, 1827.
It is printed pp. 257—264 of Vol. 36 of the Annales, 1827. It
belongs properly to the Theory of Sound, and is concerned with
cases of the rotation of a system of nodal lines which has been
set up in a plate. The paper is, as one would expect from the
author, of considerable interest.

[332.] Recherches sur la structure des métaux. Annales, pp.
61—75, Tom. 41, 1829,

This contains an analysis of the structure of metals by means
of the nodal systems produced by the vibrations of circular
metallic plates. The author has much developed the method
in a memoir of 1830 to be referred to later. Although metals are
supposed among the most homogeneous of bodies, they act with
regard to sound vibrations as if they belonged to fibrous or
regularly crystallised substances. Savart deduces this result from
the facts that the nodal system composed of two crossed lines at
right angles cannot be made to take up any position in a cir-
cular metallic plate, and that laminae cut in different directions
from a block of metal do not present the same acoustic properties®.
Thus again there is a great difference between metal plates which
have been cast and those which have been cut from a block of metal.

Ces faits et beaucoup d’autres du méme genre que je pourrais
rapporter montrent nettement que les métaux ne possédent pas une
structure homogéne, mais qu'ils ne sont pas non plus cristallisés ré-
gulitrement. Il ne reste donc qu’une supposition & faire, c’est qu’ils
possédent une structure semi-régulidre, comme si, au moment de la

1 8ir William Thomson seems to have rediscovered this peculiarity, but attributes
the unique position of the quadrantal nodal lines to the plates used by him being

only approximately circular and symmetrical. Lectures on Blolecular Dynamics,
pp. 62—-04,
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solidification, il se formait dans leur intérieur plusieurs cristaux distincts,
d’un volume assez considérable, mais dont les faces homologues ne
sernient pas tournées vers les mémes points de I'espace. Dans cette
idée, les métaux seraient comme certains cristaux groupés, dont chacun,
considéré en particulier, offrc une structure réguliére, tandis que Ila
masge entiére parait tout-a-fait confuse.

This seems to some extent confirmed by the consideration of
bright lines in the spectrum of a simple metal.

[333.] Mémorire sur la réaction de torsion des lames et des
verges rigides. Annales pp. 373—397, Tom. 41, 1829.

This is an endeavour to extend experimentally the results
which Coulomb had obtained for the torsion of a wire; Poisson
had obtained theoretically like results for cylindrical rods in his
Mémoire sur Véquilibre et le mouvement des corps élastiques, and
Cauchy had extended his laws to rods of rectangular section: see
our Chap. V.

Savart proposes to verify the results of Poisson and Cauchy.
He refers in a footnote to Duleau’s experiments (Art. 229), but
holds them not to have been sufficiently general or conclusive.

[334.] After a general description of his apparatus in the
first section, the writer proceeds to detail his experiments on rods
of circular, square, rectangular and triangular section. On pp.
393 and 394, Savart states three experimental laws of torsion :

(i). Quelque soit le contour de la section transversale des verges
les arcs de torsion sont directement proportionnels au moment de la
force et & la longeur.

(ii). Lorsque les sections des verges sont semblables entre elles...
les arcs de torsion sont en raison inverse de la quatri¢me puissance des
dimensions linéaires de la section.

(iii). Lorsque les sections sont des rectangles et que les verges
possédent une élasticité uniforme dans tous les sens, les arcs de torsion
sont en raison inverse du produit des cubes des dimensions transversales,
divisé par la somme de leurs carrés; d’on il suit que, si la largeur est
trés-grande relativement 4 'épaisseur, les arcs de torsion seront sensible-
ment en raison inverse de la largeur et du cube de l'épaisseur, lois qui
sont encore vraies dans le cas ou D'élasticité n’est pas la méme dans
toutes les directions.
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These laws, Savart holds, are completely in accord with the
theory of Poisson and Cauchy:—

On peut méme ajouter que le calcul ne s'est jamais mieux accordé
avec D’expérience qu’il ne le fait en cette circonstance. (See however
Art. 398)

The memoir concludes with a few experiments and remarks on
the relation of heat to the torsional resistance of bodies.

[835.] Recherches sur Uélasticité des corps qui cristallisent
régulidrement. Mémoires de U Académie de France, Tom. 1X., Paris,
1830. An abridgment of this paper appeared earlier in the
Annales de Chimie, Tom. 40, Paris, 1829, and a translation
in Taylor's Scientific Memoirs, Vol 1, 1837, pp. 139—152 and
pp. 255—268. See also the Edinburgh Journal of Science, 1.,
1829, pp. 206—247.

[836.] The author commences his memoir by remarking that
precise notions of the inner structure of bodies have hitherto been
obtained by two methods, (i) by the cleavage for substances which
crystallise regularly whether transparent or opaque, (ii) for
transparent bodies only, by the modifications they produce in
the propagation of light. Although many new conceptions have
been obtained by these methods yet the author considers that that
part of physics which treats of the arrangement of the particles
of bodies, and of the properties which result from them, such as
elasticity, hardness, fragility, malleability, etc., is still in its infancy.

Les travaux de Chladni sur les modes de vibrations des lames de
verre ou de métal, et les recherches que j'ai publiées sur le méme sujet
sartout celles qui se rapportent aux modes de division des disques de
substance fibreuse, comme le bois, permettaient de soupgonner qu’on
parviendrait, par ce moyen, & acquérir des notions nouvelles sur la
distribution de I'élasticité dans les corps solides; mais on ne voyait pas
nettement par quel procédé Pon pourrait arriver & ce résultat, quoique
la marche qu’il fullait suivre fiitt d’une grande simplicité.

Toutefois, st ce mode d'expérience, dont nous allons donner la
description, est simple en lui-méme, il ne laisse pas cependant de
s'environner d'une foule de difficultés de détail qui ne pourront étre levées
qu’aprés de nombreuses tentatives, et qui, je I'espire, serviront d’excuse
l’nmpert‘ect.lon de ces recherches, que je ne donne d'ailleurs que comme
les premiers rudiments d’un travail plus étendu.
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[837.] It will thus be seen that Savart proposes to investigate
the elasticity of crystals, by considering the Chladni figures,
which arise from the vibrations of laminae cut from them in
various directions of section. His method, which seems to me
of very considerable value, is explained in the first section of the
memoir and is based upon the following train of argument. If a
circular plate of uniform thickness and elasticity uniform in all
directions be set vibrating, a certain system of circular and
diametral nodal lines will be produced. This nodal system owing
to the symmetry in form and structure of the plate will be quite
independent of the place of excitation, so long as it remains at the
same distance from the centre. The same nodal system is capable
of taking up successive pdsitions all round the plate. If now the
plate, still remaining circular and of equal thickness, have not the
same degree of elasticity in different directions, it will become
impossible to shift the same nodal system into a continuous series
of positions round the plate. It is found that there are two
positions and two only in which the same mode of excitement
relative to the centre produces like nodal systems. Intermediate
nodal systems vary more or less from these like systems. This
immoveability of nodal figures and the double position they can
assume are distinctive characters of circular plates, all the diameters
of which do not possess a uniform elasticity.

[338.] We have thus a method of analysing the character of
the structure of a body. Savart remarks that he has not found
any body in which the same nodal figure can take up all positions,
and this seems to him to indicate that there are very few bodies
which possess the same properties in all directions.

The author proposes to commence by analysing a simple body,
and having ascertained the laws connecting the nodal lines with
the axes of elasticity in such a case to proceed to the more
complicated phenomena presented by regular crystals.

[339.] In the second section of his memoir he analyses wood by
means of the nodal lines presented by plates cut in different
directions. In the case of wood, if we take a small block near
the surface of a tree, the ligneous layers may be considered

1 As to the correctness of this deduction see however the footnote, p. 173,
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sensibly plane, hence there are three rectangular directions of
varying elasticity, i.e. in the direction of the fibres, in the direction
of the ligneous layer and perpendicular to the fibres, and lastly in
the direction perpendicular to the fibres and to the ligneous layer.
Five series of circular plates are then cut from wood in various
directions of section, and the resulting vibrations and nodal lines
described and figured at considerable length.

[340.] Savart draws the following conclusions with regard to
bodies having three rectangular axes of elasticity (p. 427):

(i). Lorsque I'un des axes d’élasticité se trouve dans le plan de
la lame, 'une des figures nodales se compose toujours de deux lignes
droites qui se coupent A angle droit, et dont I'une se place constamment
sur la direction méme de cet axe; l'autre figure est alors formée par
deux courbes qui ressemblent aux branches d'une hyperbole.

(ii). Lorsque la lame ne contient aucun des axes dans son plan, les
deux figures nodales sont constamment des courbes hyperboliques;
jamais il n’entre de lignes droites dans leur composition.

(iii). Les nombres des vibrations qui accompagnent chaque mode
de division sont, en général, d’autant plus €levés que l'inclinaison de la
lame sur I'axe de plus grande élasticité devient moindre.

(iv). Lalame qui donne le son le plus aigu, ou qui est susceptible de
produire le plus grand nombre de vibrations, est celle qui contient dans
son plan l'axe de plus grande élasticité et celui de moyenne élasticité.

(v). La lame qui est perpendiculaire 4 'axe de plus grande élasticité
est celle qui fait entendre le son le plus grave, ou qui est susceptible de
produire le plus petit nombre de vibrations.

(vi). Quand Pun des axes est dans le plan de la lame, et que
I’élasticité dans le sens perpendiculaire & cet axe est égale 4 celle
qu'il posstde lui-méme, les deux systdmes nodaux sont semblables;
ils se composent chacun de deux lignes droites qui se coupent
rectangulairement, et ils se placent & 45° I'un de l'autre. Il n'y a, dans
un corps qui possdde trois axes inégaux d'élasticité, que deux plans
qui jouissent de cette propriété.:

(vii). Le premier axe des courbes nodales se placent toujours suivant
la direction de la moindre résistance & la flexion, il suit de l& que,
quand dans une série de lames cet axe se place dans la direction occupée
d'abord par le second, c’est que, suivant cette derniére direction,
Pélasticité est devenue relativement moindre que dans l'autre.

T. E. 12
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(viii). Dans un corps qui posséde trois axes inégaux d’élasticité il y a
quatre plans pour lesquels Vélasticité est distribuée de telle manitre que
les deux sons des lames paralltles 4 ces plans deviennent égaux, et que
les deux modes de division se transforment graduellement l'un dans
l'autre, en tournant autour de deux points fixes que pour cette raison
Y’ai appelés centres nodaus.

(ix). Lesnombres des vibrations ne sont liés qu’indirectement avec
les modes de division, puisque deux figures nodales semblables
g'accompagnent de sons trés-différents; tandis que, d’un autre c6té, les
mémes sons sont produits & 'occasion de figures trds-différentes.

(x). Enfin une conséquence plus générale qu'on peut tirer des
différents faits que nous venons d’examiner, c’est que quand une
lame circulaire ne jouit pas des mémes propriétés dans toutes les
directions, ou en d’autres termes, quand les parties qui la constituent ne
sont pas arrangées symétriquement autour de son centre, les modes
de division dont elle est susceptible affectent des positions déterminées
par la structure méme du corps; et que chaque mode de division
considéré en particulier, peut toujours, en subissant toutefois des
altérations plus ou moins considérables, s'établir dans deux positions
également déterminées, de sorte qu'on peut dire que, dans les lames
circulaires hétérogénes, tous les modes de division sont doubles.

[341.] In the third section of the memoir the author, starting
from these data, attempts an analysis of rock crystal. We premise
that the rock-crystal is a hexahedral prism terminated by pyramids
with six faces; also that its primitive form is a rhombohedron such
as would be obtained were the crystal susceptible of cleavage
parallel to three non-adjacent pyramidal faces.

[342.] Savart’s results again seem of sufficient interest to be
cited at length. His résumé is given on p. 445:

(i), Lélasticité de toutes les diamétrales d’un plan quelconque
perpendiculaire & I'axe d'un prisme de cristal de roche, peut &tre
considérée comme étant sensiblement la méme.

(ii). Tous les plans paralltles & I'axe sont loin de posséder le méme
état €lastique; mais si 'on prend trois quelconques de ces plans, en
g'astreignant seulement & cette condition, que les angles qu’ils forment
entre eux soient égaux, alors leur état élastique est le méme.
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(iii). Les transformations des lignes nodales d’une série de lames
“taillées autour de 'une des arétes de la base du prisme sont tout-a-fait
analogues & celles qu’on observe dans une série de lames taillées autour
de Paxe intermédiaire dans les corps qui possddent trois axes inégaux et
rectangulaires d’élasticité.

(iv). Les transformations d'une série de lames perpendiculaires
4 I'un quelconque des trois plans qui passent par deux arétes opposées
de I'hexaidre sont, en général, analogues & celles d'une série de lames
taillées autour d’une ligne qui partage en deux parties égales I'angle
plan compris entre deux des trois axes d’élasticité dans les corps ol ces
axes sont inégaux et rectangulaires.

(v) Au moyen des figures acoustiques d'une lame talllée dans
un prisme de cristal de roche, 3 peu prés paralltlement A l'axe, et
non parallélement & deux faces de l'hexaddre, on peut toujours
distinguer quelles sont celles des faces de la pyramide qui sont
susceptibles de clivage. L'on peut encore arriver au méme résultat
par la disposition des modes de division d’une lame prise & peu prés
parallélement & I'une des faces de la pyramide.

(vi). Quelle que soit la direction des lames, 'axe optique ou sa
projection sur leur plan y occupe toujours une position qui est liée
intimement avec Yarrangement des lignes acoustiques: ainsi, par
exemple, dans toutes les lames taillées autour de 'une des arétes de
la base du prisme, I'axe optique ou ea projection correspond constam-
ment & 'une des deux droites qui composent le systéme nodal formé de
deux lignes qui se coupent rectangulairement.

[343.] Comparing these results with those derived from bodies
having three rectangular axes of elasticity, Savart concludes that
the rock-crystal has three axes of elasticity but that they are not
rectangular. He deduces that the axis of greatest elasticity (that
of greatest resistance to flexure) and that of intermediate elasticity
are perpendicular to each other and lie in the lozenge face of the
primitive rhombohedron, the smaller diagonal of the face being
the direction of the former axis; the axes of least and intermediate
elasticity are also perpendicular to each other and lie in the
diagonal plane through the shorter diagonal of the lozenge face
of the rhombohedron. Thus the angle between the axis of least
and greatest elasticity is equal to that between the face and
the diagonal plane of the rhombohedron, or to 57° 40’ 13”. (p. 448.)

12—2
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[344.] This analysis of rock-crystal is followed by a brief
discussion of carbonate of lime. The memoir concludes as follows:

Les recherches qui précédent sont loin, sans doute, de pouveir
étre considérées comme un travail complet sur 'état élastique du cristal
de roche et de la chaux carbonatée ; néanmoins nous espérons qu’elles
suffiront pour montrer que le mode d’expérience dont nous avons fait
usage pourra devenir, par la suite, un moyen puissant pour étudier
la structure des corps solides cristallisés régulidrement ou wméme
confusément. C’est ainsi, par exemple, que les relations qui existent
entre les modes de division et la forme primitive des cristaux per-
mettent de présumer qu'on pourra, par les vibrations sonores, dé-
terminer la forme primitive de certaines substances qui ne se prétent
nullement &4 une simple division mécanique. Il est également naturel
de penser que les notions moins imparfaites que celles qu'on possidde sur
Pétat élastique et de cohésion des cristaux, pourront jeter du jour
sur beaucoup de particularités de la cristallisation; par exemple, il
ne serait pas impossible que les degrés de I'élasticité d’'une substance
determinée ne fussent pas exactement les mémes, pour une méme
direction rapportée & la forme primitive, lorsque d'ailleurs la forme
secondaire est différente; et, s’il en était ainsi, comme quelques faits
m’induisent & le soupgonner, la détermination de D'état élastique des
cristaux conduirait & l'explication des phénoménes les plus compliqués
de la structure de ces corps. Enfin, il semble que la comparaison des
résultats fournis d’une part, par le moyen de la lumiére, touchant
la constitution des corps, et de l'autre, par le moyen des vibrations
sonores, doit nécessairement concourir aux progrés de la science de la
lumidre elle-méme, ainsi qu'a ceux de P’acoustique.

(345.] I have reproduced so much of this admirable paper
because its methods seem to me extremely suggestive. Their
fuller development should lead to increased knowledge of the part
the ether plays in the transmission of light through crystals,
whose elastic character had once been analysed by Savart’s
method. There ought not to be much difficulty in deducing
- Savart’s results theoretically, yet so far as I am aware the theory
of the vibratory motion of a plate of unequal elasticity has not yet
been discussed.

[346.) We may here mention two somewhat later memoirs
by Savart the date of which is somewhat later than that of our
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present chapter, but which are included here as belonging to the
same mode of investigation.

[347.] Recherches sur les vibrations longitudinales, pp. 337—
402 of the Annales de Chimie, Tom. 65, Paris, 1837.

This memoir is concerned with the nodal surfaces of rods
or bars which vibrate longitudinally. These rods or bars differ
from those usually considered in the theory of sound, in that their
section i8 of finite dimensions as compared with their length.

[348.] Savart remarks the following peculiarity of the nodal
lines :

Si les verges sont carrées ou bien cylindriques, il pourra arriver que
les lignes de repos soient disposées en hélice, tournant tantét de droite &
gauche, tantoét de gauche & droite d’un bout & I'autre des verges, ou bien
tournant dans un sens pour I'une des moitiés de la longueur, et en sens
contraire pour Pautre moitié.

Cette disposition alterne des lignes nodales n’existe pas seulement
dans les corps qui sont alongés et qui vibrent dans le sens de leur
plus grande dimension : on I'observe aussi dans les corps dont les trois
dimensions sont entre elles dans un rapport quelconque, mais seulement
pour celle de ces dimensions qui est paralléle 3 la direction du mouve-
ment. Elle existe également dans les bandes et les cordes tendues ; dans
les verges fixées par une ou par deux extrémités, dans les verges
ébranlées en travers comme dans celles qui le sont longitudinalement.

[349.] The production of these nodal lines is susceptible of two
interpretations, either they are an inherent peculiarity of the
longitudinal vibrations of solid bodies, or they belong generally to
that kind of vibration which is produced by longitudinal motion.
Savart in the first part of his memoir endeavours to establish
the latter proposition, namely, he wishes to show that these nodal
lines are the result of a normal movement of a particular character
which is the product of the alternate contractions and dilatations
which accompany longitudinal motion.

In the second part of the memoir this normal movement,
established in the first, is considered for rigid bars of different
forms and for bands and cords stretched by weights. The third
part of the memoir is chiefly busied with the relation of tempera-
ture. tension, etc. upon the disposition of the nodal lines,
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[850.] Savart distinguishes (pp. 347—353) between trans-
verse vibrations which are the result of flexure and the normal
vibrations which accompany longitudinal vibrations; these latter
being the ottcome of alternate contractions and expansions. He
considers that the coexistence of the normal vibrations and of those
of contraction and dilatation in a rod vibrating longitudinally
must give rise to two sounds and only their isochronism hinders us
from distinguishing one from the other.

[851.] In his third section Savart compares the extension
produced by a weight and that produced by a longitudinal
vibration in a bar, and comes to the following conclusion :

La comparaison des alongemens des verges, par les vibrations
longitudinales et par des poids, montre qu'un léger ébranlement
moléculaire peut donner lieu 4 un développement de force qui parait
énorme en égard & la cause qui le produit, et qui est d’autant plus
extraordinaire qu’il semble proportionnel & I'aire de la section
des verges. (p. 402.)

This memoir, like all Savart’s work, is very suggestive for the
extension in various directions of the mathematical theory of
elasticity, especially that branch of it which falls under the Theory
of Sound. The author seems to me however to have deserted the
standpoint taken up by him in the memoir of 1822, see Articles
323—327.

[852.] Eaztrait dun Mémoire sur les modes de division des
plaques vibrantes. Annales, Tom. 73, pp. 225—273. 1840. There
is a footnote to this title as follows:

Tout ce qui a rapport, dans ce travail, aux modes de division
des plaques carrées et des plaques circulaires a 6t6 donné au cours
d’acoustique que j’ai fait au Collége de France en 1838 et 1839.
Un extrait de ce travail a été inséré, avec planches, dans le journal
intitulé IInstitut ol il a ét6 rendu compte du cours que jai fait
en 1839.

Savart commences with an eulogy of Chladni as the discoverer
of the nodal figures, but remarks that that distinguished physicist
has almost entirely confined himself to rectangular or circular
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plates. In the present memoir Savart proposes to consider plates
whose boundaries are squares, triangles, pentagons, hexagons,
heptagons, octagons, dodecagons, circles, ellipses, rectangles and
lozenges.

The nodal lines were obtained by scattering a colouring powder
on the plate and then, when the system had been formed, pressing
a sheet of paper slightly damped with gum-water on the top.
Over 1800 figures were obtained in this fashion.

The memoir is accompanied by numerous figures, and is
remarkable for its freshness and ingenuity. In conclusion we
must again point out the wide field for mathematical inves-
tigation which the verification of Savart’s experimental results
opens out.

[358.] The researches of Chladni and Savart on the nodal
figures of vibrating plates were taken up in Germany by
F. Strehlke, who contributed several papers to Poggendorff’s
Annalen on the subject. We notice them here only briefly, as
they belong rather to the history of acoustics.

[354.] Beobachtungen iiber die Klangfiguren auf ebenen nach
allen Dimensionen schwingenden homogenen Scheiben. Annalen der
Physik, Bd. 4, pp. 205—318. Leipzig, 1825.

Strehlke states two conclusions as the outcome of his experi-
mental investigations:

(i) Die Klangfiguren, oder die bei schwingenden Scheiben in
Rube bleibenden Stellen der Oberfliche sind nicht gerade, sondern
stets krumme Linien, aber Linien im Sinne der Geometrie, keine Flichen.

(ii) Diese Linien durchschneiden sich nicht.

[355.] These conclusions do not appear to be sufficiently
proved, and Chladni at once objected to them. To Chladni’s
objections Strehlke replied in a memoir entitled :

Ueber Klangfiguren auf Quadratscheiben. Annalen der Physik,
Bd. 18, pp. 198—225, 1830. In this memoir he makes more
accurate measurements of the position of the nodal lines and tries
to represent them by means of conic sections. That their forms
are not those of the conic sections is now known, and his results
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are not satisfactory; still less do they conclusively prove that
nodal lines never cut each other.

Other later papers by Strehlke may be conveniently referred to
here.

[856.] Ueber die Lage der Schwingungsknoten auf elastischen
geraden Staben, welche transversal schwingen, wenn beide Enden frei
sind. Annalen der Physik, Bd. 27, pp. 505—542. Leipzig, 1833.

This paper is an extension of the results of Daniel Bernoulli
and Giordano Riccati (see Arts. 50 and 121). The latter had
determined the position of the nodes for the first modes of
vibration, the present memoir proposes to give formulae for the
distance of the nodes from the nearest end of the rod, whatever
their number may be.

The equation for the distance s of the nodes from one end of a
rod free at both ends, is

é’cosa+e ""(j:l—-sma)_'_(il cos a) sin (8/c)
cosa—sina +1 sina

0=

where ¢ is a constant dependmg on the length, material and
elasticity of the rod, and « is a root of the equation

cosa = 2/(e* +e~%).
It'is next shewn that s is approximately a root of the equation
e~*l° — gin (8/c) + cos (8/c) = 0.
Strehlke then calculates the roots of this equation approxi-
mately. The values calculated for the position of the nodes are

afterwards compared with experimental results, and found in close
accordance.

[857.] A Nachtragin Bd. XXvIIL, p. 512 of the 4nnalen, 1833,
makes a few numerical corrections. It also contains a table of the
values of s for the first twelve modes of vibration.

[858.] Ueber Biot's Behauptung, Galilds sey der erste Entdecker
der Klangfiguren. Annalen der Physik, Bd. 43, pp. 521—527.
Leipzig, 1838.

Biot had asserted in his Experimental Physics (Part 1., p. 388),
that Galilei was the discoverer of the method of investigating the
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nodal lines of vibrating bodies by means of sand. He refers only
to Galilei’s Dialogr. Strehlke, examining passages in that work
which may possibly refer to the subject, dismisses his claim entirely,
and thereby reinstates Chladni as the real discoverer.

[359.] Ueber die Schuringungen homogener elastischer Scheiben.
Annalen der Physik, Bd. xcv., pp. 577—602. Leipzig, 1855.

This memoir commences with a reference to a paper of
Lissajous (to which we shall refer later) confirming Strehlke’s
results of 1833, and extending them to other cases of the vibratory
motion of a rod. The substance however of the memoir is a com-
parison of the theoretical results of Kirchhoff for the nodal lines of
a vibrating circular plate, with experimental measurements; a like
comparison is also made for a square plate. References are given
to several papers on the same subject, some of which we shall
consider in their places, others would carry us too far into the
theory of sound : see Articles 512—520.

(360]. We may mention finally a short note by Strehlke on
pp- 319 and 320 of the Annalen der Physik, Bd. cxLvL Leipzig,
1872. It is a reprint from the programme of the Petrisschule in
Dantzig for 1871. It points out the incorrect shapes of the
Chladni figures given by recent French and English writers,
notably Tyndall in his well-known book on Sound.

361. Paoli. Ricerche sul moto molecolare de’ solidi di D.
Paoli. Pesaro, 1825. This is an octavo volume of XXIII + 350
pages, together with a page of corrections. It is not connected
with our subject; there are no mathematical investigations; the
author’s design seems to be to shew that all bodies, mineral as
well as vegetable, possess a life analogous to that of animals. I
have not studied the work.

There is a review of the book by G. Belli in the Giornale di
Fisica, Chimica,...Decade 1L, Tomo IX., Pavia, 1826; the review
occupies pages 167—171 and 322—334 of the volume. The
review speaks well of the work on the whole, especially for its
collection of facts; but it expresses the hope that if a new edition
is issued all the doubtful statements may be collected together, so
that the rest of the work may be left unaffected by the incredulity
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which these are likely to provoke. Belli adverts to his memoir of
1814, and says that he was then ignorant of the experiment of
Cavendish and of the observations of Maskelyne: see our Art. 166.
He promises to return very soon to the question whether molecular
action can be made to depend on universal attraction: but his
next contribution to our subject did not appear until 1832. It
will be considered later.

362. A work was published at Milan in 1825 entitled :
Sull  applicazione dé princip) della Meccanica Analitica del
Lagrange at principali problemi Memoria di Gabrio Piola. This
memoir obtained a prize from the Imperial and Royal Institute of
Sciences. Piola alludes to elastic curves on his pages 170—178,
but there is nothing really bearing on our subject; he notices on
his pages 175 and 178 the correction which Binet had made of an
error in Lagrange : see Art. 159 of the account of Lagrange.

The subject of virtual velocities was proposed for a prize by
the Academy of Turin in 1809; and an essay written in com-
petition for the prize by J. F. Servois is published on pages 177—
244 of the mathematical part of the volume of the Turin Memoirs
for 1809—1810.

(363.] 1827. P. Lagerhjelm. This Swedish physicist under-
took for the Bruks-Societet of Stockholm a long and interesting
series of experiments on the density, elasticity, malleability and
strength of cast and wrought iron. His results are published in
the Jern-Contorets Annaler ; Tionde Argdngen. Sednare Haftet,
1826. They are entitled : Forsok att bestimma valsadt och smidt
stdngjerns tithet, jemnhet, spanstighet, smidbarhet och styrka, and
dated 1827. They occupy 287 octavo pages. A German trans-
lation by Dr F. W. Pfaff appeared in Niirnberg in 1829'. Pre-
viously a short account of Lagerhjelm’s results had been given in
Poggendorff’s Annalen der Physik und Chemie, Bd. 13, p. 404,
1828, and some remarks of Lagerhjelm’s upon this account appear
as a letter to the editor on p. 348 of Bd. XVIL of the same periodi-
cal. A fairly good account will also be found in Férussac's Bulletin .
des Sciences Technologiques, t. 11, p. 41, 1829.

1 Neither the British Museum nor the Institution of Civil Engineers possess a
copy of this translation,
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[364.] Lagerhjelm adopted, I believe for the first time, a test-
ing machine involving the hydraulic press and balanced lever. His
results are principally of practical value, although he shews an
acquaintance with the theoretical work of Young, as well as with
such books as those of Tredgold, Duleau and Eytelwein. Some
of his statements seem however to bear so closely upon the phy-
sical structure of bodies, that it will not be out of place to repro-
duce them here. I shall make use of the analysis of the more
interesting points provided by Poggendorff.

[865.] If a bar be fixed at one end and subject to an extending
force at the other, the limit to which it can be extended without
permanent set is termed the limit of elasticity. If C be the ex-
tension of the bar when this limit is reached, and A the extension
when the bar breaks, Lagerhjelm finds that C¥/A is constant.

The quantity C seems to have been measured by deflection ex-
periments: see p. 248 of the Forsok att bestdimma. I have not
found any later confirmation of this result.

[366.] A further very remarkable result is that all sorts of
iron, hard, soft or brittle, appear ¢ within the limits’ of elasticity to
possess the same degree of elasticity, i.e. the modulus of elasticity
is the same for all of them®’. Thus the tempering or hardening
of steel does not alter its modulus. Two tuning forks of like
dimensions which gave the same note, also gave the same note
after one had been hardened. Lagerhjelm himself adds to this (Bd.
XVIL, p. 349) that wrought iron and steel possess the same modulus.

[367.] The experimenter found a slight apparent variation in
the modulus as the limits of elasticity were approached. Hence it
would seem that in that neighbourhood Hooke’s law is not abso-
lutely true.

The limit of elasticity depends on the character of the iron,
and is greater for hard iron than soft although the modulus of
both is the same. This remark applies also to the absolute
strength (breaking weight) of the material which increases with
the limit of elasticity, and according to Lagerhjelm is nearly
proportional to it.

' This result is practically confirmed by more recent experiments.
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If a beam or wire be subject to tension, which produces a
permanent extension, its limit of elasticity is increased, and in
proportion to its diameter it possesses a greater absolute strength.

[368.] An interesting property with regard to specific weight
of an iron bar extended to rupture is noticed. Namely that the
specific weight of the material at the point of rupture, that is
where it has been most extended, is smaller than at other places.
Thus a ‘permanent set’ produces an increase of volume. The
writer in Poggendorff here refers to a mathematical investigation
by Poisson in the previous volume of the same periodical (p. 516).
The note there printed is a translation of a Note sur IEztension
des Fils et des Plaques élastiques; by Poisson in Tom. 36 of the
Annales de Chimie et de Physique, p. 384. Paris, 1827. The
following is the important part of this note:

Soit @ la longueur d’un fil élastique qui ait partout la méme
épaisseur; soit b 'aire de la section normale & sa longueur, et par
conséquent ab son volume, Supposons qu'on lui fasse subir une petite
extension, de sorte que sa longueur devienne a (1l +a), a étant une
trés-petite fraction ; en méme temps le fil s'amincira: et si nous désignons
par b (1 — B) ce que deviendra l'aire de la section normale, 8 étant aussi
une trés-petite fraction, son nouveau volume sera & tris-peu prés
ab(l+a—pB). Or, daprés la théorie des corps élastiques que j'exposerai
dans un prochain mémoire, on doit avoir 8= }a, d’od il résulte que
par lextension a d’'un fil élastique, son volume se trouve augmenté,
suivant le rapport de 1 + }a & Y'unité, et sa densité diminuée suivant le
rapport inverse.

Poisson quotes an experiment on the point by Cagniard Latour.

[369.] With regard however to this note of Poisson’s it must
be remarked that he supposes 8 =3a from a theory of elasticity,
but in the case of rupture of a bar, we have long passed the limits
of elasticity; in fact the section of the bar does not uniformly
diminish but it reaches what is a condition of flow or plasticity,
namely it draws out at some point, often very considerably, before
rupture’.

1 Some experiments by McFarlane on the augmentation of density by traction
are mentioned by Sir William Thomson in his article on Elasticity, § 8. Encycl.

Brit,




LAGERHJELM. BEVAN. 189

[870.] Finally we may note that Lagerhjelm has attempted a
comparison of the modulus of elasticity as found from the velocity
of sound in metals with that derived from the extension or flexure
of metal bars. The velocity itself is calculated from the note of a
bar vibrating longitudinally. The two values of the moduli as cal-
culated for iron, copper and silver from these methods are
extremely close. Thus the modulus for iron as obtained by
Lagerhjelm from experiments on its extensibility, etc., was about
1070, but as calculated from Savart’s experiments on the notes of
iron bars it was 1033.

[871.] 1826—29. Benjamin Bevan. There is a series of
short experimental papers by this author in the Philosophical
Transactions and the Philosophical Magazine.

[372.] Account of an experiment on the elasticity of we. Phal.
Trans., 1826, pp. 304—6. This is a letter to Dr Young with a
note attached by the latter physicist on the modulus of ice.
Bevan's experiments to determine the modulus were made upon
ice-beams subject to transverse strain. Adopting Young's defini-
tion of the modulus, he finds that its value for ice = 2,100,000 feet’,
He then compares this with the modulus for water calculated
from Young’s account of Canton’s experiments on its compression.
This modulus he reckons to be 2,178,000 feet, which agrees pretty
closely with his own experiments on ice, Dr Young remarks in his
footnote that :

It does not appear quite clear from reasoning that the modulus
ought to come out different in experiments on solids and fluids; for
though the linear compression in a fluid may be only } as much as in a
solid, yet the number of particles acting in any given section must be
greater in the duplicate ratio of this compression, and ought apparently
to make up the same resistance. And in a single experiment made
bastily some years ago on the sound yielded by a piece of ice, the
modulus did appear to be about 800,000 feet only: but the presumption
of accuracy is the greater in this case the higher the modulus appears,

1 8ir William Thomson in his Art. Elasticity, § 77, gives ice a modulus ten
times too great. ' The error is repeated in Thomson and Tait’s Natural Philosophy,
Ast, 686. Some interesting experiments a8 to the bending of ice bars with valuable
references are given by Prof. Morgan in Nature, May 7th, 1885.
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Both Young and Bevan seem to have been quite unconscious
of any distinction to be drawn between a fluid subject to comx-
pression and a solid subject to traction. The traction modulus is
essentially zero for the former.

[373.] On the adhesion of glue, p. 111; On the strength of
bone, p. 181 ; On the strength of cohesion of wood, p. 269 and p. 343.
These four short papers are in the Philosophical Magazine,
Vol. Lxvin. London, 1826.

[874.] Bevan finds that the actual cohesion of glue is some-
thing greater than 715 pounds to the square inch, when a thin
coat is placed between two surfaces. This he remarks is greater
than the lateral cohesion of fir wood; this cohesion being only
562 pounds to the square inch according to an experiment of his
own. He finds from an experiment on solid glue that its cohesion
is 4000 lbs. to the square inch, ‘from which it may be inferred
that the application of this substance as a cement is susceptible of
improvement.’

[875.] In his experiments on bones, Bevan obtains results
which are much in excess of those of Musschenbroek. Thus fresh
mutton bone supported 40,000 lbs. to the sq. inch, while the
modulus of elasticity for beef-bone was found to be 2,320,000
pounds.

A substance like bone, so universally abounding, possessing such
great strength, and considerable flexibility, ought to be restored to ite
proper place in the scale of bodies, applicable to so many purposes in
the arts.

[376.] The paper on bone leads up to those on wood by a
criticism of Barlow’s apparatus and experiments, which the author
thinks liable to objection. The two papers on wood contain only
the results of experiment on the cohesion of various kinds, without
detail of the individual experiments.

[377.] Ezperiments on the cohesion of cast-vron. Philosophical
Magazine, New Series. Vol 1., p. 14. Loundon, 1827. This paper
corrects an error in the last paper of the preceding year and
notes the irregular results of experiments on cast iron bars.
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[378.] Experiments on the Modulus of Torsion. Phil. Trans.
p. 127. 1829. Bevan remarks that numerous experiments have
been made on the strength of wood and other substances as far as
regards their cohesion and elasticity, but he knows of no exten-
sive table of the modulus of torsion for different kinds of wood.
This he has endeavoured to supply in the present paper.
: He states, without proof, the following rule;

To find the deflection 8 of a prismatic shaft of length !/, when
strained by a given force w in pounds avoirdupois acting at right
angles to the axis of the prism, and by a leverage of given length =r;
the side of the square shaft=d. T being the modulus of torsion from
the following table; !, r, 8 and d being in inches and decimals:—

rlo

= =8

ar

The modulus of torsion thus appears to be a weight divided by
an area, or a surface pressure according to Bevan’s notation.

[379.] Bevan draws two results from his tables for the
modulus.

(1) That the modulus of torsion bears a near relation to the
weight of the wood when dry, whatever may be the species. If s be
the specific gravity, he finds that for practical purposes we may take

'3‘05(5&% =39, or T =30000.s.

(2) From some experiments on the modulus of torsion of
metals, he finds that for metallic-substances the modulus of torsion
is about 1/16 of the modulus of elasticity.

It may be noted that the meaning Bevan gives to the term
modulus fluctuates from Young’s definition to the more modern
conception of it as a weight.

380. PAGANL. Mémoire sur Uéquilibre des systémes flexibles,
par M. Pagani. This is published in the Nouveauz Mémoires de
UAcadémie. ..de Bruzelles, Vol. 4,1827 ; it occupies pages 193—244
of the volume. The memoir was read on the 24th of Feb. 1827.

In the preamble the author alludes to the equation of a
flexible surface in equilibrium, given by Lagrange in the second
edition of the Mécanique Analytique, to the memoir of 1814 by



192 PAGANI.

Poisson, and to the memoir of Cisa de Gresy. Pagani then
divides his memoir into parts; in the first part he treats of linear
flexible systems, and in the second part of superficial flexible
systems.

381. The first part of the memoir is substantially a discussion
of the well-known mechanical problem of the equilibrium of a
funicular polygon ; it occupies pages 197—221 of the volume ; this
presents nothing of importance. Two particular cases are treated
separately which may easily be reduced to one. First suppose the
system to be composed of rigid straight rods, without weight,
hinged together, and let a weight m be suspended at each hinge;
next suppose each rod to weigh m. Now Pagani supposes, quite
Jjustly, that we may take the weight of each rod to act at its middle
point ; but instead of this he might suppose the weight §m’ to be
placed at each end, and then the second case becomes practically
the same as the first. Then a result which he obtains on pages
217—220, and which he calls assez remarquable, is obviously
included in what he had previously given.

382. The second part of the memoir occupies pages 221—
244 ; this treats of the equilibrium of a flexible membrane. Two
investigations are given; the first is based on ordinary statical
principles, and resembles that adopted by Poisson in his memoir of
1814, but is not completely worked out; the second uses the
Calculus of Variations, and to this we shall confine ourselves as it
presents a little novelty.

383. De Gresy maintained that Poisson’s solution of the
problem in 1814 was not general, but involved a certain limitation;
Pagani holds that the solution was general, and proposes to obtain
Poisson’s result by the aid of a method resembling Lagrange’s; the
difference between Lagrange and Pagani we will now state.

Let dm stand for an element of surface, that is for

dady JI+0"+¢';
then Lagrange takes as the type of virtual moments
(X8x + Y3y + Z82) dm + Fodm,

where F is an undetermined multiplier.
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Pagani in effect says that the type should be
(X8 + Y8y+Z&)dm+F%dx+G
where ¥ and G are undetermined multipliers.

Then in each case the solution is to be obtained by making the
sum of such virtual moments vanish. Pagani’s statement as to
the proper type for the virtual moments seems to me quite
arbitrary.

884, Starting with this assumption, Pagani works out the
problem and obtains three general equations referred to rectangular
coordinates, which coincide with those in Poisson’s memoir of
1814. Then he gives a second investigation in which he uses the
ordinary polar coordinates in space instead of the ordinary rect-
angular coordinates.

385. Note sur le mouvement wibratoire d'une membrane édlasti-
que de forme circulaire; lue & I’Académie Royale des Sciences
de Bruxelles le 1 Mai, 1829, par M. Pagani. This is published in

Quetelet’s Correspondance Mathématique et Physique, Vol. v., 1829,
pages 227—231, and Vol. v1., 1830, pages 25—31.

386. The object of this memoir is the discussion of those vibra-
tions of the membrane which are performed in the direction of the
normal to the plane of the membrane in equilibrium. Pagani
starts with the differential equation—

d'z & 'z 1dz 1d'z
a8= (7 r dr r'dﬂ')

He does not say from what source he takes this, but, probably
it is from Poisson’s memoir of April, 1828. In the example which
Poisson considered in detail he supposed s a function of 7 only, so
that the term d'z/d@* vanished ; thus the problem as discussed by
Pagani is more gemeral than that to which Poisson confined
himself; see Art. 472, page 241. :

387. We have to find 2z from equation (1) subject to the
following conditions :

2 =0 when r = g, the radlus of the membrane......(2),
T. E. 13

dém

@y
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e=¢(r,0) and & =+ (r,0), whent=0............ 3),

where ¢ and Y+ denote known functions.

Suppose z=1I (r, 6, t) to be a value of # which satisfies (1);
we may by Fourier's Theorem develop this in the form

PR 1O Y 45 O <O R 4),
where . = cos nd f:'n (r, 6, 1) cosnd df

+sin nof" 0 (r, 6, ) sinnd d6... (5).
(1]

Put for 2 in (1) the series (4); then we obtain & series of
differential equations of which the type is

(d’C.. 1dg, ’é’.

r dr

‘We can satisfy this differential equation by supposing

& = (4 coscut + Bsincut)t...ccceueennnnn.e. (6),
where 4 and B denote functions of 6, and u a constant, all at
present undetermined, and « is a function of r which satisfies the
differential equation

n 1d 1 du
(17——1) P R - .

For the integral of this equation Pagani refers to a memoir by
Poisson in Cahier XIx. of the Journal de I Ecole Polytechnique. 1Tt
will be sufficient for us to cite formulae now to be found in
elementary books. If we put & for ur the equation (7) coincides
with that satisfied by Bessel's Functions: see Art. 370 of my
Laplace’s Functions. Hence by Art. 371 of that work we have as
a solution of (7)— :

where flur)= f: 008 (008 @) 8™ 0 AW <.erceven. ).
In order to satisfy the condition (2) we put

f. cos (ua cosw) sBin™ wdw =0.....c...c0nrun.enn. (10),
[}
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and from this equation we must find the possible values of u a
constant at present undetermined.

We may substitute in (6) all the different values thus found
for g, combining the values which differ only in sign; then we

may write
L, =3 (A4, coscut + B, sincut) rf (ur)......... (11),

where 2 denotes a summation extending to all the positive values
of u found from (10); also 4, and B, denote functions of x at
present undetermined.

388. The value of ¢ will be completely determined when
we know the value of 4, and of B,.

Suppose ¢ = 0; then by (11), (5) and the first of (3), we have

ar 3 A, f(ur) = oosnaj‘:. ¢ (7, 6) cosnfd@

+sinnd fo".p(r, 9) sinnfde .....(12). -

Again, differentiate (11) and (5) with respect to ¢, and then put
t=0; thus by the second of (3) we get—

opr™ 3 B, f (ur) = cosnd | :' ¥ (r, 6) cosnddo

From these equations (12) and (13) we shall be able to deter-
mine separately the quantities of which 4, and B, are the types,
a8 we will now shew.

389. Let u, be another root of (10), the square of which
differs from u* and w, the corresponding solution of (7); then it
may be shewn that :

L]
I uu, rdr=0,
0

and f : wtrdr=14 { atf (/ta)}, ,
13—2
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where £’ denotes the derived function of that denoted by f. These
two formulae are the same as equations (20) and (22) of Chapter
xxxvV. of my Laplace's Functions.

Hence it follows that if we multiply both sides of (12) and (13)
by »*! f (ur) dr and integrate between the limits 0 and a, we get

y N (14),

A Bp:c_[L_P .....................

=P
where

M= f: F(ur) dr{cosno [:' ¢ (r, 6) cosnddf
+ sinnd f:rcﬁ(r, 0) sinnd dO},
N= [:fgw) o dr{oosnof:'qf(r, 6) coand df | 15).

+sin'n0]:'\]r(r,0)sinn0d02,

P=ar G}

Thus §, is known, and we have for the complete integral of (1),
subject to the conditions (2) and (3),

=35+ 8. ......... cerrsenenanecesso(16),

where S denotes a summation with respect to n from unity to
infinity.

Pagani applies his general formulae to special cases, in all of
which it is supposed that the membrane is originally plane.

390. Suppose then that ¢ (r, ) =0, so that the membrane
is originally plane. In this case we have from (16):

:=;—02 PNT?.f(M') sincpt+%81’2£2,f(yr)aincﬂ... an,

when f(ur), N, and P are to be determined from (9) and (15);
also N, and P, indicate the values of N and P respectively when
n is made zero. = denotes a summation with respect to the
values of u furnished by (10), and S denotes a summation with
respect to n from unity to infinity.
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391, Let us suppose the initial velocity to be a function of r
only, 8o that ¥ (r, §) may be replaced by F (r). Since [:' sinnf 46
vanishes for every value of n, and j:' coand d@ also vanishes, except
when =0, we get
2 in cut [
-2 zf"‘—’,)‘z,‘."—“-‘ [RLCY P —t
where f(ur) is given by

Fur)= f:cos(prcosw)dm .............. )
and p is to be determined by
0= f:oos (4 008 @) A, +.verrrrrrrrnrrn. (20)

also C is put for f (ua).

The values of u found from (20) will not be commensurable,
and then the various terms in (18) will not vanish simultaneously,
except for ¢ = 0; thus the sound produced by the membrane will
not be unique, unless F'(r) be such that (18) reduces to a single
term. Suppose it does reduce, so that

-2 S (pr) sincut ('") “““’"‘ f F() f(ur)rdr.........21).

Differentiate with respect to ¢, and then put ¢=0; thus we
oblain the initial value of the velocity, which by supposition is
F(r); so that—

F ) =L [* 7)) v

If we suppose F'(r)= Kf(ur), where K is any constant, this
equation is satisfied ; for we know, by Art. 389, that—

a 2 a’c’l
[[ =5 (o =25
_ Substitute in (21); then we obtain for determining the motion
on the supposition that initially 2 =0, and Z‘: =F(r),

z= P f (pr) sinept .ovvvviieiiniiinnnne (22).



198 PAGANT.

We see from (22) that z will vanish when f{ur) =0 whatever ¢
may be. Let p,, p,...... denote values of ua found from (20);
then there will be as many nodal circles as there are values of
less than a in the series p,/u,, p,/tty, Py/tiy---- -

892. Suppose that the initial velocity is equal to b for all
points of the membrane from the centre to a very small distance
h, and is zero for all other points. From (18) we have

r= o s LUD R (14 ) v,
Develope f(ur) in powers of r; then by (19) we have

8,
f(,n-)=-rr{1 ’“’+2’,”;, 2’”4:.6’“" ...... }
so that . ’h‘ 5
ff(p,r)rdr ‘ll'{2 4. 2, m ...... }.

Suppose h to be so small that we may neglect all the terms

of this series after the first; then we have
= TR 5. fur) sincpt
a%c pC*

It follows then from the analysis that if the membrane is
struck at the centre and within a small extent round the centre, it
will give out several sounds simultaneously. The gravest sound
will be that which corresponds to the least value of x, and only
two or three of the sounds will be appreciable.

393. We will now suppose that the function 4 (7, §) is equal
to the constant b for all values of r comprised between the limits
r" and 7", and for all values of 6 comprised between the limits O
and @'; and that it is zero for all points of the membrane not
within these limits; we will also assume that »"” — ' is very small.

By (15) we have:
”~ v 4
N, =b[ f )y dr { cos 8 " cosn6df + sinnd | sin nﬂda} .
0 0
Since 7" — 7’ is very small, we have approximately:

[ Wy e = (=201 ) 7,
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where p is some value intermediate between 7' and »”, and may be
supposed equal to (+' 4+")/2 =17, if #' be not zero. Thus

b, , (e .
No=_("=r)f(up) p™" {sinnd —sinn(d - 6)},
and again N=b =00 ) o0
Also P,= - ""’C" and therefore P, =3 a' CM

Substltute in the formula (17); then the result may be
expressed thus:

_2("—r) p[a L o) f )

sing,
ma'c 2 #,0% b

+£, sinf ~ sin(0 - 0)} 3 &Qf-?—‘ﬁ) sincy ¢

= {sm20 sin2(0 - 0)} 3 f ('u"p)f (ﬂ" sinept + ..oooeenens ] ,

where u_ denotes a value of p found from (10), and C denotes the
corresponding value of f'(ua); also 3 denotes the sum of all the
values found from (10).’
If p/a® is 80 small that we may reject all powers of it above
the first we get:
_be” —1’)P0' S (pop) f (uyr) sineut

wa’c 1O

Pagani remarks:
En comparant cette valeur de { avec celle de la formule (23), on voit

que les sons qu’elle rendrait seraient les mémes dans les deux cas,
quoique les circonférences nodales aient des rayons différens.

I do not see how these radii are different ; they are determined
with respect to (23) by the equation f(ur) =0, and in the present
case by the equation f (u,r) =0, which means precisely the same
thing. In fact if we suppose & =2w, p=(r"+7')/2, and " =0,
the present case coincides with that in (23).

394. Pagani finishes his memoir thus:

Nous terminerons cette note par la remarque que la série donnée par
I'équation (23), ainsi que les séries que nous fournissent les deux
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dernidres formules, ne pouvant &tre réduites & un seul terme, qu'en
négligeant ceux qui ont des valeurs comparables & celle du premier
terme dont la valeur est la plus grande ; la membrane fera entendre,
dans tous ces cas, outre le son fondamental qui est le méme, plusieurs
autres sons appréciables, lesquels n’étant pas harmoniques avec le
premier, causent cette singulidre sensation que l'on éprouve lorsqu’on
frappe d'un coup de baguette la caisse d’'un tambour. Ceci nous
explique ainsi pourquoi la corde d'un piano fait entendre un son
lorsqu’on la frappe d’un coup de marteam, tandis que la membrane du
tambour ne fait entendre qu'un bourdonnement, et enfin, pourquoi ce
bourdonnement est sensiblement le méme, soit que l'on frappe la
membrane au centre ou dans un autre endroit quelconque peu éloigné
de oe point.

895. Considérations sur les principes qus servent de fondement
d la théorie mathématique de Uéquilibre et du mouvement vibratoire
des corps solides élastiques ; par M. Pagani (Extrait d'un mémoire
lu le 5 décembre 1829, & I' Académie Royale des sciences). This
is published in Quetelet’'s Correspondance Mathématique et Phy-
sique, Vol. vL 1830, pp. 87—91.

The opening paragraphs explain the object of the Article.

M. Navier a donné, le premier, les équations fondamentales de
Péquilibre et du mouvement des corps solides élastiques. M. Poisson
est parvenu ensuite aux mémes équations dans un mémoire fort étendu,
ol 'on trouve plusieurs applications des formules générales (tom. v
des mémoires de I'Institut de France). Il s'est pourtant élevé une
contestation entre ces deux illustres académiciens au sujet du principe
qui leur a servi de base, et du mode que I'on a employé pour le traduire
en langage algébrique, »

Nous examinerons d’abord les principes et la marche adoptés par
les deux savans géomaétres, afin d’arriver, s'il est possible, & expliquer la
contradiction apparente des hypothéses et la coincidence remarquable
des résultats.

In this article Pagani shews that by adopting certain special
and arbitrary suppositions as to the nature of the molecular force
he can bring the hypotheses of Navier and Poisson into agree-
ment., I do not attach any importance to this article, and I
presume that the memoir of which it is an abstract has not been
published.
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896. Note sur Uéquilibre d'un systdme dont une pariie est
supposée inflexible et dont Tautre partie est flexsble et extensible.
This is published in the memoirs of the Academy of Brussels, Vol.
vOoL 1834, pp. 1—14. It does not relate to our subject but to
the well-known indeterminate problem of Statics, a simple example
of which occurs when a body is on a horizontal plane, and in
contact with it at more than three points. The subject was
much discussed in the early half of the century by various Italian
mathematicians: see for example Fusinieri, Ann. Scs. Lomb.
Venet. 11. 1832, pp. 298—304.

397. Mémoire sur Véquilibre des colonnes. This is published
in the Memorie della reale Accademsa...ds Torino, Vol. 1. 1839, pp.
355—371. The article is stated by the author to form a supple-
ment to the Note which we have mentioned in the preceding
Article. It has scarcely any connection with our subject, as
the author adopts nothing with respect to elasticity except a
portion of the ancient assumptions, such as will be found for
instance in the section on the equilibrium of an elastic rod
in Poisson’s Mécanique, Vol. 1. [He assumes for example the
neutral line of a beam under longitudinal stress to coincide with
the mean fibre: see p. 357 of the memoir.]

[398.] C.J. Hill. Disputatio Physica de elasticitate torsionis
in filis metallicis, Lundae, 1819. This tract was submitted by
by C. J. Hill and G. Lagergren. We have referred to it in
Art. 225, Pp. 1—3 contain dedications, 4—22 text, and 23—29
tables of experimental results.

The tract commences with a few remarks as to compression,
flexure and torsion, referring on these points respectively to the
experiments of ’s Gravesande, Bernoulli and Coulomb. The
authors propose to experiment on the laws of torsion by a
statical, as distinguished from Coulomb’s kinetic method, The
torsion balance adopted for this purpose is described in Art. 6.
If we lay any stress upon these experiments it would appear
that Coulomb’s rules are not so completely in agreement with the
phenomena of torsion as Coulomb himself and Savart (see Art. 334)
seem to have supposed.
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[399.] Tractatus Geometricus de curvarum quae ab elasticitate
nomen habent, theoria, aptissimoque construendarum modo...sub-
mattit Carolus Joh. Ds. Hill. Londini Gothorum, 1829, This
is a university dissertation of the Swedish type, in which the disser-
tation is the work of a Professor or some such person as Praeses.
The candidates for the degree or the Respondentes were probably
examined in the subject matter of the dissertation. Every eight
pages has a fresh title page with a different Respondens and
date. These title-pages do not mark any chapters or sections
of the work, but are placed in the middle of sentences. The
several Respondentes had the privilege of dedicating their respective
eight pages. . The tract concludes sbruptly with the end of the
third respondent’s eight pages. Poggendorff has no reference
either to this tract or to the one considered in the previous article.

[400.] The author proposes to treat those curves which
derive their name from elasticity with that fulness which has been
reached in the case of cycloids, catenaries, caustics, etc. He
lays down the scheme of his work as follows:

Primum igitur quaestionis de curvis elasticis historiolam breviter
exponamus ; deinde, cum omnes fere curvas, si placuerit, ut elasticas
spectare liceat, accuratius, quaenam praecipue hoc nomine sint in-
signiendae, definiamus; tum vero, priusquam ad harum theoriam atque
constructionem nos propius accingamus, aliqua, istis mox applicanda,
generalia de curvis analytice considerandis praecepta, itemque de
functionibus Ellipticis, quae quidem nostris curvis arctissime necti
constat, praemonere lubet.

[401.] The hustoriola contains an interesting remark on the
first statement of the elastic ‘curve for a heavy rod, which I
had not met with before :

Primius igitur, quoad resciverimus, hujusmodi problematis mentionem
focit anonymus quidam, qui Parisiis degens, doctis quidem omnibus,
praesertim vero iis qui illustrissimis, quae Parisiis atque Londoni florent,
Societatibus adseripti erant, celeberrimum illud proposuit his fere
verbis®*: ‘‘catenulae mediocriter flexilis, attamen realis (ideoque etiam
elasticae), utroque in limite clavis retentae, figuram, quam pondere
innato induat, curvam indagare.” Cui quaestioni cum statim haud
responsum fuisset idem eandem denuo proposuit, atque ad collectores
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Actorum Eruditorum transmisit®. Attamen quadriennium responsio
expectanda fuit: tum vero, idque eodem propemodum tempore, Clar.
tum D. Bernoulli tum L. Eulerus hujus problematis dederunt solutiones®,
easque egregie inter se convenientes.

s Journ. des Sav., 1728 p. 866. b Act. Erud. Lips., 1724, p. 866.
¢ Comm. Ac. Petro p., T. 1. p. 84. (1728).

[402.] The writer refers (p. 5) to Lagrange’s treatment of the
elastic lamina in the Mécanique Analytique (see our Art. 159),
and to his error with regard to the torsion. His equations are
thus only true for plane curves, and, when reduced to two co-
ordinates, agree with Euler's. Binet's correction of Lagrange
(see our Art. 174) is thus alluded to:

Cel. vero Binet, formulas generales emendaturus, torsionis effectum
considerat, formulamque hujus momenti exhibet, eas vero, quae ad ten-
gionem fili atque flexionem attinent, hand calculavit, dicens: “on
ne parvient aux valeurs générales (de celles-ci) que par des calcules
pénibles, dont les résultats paraissent fort compliqués.” Omne igitur
haud tulit punctum.

[403] The historiola is followed by a discussion on the
notto curvarum elasticarum. The curva elastica genwina is that
assumed by what we term the neutral axis of a beam, built
in at one end and subject to transverse force at the other. It
is thus a plane curve. The writer uses the following notation,
y is the vertical height of any point of the neutral line above the
loaded end, # is the corresponding horizontal distance, z, the
horizontal distance between the ends, 8 the arc from the loaded
end to the point (zy), ¢ is the angle between the tangent at (zy)
and the horizontal, p the radius of curvature, and a, b, ¢ certain
constants.

[404] He obtains the fol]owmg equatmns, which agree with
the results of Euler and Lagrang

p=afisim =)

ds= Na/—(ﬂcﬁ:_c_),

dz=dg. cos  J/a/(sin ¢ —c) or z — 7, = 2/a (sin ¢ —¢),
dy=dpsin ¢ Jaj(sin ¢ —c), ‘

dy = (be + 2”) dz’/Jb* = (be + z)® where &’ =z — =z,
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This last is the differential equation to the genuina curva
elastica. If the built-in end of the rod be horizontal ¢ =0, and
this equation reduces to dy = 2™ dx’//b*— &’* which is termed the
rectangula, in every other case the equation represents an
obliquangula (p. 10).

[405] Proceeding from the differential equation of the
obliguangula the author defines the familia elastica as the series
of curves whose co-ordinates # and y are related by an equation of
the form

3/=de3/\/6,‘

where P is any rational algebraical function of = and @ an
integral function of the fourth degree. We thus see that the
relation between the co-ordinates can always be expressed by
elliptic functions.

[406.] Pp. 11—20 contain a discussion on the forms into
which the equations to curves can be thrown, Mébius and
Ampere being the authorities chiefly made use of. Simple
formulae for the osculating parabola of a curve are here obtained,
and are claimed by the author as original. The one of which use
is afterwards made is the now well-known

tan e=1/3 dp/ds,

where ¢ is the angle between the diameter of the parabola,
to the point of osculation, and the normal to the osculated curve
at that point. The relation between p and e for any curve
. is (p. 19) termed its caracteristica.

[407.] On p. 21 the caracteristica for the genuine elastic
curve is investigated. From the equations cited above the author
easily finds

36a’tan’e = (1 — ¢*)p* — 2acp® —a’.

‘What remains of the memoir (pp. 22—24) is occupied with
showing that the caracteristica as deduced from Lagrange’s
equations in the Mécanique Analytique (ed. 1811, p. 156) is
really identical with the above. It appears from Marklin’s cata-
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logue of Swedish Dissertations (Upsal, 1856) that nothing was
published after page 24, where the essay breaks off abruptly.

[408] 1830. William Ritchie. On the elasticity of threads of
glass with some of the most useful applications of this property
to torsion balances. Phil. Trans. 1830, pp. 215—222.

The author commences his memoir with the following
statement :

From facts connected with crystallization and elasticity, it seems
extremely probable, that the atoms of matter do not attract each other
indifferently on all sides. There appear to be peculiar points on their
surfaces which have a more powerful attraction for each other than for
other points on the same molecule. This property is not peculiar to
the atoms of ponderable matter, but seems also to belong to those of
light and heat. It is as impossible to prove directly the existence of
this property, as it is to prove the existence of atoms themselves; but
on account of the satisfactory manner in which it enables us to explain
the phenomena of crystallization and elasticity, it is now generally
adopted. :

To this polar property of atoms the author attributes that
peculiar elastic effect termed torsion. He has noticed the
very large amount of twist which can be given to such a brittle
substance as glass thread before it obtains a permanent set or
breaks. He thinks the resistance of glass threads to torsion is
due to vitreous molecules being held together by the attractions of
their poles or points of greatest affinity. These points are dis-
placed by torsion along the whole line of communication, and
as they endeavour to regain their former state of stable equi-
librium, the thread will of course untwist itself He remarks
that if a thread could be drawn so fine as to consist of a single
line of vitreous molecules, torsion would have no tendency to
displace the points of greatest attraction, and this elementary
thread might be twisted for ever without breaking,—the com-
pound molecules of glass would only turn round their points of
greatest attraction like bodies revolving on a pivot. This theory
is exemplified by the statement that the author has drawn
threads of glass of such extreme tenuity, that one of them, not
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more than a foot long, may be twisted nearly a hundred times
without breaking.

It can hardly be said that the above theory contains any
very lucid atomic explanation of the phenomenon of torsion.

[409.] In § 4, Ritchie states the difficulty which arises in
proving for glass threads the laws of torsion determined by
Coulomb for metallic wires. This is due to the impossibility
of obtaining glass threads of uniform diameter, and hence
the force of torsion cannot be shown to vary as the fourth
power of the diameter. The property however required for
torsion-balances,—namely, that ‘the force of torsion or that force
with which a thread tends to untwist itself is directly pro-
portional to the number of degrees through which it has been
twisted,—is easily deduced experimentally. Experiments for this
purpose are described”.

[410.] § 5 explains the best method of drawing a fine glass-
thread.

§ 6 is devoted to the description and use of a torsion gal-
vanometer with glass-thread.

The concluding paragraphs (§ 7, and § 8) contain an account
of an ingenious torsion balance for the weighing of very minute
portions of matter.

[411] Summary. Although the most important work of
that period to which this chapter has been devoted has still
to be considered in the following chapters, yet the reader cannot
fail to remark the great stride which the theory of elasticity
made in these ten years. Within this decade the theory may
be said to have been discovered and in broad outline completed.
It is entirely to French scientists that we owe this great con-
tribution to a wider knowledge of the physical universe, and
however we may regard the relative merits of Navier, Poisson, and
Cauchy, there cannot be the least doubt as to their dividing
between them the entire merit of the discovery. Even if we

1 The torsional imperfection of glass fibres is however emphasised by Sir
William Thomson in his paper on Elasticity in the Encycl. Brit. Art. 4.
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put on one side the more important work of these leaders of
scientific investigation we cannot fail to be struck with the
essentially modern character of the minor memoirs. The methods
of Lagrange and Fourier had become general, and the more
complex forms of analysis were wielded, not without success,
by lesser mathematicians. Sophie Germain with all her vagaries
at least succeeded in finally establishing the equation for the
normal vibrations of a plate ; while Pagani following Poisson gave
some very general results for the vibrations of a circular
membrane. Lastly we may note that amidst this wealth of
theoretical power, France possessed in Savart a physical elastician
of an extremely thoughtful and suggestive kind.



CHAPTER 1IV.

POISSON.

412. The contributiofis of Poisson to our subject begin with
his Mémoire sur les surfaces élastiques; this was read to the
French Institut on the 1st of August, 1814, and is contained in the
volume of the Mémoires for 1812, published in 1814 ; it occupies
pages 167—225 of the volume.

413. The introductory remarks occupy pages 167—172;
these supply some historical information. Poisson says

Jacques Bernouilli est, comme on sait, le premier qui a donné
Péquation d’équilibre de la lame élastique, en se fondant sur cette
hypothdse, que l'élasticité, en chaque point, est une force normale
3 la courbe, dont le moment est proportionnel & 'angle de contingence,
ou en raison inverse du rayon de courbure en ce point. Depuis ce
grand géomadtre, plusieurs autres, et principalement Euler et Daniel
Bernouilli, ont publié un grand nombre de Mémoires sur les con-
ditions d’équilibre des lignes élastiques et sur les lois de leurs
vibrations ; mais il n’a paru que quelques Essais infructueux qui aient
pour objet les surfaces élastiques, pliées &-la-fois en deux sens
différents.

~ Poisson also refers to un autre Jacques Bernouslls who con-
sidered the problem of the vibration of an elastic lamina in the St
Petersburg Memoirs for 1788, but the equation he obtained was
deficient in a term: see Art. 122.

414, The Institut about five years before the date of Poisson’s
memoir had proposed the vibrations of sonorous plates as a prize
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subject; only one essay had been received worthy of attention,
which was from an anonymous author; in this essay an equation
was given without demonstration, which contained the term
omitted in the St Petersburg memoir of 1788. Probably this
anonymous writer was Mademoiselle Sophie Germain. The
equation is that which will be found in Art. 290.

415. The introductory remarks conclude thus:

Dans un autre Mémoire, j'appliquerai les mémes considérations
aux lignes élastiques, & simple ou & double courbure, d'une épaisseur
constante ou variable suivant une loi donnée; ce qui me conduira
d’'une manidre directe et exempte d’hypothése, non-seulement & leurs
équations d’équilibre, mais aumssi & l'expression des forces quon doit
appliquer & leurs extrémités, pour les tenir fixes et balancer leffet
de I'élasticité.

I do not think that this design was carried out, though, as we
shall see, a note on the subject appeared in the third volume of the
Correspondance sur U Ecole... Polytechnique. The present memoir
is divided into two sections, which are devoted respectively to
inelastic and elastic surfaces.

416. The first section occupies pages 173—192; it is entitled:
Equation déquilibre de la surface flexible et non-élastiqgue. The
problem had been considered by Lagrange, but not in a satisfactory
manner: see Art. 158 of my account of Lagrange. Poisson works
it out in an intelligible and accurate manner; he assumes that a
rectangular element of the membrane is acted on by tensions at
right angles to the edges, but he does not assume that the tension
on one pair of parallel edges is the same as the tension on the other
pair. As a particular case he shews that if certain conditions are
satisfied the two tensions may be taken equal, and then his
equation for determining the figure of the membrane coincides
with Lagrange’s. The equation in question is '

Z-pX -V +5 {0+ ) 5—5—2pga—z-.——(2,+(l+p')%i,} =0,
where the axis of z is perpendicular to the plane of the membrane,
X, Y, Z are the components of applied force per unit area at the
point (z, y, 2), p =dz/dx, g =dz/dy, T is the tension and % an elastic

T. E 14
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constant. Poisson justly says that Lagrange's ;aquation cannot be
considered as the general equation to flexible surfaces in equi-
librium.

417. The second section occupies pages 192—225 ; it is en-
titled: Equation de la surface élastique en équilibre. The method
is peculiar. On each rectangular element tensions are supposed to
act, as in the first section, but now they are assumed equal ; and
besides these tensions repulsive forces are supposed to act on each
particle arising from elasticity ; the repulsive forces are supposed
to be sensible only so long as the distance is insensible. The
surface is supposed to be of uniform thickness. The repulsive
force between two particles at the distance r is denoted by the
product of p (r) into the mass of the particles. In the course of
the investigation the powers of the distance beyond the fourth are
neglected ; and finally a complicated differential equation of the
fourth order is obtained to determine the form of the surface in
equilibrium : see page 215 of the Memoir. In this equation the
repulsive force enters only in the values of two constants,

namely a® which stands for f r*p (r) dr, and b* which stands for

f 7%p (r)dr; the integrals are supposed taken from r=0 to the

extreme value of » for which p (r) is sensihle.

418. With respect to motion Poisson confines himself to the
case of a surface nearly plane, with no applied forces ; and then he
arrives at the equation

d'z  ,(d'z dz | d'z .
Et—,+n (d;.+2 W-F@.)—O,
this agrees with the result he obtained by a later investigation :
see Art. 485. The second James Bernoulli had omitted the term
d‘z/(dzdy)’ (see Art. 122). With respect to the solution of the

equations Poisson says on his page 170 :

Malheureusement cette équation ne peut s’intégrer sous forme finie,
que par des intégrales définies qui renferment des imaginaires; et si
on les fait disparaitre, ainsi que M. Plana y est parvenu dans le cas
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des simples lames, on tombe sur une équation si compliquée, qu'il
parait impossible d’en faire aucun usage. (See Art. 178.)

A form of solution has been since obtained, which is not com-
plicated. See the account of a paper of 1818 by Fourier,
Art. 207.

419. In the course of the investigation Poisson has to effect
certain integrations in order to determine the force which acts on
an element of the elastic lamina. If the element is at a sensible
distance from the boundary of the surface no difficulty occurs
with respect to the limits of the integrations; but if the element
is extremely near to the boundary, a difficulty does occur, because
the particle considered is not completely surrounded by other
particles up to the limit of molecular activity. Poisson notices
this point on his page 202, and says:

Mais pour trouver I'équation différentielle de la surface élastique
en équilibre, il suffit de considérer les points intérieurs, situés & une
distance quelconque de son contour; et l'on n'a besoin d’examiner
ce qui arrive aux points extrémes, que pour déterminer les forces
particulitres que l'on doit appliquer aux limites de la surface pour
la tenir en équilibre; détermination trés-délicate sur laquelle je me
propose de revenir par la suite, mais dont il ne sera pas question
dans ce mémoire.

The intention here expressed does not seem to have been carried
into effect.

420. A curious property of the elastic surface in equilibrium
is noticed on pages 221—225. Poisson determines by the
Calculus of Variations the differential equation to the surface of

]

constant area for whichff(:—) +f-)1—,) V(1 +p*'+¢q°) dzdy is a maxi-
mum or minimum, where p and p’ are the two principal radii of
curvature at the point (z, y, 2); he finds that the differential
equation is the same as that which he had already obtained for
the elastic surface in equilibrium : see my History of the Calculus
of Variations, page 333".

1 [In the place referred to, Poisson states that the differential equation obtained

3
is the same as that which arises from making f/ (—l— —l,) Jiip+¢q%dzdy a

PP
14—2
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421. The Memoir considered as an exercise in mathematics is
a fine specimen of Poisson’s analytical skill, but it adds little to
the discussion of the physical problem. In his later writings
Poisson objects strongly to the use of integrals instead of finite
summations, in questions relating to molecular force, which here
he adopts. I have quoted in Art. 4335, of my account of his
memoir of April 1828 the opinion which he there expresses of the
present memoir.

422. A very good abstract of the memoir by Poisson himself
was published in the Bulletin de la Société Philomatique, 1814,

and afterwards in the Correspondance de I'Ecole Polytechnique,
Vol. 111. 1816. A note in the later work, on page 154, states that
the Institut has again offered as a prize subject the theory of the
vibrations of elastic plates; and on page 410, it is said that the
prize has been awarded to Mademoiselle Sophie Germain.

423. 1816. An article by Poisson entitled: Sur les lignes
élastiques & double courbure, occurs on pages 355—360 of the Cor-

respondance sur I Ecole Polytechnique, Vol. 111. 1816, The object
of the article is to prove that the moment of torsion round the
tangent to the curve is constant throughout the curve when there
is equilibrium. The mechanical problem assumed is that at any
point of the curve the elasticity tends to produce two effects,

os JiI+pi+g? . .
minimum, for 8——;»,—— - dzdy vanishes so far as the terms under the sign of

double integration are concerned. Hence the same differential equation must arise
] 2 _
from making //{A (%+—}) +B(% _l-}') } NI+ 93+ ¢dzdy & minimum, or
from making the surface integral of C (%+P—1,,+%’;‘,) s minimum. But this is the
form usually adopted for the potential energy per unit of area due to the bending of
a thin plate of uniform thickness and isotropic material. (Cf. Lord Rayleigh, Theory
of Sound, 1. p. 293.) I must remark here that I am not quite satisfied with this expres-
sion for the potential energy of the bending of a plate. My doubt arises exactly as in
the case of a bent rod, for which the potential energy of bending does not seem to be

proportional to % per unit of length, if the bending is accompanied in any degree by

longitudinal stress. In the same manner I am inclined to think the above expres-
sion only true for a plate when the applied forces are wholly normal to the plane
of the plate.] Eb.
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nhamely one to change the value of the angle of contingence in the
osculating plane, and the other to twist the curve round the
tangent at the point considered’.

As we have seen in Arts. 159 and 173, the problem of the
equilibrium of such an elastic curve had been considered by
Lagrange and by Binet. Poisson says

M. Binet a eu regard le premier & la torsion dont les courbes
€lastiques sont susceptibles; mais on n'avait point encore expliqué
la nature de cette force, et montré que son moment est constant
dans létat d’équilibre. Lagrange a donné, dans la Mécanique
analytique, des équations de la ligne élastique & double courbure, qu'il
a trouvées par une analyse tres-différente de la nétre, et qui
reviennent cependant & nos équations (1), en y supposant §=0.

Here 0 denotes the moment of torsion. Poisson’s article is
reproduced substantially in his Mécanique, 1833, Vol. 1. pages
622—627. :

[424.] 1818, Remarques sur les rapports qus extstent entre la
propagation des ondes & la surface de Ueau, et leur propagation
dans une plaque élastique. Bulletin des Sciences par la Société
Philomatique, Année 1818, Paris, pp. 97—99. This is a short
note by Poisson on Fourier's memoir on the vibrations of elastic
plates (see Art. 207). He notes how relations between waves
at the surface of water and those in an infinite elastic plate arise
from both being determined by linear partial differential equations
with constant coefficients.

Ces rapports singuliers tiennent & ce que les lois de ces deux
mouvemens sont renfermées dans des équations aux différences
partielles de méme nature, savoir, des équations linéaires & coéfficients
constans, qui ne sont pas du méme ordre par rapport au temps et
par rapport aux distances des points mobiles au lieu de I’ébranlement
primitif, mais avec cette différence, que 1’équation du probléme des
ondes est du quatridme ordre par rapport au temps, et du second
par rapport aux coordonnées ; tandis que dans Pautre probléme elle est

1 [Poisson’s equations are not the most general conceivable, as there would
usually be a couple round the radius of curvatare of the ‘mean fibre’ of the wire.
His result as to the moment of torsion is not generally true. We shall return to
this point in the Chapter devoted to Saint-Venant.] Eb.
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au contraire du second ordre par rapport au temps, et du quatriéme
par rapport aux coordonnées. De Ia vient que tout ce qui se dit du
temps ou des distances dans le premier probléme, doit s’appliquer aux
distances ou au temps dans le second, et vice versd.

Poisson remarks in conclusion :

Au reste, cette propagation des sillons dans les plaques élastiques
infinies est une question de pure curiosité, qu’'il ne faut pas confondre
avec la propagation du son dans ces mémes plaques; celleci se fait
toujours d'un mouvement uniforme; la vitesse ne dépend ni de
I'ébranlement primitif ni de Pépaisseur de la plaque.

425. 1818. Sur lintégrale de Uéquation relative aux vibrations
des plaques élastiques. This is published in the Bulletin des Sciences
par la Société Philomatique, Paris, 1818 ; it occupies pages 125—
128 of the volume.

The object of the paper is to give the integral of the differential
equation for the vibration of an elastic plate: see Art. 418.

The equation is

d*z dtz d'z d'z
i +a (dx.+2dw,dy,+dy) Ouereeeereereen Q).

Let ¢ be another function of @, y and ¢, which satisfies the
equation

dt =m (Z;S+ firy’ ..................... 2),

where m is a constant. Differentiate with respect to ¢; then
TE_ (8 4 2L,
(dx’dt dy'dt)’

put for d¢/dt on the nght-ha.nd side its value derived from (2);
thus we get

g L (d at | df
g =" (e + 2 aody* 3)-

Hence if we put m*=— a® we shall satisfy (1) by taking z=¢.

In this way we shall obtain only a particular integral of the

equation ; but if we take in succession m =+ a: and — as, where

¢ is put for ./ =1, the equation (2) will give two values of £ the
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sum of which will express the complete integral of the equation
(1). The question then is reduced to the integration of the
equation (2).
Now Laplace has given the integral of the equation
' & d¢
it~ " da’
in the form

g:f:': ¢ ¢ (@ + 20 /i) da,

where ¢ denotes an arbitrary function. It is easy to extend this
form of integral to equation (2); with respect to this we shall
bave

{= jn f_h ¢ ""P ¢ (z + 2a/mt, y+ 28/m?) dadB.

If we put successively in this formula +a¢ and —a¢ for m,
and take the sum of the two results, we shall have for the complete
integral of the equation (1)

am [T [T 6 ok 20 g+ 28 dad

+Ij°£* o ¥ (@422 —ad, y + 28/~ ait) dadB,

where ¢ and 4 denote two arbitrary functions.

To shew how these arbitrary functions are to be determined
from the initial conditions of the plate, suppose that the origin of
the motion corresponds to ¢=0, and that at that instant the
equation to the plate is =1 (2, y); then we have

xE@ED= @D +r@ [ [T o dadp.(3)

Let us also suppose that initially the velocity of every point is
zero; we must then have dz/dt =0, when ¢=0, for all values of
« and y: this condition will be satisfied by supposing the functions
¢ and ¥ to be equal, so that from (3) we have

x (2,9) =26 (2,9) [ : f T dadf =2 (2,3).

Thus $ @5 =¥ (@3) =g x @).
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It is easy to get rid of the imaginary quantities which occur in
the general value of z, by putting instead of a and B respectively
;/—‘and 5_ in the first integral, and —- 4/—_; and VBT‘ in the second
integral, which will make no change in the limits. Let us also
put x in place of the arbitrary functions ¢ and 4, and change the
imaginary exponentials into sines and cosines; thus we obtain

=1 +°°f sin (@ + %) x (@ + 22/, y + 28 ) dadB.

Another form may be given to this expression by making
z +2a,/at = p, and y + 28 Jat=g; thus it becomes

z—p)+ (y—q)°
#= 4«mf _ x(p, g)sin {(ﬂTt?/‘l)} dpdy.
Poisson adds with respect to the last formula:

Sous cette dernidre forme, l'intégrale de I’équation (1) coincide
avec celle que I'on trouve en résolvant d’abord cette équation par
une série infinie d’exponentielles réelles ou imaginaires, et sommant
ensuite cette série par des intégrales définies, ainsi que I'a fait
M. Fourier dans son Mémoire sur les vibrations des plaques élastiques.

I presume therefore that the integral was first obtained by
Fourier in the form here given; but the memoir by Fourier
to which Poisson here refers seems not to have been published:
see Art. 207 for an account of a note published by Fourier in
1818,

426. 1823. A memoir by Poisson entitled: Sur la distribution
de la chaleur dans les corps solides was published in the Journal
de I'Ecole Polytechnique, X1x° Cahier, 1823. This does not belong
to our subject, but I mention it because of a reference made to it
by Saint-Venant in Moigno’s Statique, page 619. After speaking
of two different definitions of pressure in the theory of elasticity
Saint-Venant says :

Au reste, M. Poisson a montré en 1821 (Journal de PZEcole
Polytechnigue, xix® Cahier, 1823, p. 272) que les deux définitions ana-
logues, relatives au flux de chaleur, donnent dans les calculs les mémes
résultats quand on néglige certains ordres de quantités.'
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427. 1827'. An article by Poisson entitled: Note sur les
vibrations des corps somores was published in the Annales de
Chimie, Vol. 36, 1827. It occupies pages 86—93 of the volume.
It is also printed in Ferussac’s Bulletin, Vol. 1X. 1828, pages
27—381. The first paragraph explains the nature of the article:

Je m’occupe actuellement d’un travail fort étendu sur les lois
de P'équilibre et du mouvement des corps élastiques, et particulitrement
sur les vibrations des corps sonores. En attendant que jaie pu en
terminer la rédaction définitive, je demande & I’Académie la permission
de lui faire connaitre le principe de mon analyse et plusieurs des
conséquences qui s'en déduisent.

The article states some results obtained in the memoir as to
the vibrations of an elastic rod; and for the case of longitudinal
vibrations seven experiments made by Savart are compared with
calculations made by Poisson, and a satisfactory agreement ob-
tained. Two points of interest will now be noticed.

428. In the Annales Poisson says on page 87:

Une méme verge 6lastique peut vibrer de quatre maniéres dif-
férentes. Elle exécutera, 1° des vibrations longitudinales, lorsqu’on
I'étendra ou qu'on la comprimera suivant sa longueur; 2° des vibra-
tions normales quand on la dilatera ou qu'on la condensera perpen-
diculairement & sa plus grande dimension; 3° des vibrations que
Chladni a nommeées tournantes, qui auront lieu en vertu de la torsion
- autour de son axe; 4° enfin des vibrations fransversales, dues aux
flexions qu’on lui fera éprouver.

He seems to imply on the next page that he has determined
the laws of the normal vibrations, but that they are too complex
to be indicated in the present note. In the memoir which this
note announces all that is said about normal vibrations seems
contained in a brief passage on pages 452 and 453.

Mais il faut ajouter que, dans tous les cas, les vibrations longitudi-
nales seront accompagnées de vibrations normales de la méme durée....

Finally in his Mécanique, 1833, Vol. 11. page 368, Poisson says :

Les vibrations normales consistent en des dilatations et condensa-
tions alternatives des sections de la verge, perpendiculaires & sa
longueur; elles n'ont pas encore été déterminées par la théorie.

! [A letter of Poisson’s in the Annales for this year will be noticed when we
consider his memoir of October, 1829.] Eb.
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There seems to me an inconsistency between these various
statements, but I cannot explain it'.

429. In the Annales Poisson says that he has determined the
ratio of the transversal to the longitudinal vibrations for the case
of a cylindrical rod and for the case of a rod in the form of a
parallelepiped. The former case however alone appears in the
memoir. Of the seven experiments made by Savart, three refer
to the former case and four to the latter; the former three are
alone given in the memoir.

The following are Poisson’s words on this point :

Le rapport des vibrations transversales aux longitudinales dépend
de la forme de la verge; je I'ai déterminé dans deux cas différens:
daps le cas des verges cylindriques et dans celui des verges paral-
lélepipédiques. §'il g'agit, par exemple, d'une verge libre par les deux
bouts, rendant le ton le plus grave dont elle est susceptible; que I'on
représente par ! sa longueur, par # le nombre de ses vibrations
longitudinales, et par n’ celui des transversales; et que l'on désigne
par ¢ son épaisseur dans le cas des verges parallélepipédiques, ou
son diamétre dans le cas des verges cylindriques, on aurs,

7' =(2:056610) ne/l
dans le premier cas, et

7 =(1-78063) ne/l
dans le dernier; le second nombre compris entre parenthéses se
déduisant du premier en le multipliant par § ,/3.

See pp. 88 and 89.

430. Another article by Poisson occurs on pages 384—387 of
the volume of the Annales cited in Art. 427 ; it is entitled : Note
sur Uextension des fils et des plaques élastiques. 'We have referred
to this article in the previous chapter (Art. 368).

At the end of the article Poisson cites another result which he
had obtained from theory, which he says would be less easy to
verify by experiment: see Art. 483. Poisson’s article is trans-
lated into German in Poggendorff’s Annalen, Vol. X11. 1828, pages
516—519.

1 [This note of Poisson's should be read in conjunction with Savart’s memoir of
1822: see Articles 323—327.] Ep.
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431. 1828. An article by Poisson entitled: Mémoire sur
Pégquilidre et le mouvement des corps élastiques was published in
the Annales de Chimie, Vol. 37, 1828; it occupies pages 337—3855
of the volume. The object of the article is to give an account of
the memoir which Poisson read to the Academy on the 14th of
April, 1828; the pages 337—348 of the article coincide with the
introduction to the memoir, that is with the pages 337—368 of
it. A note in the memoir relative to a point in the Theory of
Equations is not in the article; on the other hand a brief note is
given in the article which is not in the memoir; this note in the
article consists of simple reasoning to illustrate in a particular
case the general result obtained by Poisson, and denoted by K=0:
see Art. 442 of my account of the memoir.

432. After this introduction Poisson enumerates various results
obtained in his memoir which may interest students of physics;
these he distributes under eleven heads.

There are a few lines in the Annales with respect to the
vibrations of plates which are not in the memoir. Poisson
obtained by calculation in the memoir for the ratio of the lowest
two sounds in the case of a free circular plate the number 4316 ;
he says in the Annales :

M. Savart a obtenu pour ce rapport, un nombre qui surpasse un peu
4, mais d’une fraction sensiblement moindre que nous ne le trouvons.
Il pense que la différence entre le calcul et lexpérience n’est pas
hors des limites des erreurs dont est susceptible ce genre d’observations.

433. The article in the Axmales concludes with the following
paragraph in which Poisson puts forth the just claims of his
memoir to consideration :

La discussion qui g'est élevée & 1’Académie aprés la lecture de
mon Mémoire, m'oblige de faire observer qu'il se compose de deux
parties : I'une, toute spéciale, est relative & des questions d’acoustique,
dont ce qui précéde est un résumé, et que personne jusqu’s présent
w’avait traitées; lautre renferme des considérations générales sur
I’action moléculaire, et sur I'expression des forces qui en résultent.
On y fait voir que pour parvenir & cette expression, il est nécessaire
d’apporter quelque restriction & la fonction de la distance qui exprime
Paction mutuelle de deux molécules, et qu'il ne suffit pas, comme
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on l'avait supposé jusqu’ici, que oette fonction soit une de celles
qui deviennent insensibles dés que la variable a acquis une grandeur
tensible, On y prouve aussi que la somme qui exprime la résultante
totale des actions moléculaires n'est pas de nature & pouvoir se
convertir en une intégrale; ce qui n’avait pas non plus ét6 remarqué,
et ce qui est cependant essentiel, puisque la représentation de cette
résultante par une intégrale définie rendrait nul son coefficient aprés le
changement de forme du corps produit par des forces données, et
par conséquent impossible la formation de ses équations d’équilibre.
Enfin, aprés avoir établi les équations générales de I'équilibre d'un
corps élastique de forme quelconque, en ayant égard aux diverses
circonstances que je viens d'indiquer, j'en ai déduit celles qui ap-
partiennent aux cordes, aux verges, aux membranes et aux plaques
élastiques ; déduction que personne, & ma connaissance, n’avait cherché
A effectuer, et qui exige des transformations d’analyse par lesquelles j’ai
6té longtemps arrdté méme dans le cas le plus simple, celui de la corde
€lastique. '

On this paragraph three brief remarks may be made. The
discussion in the Academy probably consisted mainly of criticisms
by Navier which we shall notice hereafter. The restrictions
which must be imposed on the function representing the mutual
action between two molecules do not seem to be very decisively
stated in the memoir, though there are certainly hints bearing on
the point: see Art. 439 of my account of the memoir. It is not
obvious what great difficulties Poisson can have found in his
discussion of the simple problem of the elastic cord.

434. 1829. Mémoire sur Uéquilibre et le mouvement des corps
élastiques. This memoir was read to the Paris Academy on the
14th of April, 1828; it is published in the Memoirs of the
Academy, Vol. vIIL 1829, where it occupies pages 357—570; on
pages 623—627 of the volume there is an Addition to the memoir
which was read on the 24th of November, 1828. The memoir is
one of the most famous written by this great mathematician.

435. The introduction to the memoir occupies pages 359—368.
We have here a rapid sketch of the history of questions connected
with the theory of elasticity. Leibniz and the Bernoullis solved
the problem of the form of the catenary, as to which Galilec had
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erred ; James Bernoulli investigated the form of an elastic lamina
in equilibrium. After these problems relating to equilibrium
some relating to motion were discussed. D’Alembert was the
first who solved the problem of vibrating cords, and Lagrange
some years later gave another solution. Euler and Daniel Bernoulli
determined the vibrations of an elastic lamina for all the circum-
stances in which the ends of the lamina could be placed. Then
Poisson proceeds thus on his page 360:

Tels sont, en peu de mots, les principaux résultats relatifs a
I'équilibre et au mouvement des corps élastiques, qui étaient connus
lorsque j'essayai, d’aller plus loin dans un Mémowre sur les surfaces
élastiques, lu & I'Institut en 1814. J’ai supposé que les points d’une
plaque élastique, courbée d’une maniére quelconque, se repoussent
mutuellement suivant une fonction de la distance qui décroit trés-
rapidement et devient insensible dés que la variable a acquis une
grandeur sensible ; hypothése qui m’a conduit & une équation d’éguilibre
des surfaces €lastiques, laquelle prend la méme forme que celle de la
simple lame courbée en un seul sens, quand on Dlapplique & ce cas
particulier. Mais cette manitre d'emvisager la question ne convient
rigoureusement qu'd une surface sans épaisseur, sur laquelle sont placés
des points matériels, contigus ou trés-peu distants les uns des autres;
et quand, au contraire, on a égard & I'épaisseur de la plaque courbée, ses
particules se distinguent en deux sortes: les unes se repoussent
effectivement en vertu de la contraction qui a lieu du cété de la
concavité, et les autres s'attirent en vertu de la dilatation produite
du c8té opposé. 11 était donc nécessaire de reprendre de nouveau cette
question ; et pour qu’elle soit complétement résolue il faudra trouver,
relativement & une plaque élastique d’une épaisseur donnée, les con-
ditions qui doivent &tre satisfaites, soit en tous ses points, soit & ses
bords en particulier, pour I’équilibre des forces qui lui sont appliquées
et des actions mutuelles de ses molécules. '

436. In his introductory remarks Poisson draws attention to
a point which he considers very important ; see his pages 365 and
366. It amounts to this: in all cases hitherto in which molecular
action has been conmsidered, such as questions of capillary at-
traction and heat, the forces which arise from this action have
been expressed by definite integrals, but this mode of expression is
inapplicable. For in the natural state of the body no force would
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be called into action, and the definite integral would vanish; it
would follow that after the body has suffered deformation the
definite integral would still vanish, and so no force would be
called out, which is absurd. The mathematical process is given at
page 398 of the memoir, and we shall recur to the point: see
Art. 443.

437. A remark is made by Poisson in a note on his page 367
relating to the Theory of Equations. Fourier on page 616 of the
volume contradicts Poisson, and goes fully into the matter in the
Memoirs of the Paris Academy, Vol. X. pages 119—146.

438. The first section of the memoir is entitled: Ezpression des
Sorces résultantes de Uaction moléculaires; it occupies pages
368—405. The object of this section may be said to be gene-
rally the investigation of the equations of equilibrium of elas-
ticity; and the results coincide with those of the ordinary text-
books on elasticity provided we take A=u. Thus where Lamé
writes:

Nl=>~0+2nz—:.

the corresponding equation with Poisson is, if k= p,
du dv  dw

‘We proceed to notice some special points in this section.

439. On his page 369 Poisson gives an example which may
illustrate the law of molecular force’. Let r be the distance
between two particles; then the molecular force may be the
product of some constant into the expression

p—(rimar
Here b denotes a constant greater than unity, m is a large positive
quantity, a is the distance between two consecutive particles,
n is a large integer but yet such that na is a line of imperceptible
length. This expression will remain nearly constant so long as
7 is not a considerable multiple of a; but when 7 becomes greater
than na the expression diminishes very rapidly, and soon becomes

1 [This example is not wholly satisfactory as the molecular force cannot in this
case become repulsive; it is necessary to consider the difference of two expressions
of this kind.] Eb.
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insensible. 'We may denote the product of this expression into a
constant by p (7).

440. On page 375 Poisson uses without any formal demon-
stration a theorem as to the tension produced by molecular action
across an infinitesimal plane area taken in the substance of an
elastic body.

[The following interesting historical note relative to this
theorem is given by Saint-Venant :

Nous Pavons démontré pour la premidre fois pour cette définition
de la pression 4 la Bociété philomatique en mars 1844, et aux
Comptes rendus, 7 juillet 1845 (t. xx1, p. 24). Cauchy l'a demontré
de méme dans un Mémoire inédit (Comptes rendus, 23 juin et 14
juillet, t. xx, p. 1765, et t. xx1, p. 125). 1l est, au reste, presque
évident, et il a ét6 admis aussi par Poisson (t. vii. des Mémoires de
T Institut, p. 375, et Journal de P Ecols Polytechnique, xx° cahier, art. 16
ou p. 31), par MM. Lamé et Clapeyron (Savanis étrangers, t. 1v, p. 485
ou Art. 20), par Cauchy (ZEwercices, troisiéme année, p. 316), pour
une autre définition de la pression; et il n’a ét6 contesté que depuis
qu'on a prétendu établir les formules des pressions par un simple
raisonnement mathématique, sans se baser sur la loi physique des
actions moléculaires & distance.

The theorem in question assumed by Poisson is thus stated by
Saint-Venant :

La pression sur une petite face, ou la résultante de toutes les
actions moléculaires sensibles qui s’exercent A travers sa superficie
@, peut étre remplacée par la résultante des actions qui seraient
exercées sur chaque molécule m d’un des cOtés de son plan, par une
magse concentrée & son centre égale, pour chaque molécule m, & celle
d’'un cylindre de la matidre du coté opposé, ayant w pour base,
et une hauteur égale & la distance de m au plan de w. Moigno’s Legons
de Mécanique Analytique : Statique, pp. 673—675.]

441. Poisson as we saw in Art. 421 condemns the mode of
expressing the elastic forces by definite integrals; but he allows
himself to do this to some extent: see Art. 542 of my account of
the memoir of 1829. In the case of a triple summation Poisson
transforms two summations into integrations leaving only one
summation untransformed : see his page 378.
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442. As we have stated in Art. 438 if we put A=p =4k in the
well-known formula we obtain such an expression as
du dv dw
N,= k( Ttot dz) .
The corresponding form for N, which P01sson first obtains is
du du dv dw
Ne= K(“dw)*"("’d‘a;*d—*‘a)
where K stands for ol f (r), and k for 'r:; {71_ f(r )}
Then Poisson shews that as the dey was originally in equi-
librium K must be zero; and this reduces his expressions for the
elastic tensions to the ordinary forms in which we take A = pu.
Two matters occur for notice which we shall consider in the
account of the memoir of 1829 : see Articles 542 and 554.

443. We can now give the mathematical process alluded to
in Art. 436. Suppose that we could replace the summations by

integrations. Then in the summation denoted by K multiply

by dr/a; thus we obtain
o2 [ r*
0= %’fo rr @ dr.

15 0o & dr{ f()}d”
and this by integration by parts is

O
-3/ 2 f(?)dr

that is — K ; so that % vamshes. But this is absurd for then the
elastic tensions all vanish. Hence we see that the summation
with respect to r cannot be transformed into an integral®.

- In the preceding operation it will be seen that we assume
r* f (r) to vanish both when »=0 and when r=«. Poisson says
that f (r) is zero at the two limits; but £ (r) does not necessarily
vanish with », a8 we see by the example which he suggests for
f(r) in Art. 439; and it is not enough that f(r) should vanish
when 7 is infinite, we must bave 7 f () vanishing.

And % becomes

1 (I shall return to this point in so far as it involves a criticism of Navier when

considering a paper by Clausius. The legitimaocy of the molecular hypothesis which
leads to A=y will be best discussed after the chapter devoted to Cauchy.] Ebp.

——— e -
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444. Poisson’s process seems to me sometimes deficient in
rigour; the following will serve as an example, taken from his
page 378. He arrives at a certain result and then adds:

Ce résultat exige & la vérité, que 7 soit un multiple trés-considérable
de z; mais d’aprds la supposition que nous avons faite sur le mode de
décroissement de l'action moléculaire (No. 1), on peut, sans erreur
sensible, négliger duns la somme 3 relative & r, la partie oh cette
condition n'est pas remplie par rapport & l'sutre partie.

This statement as to what may be neglected in comparison
with the rest seems to me quite arbitrary.

445. Poisson in his pages 392—395 obtains the general
equations for the equilibrium of a body subject to applied forces
by transforming his equations by the aid of a process like that
adopted by Lamé in his Elasticité, p. 21.

446. Poisson objects on his page 400 to a use which had been
made of the Calculus of Variations, following the example of
Lagrange; he says that the method is not applicable to the case in
which we regard a body as made up of molecules separated by
intervals, however small the intervals may be; but he is very brief
and does not unfold his objection. Compare Saint-Venant in

Moigno’s Statique, page 718.

447. Suppose an elastic body under the action of no applied
forces except a constant uniform normal pressure over the surface ;
Poisson states that all the conditions of equilibrium will be
fulfilled if we suppose that the body is every where and in all
directions equally compressed or expanded : see his pages 400—402.
In fact the fundamental equations of elasticity will be satisfied by
supposing that the three normal tensions are equal and constant,
and the three tangential tensions zero.

448. After establishing the equations for the equilibrium of
an elastic body, namely the three which hold at every point of the
interior and the three which hold at every point of the surface,
Poisson says that they agree with those given by Navier in the
seventh volume of the Paris memoirs, but that Navier's own

T. E 15
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process would really have made all the forces vanish, according to
what we have seen in Art. 442. As Poisson gives no reference to
Cauchy, or any other writer except Navier, we are I presume to
infer that the equations were first established by Navier. Saint-
Venant considers that the step in Navier’s investigation to which
Poisson objects might easily have been avoided: see Moigno’s

Statique, page 719.

449. Poisson’s second section is entitled: Vibrations d'une
sphére élastique ; it occupies pages 405—421. We reproduce this
investigation with some change of notation, not at first putting
with Poisson A = p.

We assume that all points of the sphere at the same distance
from the centre are moving with the same velocity along their
respective radii. Thus we must have

=z =Y =%y
u"r"l”” r""w r""

where 4 is some function of r, the distance of the point considered
from the centre of the sphere.
We may denote ¥ by d¢/dr, where ¢ is a function of 7 ; thus

_d¢ _dp
. Y= dy’ w= dz
Hence for the cubical dilatation we have
o P d¢_d'd 2d¢

0= +

299 et
it t e Ve

Now we assume that there are no applied internal or external
forces. Then the first of the usual equations of an elastic solid

becomes

dé a*
(WL evE=p s,
that is—
d¢ d'¢
(X"'I")dx"'”'v’ ) Pd,” dt")

Hence by integrating with respect to z we get
&
At )8+ b mp TR+ O ),
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where C is constant with respect to «, but so far as we see at
present may involve y, 2, and & But by taking the other two
equations we arrive at results exactly like (1); and in this way
we find that C in (1) cannot involve y or z; thus it cannot involve
any variable except ¢.

Thus (1) may be written
P
A+ 2p) O'PE + C,

. A+ 2u dird - d’¢
that is r  ar - _d 7 + C,
. d’r¢ d'ré
that is = an P+ S (2),

where a* is put for (A + 2x)/p.
Poisson himself assumes that A = u, so that with him a®=3)\/p.

450. Thus we have to discuss equation (2). It is unnecessary
to trouble ourselves with the term »C/p; for suppose that we have
obtained a general solution of (2) without this term, and denote
it by ¢ =®. Then for the solution of (2) as it stands we have

¢= q>--f Cdt dt.

‘We shall therefore confine ourselves to the equation
ré _ d'r¢
Ji =@ g ceeeeeeeeseneeneennens 3).

Now it is obvious that the followmg is a solution

¢ =(4 cosvat + B smvat) e (4' cosvat + B sinvat) —— cosw

where A, B, A’, B’ and » are mdependent of r and ¢; a.nd the
aggregate of any number of such expressions would also be a
solution. But (cosyr)/r would be infinite at the centre of the
sphere, and to avoid this we must suppress the term which
involves (cosvr)/r; hence we may take for the solution

¢ =3, (4 cosvat + B sinvat) sﬂ‘r—”l’ .............. ),

where 3 denotes the summation of terms in which different
values are given to 4, B, and ».
15—2
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451. We must seek to determine the quantities at present
unknown ‘by means of the equations to be satisfied at the surface
of the sphere; we will denote the radius of the sphere by I. The
first equation of these equations takes the form:

N +YT+iT=0;

1 17271
this gives the following result in which we are to put finally
{ for r,
(x0+2 Z:)+"‘y(z;‘+$)+ (Z:+fl::)—0,
thatis 2 d—;%+2 ff;) 2’:-?/;%"’2:35% 0,
that is "fﬂfj”ﬁif%— .
that is A +2u )d T&l%_

Put b for (A +2p)/\, then we obtain the following equation
which is to hold when r=1{
d‘¢ + 2d¢ _
dr’ rdr
The other two surface equations also lead to (5).

Substitute in (5) the value of ¢ from (4); then we shall find
that the following relation must hold :

Wb 2 2 .
( AN r) nvl+z,(1 B)cos sl =0 ......(6).

452, According to Poisson A=p, so that b=3; thus (6)
simplifies to

(4 — 35T%) sin pl = 4pl COB Mh......onee.... ).

We shall keep henceforward to his case, as it sufficiently
illustrates all that is interesting in the discussion. We have now
to shew how 4 and B can be found.
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" 433. From (4) we have
99

yr COS v — sin vr

T = 3 (4 cos vat + B sin vat) -
=3, (A4 cos vat + Bsin vat) R say............... (8).
Now equation (3) gives
d'¢ _da'( d'¢
BT Erg)
differentiate with respect to r, thus :
4 do —a (d'¢+ 2d'¢ 2 d¢) ad @) 2a'd¢
de¢ dr ar " rdrt T Pdr rdr'( dr/ P adr’
. Rv'a* _oa* d'R 24’
husby ®) T =Tgm - B
2 d'R
so that (v’—-"—,) R+—¢_i?=0 ...................... 9).
And from (5) the following must hold at the surface
dR . (2- b) —=0
. dR R
that is 37;—;—0 ........................ (10).

This is easily verified by means of (7).

454. Now the initial circumstances must be supposed known,
so that d¢/dr and d'¢/(dr dt) must be known initially in terms of r.
Let us suppose that initially

% x () sd T =y ()5

then putting ¢=0 in (8) and in the differential coefficient of it
with respect to ¢ we get

We have now by means of (11) to isolate and thus to deter-
mine the value of each coefficient of which A is the general type;
and by means of (12) to do the same with respect to B. Let
v, stand for a specific value of the general symbol v; so that »,
is a root of (7): let », stand for another specific value. Let 4,
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and B, correspond to the former value of », and 4 and B to the
latter. Then we shall obtain our end by means of the following
formula

[

where R, and R, are any two values of R which correspond to
two different values of » satisfying (7).

455. To establish (13) we observe that the integral may be
written in two ways;

: i :
f R R dr= j (v,rcosv,r —siny,r)
0 [

d sinyr
dr
f'fRRdr= fz(vroosyr—sinvr)—égin—y‘rdr
° 1778 ° ) ) dr r *
Integrate by parts; thus we get

¢ . sinpl L[} . .
fo R R dr=(vlcosyl—sinyl) — tn f gin y,rsin vr dr,
[

dr,

L . sinpl L. .
f R, Rdr= (vl cos vl —sin yl) — -+ f siny,rsinyr dr.
[ [

Now by (7) of which both », and », are roots

2
nioosn,l—sinpi=— 24T giny,
2
nlcos i sinvl=— 24T gin .

Hence we have

i :
f \ RRBRdr=v} { f . 8in v, sin yrdr ~ %—l sin y /sin v,l} ,

’ o[ . 3l
f ] R Rdr=v, { fo sin »,r sin yrdr — 3

sin v ] sin v,l} .
Hence it follows that
¢
(v =7 f R Rdr=0,
(]

14
and therefore f RR dr.=0.
0

456. Now to apply (13). Multiply both sides of (11) by R,
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and integrate with respect to r from O to /; then by (13) all the
terms vanish except one, and we are left mth

A'fo R"dr=fo rx (r)Rdr:

this determines 4, and similarly all the other coefficients of which
A is the general type may be determined.
In like manner from (12) we get

3 12
av,B, fo Ridr= fo rx, (r) B,dr.

457. 'The value of f: R'dr which occurs in the preceding
Article may easily be found. For
f Rdr = f (vrcosvr — smvr) d sl;wr dr.
Integrate by parts; thus
f: Ridr = (vl cos vl — sin vl)

sin vl

]
+ ] sin® vr dr,
0
12
thatis [ Ridr= g7 P +vlin vlcos i — 2eint ol
0

458. It may be shewn that the equation (7) has no imaginary
roots. For if possible suppose that there is a root ,=p+¢¥ —1;
then there must be also a root p—g./—1, which we will denote
by »,. Let R, take the form P+ Q./—1; then R, must take the
form P—Q./ =1. Hence (13) becomes

!
f (P + @) dr=
0
but this is obviously impossible, as every element of the integral
is positive.
459. Let m be put for »l, so that the equation (7) becomes
(4—3m") sinm =4m cosm............... (14).

According to Poisson we have for approximate values of the
least two roots of his equation

m=256334, m = 6:05973...........1......(15).
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The larger roots are found approximately from m = i, where
1 is an integer. Thus if we put m =¢r — 2 we shall have  small ;
and by (14) the value of z is approximately to be found from
'+ 1
tan.'c—-},—w, 1 {1 + 21,1'} 1).} N
If we put 1+=2 we shall find from these formule that
m = 605917, which differs very little from the value given above.

460. Suppose that in the interior of the sphere there are one
or more surfaces concentric with that of the sphere, all the points
of which remain at rest during the isochronous vibrations which
correspond to a specific value of v found from (7); then the radii

of such surfaces will be determined by the equation b _ 0; this

dr
by (8) leads to
vreogyr—sinwvr=0......cco.ceeveurunn. (16).

The sound which corresponds with the specific value of » will
be accompanied by as many nodal surfaces as (16) will give values
of r less than I. The least two roots of (16) are found to be

vr = 449331, »r="T"73747.

On comparing these with the values of m or vl given in (15),
we see that for the least value of m there can be no node; but
for the next value of m there is one, and the radius of this is
determined by

__ 449331
= 505973 05973 l=-741501;
80 that the radius is about three-quarters of that of the sphere.
Poisson adds:

Il est inutile de dire que l'existence des surfaces nodales intérieures
ne pourrait pas se vérifier par l'expérience ; et il parait méme difficile
que P'observation puisse faire connaitre les différents sons d’une sphére
élastique qui sont déterminés par le calcul.

461. We have hitherto supposed that no force acts on the
surface. Let us now however suppose that there is such a force,
namely a normal pressure which is the same at every point of the
surface, but is a function of the time denoted by Ne™, where N
and k are positive constants.
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We can satisfy the conditions of the problem by adding to the
value of ¢ as given by (4) the term

TN
(e e)we,

provided we determine « properly, as we will now shew. In
the first place with this additional term the fandamental equation
(8) is still-satisfied, as is obvious on trial.

In the next place consider the surface equations as in Art. 451 ;
instead of zero we have now on the right-hand side X, Y, Z,
where
- e™, Y,=- ZNe“‘, Z,=- % Ne ™

r r r

Then proceeding as in Art. 451 we shall now obtain

Ne™ +(\ + 2 )d"’b Ddé_y,
and putting, as sufficient for our purpose, A = u, we get
. 2
N4 3u B8 20 g s 7).

This is to hold when r=1I; it replaces the more simple
equation (5) which we formerly used. The value of ¢ as hitherto
used will contribute nothing to (17). We have now to regard the
terms added in the present Article; and using these we find that
(17) leads to

2o )3 )- 5 4 )

this determines . Thus the problem with the specified condition
a8 to the force acting at the surface is satisfied.

462. Poisson says that one of his objects in discussing the
example of the vibrations of a sphere was to elucidate a certain
difficulty: see his page 405. The difficulty seems to be this, if
I understand Poisson correctly. Imagine that the sphere has
been subjected to a uniform normal compression, and that this
compression is instantaneously removed, and the sphere left to
pass into motion; then we cannot obtain formule which will
satisfy these conditions. That is we cannot obtain formule which
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shall correspond to the state of compression of the body when
t=0, and when ¢ has any value different from zero shall exhibit
that motion which has been developed in the preceding articles.
Or we may state the matter generally thus: we have found in
equation (5) that we must have at the surface

ad  2dé_ .

3 tra =Y .

hence the y (r) which is introduced in (11) cannot be taken
arbitrarily, but must be subject to the condition

d 2
3 L x@+2x()=0.

463. Poisson takes an example as sufficient to illustrate the
difficulty and the explanation. Suppose that the sphere is
originally compressed uniformly; thus a radius of natural length
r becomes r (1 — 7) where 7 is a constant quantity. Then

d
% e x ()= —1r;
d 2
hence 3 7 x () + X (D]

instead of being zero is —57. Poisson says that however rapidly
the compressing force may be removed the removal cannot be
really instantaneous; so we may represent such a compression
by Ne™ where h is very large; thus when ¢=0 this compression
is denoted by N, and it is practically zero as soon as ¢ has any
sensible value. With the value of y (r) just considered we have
initially N — 5u7 =0 (p. 416). This is quite consistent with the
case of uniforra compression ; for then ¥ =~ 72, v=—17y, w = — 72,
Thus 8 =— 37 and each normal stress =— (3\ 4+ 2u) 7 =—5ur on
Poisson’s hypothesis of the equality of A and u. ’

This problem is considered by Lamé in his pages 202—210;
his treatment is in some respects more general than Poisson’s, for
he does not assume his expressions to be functions of the radius
only, but allows them to involve angles. On the other hand Lamé
does not regard any condition which must hold at the surface, but
assumes that a fluid medium surrounding the body will furnish
what normal pressure may be required.
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Clebsch on pages 55—61 of his work gives a solution which
substantially agrees with Poisson’s. Put v for the k/a on Clebsch’s
page 58; then as h =4 the function on the right-hand side of
Clebsch’s equation (45) will be found to be %—————w o8 v:,_ T,
And Clebsch’s equation (48) on his page 59 will agree with
Poisson’s equation (4) on his page 409, that is with my equation
(7). Observe that the expression 1+ u/l — u of Clebsch is 5/3
according to Poisson.

464. Poisson’s third section is entitled: Equations de léqui-
libre et du mouvement d'une corde élastique, and occupies pages
422—442. The conditions of equilibrium of an elastic cord had
been long known and given in ordinary works on Statics ; it is the
object of this section to deduce these conditions from the theory
of elasticity, and thus to explain the nature of the force which
is called the tenston of the cord in the ordinary investigation.
Poisson’s process is very simple and satisfactory; it is reproduced
substantially in pages 93—106 of Lamé'’s work.

[465.] If s bethe length of the cord measured from some fixed
point to the point zyz, o its section, p its density and XYZ the
applied forces on the element ds, Poisson finds from the equations
of equilibrium of an elastic solid the following equations :

2 (1o %) a(to ) o a(1o%)
& % =g
where T' is une nouvelle inconnue qus reste indéterminée.

The elimination of 7 gives the equations to the curve assumed
by the cord.

If 6 be the dilatation of the element ds of the cord, Poisson
eagily deduces T'=~ b5u/2. 6.

When there are no applied forces and therefore 7 is a constant
0 will be uniform along the cord and equal therefore to the total
extension divided by the length. The above equation then agrees
with Hooke’s Law, for if W be a weight suspended at an extremity
Tw + W =0, or (see his p. 430)

W= S5pw extension
2 " length °

Xpo = , Ypo =



236 POISSON.

The following pages are devoted to the discussion of the longi-
tudinal and transverse vibrations of a cord. We may note one
point.

guppose n the frequency of longttudma.l vibrations of a cord,
and n’ the frequency of transversal vibrations; then Poisson obtains
the result n’/n =./a/l, where ! is the length of the cord, and a the
elongation of the cord produced by the tension it experiences.
Poisson says that this result had not been noticed before ; it is now
usually given in treatises on this subject: see Lamé, page 106.
Poisson on his page 438 states that the result had been confirmed
by an experiment made by M. Cagniard-Latour. He adds that the
cord was 14-8 metres long, and that observation gave n/n’=1§8:
he asserts that by calculation from the formula we deduce a =052
metres which differs but little from the observed value ‘05 of a
metre. But there is some mistake here; for with the value which
he assigns to ! and to n/n’ the formula gives for a a value very
different from that which he obtains. He himself quotes his own
result wrongly bere; he quotes it correctly in his Mécanique,
Vol. 11. page 316, but there he does not give the figures of the
experiment. In the Annales de Chimie, Vol. XXXVIL page 349,
instead of n/n’= -LQ—H we have n/n’ = 1687, which is consistent with
the rest.

466. Poisson’s fourth section is entitled : Equations de Téqui-
libre et du mouvement dune verge élastique. It occupies pages
442—488. The section begins thus:

Dans ce paragraphe, nous allons considérer une verge élastique
proprement dite, qui tend & revenir 3 sa forme naturelle quand on Ven
a écartée en la faisant fléchir, et capable de vibrer transversalement sans
avoir besoin, comme une simple corde, d’étre tendue suivant sa longueur.
Cette verge sera homogine et partout a4 la méme température; dans
son état naturel, nous supposerons qu'elle soit un cylindre droit & base
circulaire; et quoique le rayon de sa base soit trds-petit, nous aurons
maintenant égard, dans chaque section perpendiculaire 3 l'axe, aux
petites variations des forces moléculaires et du mouvement des points
de la verge, circonstances dont on fait abstraction dans le cas d’une
corde élastique.

467. The investigation soon becomes a process of approxima-
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tion, and is rather complex. With respect to the equations of
motion the most important case is that of transversal vibration;
and then, supposing there are no applied forces, the following are
the principal results:

Py_ _skedy & dy

at 8p da* " 4 dadt’

d's bke' d's & d'z

=" 8p dot ta drdr

The axis of z coincides with the axis of the rod originally, y and

£ are transverse coordinates of a point which was originally on the
axis of the rod at the distance & from one end; ¢ is the radius of
the rod, p is the density, and k is a constant which corresponds to
the A of Lamé, supposing A=px. These equations correspond
with one in Clebsch’s work, namely (17) on page 253; observing
that the M of Clebsch denotes a force acting at one end and is
zero with Poisson.

468. Taking the equations as just given Poisson observes that
if in the second term on the right-hand side we substitute from the
left-hand side we introduce !, which he neglects; thus he reduces
his equations to

d'y  bké d‘y_o d'z  bké d'zs _
dt V8 dt=" F T8y T

It is sufficient to discuss one of these as they are precisely
similar; and Poisson shews how to integrate the first. This
process of integration is reproduced by Poisson in his Mécanique
1833, Vol. 11. pages 371—392. Some numerical values on page
485 of the memoir are not quite the same as on the corresponding
page, namely 389, of the Mécanique. The value of A’ on the
second line of page 390 of the Mécanigue does not follow from
what he has given before : it should be 1:87511.

0.

469. In the course of his process Poisson arrives at the follow-
ing result: suppose that ! is the original length of the cylinder,
and e the original radius, and let the former become I (1 +8) by
the deformation ; then the latter will become e (1 — 48): see his
pages 449, 451. Thus the volume was originally #le*; and it be-
comes by the deformation wle’(1+ 8) (1 — 43)", that is approxi-
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mately wle* (1 + §8): so that the volume is augmented in the ratio
of 1 + 43 to unity. Poisson adds

Ce fait intéressant de I'augmentation de volume des fils élastiques,
par l'effet de leur allongement, a ét6 observé par M. Cagniard-Latour ;
et sur ce point, le calcul et l'observation s'accordent d’'une manitre
remarquable, comme on peut le voir dans la note ot j'ai rendu compte
de son expérience.

A note refers to the Annales de Physique ¢t de Chimie, Tome
XXXVI. page 384. See Art. 368.

[470.] Poisson obtains a proportion between the number of
longitudinal vibrations which a cylinder will perform in a given
time, and the number of torsion vibrations which it will perform in
the same time: this he makes to be ,/10/2. By experiments
Chladni put it at §, and Savart more recently at 1:6668; the
mean of the experimental values differs little from Poisson’s
theoretical value : see page 456 of the memoir, and also page 369
of Vol. 11. of the Mécanique.

Poisson’s method is as follows: he obtains equations for the
torsional and longitudinal vibrations of the forms

Py _kdy o Pu_Skdu
a¢  p dz* att  2p dz?
respectively.

These agree with those usually given in treatises on sound, if
we remark the relation supposed by Poisson to exist between
the elastic constants. Thus Lord Rayleigh (The Theory of Sound,
Vol. L. pp. 191 and 199) uses the same equations, if we remember
that his ¢ is Poisson’s k, and that his x is taken by Poisson to be
equal to 1/4',

If n be the number of longitudinal, #’ of torsional vibrations in
unit time, / the length of the rod, Poisson finds*

20V 2p’ T2V p’
or n_¥10,
n 2’

1 Lord Rayleigh's x is equal to the ratio of lateral contraction to longitudinal
extension, and this Poisson makes equal to 1/4.

* Poisson has dropped the coefficient 1/2 in the values of both n and n’': see
p. 456 of the memoir. .
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Ce qui montre que les sons d'une méme verge cylindrique qui
exécute sucoessivement des vibrations tournantes et des vibrations
longitudinales, sont dans un rapport indépendant de la longueur, du
diamétre et la matitre de la verge. C’est ce que Chladni avait reconnu
par Pexpérience.

It will be seen that Poisson’s remark as to the ratio being
independent of the material of the rod is not indisputably true. In

Lamé’s notation the ratio equals 2Z :_ 3’", which will only be

a constant if the ratio u : A be admitted to be the same for all
materials.

471. Again, Poisson obtains another proportion; namely
between the number of vibrations of a cylindrical rod which
vibrates longitudinally, and the number of vibrations of the same
rod in the same time when it vibrates transversely: see his page
486. Take the case of a rod free at its ends and giving forth its
gravest sound; then if n», represent the number of transversal

vibrations in a unit of time he finds that n, =3'5608 _ 2l" % , the
notation being the same as in Arts. 467 and 468. Let n denote the
corresponding number for the case of longitudina.l vibrations; then
he finds that n——ﬂ g—k Thus ; 30608 ; Poisson records
some observations oommumcated to him by Sa.va.rt, which agree
well with this theoretical result.

Later in the memoir ‘Poisson obtains another such proportion,
namely between the number of longitudinal vibrations of a rod,
and the number of transversal vibrations of a plate; and he

expresses a wish to have this result tested by experiment : see his

page 567.

[472] Poisson’s fifth section is entitled: Equations de U'équilibre
et du mouvement d’une membrane élastique. It occupies pp. 488—
523.

This section is occupied with the equilibrium and vibrational
motion of a membrane. It contains much the same matter as the
ninth and tenth of Lamé’s Legons with of course Poisson’s usual
supposition as to the equality of the elastic constants.
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After the general equations of equilibrium (p. 491) we may
note the following results:

(i) For a plane membrane subject to no normal force

oX + X (3 (ail'l’f+5dwdy+8£;) 0,
k(,dw d'u d'v
pY+3 (3 &t Tyt 8 )
The notation being the same as in the earher part of the memoir,
p- 494.

Special cases are considered, thus that of a membrane subject
only to tension at its boundary. On p. 498 Poisson makes the
remark :

On voit que la méme force appliquée sucoessivement & la superficie
d’un corps, au contour d’'une membrane, et aux extrémités d'une corde,
produit des dilatations linéaires qui sont entre elles comme les nombres

2, 3, 4; la quantité k¥ dépendante de la matitre étant supposée la méme
dans les trois cas. (Cf. Lamé, p. 114.)

The case of longitudinal vibrations follows with special treat-
ment of a circular membrane, whose boundary is subject to uniform
tension, and while it vibrates radially (pp. 499—508).

(i) For a plane membrane subjected to force which may be
partially normal and so rendered slightly curved.

d'z &’z
P(z Xp Yq)'l'Qsd '+2P'dady+P.d$’
where the plane of @y is the primitive .plane of the membrane,
Z, X, Y are the components of applied force, and

du  dv 2k (,du  dv
P*“"( +3) P'=__(4'd_a:+@)'
dv  du
Q== 3 (4‘dy ‘& dz)
values not involving 2. These results are given by Lamé: see
page 110 equation (6) and page 112 equation (8).

Poisson applies the equation to the case of transverse vibrations
of a membrane subject to uniform tension. He deduces the

equation %’z (d'z d'z) , which he applies at considerable

dxl+d S




POISSON. 241

length to the case of a square membrane (pages 510—519) and to

the case of a circular membrane (pages 519—523) after transforma-
d'z d'z 1lds

tion to the form—d?—c (dr + ;d_r)'

In his treatment of the first case he has been closely followed
by Lamé and later writers, while the analysis he presents of the
second is by no means without interesting points. For the inte-
gration of the equation for.the transverse as well as for the radial

vibrations of a circular membrane Poisson refers to a memoir of his
own in the Journal de I Ecole polytechnique, 19° Cahier, page 239",

473. A few additional remarks may be made. Poisson refers
on his pages 491 and 493 to his former memoir on elastic surfaces.
After stating that he will confine himself to the case in which the
membrane deviates but little from a plane, he says on his page 493:

L’équation différentielle de la surface flexible que Lagrange a
donnée, et qui se trouve aussi dans le Mémoire que je viens de citer,
n’est pas soumise 4 cette restriction; elle est seulement fondée sur la
supposition particulidre qu’en chaque point de cette surface, la tension
est la méme dans toutes les directions: on la déduirait sans difficulté
des équations (2) en y introduisant cette hypothése.

The equations (2) to which Poisson refers are substantially
equivalent to equations (5) on Lamé’s page 110. On the same page
Lamé expresses emphatically his surprise that Poisson adopted a
method so long and complex ; but it seems to me that Lamé gives
an exaggerated notion of the length and complexity of the method,
which is in fact connected in a natural manner with formule
already given by Poisson in the present and in his former memoirs.

474. Poisson’s sixth section is entitled: Equations de l'équilibre
et du mouvement d'une plaque élastique. It occupies pages 523—545.
This is the first investigation of the problem of the elastic
plate from the general equations of elasticity. Owing to the
importance of the subject and the considerable controversy which
has arisen over Poisson’s contour-conditions, we substantially
reproduce this investigation. The reader will remember Poisson’s
hypothesis as to the equality of the elastic constants.
[ The very important Mémoire sur lintégration des équations linéaires auz
différences partielles, read before the Academy Dec. 31st, 1821.] Ep.
T. E. 16
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The lamina will be supposed in its natural condition to be
plane, and of constant thickness; that is to say it will be com-
prised between two parallel planes which constitute its faces, and
the distance between these will express its thickness. The boun-
dary of the lamina will consist of planes or of portions of
cylindrical surfaces perpendicular to the faces. We will denote
the thickness by 2¢, and we will suppose it very small with regard
to the other dimensions of the lamina ; but the thickness will be
sufficiently great for the lamina to tend to recover its plane figure
when it has been disturbed from that by given forces, and for the
lamina to execute transversal vibrations when these forces have
been withdrawn. It will now be necessary to pay attention to
the variation of the molecular forces in the direction of the thick-
ness; this is the essential difference between the case we are
about to consider and that of a flexible membrane, where the
thickness is taken indefinitely small, and these forces constant.

475. Let a plane be taken in the natural state of the lamina
parallel to #s faces, and equidistant from them : this we will call
the mean section of the lamina, and we will take the plane of it
for that of (zy). Let M be any point of this section; let # and y
be its original co-ordinates; let # + u, ¥ + v, 2 be the co-ordinates
of this point after the change of form of the lamina, so that u, v, 2
are unknown functions of # and y. Let M’ be another point
situated originally on the straight line through M at right angles
to the lamina ; and let its original co-ordinates be z, y, {; and let
these co-ordinates become # + u, y+ ¢, {+w' after the change of
form: then u', ¢, w' are unknown functions of z, y, { which coin-
cide with %, v, z respectively in the case of {=0. These displace-
ments of M and M’ will be taken to be very small, and it will be
then assumed that the lamina does not deviate much from the
plane of (zy) when its form is changed.

476. The expressions for the elastic tensions are (see Art. 438)
du' dv  dw’ dv  dw’
N= "( P d+71g’)' T,= "(d; d”

mek(laoth ), e (24

N,= k(d"' d”+3%‘”?’), T - k(‘f{'; ZZ)

v

oee(1).

J
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The variable ¢ being very small, if we develop «/, v, ' in powers
of ¢ we shall have series which are in general very convergent.
We shall exclude the case of exception which might exist if these
quantities varied very rapidly in the direction of the thickness, as
for example would bappen if their values depended on the ratio
t/e. The following analysis and the consequences deduced from it
are all founded on the possibility of this development. We shall .
then have the following convergent series :

’ -du' -d'u
v =u+t TI;] t+4% ks ol
'dv (d
v’=v+ t+3 (%] 4.,

. d'w’
W=t _d_c] t+i L?l?] &+
the square brackets indicating that {is to be made zero after the
differentiation.

477. By means of the equations of equilibrium we must
determine in succession the coefficients of the preceding series,
and then we shall know the condition of the plate to as close a
degree of approximation as we please. We will stop at the first
power of {, and thus we have simply

u=u+[‘z]§, v—v+[d§]§, w—s+[d§];’ ...... Q).

These formul® contain only six unknown quantities which must be
expressed in terms of # and y. (They are, I suppose, 4, v, 2, [‘—%’] ,
[ "C,] [_(fl_l; .) The expression for £ when obtained will

give the form which the mean section assumes; the values of
and v will be the displacements of the points of the mean section
in the original direction of the plane; the difference of the values
of w/ which correspond to {=+ e will give the thickness of the
lamina, which becomes variable from point to point after the
change of form.

478. Let X', Y’, Z' denote the components parallel to the axes

of z, y,  respectively of the inner applied forces which act at the
16—2
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point M’. Then by the general equations of body-equilibrium we
have

dN, dT, d7, -
dT, dN, a7,

ds ey A

dT, dT dny, '

479. Let us now consnder the faces of the lamina. We will
suppose that there are no outer applied forces at these faces:
hence N,, T, and T, must vanish at every point of these faces,
that is both when {=¢ and when {=—e. Hence if we expand,

and neglect powers of e beyond €', we shall obtain
4N, , dN,] d'N,]
[NJ +* [”“——.] €= 0, [Tc!_ +& [Ti?_ e€=0
[(T.]+3 [d;*]e' 0, l:‘izj +3 [ﬂ =0 }...(4).

+pY'=

dg ag’ |
[T]+4% [‘fz‘gT']" 0, [%%j +1 [‘f;g:" e=0 |

The equations which belong to the boundary will be given further
on. The investigation to which we now proceed is to eliminate
between equations (3) and (4) the differential coefficients of o, v', w’
with respect to ¢ which are of the second order, or of a higher
order, and to deduce the values of the six unknown quantities in (2).

480. Let X, Y, Z denote the inner applied forces at the point
M of the mean section ; that is what X', Y, Z’ respectively become
-when {=0. Give to ¢ this value in the first two equations of (3) ;

then substitute for [ dC:I and [ dc] their values from (4), and

neglect the terms which have €' for a factor, and which are very
small compared with the terms independent of ¢: we have thus

simply a dT
o+ [z ]+ [ 7]-0

.................. 5).
4T [dN. (
(2] (@]
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Make ¢=0 in the third equation of (3), and substitute for the
three terms involving elastic tensions from (4),—as all these terms
involve ¢ we must preserve them all—thus:

€ ([d*N, a‘T, a'T,
7= 5{| G| +o gy | +2 [ ]}
481. Differentiate the last equation of (3) twice with respect
to ¢; thus:
. aZp _ d'N,_l_ &T d'T!}
ar ag d;"‘dy ddx

Make ¢{=0 in this formula, multiply by ¢'/6, and add to the last
result in Art. 480; thus

ot 5] -4 (485 (3]

The first two equations of (3) give in like manner

((ll'X’B {d‘N+ &'T, + d‘T}
tdw dtde t dededy T Pds)
@Y'p { d‘T d’N &T,
iy = @y dy dc'dy}

Make ¢=0 in these formule, multiply by €'/3 and add to the
preceding formula : thus

i) ee[t] +2 ]}

[ [

In the equations (5) and (6) there remain to be eliminated
only N, N, T, and their differential coefficients with respect to {;
we cannot simplify them further without substituting the values
of these quantities which correspond to {=0; but in calculating
these values we may neglect the terms dependent on €', which will
allow us to reduce the equations (4) to

i, 30, . [4] [ 5] 0 [4]-

482. We suppose the lamina homogeneous; the density p
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and the coefficient k will then be constant; and by means of (1)
the six equations just given become

du dv dw'] dz  [du
5+ %) o a+|a)-o
v dv de [d
i)+ () vl )= &+ %o
" d*w’ d* ‘' [d*]
EAREIRE AR
These six equations give
aw_ _de R
[d;_ =T dz’ | dg ‘3(@' dzdy
dv] dz (@] 1/d%  d%
. [d———g— =_d_y, ‘-E —s(dz_dy-l-d_y') ------ (7)-
dw' 1/du dv [ d*w'’ 1/d2 d's
(&]--3@+5)  [&]-:@+%)

The values of N,, N,, T, and their differential coefficients with
respect to §, when { is zero, are

N
[N.]-~( %+%), [az_zg,]___ (4§;+f:;)» ...... (8).
oD [Gend

483. From these formul® we see that the unknown quantity
'z will enter singly into equation (6), and that the equations (5)
will contain only the unknown quantities w and ». Thus the dis-
placements of the points of the mean section in the direction of
the section and the form which this mean section will take are in-
dependent, and can be determined separately. We see also that the
equations (5) are the same as in the case of a flexible membrane ; so
that with respect to the values of % and v we have nothing to add to
what has been mentioned in Art. 472. But it appears from the third
of equations (7) that these displacements will be always accompanied

by a normal dilatation [‘fl C] equal and of contrary sign to a third
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of the sum of the dilatations du/dz and dv/dy which occur in the
directions of z and y respectively. Suppose that a lamina has
experienced parallel to its faces a linear dilatation equal in all
directions and throughout its extent, and represent this by §; then
28

g
By the dilatation the volume of the lamina will be increased in
the ratio of (1 + 8) to 1; by the condensation it will be diminished

there will at the same time be a normal condensation equal to

in the ratio of 1--%?1:0 1: the total variation will be in the ratio
of (1+9) (1-—253 to 1, that is approximately in the ratio of
1+ %6 to 1. Thus the extension of an elastic lamina in the

direction of its largest dimensions gives rise to an increase of
volume, and consequently to a diminution of density; this result
is similar to what occurs in the case of an elastic string, but would
be more difficult to verify by experiment. (Cf. Art. 368,)

484. In what follows we may omit the consideration of the
displacement of the points of the mean section parallel to  and y,
and suppose that u and v are zero. By reason of the first three
equations (7) the formul® (2) will then become

u'-—-—%{, v’=—%§§, w =z
These values of 4’ and v' shew that the points of the lamina which
were originally on one perpendicular to the mean section will after
the change of form lie on a common normal to the curved surface
into which the mean section is transformed. At every point there
will be on one side of this section dilatation parallel to its direction,
and on the other side condensation. It is this difference of state
of the faces of the lamina which produces its elasticity by flexion,
or its tendency to recover its natural form. In the directions of
the principal curvatures of the mean section the dilatations and
condensations will be proportional to the distances from this
surface, and inversely proportional to the corresponding radius
of curvature. Whether there is equilibrium or motion the condi-
tion of the lamina will be known throughout its thickness when
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the form of the mean section is determined, that is when we know
the value of # in terms of z and y.
By means of the formula (8) equation (6) becomes

a4z T X @Y’
zvi{( %] v2 ) +2 5 )
8ke® (d'z dz  d'
=% ot 22y i)
485. In the case of equilibrium this will be the partial differen-
tial equation to the surface required; the forces Z, X, ¥’, Z’ being
then given as functions of , y, {. In the case of motion, and sup-

posing that there is no inner applied force, we must put Z=— g‘; ,
d’ u' ’__ d'v’ ? d.w' —_
X’=———Jt;, Y——-—d—t;, Z =—F" If we ma.ke ¢=0 after

the differentiations we have by the aid of (7)—
ax| _ d ar_ &
dt | dwdt'’ d¢ | dyds’

2] )

and consequently the first member of equation (9) will become
d'z 5¢'( d'z d'z
-3+ 15 (et W) '
But the term which has ¢ for a factor is evidently very small
and may be neglected with respect to the first term; this equation
will then be simply

a z d's d'zs  d'
dt’ (d(b" + 2da:"dy' + (T]/—.) =0icrernennnne (10),
where for abbreviation we put a* = 8:_;’ .

To the equations (9) and (10) we must add those which relate
to the boundary of the plate, and which will serve with the initial
state of the plate in the case of motion, to determine the arbitrary
quantities involved in the integrals. These special equations we
now propose to investigate. '

486. Let X, Y, Z, be the outer applied forces at any point of
the boundary, 6 the angle which the normal to the boundary there
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makes with the axis of z. Then (cf. Lamé, page 20, equations (8)),
X,=N,cos 0+ T,sin ¥, Y,= T,co8 0 + N,sin 6,
Z,=T,co8 0+ 1T, sinl.................... (11).
Since the quantities u and v have been supposed zero the values
of N,, N, and 7, which correspond to {= 0 are also zero. Neglect-
ing the powers of { above the first the foregoing values of X and

Y, become .
X =g | w0+t ] omo

et e 4] e

Now it seems to me that according to the ordinary principles of
the theory of elasticity the three equations (11) must hold at every
point of the boundary ; and thus the last two must hold approxi-
mately at every point. Hence we may if we please multiply by ¢
and integrate between the limits — e and e: thus

4] 5] ).
[ra=3 ] dno+[Gg]we}.
Therefore by the aid of equations (8) we have

e T8
+Xo§d§=—4—gi{3%sin0+( g.:, g;,)cose}

4ké* (, d'z 'z  d'z\ .
f YJ";“T{ dady ©° “’*( dy-"d_w')“’na}
Again, take the last of the three equations (11); suppose T,
and T, to be expanded in powers of {, eliminate by means of

equations (4) the values of [T}], [T}], [dT] and [QT-':I , and

...(12).

a
neglect terms of the third order with respect to e and {: thus

e ]

Then as this is true at every point of the boundary we are at
liberty to integrate with respect to ¢, and thus we get

e (5700 [ on.
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Now the first two equations (3) give by the aid of (8)

- [3-l- (5]
s[5 [5] ${85 55}

Hence by substitution we get

fz(lg_z—“'{s"(%+dz;) [‘% }0080
+%{%’f(z_;‘., I;f;@) [ dc]}smﬂ ...... (13).

487. The equations (12) and (13) seem to me to coincide with
those which Poisson maintains to hold at the boundary; they.cor-
respond to the equations (13) on his page 538 : but the point is
one of great difficulty. Poisson’s mode of obtaining them is
circuitous and not very clear; I have put them in what seems the
most natural connexion with the ordinary theory of elasticity.
But at the same time that theory requires that (11) should be true
at every point of the boundary, and this condition Poisson does not
attempt to satisfy; but .deduces certain aggregate or average
results by integration. It may be asked too why Poisson chose the.

two equations (12) instead of f +.X0 d¢= f * (&V, cos 8 + T, sin 6) dt,

’ +q +e
and f_.Y,d;‘= f_'(T, cos 0 + N, sin 6) d¢, which it would seem

must also hold. Kirchhoff first, followed by Clebsch, objected to
Poisson’s boundary equations; according to them (13) is approxi-
mately true; but they replace the two equations (12) by a single
equation : see the end of Art. 531.

[488.] These boundary equations of Poisson’ express the con-
ditions that the total applied force perpendicular to the plate at

1 [Dr Todhunter had included in his manuseript at this point a long discussion
of the relative merits of the Poisson and Kirchhoff contour-conditions. His general
conclusion seems to be that Poisson’s three conditions are not only sufficient, but
necessary. I have felt justified in replacing this discussion by the above article, as
Dr Todhunter had added a note at a later date that it would be necessary for him
to reconsider the whole subject.] Eb.
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any element of the boundary shall be equal to the shearing force
produced by the strain at that point (13), and again that the stress
couples with axes parallel to the axes of « and y shall be in equili-
brium with the applied couples at the same element of the

boundary (12).
Now the couples applied to the edge of the plate at any
element may be reduced to two, having respectively the tangent
and normal to the contour in the plane of the plate for axes. The
forces of the latter couple lie in the same plane and may be taken
parallel to the shearing force. Now it has been argued that it is
‘not needful that the three conditions, equality of shearing force
and shearing stress, equality of applied couple and stress couple
about the tangent, and equality of applied couple and stress couple
about the normal, should hold. For the latter couple may be
combined with the shear to give a single condition of equilibrium
" without affecting the state of the plate at distances from the edge
sensibly greater than the thickness. Hence instead of Poisson’s
three boundary-conditions we should have only two. Such appears
to be Thomson and Tait’s explanation of the discrepancy be-
tween the Poisson and Kirchhoff boundary conditions®. (See
their Treatise on Natural Philosophy, Part 1. pages 190—1983.)
The literature of the controversy will be treated more fully when
we consider Kirchhoff’s discussion of the problem. We may
remark here however that Poisson’s work is not in the least
invalidated supposing Thomson and Tait’s view to be the correct
one. Poisson finds that the stress consists of a certain shear and
two couples about the axes of # and y. These must certainly be
kept in equilibrium by the applied system, say the force F and
the couples H and H’'. That is Poisson’s real statement as to the
boundary conditions (page 538). Thomson and Tait now add that
if the couples H, H’ be replaced by others M, N about the tangent
and normal respectively, then the couple distribution N may be
replaced by a shear distribution dN/ds where ds is an element of
arc of the contour. It seems to me that if we are given the dis-
tribution of force upon the edge of a plate, Poisson’s boundary
1 This reconcilistion of Poisson and Kirchhoff has been attributed by French

writers o M. Boussinesq. His memoirs however are of considerably later date than
the first edition of Thomson and Tait's Treatise.
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conditions ought to give exactly the same result as Kirchhoff’s, for
we should make ¥, M and N in equilibrium with the given distri-
bution and in doing so find that F, M and N were not separately
determinate. Poisson’s error appears first, I think on page 537,
when in considering a special case, he adds: mais en général, ces
trows quantités ¥, H, H' seront indépendantes Tune de Uautre. On
page 547, wheu treating a circular plate with a free edge, he
supposes F, H, H' zero, but in this case the symmetry of the
plate preserves him from error. I am inclined then to think that
Poisson’s so-called error has been much exaggerated. It is one of
stating the results of analysis and not of analysis itself. Further,
in the most general case of a discontinuous distribution of shearing
force and normal couple, it would seem more convenient to take
Poisson’s calculation of the shear and couples, and we should
have at every element to make them in equilibrium with the
discontinuous applied system of force. I feel also some doubt as
to whether Poisson’s method of treating the whole problem is not
really more satisfactory and suggestive than Kirchhoff’'s when the
plate has a definite although small thickness'.

489. Among equations (7) we have

dul_ _ds [d_” -,
d¢| de’ d¢ dy’

we shall now give the equations which correspond to these when
the approximation is carried to a higher order.
By (1) and (4) we have

dv d'T, .
“hence from the value of [ dC'] found in Art. 486 we get

d dz e’p aYy e(d'z+ d'z)
“ayter| et | 8 \dptaday)

1 Saint-Venant remarks: Ce sujet est délicat. Nous ne doutons pas que les
équations aux limites de M. Kirchhoff ne soient les véritables; mais quoi celles de
Poisson sont-elles fausses? C'est ce que nous n’avons pas enoore ea le loisir d’étudier
b fond....La matidre demande done un examen approfondi. Historique Abrégé
prefixed to Navier's Legons, 8rd Ed. p. oclxx. This ‘examen approfondi’ 8aint-
Venant has given in his edition of Clebsch, pp. 689—733. He adopts Thomson and
Tait’s reconciliation, attributing it however to Boussinesq. I shall return to the
subject later.
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Similarly :
du dz + dX'] 4 (di + d’z )
d¢|="dz" 2 Ic d¢ 3 \de® * dady*/’
[Poisson seems here a8 in other places in this memoir to have
wrong signs which I have tacitly corrected.]

490. When the parts of the boundary are supported in such a
manner that it cannot slide parallel to the axis of z the equation
(13) will not hold, and it must be replaced by the condition £=0.
The right-hand member of (13) will then express the pressure
parallel to the axis of £, and referred to the unit of length which
the points of support will have to bear.

491. But suppose that at some point or points the plate is so
constrained that it cannot slide, cannot turn on itself, and cannot
turn round the tangent to the mean section ; the plate is then
said by Poisson to be encastrée, or as we call it built-in. Then the
conditions (12) and (13) do not hold, but in addition to 2=10 it will
be necessary that the displacements ' and v’ should be zero at the
boundary throughout the thickness of the plate. Hence by the
formula (2) we must have

and in these equations we shall employ the values obtained in
Art. 489. In special applications instead of these equations it will
be more convenient to use

Z2-zla-> [%a+Ea-o

which are equivalent to the preceding, where ds denotes an
element of the perimeter of the mean section. In the first of
these we may neglect the terms multiplied by ¢*, which are small
with respect to the terms independent of the thickness; this
reduces it to'

! [This result has been eriticised by Cauchy, but Mathieu makes Poisson and
Cauchy agree. We shall return to the point later.] Ep.
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The case is different with respect to the second equation, which
becomes : '
(fede, de ) 2o (AT de 4T
(dzda dyds}) "2k || d¢ | ds d¢ | ds
8e'(d's , d' \dx 8¢ (dz k6 'z \dy
‘55(«1?*@?)5"55 (d—y'“’m—y)a—"-
But if we differentiate the equation 2= 0 with respect to  and y,

considering # and y to be functions of & given by the equation to
the perimeter of the mean section, we have

de do , de dy

deds " dyds

thus the term independent of e will disappear from the preceding
equation, and reduce it to the term dependent on ¢*, which has
been preserved for this reason. In this manner the three equa-

tions relative to a part of the boundary which is duilt-in will be

o dedy dsde

=0 Zdsaqya " s
o ([ de, [dXdy 84 (E0 ), [ >
Fl\ld |dst | dr | dsf "3ds\de Tay)™

492. These formule relative to the different points of the
perimeter of the mean section apply to the two cases of equilibrium
and motion. But in the case of motion, and supposing that there
are no inner applied forces, we put, as in Art. 485,

dX)_ & AV &5

d¢ | dzdt’ d¢ | dyde*”
Now having regard to equations (10), and to the equation
a = %‘7; , we see that the terms p [%1] and p [‘%] of
equation (13) and of the last equation (14) will be very small and
may be neglected with respect to the other terms.

493. Poisson closes this section of his memoir by using, as he
expresses it, equations (12) and (18) to verify the ordinary equations
of equilibrium of all the given forces which act on an elastic plate
having its boundary free. He restricts himself however to three
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equations out of the siz which must hold for a rigid body. This
he says will serve to confirm the analysis. It is perhaps meant
to throw some light on what appears arbitrary in his process: see
Art. 487.

494. Poisson’s seventh section is entitled : Application des for-
mules précédents d Uéquilibre et au mouvement d'une plagque circu-
laire, and occupies pages 545—570. As the first attempt at this pro-
blem and as an excellent example of the application of the equations
of the preceding section, it is reproduced here. It will enable the
reader to judge of the comparatively minor importance of later
additions to the solution, and give him a most valuable example of
the clearness and power of this great master of analysis’.

495. In the case of equilibrium we will suppose the plate
horizontal and heavy, and its boundary entirely free or constrained
everywhere in the same manner. Let us apply to its upper
face a normal pressure of equal intensity at equal distances from
the centre; take the centre for the origin of co-ordinates, and
denote by R the pressure at the distance r from the centre,
referred to the unit of surface, so that R is a given function of 7.
If we neglect the squares of dz/dx and dz/dy the components of
this force parallel to the axes of x, y, z respectively will be
—B:%’ -Rg—;, R; the first two being very small with respect
to the third we will neglect the small horizontal displacements
which they produce, and consider only the curvature of the
plate or of its mean section. Now it will be the same if instead
of applying the pressure R to the face of the plate, we suppose all
the points of the plate solicited by constant forces in the direction
of the thickness, and represented in intensity by R/(2pe) per unit
mass. We will put then in equation (9) of Art. 484,

Z-gegi® po R g _ R
2pe 2pe dy 2pe d
1 [I have thought it better to print this seotion as it was left by Dr Todhunter,
though for the eake of proportion it would perhaps have been fitter to abridge.
Readers who take a genuine historical interest in the method by which a great master
like Poisson attacked an unsolved problem, will not regret the space devoted to
these two sections of his greatest memoir.] Eb. )
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where g denotes gravity, and the axis of z is supposed to be
directed vertically downwards. Thus the equation will become
: R 8ké (d'¢ d'¢
2pe 9p (dx' + dy')’
d'z d’z .

where ¢ stands for — e Ey—’ The same equation would hold
if the plate were drawn by weights suspended from its lower
face, and represented at the distance r from the centre by R
for every unit of surface.

496. Since we suppose that everything is symmetrical round
the centre of the plate, the ordinate ¢ of any point of the
mean section will be a function of . Hence we have

$or d'z d'z _ds +1 1dz
et df dr rdr
o + d¢_d'¢ +1 1d¢
de* " dy?  dr” rdr’
Let ! denote the radius of the plate, and p its weight; then
p =2nlepy,

so that if we put for brevity 16%=Ic’, the equation of equi-

and

librium may be written

) &o  1dp
K (‘l‘ + R) L - ——— Q).

497, In the equations which relate to.the boundary of the

plate we put
cos § = /r, sin 6 = y/r,

because the normal to the perimeter of the mean section coincides
with the production of the radius vector. We will suppose that
there are no outer applied forces; then the left-hand members of
equations (12) and (13) of Art. 486 vanish.

Thus in the case of a perfectly free boundary we have the
followmg two equations which must hold when r=1:

do d‘z 1d:z :
=0 ot g = O, @).

For the two equations (12) reduce to one, namely the first of
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those just given, and equation (13) reduces to the second of those

dX Y’
just given, when we neglect [ d;‘] and d_C] .

If the boundary of the plate is supported and cannot ascend or
descend vertically, we shall have, as the conditions which must
hold when r =1,

Ps . 1ds ,'
£=0, g}l =0 (3).

If the plate is built-sn round the boundary we have the equations
(14) of Art. 491 which must hold round the boundary. The
hypothesis that s is a function of r makes the third equation
of (14) identical; and we are left with the following to hold
-when r=1{:

dsz
dr~

In the last two cases the vertical pressure at every point of the
perimeter will be equal to the expression on the right-hand side
of equation (13) of Art. 486. This reduces to

6t (dba  dby)

£=0,

9 \dzr dyr
that is to - i (—l? . Hence if we denote by P the vertical pressure
on the whole perimeter we have P = 2,:',.l :—Jlld—, |

498. Putting C and C for arbitrary constants the complete

integral of (1) is
¢= C+O'logr+k'{ +f(erdr) }
Integrating by parts we get
f(erdr) ?= logr err—er logrdr;

we may suppose that these simple integrals vanish with », and we
may write if we please logr/l instead of logr. But ¢, which
d'z d’z
do* dy' ’

cannot become infinite at any point of the piate; thus the term
T. E. 17

represents cannot become very great, and therefore
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C’log r must disappear, and therefore (" must be zero. Thus the
formula for ¢ becomes

¢=C+F {%+log§[llrdr -erlog;dr},

the integrals being supposed to vanish when »=0. Hence we get

% {271' +1 [err}

!
If we put 27 f Rrdr =w, then = will be the total pressure
0

exerted on the plate, and the first equation of (2) will reduce to
p+w==0; this manifestly ought to hold for the equilibrium of
the plate when it is entirely free. In the case of the plate
supported or built-ia we have from the last result of Art. 497
the equation P=p+w; a relation which is also obvious a

499. Pu t o L At 1 ZZ for ¢, and mtegmte again; thus

i B Cr .
BTk {ﬂ+;f(erdr)rlogzdr

dr r 16x 7
-1 f (/Br10g ] ar) rdr}
. r l ’
where B is an arbitrary constant.
Integrating by parts we get

f (/Brdr) rlog dr
-7 (1-210g3) [Redr + 4 [RP (1-210g7) ar,

[(Rr10g5ar) rdr=7 erloggdr—‘i [Rr10g] ar.

‘We will suppose that these simple integrals vanish with ; and
as dz/dr must not be infinite for any value of » we will suppress
the term B/r. Thus we shall have

ds _ Ur+k { pr —E(l—2log§)erdr

dr— 1670
1
- %erlog%dr +4—rfR1"dr} .
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From this we can deduce d'z/dr; then in both put I for  and
substitute in the second equation of (2) or (3): thus we get

_ (18p 3w [t r 3 [ .
C=-F {m+ é()—”—foerogi dr— W,foRr’dr} :

this -value of C' will hold for the two cases of the plate entirely
free, and of the plate supported at its perimeter. In the third
case, that in which the plate is built-in, we deduce from the
expression for dz/dr and the second equation (4)

ple_=_[ r _l_f‘
c= k{&r d foerogldr+2l, " Rrar}.
Hence in all cases the constant C is determined.

500. Integrate the value of dz/dr found in the preceding
Article, and put « for the arbitrary constant: thus

4
P =7+%’_’+k' {g%—}[(j'lirdr) (1-210g7) rdr

~ 4 [(/Rr1og] dr) rdr + § [(Rr*ar) ‘%’} :
Integrating by parts we get
f (fRrdr) (1 —2log ’i') rdr
= (1 - 1og§) erdr - fR (1 - logg) Pdr,
f (#Rr10g] dr) rdr = . er log § dr - } er* log § dr,
f (jRr*dr) "’7’ =log} f Re'dr — f Br'log} dr.

'We shall suppose that the simple integrals vanish with 7, and we
shall have finally

cr K prt _ Z‘f
z=7+T +Z{m—7’(l logl> Brdr

+(1+10g ’Z')fzwr-ffzzr log § dr — [R# 10g;-’dr}...(5).
This is the equation to the surface formed by the plate in

uilibrium.
«q 17—2
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501. 1If the plate is entirely free the constant ¢ remains un-
determined ; and in fact it is indifferent then whether the plate
occupies one position or another in space provided it is horizontal.
Leaving this constant out of consideration the equation of the
plate will be the same in this case as in the case of the plate
supported vertically, since in these two cases the same value must
be ascribed to the constant C. When the plate is supported
round the boundary, or when it is built-in, the condition z =0 for
r =1 will determine the value of y. 'We must put for C the first
or the second of the values previously found for this constant,
according as the plate is supported or built-in at the boundary.
In the two cases the constant o will be the sagitta (flécke) of the
plate curved by its weight and the pressure which it experiences.
We will continue to denote by « the value in the case where the
boundary is supported, and by «, the value when the boundary is
built-in. We shall have then

_kP(21p 13z t r
=% {801r+201r 10&‘[ Bridr + f Br'logy d’}’
ke

3
M= {lb'rr+47r 2?[ Bridr + 5 er logldr}

502. If the pressure R is everywhere the same, and therefore
equal to =/wl’, the integrations indicated may be easily effected.
It will be found that the quantity log r/l disappears from the
equation (5), which becomes

_ et K .
z—'y+—4—+m(p+w)r.

Poisson says that the equation represents a paraboloid of revolu-
tion: we see that it is not the common paraboloid.
If we put for &' its value we find that in this case

2lll’ 5hl*
' =" (p+=),

1

where h stands for & x - x : thus h depends solely on the

k
quantity k, and is the greater the less this quantity is; Poisson
expresses this result by saying that A is greater the less the
elasticity is: see Art. 522.
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503. If the plate is drawn by a weight suspended in its
centre, it will be necessary in order to apply the general
formulae to this particular case to suppose that the function
R has sensible values only when the values of » are insensible.

: :
By the nature of this kind of function the integrals f Rr’dr and
0
2 .
[ Ry log;dr will then be suppressed, as being insensible com-
0
1 2,
pared with f Rrdr, that is with L= .
o 2w

In this manner we shall have

_ Q1A +52_w) Z P s b
:Y"—Es_'(p o1 )’ %"= & P ).

By comparing these formulae with those of the preceding Article
we see that the weight @ produces now a greater sagitta (fléche)
than when it was spread over the entire surface of the plate. We
see also that other things being equal the values of v, are less than
those of ¢; such a result might have been anticipated, but the
exact measure of the excess could be found only by calculation.

504. The last case includes that in which the centre of the
plate is supported and maintained at the level of the perimeter.
We must then consider & as an unknown force which is exerted
in the direction opposite to gravity, and represents the resistance
of the central point of support. The sagitta of the plate must be
zero in this case; this condition will serve to determine =, and
we shall have

according as the boundary is supported or built in. These values
of =, taken with the contrary sign, will express the pressures which
are exerted at the centre; the corresponding values of the pressures
at the boundary will be
_3lp =3
r= 52 P= 4
Thus the pressure exerted by the weight p of the plate is divided
between the centre and the boundary in the ratio of 21 to 31
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when the plate is simply supported, and in the ratio of 1 to 3 when
it is built-in. These ratios then depend only on the manner in
which the boundary of the plate is treated, and not at all on the
radius, the thickness, or the degree of elasticity. But the elasticity
must not be absolutely zero, for if the matter of the plate is
supposed to be absolutely rigid, and deprived of all elasticity,
which is never the case in nature, the distribution of the
pressure p between the centre and the boundary, and even
between the different points of the boundary, would be quite
indeterminate.

505. Let us now pass to the consideration of the vibrations of
a circular plate. We omit gravity and every applied force, and
we suppose that at any instant the points at the same distance
from the centre have the same ordinate normal to the plate; so
that the ordinate z is a function of ¢ and r, where ¢ denotes the
time, and r is the same variable as before. Hence the equation
(10) of Art. 485 applied to this particular case will be

d'z d'¢  1dd
Al ARy T S— (6),
dz 1 dz

where ¢ stands for aatra

Let 2/ and 2" be two other functions of r and ¢, such that

bee (0180

dZ aJ— d'z ldz') 0

then (6) will be satlsﬁed by z=2 and by 2z = 2", and if we take for

2" and 2” their most general values the complete integral of (6) will
bez=2"+ 2"

Now the following are values of 2’ and 2", as may be eamly
verified, ~

z’=f_+: {f:f(reosw + 2ha Jat) do
+f: F (rcosw + 2ha Jat) log (rsin’w) dw} ¢~ “da,
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z”=fj: {[:j; (rcosw + 2h,a /at) de

+f: F,(2cos w + 2h,a ,/at) log (r sin® w) dm} e~ "da,

where f, F, f,, F, denote arbitrary functions, ¢ is the base of the
Napieriap logarithms, and 4 and k, are vV ¥/ — 1 ; that is
p=l=v -1 plty-1
V2 ' v
These values of 2’ and z” Poisson says that he has found in
another memoir; they may be easily verified.

)

506. But in order to give to these expressions a form which is
more convenient for the calculation of vibrations, let us suppose
that
f(@) =2 (Ccosvz +Dsinva), F(z)=3 (Ecosvz+ Gsinvz),
fi(@)=2(C,cosvz+ D, sinvz), F,(x)=23 (E, cosvx + Q,sin vz).

Here C, D, E, G,C, D, E, G, v are quantities independent
of the variable z, and the sums denoted by 3, extend to all their
possible values real and imaginary. Now we have

+o
' f e~<* sin (2vha /a) da =0,

f-m e~ cos (2vha Jat) da = Jmr e~raW¢ N
=7 {cos Vat +.,/—1 sin v'at}.

Similar formulae hold when we put A, for h. Hence it will follow
that the values of 5’ and 2”, and therefore of 2, will be expressed in
a series of quantities of the form
R cos v'at + R, sinv'at,

where R and R, are functions of #. The terms which involve the
cosine will depend on the initial values of 2z, and those which
involve the sine will depend on the initial value of dz/dt. The
treatment of the two classes of terms is of the same kind, and thus
in order to abridge the formulae we will consider only the former ;
this amounts to supposing the velocity of all parts of the plate to
be zero initially, so that the plate is made to take the form of a
surface of revolution, and is then abandoned to itself.
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507. Since we have
f' sin (v cosw) dw = 0, and f' sin (v cosw) log (r sin’w) dw =0,
) 0 :
the value of z derived from 2z’ and 2" will be

z=E{A fo' cos (v cosw) do

+ 4, f: cos (vr cosw) log (r sin*w) dm} cos »'at,

where A and 4, are, like », quantities independent of r and ¢; and
the summation denoted by = has reference to these quantities.
Let m denote another constant; put in' succession m and m ,/ — 1
instead of »: in the case of m let the coefficients 4 and 4, be used,

and in the case of ,/ =1 let them be replaced by B and B, We
shall get

z=3 {Af'oos (mr cosm) dow + % Bf'(eﬂroolu +e-mroou-) de
0 0
+ A,f' cos (mr cosw) log (r sin’w) dw
0
+4 B,f'(e"‘"“" + e~mrome) Jog (r sin’w) di»} cosm'at ... (7),
0 .
and this is the form we shall employ for 2.

. 508. The expression for ¢ which follows from that for 2
just given may be simplified by considering the following differen-
tial equations:

du lduw_ dv  ldv _,,
wrrar="m" T e ="
The complete integrals of these are

u= Af:cos (mr cos w) do + AJ. cos (mr cosw) log (r sin*w) dw,
0
u = 4} Bf' (euroou + e—mrooao) do
1]
+ } Blf: (Woﬁu 4 g=mroow) log (,. sin’m) do:

where A, A, B, B, are arbitrary constants. Poisson refers for

these to the Journal de I'Lcole Polytechnique, 19° Cahier, page
475 ; it is however. easy to verify them.
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Hence from the formula (7) we infer that :
¢=Sm* {; B, (earome 4 g7 mrens) do — 4 [ cos (mr cos) da
+1B, fo' (enrense 4 g~mroos ) log (r sin'w) do
-4, f : cos (mr cosw) log (r sin*w) dw } cos m'at.

509. We suppose in what follows that there is no part
fixed at the centre of the plate; the value of z must then apply
when »=0; and as z cannot be infinite the coefficients 4, and B,
of the terms which involve log r must be zero. Then the expres-
sions for z and ¢ will reduce to

z=2{Af:cos(mrc03w)dw W

+3 Bf: (gmrooss | g—mrooaw) dm} cos m'at,

$=3m' {g B f: (emr e 4. g-mrooss) oy

-A f " cos (mr cosw) dw} cos m'at
0 J

The conditions relative to the boundary will be the same as in
the case of equilibrium, and will be expressed by the equations
(2), (3), or (4) of Art. 497 according as the boundary is free, or is fixed
so that it cannot slide normally to the plate, or is built-in. These
conditions must hold when =1 where I is the radius of the
plate, and they must hold for all values of . We will examine
these cases in succession: Arts. 510—513 refer to the built-in
plate, Arts. 514—516 to the plate which is supported, and
Arts, 517—520 to the free plate.

510. In order to satisfy the condition z=0 when r=],
whatever ¢ may be, we must take

A =Hf:(e""°°" + e-mlone) doo, B=-2Hf'cos (ml cosw) do ;
(]
H being an unknown coefficient. Put for brevity
R =f' (e conw 4. g=mioos) da,f'cos (mr cosw) dw
(] . V]

..f'cos (ml cos w) dwf'(emrooc-.*. g-mrooms) diy ;
0 0 .
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then the formula (8) becomes

and this applies to the two cases of the plate built-in, and the
plate simply fixed.

In the former case the condition% =0, or the second of equa-

tions (4) of Art. 497, will require that %1: =0 when r=1; this gives

f:(e"‘“’““-i-e"‘“") do f:sm (ml cos w) cose do
+ fo (oo — g~ mioosw) coses dio f:cos (ml cos @) dw =0...(10).

This equation will serve to determine the values of m. We
may prove as in Art. 458 of this chapter that the equation
has no root which is partly real and partly imaginary; and we
can determine the value of the coefficient denoted by H as a
function of m: these processes have been already sufficiently
exemplified, and so we will omit them with respect to the present
case, and to the cases to be discussed hereafter, and we will
proceed to consider the different sounds of a circular plate, which
is the essential object of the problem.

511, The roots of (10) being incommensurable it is neces-
sary that the formula (9) should reduce to a single term in order
that the plate should perform isochronous vibrations. Let
A denote one of the values of ml derived from (10); let =
denote the corresponding duration of an entire vibration; then
7=27l'/(A'a). The number of oscillations in a unit of time will
be 1/7; denote this by n; then putting for a its value as given

. Ae %k
in Art. 485 we have n= 3.p -7 Hence we see that, other

things being equal, the sound measured by this number n will be
directly as the thickness of the plate, and inversely as the square
of the radius.

512. Poisson gives some numerical results' respecting the

1 [These results are not calculated to any very great degree of acouracy. Thus
in Art. 518 we find z,=4/93, but in Art. 519, z, = \/91-75, and corresponding varia-
tions appear in the other quantities.] Ebp.
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first two solutions of (10). Develop the left-hand member of (10)
according to the powers of ml or of A, effect the integrations with
respect to , and make A' = 4z ; thus we get

z* o
{1 +z+(1.2),+(1.2.3),+ ...... }x

2z 84 4
{1_(1-2)’+(1.2.3)'“(1.2.3.4)-+ ...... }
1 z s
+{ "'z+(1.2)l_(1.2.3)|+ ------ }x
2z 82 4z
{‘l+(1.2)'+(1.2.3)|+(1.2.3.4')‘+ ......}:'—0.

This becomes when we multiply out
N
& + 280 ~ 181440 T 209018880

By resolving this equation with respect to 2* we obtain for the
least two roots

.=0.

o= 65227, 2'=98;
the corresponding values of A* are
A'=102156, \'=39'59;
and the two gravest sounds of the built-in plate, or the numbers
of vibrations which measure these sounds, are in the ratio of the
numbers just given, that is nearly as 1 to 4.

513. If we wish to determine the radii of the nodal circles
which accompany these sounds we must put B = 0; this equation,
putting m** = 42 and m** = 4y, becomes when developed

{l+a:+ z 4 }x )

Tt azapt

y Y y '
{1'(1.2)'+(1.2.3)-‘(r2ﬂ.+ ..... }

7 2 S (11).
—{l—w+(1_2),—(l—.2-3),+ ...... }X

y . v o ~
{1+(l,2)’+(1.2.3):"'(1.2.3.4),'*' ...... }-——0‘
Moreover we must have r less than /, that is y less than «.

If we employ the least value of = we obtain no values of y which
are less; this shews that corresponding to the gravest sound
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there is no nodal line except the perimeter of the plate. If we
employ the next value of « we obtain one value of y which is less
than «, namely y=1424. Thus we obtain r =381/ for the
radius of the nodal circle in the case of the sound which is next to
the gravest.

514. In the case of the plate which is supported at its
boundary we substitute the formula (9) in the second equation
(3); and as this must hold for all values of ¢ it will follow that

@R 1 dR

@t dr
in which » must be put equal to I. This gives after certain
reductions’

2mlf'r (emiconw 4. g—micosw) dmf'cos (ml cosw) dw
° 0

=0,

-2']:(9"'“’““ + g=mi00sw) gy f' sin (m! cosw) cosw daw
°

- 2f' (?"“‘”"' — e~mioo8w) oz dow f'cos (mlcosw) dw = 0...(12);
o 0 .

This equation will serve to determine the values of m, and
consequently the different sounds which the plate will produce.
If we denote by A’ one of the values of ml which are obtained
from the equation, and by n' the number of vibrations in the
unit of time, which serves to measure the corresponding sound,

" CYA
we shall have n’ = Ale Jﬂc ,as in Art. 511.
3l p

515. By developing the first member of (12) according to

powers of ml or \, and putting A = 44, Poisson obtains
x’i $'l w’ﬂ w'ﬂ
—2 T 96 ~ 25920 * 23224320 ~
z* x® " .
-8 {1 ~ % T 480 ~ 181440 T 209018880 } =0.

For the approximate values of the least two roots of this equation
in 2™ he gives

1

z?=14761, *=55;

! [Poisson’s equation (p. 563) seems to have an error in the second integral.] Ebp.
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the corresponding values of A™ are
A'=48591, A\"=29'67,

and the gravest two sounds for the plate, the boundary of which
is supported, are in the ratio of these two numbers. .

516. If we make m'l’ = 4x', and m"r* = 4y, the radii of the
nodal circles will be determined by the equation (11) in which &’
and 3" must he put for « and y respectively. It will be necessary
that 3’ should be less than z’; and if we take for «’ its least value
there exists no value of 3 which satisfies this condition : if we
take for z' its second value there exists one value of y' less than a4’
namely y'=1447. Hence it follows that corresponding to the
gravest sound there is no nodal circle except the perimeter of
the plate, and that corresponding to the next sound there is
one nodal circle the radius of which is r =441l

517. Consider now the case of a free plate. In order that
the second formula (8) may satisfy the first of equations (2)
we must take

A=H f' (emt 08w — g—mlcosw) cog g dow,
(1}

B=-2H f'sin (m! cosw) cos w dw,
[]

H' being a new constant. We shall then have
z=3H'R cosm’at ........c...cruuu.... (13),

where for abridgement we put

R,'=f'( conw _ g—ml 008 ) 08 02 d J.r cos (mr cosw) dw
o 0

0
The second equation (2) is the same thing as
3 dz
b= ‘ .
if then we substitute in this from the second formula (8) and the
formula (13) we shall obtain

- j "sin (mlcosw) cosw dw f ) (emroosw  g=mroosw) dg,.
. o
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[:(euleouo + g—micosw) d"’f’ sin (ml cosw) cosw dw
[}
+['( m-_e--zou-)cosmdmf'cos(mlcosm)dw
0 0

- 2imzf:(e"‘oou —¢ —ml oo w) coswdwf:sin (ml cosw) cosw dw =0

this equation will serve to determine the values of m.

Let X, denote a-value of ml obtained from this equation,
and let 2, denote the number of vibrations in the unit of time
which serves to measure the corresponding sound; then we
shall have from the formula (13) reduced to a single term

M Ale 2Ic

- 2l 31rl’

518. Put A*=4x, and develop the first member of the
equation (14) : it becomes
x° z! _
480 ~ 181440 T 200018880

] I
1- ""+

4 [}
X,

P
¥{! ~ 12 * 1240 ~ 725760 * 1045094200 ~ [ =
For the approximate values of the least two roots of this equation
in #," Poisson gives

x'=49392, 2'=92;
the corresponding values of A* are
A’ =88897, A'=23836.

The ratio of the second value of A to the first, this ratio being
that of the frequency of the gravest two sounds of the free plate,
is thus equal to 4'316.

The number of vibrations which serves for the measure of the
13339 € If Let us denote by » the
& P .

number of longitudinal vibrations of a cylindrical rod of length 2!
and radius ¢, formed of the same material as the plate, supposing
the rod to give forth its gravest sound ; then Poisson has shown (see

gravest sound is n, =
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1 /5k n o € .
Art. 470) that n = i ;\/ 2, Hence we get = 3:3746 I This

relation Poisson suggests as deserving of being tested by experi-
ment.

519. In order to determine the radii of the nodal circles,
which may correspond to the different sounds of the free plate,
we shall have to solve the equation R'=0; put m'l* = 4,
and m*r* = 4y,, then this equation becomes

2z, 8z 4o ‘
{”(1 it e srtaes.ay }

{1 %t (13{12)' -a gl. 3t } :

2, 3z 42
{l“(l.z) a.2.3f (1.2.3.4)**"'}

{1+y,+ P 7 }= 0.
1.2¢7@.2.37

We must take only those values of y, which are less than
z,. If we use the lowest value of @, we find only one value of y,
which satisfies this condition; if we use the next value of z,
we find two values of y,. Thus in the case of the gravest sound
there is only one nodal circle ; and in the case of the next sound
there are two nodal circles. With respect to the former sound we

have

2, =.J49392, y, =10295;
hence we obtain for the radius of the single nodal circle »= 68061,
With respect to the latter sound we have

= JO175, y, = 1'468, y, = 6674;
Y

hence we obtain for the radii of the nodal circles r=8915],
r="835L

520. The radii of the nodal circles which form themselves
on circular plates are independent of the matter and of the
thickness of the plate; they are proportional to its diameter,
and besides this they depend only on the way in which the centre
and the boundary are oonstrained. M. Savart measured them
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with care on three plates of copper of different dimensions
with the centre and the boundary entirely free. Poisson does not
however say in what way the plates were supported. In the case
of the gravest sound Savart found for the ratio of the radius
of the nodal circle to the radius of the plate on these three plates
*6819, 6798, ‘6812. The slight differences between these values
may be attributed to the unavoidable errors of observation,
and the mean of them, namely 6810, agrees remarkably well with
the theoretical value. In the case of the next sound Savart
found for the inner nodal circle ‘3855, ‘3876, ‘3836; and for
the outer nodal circle ‘8410, ‘8427, ‘8406. The differences here
also are small and fall within the limits of the errors of
observation. The mean of the first three numbers is ‘3856,
" and the mean of the other three is ‘8414 ; these numbers agree
well with the theoretical values “3915 and ‘835: see Art. 359.

521. In all the cases of vibration which we have examined,
the centre of the plate is in motion; for if we make r=0
in the formulae (9) and (13) we obtain for the ordinate £ of
this point a function of ¢ which is not zero. If we suppose,
on the contrary, that a circular portion of the plate having
the same centre and a radius which we will denote by a is
rendered fixed, its perimeter ought to be considered as if it
were built-in; and we shall accordingly have the conditions
z= O,g—— 0 for 7 =a; besides the conditions which hold for the
boundary of the plate, that is for r=1I. In like manner if the
central part were hollow, and its perimeter entirely free, we
should have ‘143-—0 ¢— -3—-%— 0 for r =a. In these two cases the
ordinate 2 would correspond only to values of r between a and
I, and so it will not be necessary to suppress that part of its
expression which would become infinite for 7=0: thus instead of
the formula (8), which we have hitherto employed, we must take
the formula (7) and the corresponding expression for ¢. The
calculations will then be similar to those Poisson has gone
through, but the formulae will be longer; Poisson refrains from
giving them.
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522. A remark may be made here as to what we are to under-
stand by greater and less elasticity. Poisson obtains on his page
552 an expression for the amount of depression of the centre of a
horizontal elastic plate below the plane of the boundary; the
expression has in the denominator %4 in Poisson’s notation:
see Art. 502. Then Poisson says in effect that this is greater
the smaller % is, that is the smaller the elasticity is; so he
takes & to be a measure of the elasticity. But this seems
contrary to common notions, for one would expect that the
greater the elasticity is the greater will be the depression. And
on his page 554 Poisson seems to consider that if a body is
absolutely rigid it may be said to have no elasticity, and then
surely there would be no depression ; so that contrary to what we
have on his page 552 small elasticity would lead to small depression.

523. In the volume of the Paris Memoirs which contains this
memoir by Poisson there is an Addition to it on pages 623—627.
The object of this Addition is to give the complete integral
of the equations which correspond to the vibrations of an elastic
body supposing that there are no applied forces. The equations
according to Poisson’s memoir are

du_a(, du d™ dw v dw\ ]
F-50% agt? ok +dy'+dz‘>
dv _ dv d’u d’w dv  dv\ | _ (D
@~ 3(3d'+2dydz+2dydz+d—z—'+3.?) o
dTw _a*(, dw d'u dv  dw  dw
=3 (3dz*+2dzdw+2dz7y+%'+@7),

These agree in form with those usually given in the text books if
we suppose only one elastic constant.

du dv dw d'¢ .
Put 'd—'w-l-@-i-dz di e e (2),

then equations (1) may be written

du_a' (du du du\ K 24" d'¢ ]
W“? (d_x’+ﬁg7+c?)+—3——_dwdt’
dv _ dv  dv  dv\  2a" d%
-3 (o i)ty e | @
d'w & dw  dw d‘w)_l_?__a’ ¢
(da:' dy’ dz* 8 dzdt* ]
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Differentiate equations (3) with respect to @, y, # respectively and
add ; thus

do_ (b . b d
= (da:’dt’+d *dt”’a—z'd')

Integrate twice with respect to £, and we obtain

dd (o d'¢ ¢
v a(da:'+df dz’+Pt+Q)

where P and @ are arbitrary functions of z, y, and 2. Let us denote
by p and g two other functions of these variables, and make

p=¢+pt+g;
then we can reduce the preceding equation to this:
ad _ (D¢ d'¢ d'¢
d t’ ( 9 + d + ‘3;_ ------------------ (4)'

provided we establish between p and P, and between ¢ and
Q the following relations,

dp, dp, d‘p dq, dq
Now let
"Z,v ‘v+aili¢,'w w+a’¢ ...... (5);

substitute these values of v, v, w, and that of ¢ in equations
(3), then taking into account the results of differentiating (4)
with respect to z, y, and 2, and reducing, we shall have
Ty o0 B D)
de* 3 (da,’ dy* ' d#
a%’ d d%
@ = §(a7+d—y~‘+a;-)

dv o' (d'v  dw  dw
&3 (v tapt ) J
If we make the same substitution in (2) we obtain

dv  dw
dw+dy+dz—0 .................. (7).
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Now according to a formula obtained by Poisson in the Memoirs of
the Paris Academy, Vol. 11 1818, the complete integral of (4) in
a finite form is .
¢o'=f'f"f(w+atcosa, y + atsina sin B,
0Jo
z + ot sina cosB) ¢ sina dadp,
v (2
+ gf f F(z + at cosa, y + atsina sinp,
tJo Jo

z+atsinacosB)t s_ina dadf,
where f and F denote arbitrary functions.

The integrals of (6) can be deduced from this by putting
a/y/3 in the place of a a.nd changing the arbitrary functions. Let

us denote by 4, and Tzl the arbitrary functions which occur in ¥/,
A

and by and E the arbitrary functions which occur in »';
then we shall have

, _d [*[* at at . .
o = szofo f (a: +—~7§ cos1, y+~/3 sina sin 8,
% sina cosﬁ) tsina dadB

dzdt// ( cosz y+~/38masm8
sina cos /3) tsina dadB,

z4

at
z+ﬁ

w’—ax[/ f; cosz, y+«/3smasm,3

at
Z+~/3'

+da;dtff ( cosa y+v351nasmﬁ,

\
z+ ;/ﬁ sina cosﬁ) tsina dadf.

Then in order to satisfy (7) in the most general manner we
must take

sina cos B) tsina dadS

18—2



276 POISSON.

. d [=[* at at .
vt o] 5o+ g oose v+ g sinasing,

z+ % sina cosB) tsina dadf
ff j;( cosa y+v331na sinf,

z+4— sina coaB) tsina dadf

,,/—3
~ Tydt J’ f ( cosa Y +2 73 sma sinB,

% sina cosB)t sina dadfB

d’ ZrF .
~gadi)o)o Fo(a+ ygoos v +~/J snasing,

z+ 73 sina cosﬁ) t sina dadp3,

2+

where ¢ denotes an arbitrary function of y and 2.

524. With respect to the history of the important formula
which Poisson gives as the general integral of (4) the reader should
consult a paper by Liouville in his Journal de Mathématiques,
Vol. 1. of the New Series, 1856, and a note by the same writer
which we have reproduced in a foot-note to Art. 562.

525. The last sentence of the memoir is

Nous reviendrons dans la suite sur les applications des formules
précédentes & des problémes particuliers.

We shall see as we proceed that Poisson in another memoir
put the integrals of the general equations in another form ; but he
does not seem to have applied his formulae to special problems.

526. The values of u, v, w found by (5) will involve the time
t in two forms; in one form we shall have a as the coefficient of ¢,
and in the other form we shall have a/y/3 as the coefficient of ¢.
Thus we have two waves, one propagated with the velocity a and
the other with the velocity @/o/3. Thisis I presume the first appear-
ance of this result in the history of our subject.
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527. 1828—29. The publication of Poisson’s memoir of April,
1828, gave rise to a controversy between Navier and him which was
carried on in the Annales de Chimie, Vols. 38 and 39, 1828,
and Vol. 40, 1829, and Férussac’s Bulletin, Vol. X1, 1829. Saint-
Venant in Moigno’s Statique, page 695, states that the controversy
appears also in Vols. 36 and 37 of the same series; but these two
volumes contain no article by Navier, and the articles in them by
Poisson do not mention Navier's name, though it is possible there
may be some oblique reference to Navier',

The following are the articles which form this controversy,
numbered for convenience of reference.

1. Note relative @ Uarticle intitulé: Mémorire sur Uéquilibre et
le mouvement des Corps dlastiques, inséré page 337 du tome
précédent ; par M. Navier. Vol. 38, pages 304—314.

IL. Réponse d une Note de M. Navier insérée dans le dernier
Cahier de ce Journal; par M. Poisson. Vol. 38, pages 435—440.

III. Remarques sur UArticle de M. Poisson inséré dans le
Cahver d'aodit ; par M. Navier. Vol. 39, pages 145—151.

IV. Lettre de M. Poisson 4 M. Arago. Vol. 39, pages
204—211. ’

V. Lettre de M. Navier & M. Arago. Vol. 40, pages 99—107,

VI Navier. Note relative & la question de Péquilibre et du
mouvement des corps solides élastiques. Férussac, Bulletin des
Sciences Mathématiques. Vol. XI. 1829, pages 243—253.

We will now notice briefly the main points of the controversy.

528. In L the chief complaint of Navier is that his labours on
the subject, as shewn by his memoir published in 1827 in the
seventh volume of the Memoirs of the Academy, were not adequately
appreciated by Poisson. Navier thinks that he is entitled to
consideration as having led the way in the right discussion of

1 [See however Art. 433. Onp. 86 of Vol. 36 and on p. 347 of Vol. 37, Poisson
lays it down that molecular action cannot be represented by definite integrals, and
that therefore the method of Lagrange is not applicable to the very problems
in which Navier had used it. Saint-Venant criticises Poisson’s view in the
Historique Abrégé, p. olxiii., and Moigno’s Statigque, p. 695.] Eb.
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problems concerning elasticity ; and this seems to be a reasonable
claim: see a note on page 243 of the memoir on Torsion by
Saint-Venant®.

Navier makes with emphasis some curious remarks on one
point. We have already stated that in the equation for the
vibration of a lamina Poisson obtains a coefficient which involves
the square of the thickness; see Arts. 260 and 289. Now
Navier says that Poisson’s coefficient ought to vary as the cube
of the thickness, otherwise his expression will not hold when
we suppress one of the coordinates and reduce the elastic plate
to an elastic lamina. Poisson seems not to have condescended
to notice this remark ; it is certain that Navier is wrong here:
compare the equation for the transversal vibration of a rod or
lamina given in Poisson’s Mécanique, Vol. 11, page 371, and it
will be found that the coefficient does involve the square of
the thickness, and it is obtained in a manner to which Navier
could not have objected. This is quite consistent with the fact
that a certain equation of equilibrium presents the cube of the
thickness: see the Mécanique, Vol. 1., page 606.

Navier distinguishes on his page 305 between membranes and
elastic surfaces thus:

Les recherches qui ont été faites jusqu'a ces derniers temps sur les
lois de I'équilibre ou des mouvemens de vibration des corps, s’appliquent
principalement, d’'une part, aux cordes et aux membranes ou tissus,
supposés parfaitement flexibles, mais susceptibles de résister a 'extension
et 4 la contraction; et, d’autre part, aux plans et surfaces courbes,
élastiques, auxquels, outre la méme résistance & l'extension et & la
contraction, on attribue encore la faculté de résister a la flexion.

529. In II Poisson states that he had cited Navier's formulae
in the place of his memoir which seemed most convenient, and had
shewn the passage to Navier in his manuscript: the passage
occurs on pages 403 and 404 of the memoir. Considering the

1 [Saint-Venant has a short paragraph on this polemic in his Historique Abrégé
(p. clxv) in which he sums up Poisson’s attack from the molecular side with the
words: ‘ Tous ces reproches 6taient ou sans fondement ou exagérés’. I cannot quite
agree with this. Navier made a distinet mistake, and was only saved from its con-
sequences, because he did not evaluate his integral.] Eb.
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habit of the French writers to be extremely sparing in references,
it does not appear to me that Poisson could have been expected to
do more; but it is obvious that Navier considered this single
citation quite insufficient: see page 151 of III. Poisson says
that there is an important difference between his own process and
that of Navier, for the latter bad not considered the natural state
of the body, and also by expressing his coefficients in the form of
integrals had involved himself in a serious difficulty : see Arts. 436
and 443 of the account of the memoir of April 1828.

Poisson alludes to his memoir of 1814, and makes the same
admission respecting it as I have quoted in Art. 435 of my account
of the memoir of April 1828. He says moreover:

11 en résulte donc qu’en 1814, je n’avais pas trouvé I’équation de la
plaque élastique en équilibre; je 'avoue trés-volontiers ; mais qu'il me
soit aussi permis de dire que personne encore ne I'a obtenue par des
raisonnemens exacts, et que ce sera dans mon Mémoire sur les Corps
élastiques qu'elle se trouvera pour la premiére fois sans aucune
hypothése et déduite de l'action moléculaire considérée dans toute
I’épaisseur de la plaque.

The correct equation of equilibrium to which Poisson here
alludes must be that numbered (9) in Art. 484.

Navier in L spoke of the principle adopted by Mdlle Germain
as ingenious and true. Poisson says that this is inadmissible; and
he implies that there is not the analogy between this and the
hypothesis which James Bernoulli used for the elastic lamina
which was apparently claimed for it, since according to Bernoulli
it is the moment and not the normal force which varies inversely
as the radius of curvature.

Poisson says that he obtained the equations relative to the
boundary of an elastic plate, which had not been given before ; at
least they did not agree with those of Navier in the Bulletin de la
Société Philomatique, 1823, page 92. With respect to Navier's
equations he says:

Pour s'assurer de I'inexactitude de celles-ci, il suffit de les appliquer
4 un cas fort simple, au cas d’une plaque circulaire dont tous les points
du contour sont soumis A& une force constante et normale & la plaque.
Il est évident qu’alors la figure d’équilibre sera celle d’'une surface de
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revolution ; or, cette figure serait impossible d’aprés I'équation (7) du
Mémoire cité. En effet, cette équation est:
Pz \dy (d2z d'% \d=z
2ok (G gpan) & + (G des)af =

Z désignant la force normale, £ un coefficient qui dépend de la matitre
et de I'épaisseur de la plaque, «, ¥, et 2 les coordonnées d’'un point du
contour, et ds l'élément de cette courbe. 8i I'on appelle r le rayon
vecteur du méme point, et 6 I'angle qu’il fait avec I'axe de =; que l'on
place l'origine des coordonnées au centre de la plaque, et qu'on regarde
I'ordonnée z comme une fonction de », ce qui exprimera que la figure
de la plaque est une surface de révolution, cette équation deviendra :

d dz 1 dz

Z+ @

résultat impossible, lorsque ]a force Z est supposée constante, et par
conséquent indépendante de I’angle 6.

k (cos*6 —sin*0) = 0 ;

530. In IIL Navier asserts that he had considered the natural
state of the elastic body, and that he had obtained seven years
before Poisson the equations of equilibrium of such a body.
With respect to a claim made by Poisson Navier says:

M. Poisson demande qu’il lui soit permis de dire que personne
encore n’a obtenu, par des raisonnemens exacts, 'équation domt il
g'agit. Je ne sais si d’autres lui accorderaient cette demande; quant &
moi, cela ne m’est pas possible, parce que la démonstration que jai in-
diquée, page 93 du Bulletin de la Société Philomatique pour 1823, et
qui est contenue dans le Mémoire et dans la Note manuscrite men-
tionnée dans le méme article, est fondée sur des raisonnements exacts.
Ce travail sera publié dans peu de temps.

Navier contradicts the statement that the hypothesis of Mdlle
Germain is inadmissible. He prints the note found among the
papers of Lagrange which gives without demonstration the correct
form of the equation for the vibration of an elastic lamina; see
my account of Sophie Germain, p. 148. As to the objection recorded
at the end of Art. 529, Navier says briefly that if the proper values
of dy/ds and dz/ds be used, as he has defined these terms, then
will disappear, for instead of cos® § — sin® 8 we get cos® 8 + sin’ 6.

531. In IV. Poisson repeats his objection against Navier's
method of representing the resultants of the mutual actions of
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disconnected molecules by definite integrals; he believes he is the
first who has called the attention of mathematicians to this point:
but Saint-Venant in Moigno’s Statique, page 694, says that
Cauchy did this “en méme temps que Poisson.”

Poisson also objects that Navier omits some of the forces
which are of the same order of magnitude as those which he
retains : this I think refers to the point noticed by Saint-Venant
in Moigno's Statique, pages 696 and 729; namely that instead of
putting f(r) =f(r) + (r, —7)f (r), he put only f(r) = (r, =) f" (7).

Poisson holds that Lagrange could not have been satisfied
with the mode of obtaining the equation for the vibration of an
elastic lamina to which Navier drew attention, for he did not give
it in the second edition of the Mécanique Analytique. Poisson
says:

Mais je ne veux pas ici reculer devant la difficulté: lors méme que
Popinion contraire & la mienne serait actuellement appuyée de autorité
de Lagrange, ce qu'd la vérité je suis loin de penser, je me croirais
toujours fondé A soutenir que dans la lame élastique ordinaire, c'est le
moment et non pas la force d’élasticité qui est en raison inverse du
rayon de courbure, et que, dans la plaque élastique courbée en différens
sens, ni les momens ni les forces ne sont exprimés par la somme des
deux rayons de courbure renversés, Je renverrai, sur ce point, & la
page 182 de mon Mémoire, od les expressions des momens et de la
force normale, c’est-a-dire, de la force qui s'oppose & la flexion, sont
données pour le cas de la plaque courbée en tout semns, et au beau
Mémoire d’Euler qui fait partie du tome xv des Nowi Commentarii pour
le cas de la lame ordinaire,

The page 182 of Poisson’s memoir corresponds to page 538 of
the volume of which it forms part.
Poisson gives the calculation by which he found that a certain

equation involved 8, while Navier asserted that it was independent
of . The equation is

2o (BY L BE),

dzds ' dyds
4z d’z
where ¢ stands for 2t o

Poisson applies this to a circular plate ; the force Z is constant,
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2 is a function of the radius vector », the origin being at the
centre. Thus z=rcos 6, y=rsiné.
z de

Since z is a function of 7 8o also is ¢; thus ¢ = o’ and

“d_ , dlf also ds=rdf. Hence the equation becomes

dy d
d$ dlzy) _
Z+Ic - 70 =%
: 9% (0st 0 — gin?
that is Z+kd; (cos®  —sin* ) = 0.

Poisson adds,

Maintenant l'auteur dit que, pour faire usage de son équation, il
faudra changer quelque chose A la signification naturelle et ordinaire des
différentielles qu’elle contient ; il me semble que ce serait alors changer
Péquation elleméme; mais, sur ce point, je n’ai pas assez bien saisi
le sens de ses expressions pour essayer d’y répondre.

Finally Poisson adverts to the difference between himself
and Navier as to the equations which must hold round the
boundary of an elastic plate; the difference related both to the
number and form of these equations: Poisson gave three and
Navier only two. With respect to the number of these equations
Poisson supports his own opinion by the following remarks:

Appelons p une portion de la plaque appartenant i son contour, et
d’une grandeur insensible. S8i l'on tient compte des forces moléculaires
qui attachent u au reste de la plaque, et aux autres forces données qui
lui sont appliquées, on pourra considérer ensuite u comme entidrement
libre. Or, en faisant abstraction des mouvemens paralléles 4 la plaque
qui donneraient lien aux conditions d’équilibre dont il n'est pas
maintenant question, il restera trois mouvemens que p pourra prendre.
En effet, supposons la plaque horizontale et menons & ’endroit de son
contour ol p est situé, une tangente et une normale horizontales ; il est
évident que p pourra s'élever ou s'abaisser verticalement, qu'il pourra
tourner autour de la tangente, et qu’enfin il pourra tourner autour de la
normale. De plus, ces trois mouvemens étant indépendans entre eux,
ils donneront lieu & trois conditions d’équilibre, qui ne pourront étre
exprimées & moins de trois équations distinctes.

Au lieu d’une plaque aussi mince que l'on voudra, #'il s'agissait
d’une surface élastique, absolument sans épaisseur, les équations d’équi-
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libre se réduiraient & deux, parce qu’alors il n’y aurait pas lieu de
considérer le mouvement de u autour d'une tangente dont il ferait
partie.  (Yest encore une différence essentielle entre la plaque élastique,
et la surface qui résiste 4 la flexion en vertu des répulsions mutuelles
de ses différens points: la détermination de la forme que celle-ci doit
prendre, quand elle est en outre sollicitée par des forces données, n’est
plus qu'un simple probléme de curiosité, dont la solution exige, ainsi
que je I'ai pratiqué dans mon Mémoire sur les surfaces élastiques, que
Pon pousse le développement des forces moléculaires plus loin que dans
le cas de la plaque un tant soit peu épaisse; mais je conviens de
nouveau que j'avais confondu mal & propos I'une avec Pautre dans cet
ancien Mémoire.

532. In V. Navier says that he had given in his memoir
the expression for his coefficient ¢, in terms of the molecular
action, thus contradicting the statement made by Poisson to the

opposite effect: the expression is e=—21——'g f p' f(p)dp. Navier
0

has now read Poisson’s memoir of April, 1828, and he criticises
that as well as defends his own method. He objects to Poisson’s
results as resting on the equation r'/(r)=0 when »=0; he
says that there are many forms of f(r) for which f() does
not vanish with . He attempts to defend his use of (r, —7) f’ (r)
where he omits f(r): see Art. 531. He points out that the
first volume of the second edition of the Mécanique Analytique
was issued in September 1811, and that Lagrange’s note which we
have quoted in Art. 284 was dated December 1811; the second
volume of the second edition of the Mécanique Analytique did
not appear until long after the death of Lagrange; thus the
inference which Poisson had drawn in Art. 531 could not be
sustained. We see from page 110 of the Annales, Vol. 40, that
Poisson had discovered and acknowledged his mistake.

Navier defends the equation relative to the boundary of
an elastic plate to which Poisson had objected’. He says that

1 [The expression for the potential energy of a plane elastic plate bent to curva-
tures 1/R’, 1/R”, is per unit area equal to a constant x {1/R*+ 1/R" + 2v/(R'R")},
where v is the ratio of lateral contraction to longitudinal extension, and therefore in
the French theory is put equal to 1/4. Now Navier obtains (see Art. 260) the
erroneous expression: constant x {1/R?+ 1/R" + 2/(3R'R")} for this potential energy,
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Poisson in applying this equation to the figure he considered
neglected a preliminary operation.

Cette opération consiste & remplacer respectivement les rapports
dx/ds et dy/ds par cosa et cos B, en désignant par a et 8 les angles
formés par I'élément ds du contour avec les axes des = et des y. Quant
3 la nécessité de cette opération, qui se représente dans tous les résultats
analogues obtenus par lapplication du calcul des variations aux
questions.de mécanique, et que M. Poisson parait avoir perdu de vue,
il me suffira de renvoyer le lecteur & la page 205 du tome 1% de la
Mécanique Analytique on on la trouve expliquée et démontrée en détail.
L’équation dont il s'agit ne peut donc véritablement donner lieu 2 aucune
objection, et elle g'accorde d’ailleurs avec les résultats que MM. Cauchy
ot Poisson ont donnés dans ces derniers temps.

I do not understand this ; the page 205 seems to correspond
to the page 200 of Bertrand’s edition, and to relate to the
process by which Lagrange condenses into one expression the
difference of two integrals. I do not know to what results of
Cauchy and Poisson allusion is made by Navier.

With respect to Poisson’s third equation for the boundary
Navier says that Cauchy thought it involved some difficulties:
see the Exercices de mathématiques, Vol. 111., page 346.

533. In VL we have no new point of importance. The contro-
versy in the Annales had been finished by the remarks of Arago,
one of the editors of the publication; and this article by Navier
in Férussac’s Bulletin is mainly a repetition of what he had
said before, addressed now to a fresh audience. We may, I
think, fairly sum up the whole controversy thus: the special
points which Poisson noticed have been decided generally in
his favour by the subsequent history of the subject; the great
merit of Navier in commencing a new method of treatment
might well have been more warmly commended by Poisson,

having 2/(3R'R") instead of 1/(2R'R”). This term only affects the contour-conditions
but the error in it naturally leads to wrong expressions. It must however be
noted that Navier’s method of treating the problem by the Calculus of Variations
leads to only two contour-conditions, and Kirchhoff’s work on this point ought to be
considered in the light of Navier’s. It might even be more just to speak of Navier's
two contour-conditions: see Art. 260.] Eb,
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while on the other hand Navier might have recognised the
improvements which had been effected by Poisson’s memoir of
April 1828.

534. After Navier’s letter a note by the editor is given on
pages 107—110; the general drift is unfavourable to Navier,
both as regards his defence of his own memoir, and his objections
to Poisson’s. Navier seems to misunderstand the difference
between Cauchy and Poisson; Cauchy does not object to the
important conditions which according to Poisson must hold at
a free part of the boundary, but to the less important case of
the conditions at a fixed part: see my remarks on this point
in my account of the pages 328—355 of the Ezercices, Vol. 111

535. 1828. Note sur la Compression dune sphére. This
occupies pages 330—335 of the Annales de Chimie, Vol. 38, 1828,
The note was written in consequence of Poisson being consulted as
to some opinions adopted by Oersted founded on experiment.
The first sentence enunciates the problem which is discussed :

Une sphére creuse, homogéne et d’une épaisseur constante, est
soumise en dehors et en dedans 3 des pressions données; on de-
mande de déterminer le changement qu’éprouvent son rayon extérieur et
son rayon intérieur.

I need not go over the process as it is given with greater
generality, by the use of two constants of elasticity instead of
one, in Lamé’s work on Elasticity, pages 214—219. From the
Annales de Chimie, Vol. 39, page 213, we may infer that the
problem had already been discussed in a memoir as yet un-
published by Lamé and Clapeyron. As Poisson says, the equations
which he uses had been given in his -memoir of April 1828,
but he does not supply any exact references. His equation (1)
is obtained by using rd¢/dr instead of d¢p/dr in the equation
(1) of page 406, and suppressing ‘the terms involving ¢; his
equation (2) coincides with a statement on page 431 of the
memoir; and the proposition with which he finishes the article
seems derived from a comparison of pages 402 and 430 of the
memoir.
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536. An article by Poisson occurs on columns 353 and 354 of
Schumacher’s Astronomische Nachrichten, Vol. 7, 1829 ; it takes
the form of a letter to the editor, and is entitled in the Royal
Society Catalogue of Scientific Papers: Note sur l'équilibre dun
Jil élastique.

A criticism by Professor de Schultén on a passage in
Lagrange’s Mécanique Analytique appeared on columns 185—188
of the same volume of the Journal; the editor sent a copy to
Poisson requesting his opinion, and accordingly Poisson replied.
The passage in Lagrange is comprised in Articles 48—52 of the
fifth section of the part on Statics, pages 145—151 of Bertrand’s
edition ; it relates to the equilibrium of an elastic wire.

Suppose the wire to be inextensible; there are three equations
of equilibrium given on page 145 ; the first will serve as a type:

Xdm-d. 2242 (I Pe)=0 oo .

Suppose the wire to be extensible; there are three equations
of equilibrium as we see from page 151; the first will serve
as a type:

de-d.{(F+d.Ed'“ e

dz
ods _d.;) 5} +d'. (Id'z) =04..(2).
According to Lagrange A denotes the tension in the first case
and F denotes the tension in the second case.

Schultén quotes the formulae (2) with A instead of F'; and
he says that the formulae (1) are wrong, and that (2) are the
proper formulae for both cases ; and he offers some general reasons
to shew that the expression for the tension must be the same
in both cases, but I cannot say that I understand this. Poisson
treats the matter very briefly. He says that Schultén should
retain ¥ in the formulae (2), for it is not the same thing as A
of the formulae (1); and he says that the tension ought to be the
same in the two cases, but that the true tension is not expressed
either by A in the first case, or by F' in the second. Poisson
uses [pds for the sum of the tangential forces; he puts a for
the K of Lagrange, and ds/d¢ for the p of Lagrange. I shall
assume that the reader has the Mécanique Analytique before him
in the remarks I make.
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Poisson says that from (1) we get A= f pds—g, and from

(2) we get F'=/pds; these results he says are easily obtained by
making s the independent variable. He holds that the true value

of the tension is f pds — 25;,, for which he cites Euler, Novt Com-
mentarit, Vol. Xv. page 390.

It seems to me however that from (1) we get A = f pds — 3f
and from (2) we get F-— %= / ds — 3K,, so that finally

F= j pds — 2_p' . Hence F really gives what Poisson holds to be

the true tension.
Schultén obtains from (2) another form of ¥, namely this :

F—»-fXd +d-'/dem+ fzabm

where arbitrary constants may be considered to occur in all
the three integrals; but this does not invalidate the form already

given.

537. On the whole it seems to me that Schultén has not shewn
that there is any real ground of objection to Lagrange's result, and
that Poisson contributes nothing to the question. As Bertrand
does not allude to the matter in his edition of the Mécanique
Analytique 1 presume that he sees no error here in Lagrange’s
process.

538. Poisson however proceeds to some general remarks on
Lagrange’s method which seem to me quite just. He says that
Lagrange’s manner of applying the principle of virtual velocities
to forces, the effect of which is to vary a differential expression,
has always appeared to him unsatisfactory: we have no clear
idea of the meaning of the undetermined coefficients. Poisson
says also that Lagrange had taken the elastic force as represented
by the inverse radius of curvature, whereas James Bernoulli
had so represented the moment of the force and not the force
itself.
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539. The subject is resumed in Vol. 8 of the Astronomische
Nachrichten in a number which appeared in December 1829 ; the
complete volume is dated 1831. On the columns 21—24 there is
a note by Schultén entitled : Note sur la tension des fils élastiques.
He shews that in the case of an elastic thread in one plane,
which is the case discussed by Euler, his formula for the tension
agrees with Euler’s ; but he does not say distinctly, as I have done,
where Poisson’s statements are wrong. Schultén concludes that,
as he had originally maintained, Lagrange is in error. A letter
from Poisson to the editor follows. Poisson had seen the second
article by Schultén, admits its accuracy, but says nothing about
the mistakes into which he had himself fallen. Apparently he
now agrees with Schultén in attributing to Lagrange an error;
but as I have said I do not concur in this.

540. 1829. Mémoire sur les Equations générales de Uéquilibre
et du Mouvement des Corps solides élastiques et des Fluides. This
memoir was read to the Paris Academy on the 12th of October,
1829; it is published in the Journal de ' Ecole Polytechnique, 20th
Cahier, 1831, where it occupies pages 1—174.

541. The first paragraph of the memoir indicates briefly the
nature of its contents :

Dans les deux Mémoires que j’ai lus 4 I' Académie, I'un sur ’équilibre
et le mouvement des corps élastiques, autre sur I'équilibre des fluides,
j’al supposé ces corps formés de molécules disjointes, séparées les unes
des autres par des espaces vides de mati¢re pondérable, ainsi que cela
a effectivement lieu dans la nature. Jusque-la, dans ce genre de
questions, on g'était contenté de considérer les mobiles comme des
masses continues, que 'on décomposait en élémens différentiels, et dont
on exprimait les attractions et les répulsions par des intégrales définies,
Mais ce n’était qu'une approximation, & laquelle il n'est plus permis
de s'arréter lorsqu’on veut appliquer l'analyse mathématique aux
phénom@nes qui dépendent de la constitution des corps, et fonder sur
la réalité les lois de leur équilibre et de leur mouvement. En méme
temps, on doit s'attacher & simplifier cette analyse autant qu'il est
possible, en conservant au calcul toute la rigueur dont il est susceptible
dans ses diverses applications. C'est ce motif qui m’a engagé & re-
prendre en entier les questions que j'avais déja traitées duns les
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mémoires précédens. Mes nouvelles recherches ne m’ont conduit &
aucun changement dans les résultats; mais je n'ai rien négligé pour
rendre plus simples, et quelquefois plus exactes, les considérations sur
lesquelles je m’étais appuyé, surtout dans la partie relative & I'équilibre
des fluides,

542. Poisson thus claims as the distinctive character of his
own investigations that instead of the definite integrals of the
earlier writers he used finite summations; however, as Saint-
Venant remarks in Moigno’s Statique, page 695, definite integrals
occur in Poisson’s memoir of April, 1828, on pages 378—381.
With respect to Poisson’s views on this matter Saint-Venant refers
to pages 366 and 369 of the memoir of April, 1828, to pages 31
and 378 (rather 278) of Poisson’s Nouvelle théorie de Uaction caprl-
laire, and to Poisson’s controversy with Navier in Vols. 36, 37, 38,
39 of the Annales de Chimie et de Physique. Saint-Venant pro-
ceeds thus:

Cauchy exprime constamment (comme Poisson l’a fait ensuite com.
plétement aussi) ses résultantes de forces, non par des intégrales, mais
par des sommes S ou 3 d’un nombre fini quoique trds-grand d’actions
individuelles; et, cela, sans se servir, comme Poisson, de considérations
peu rigoureuses relatives 4 la grandeur moyenne de I'espacement des
molécules, et sans avoir besoin de supposer avec lui que “le rayon
d’activité comprend un nombre immense de fois 'intervalle moléculaire,”
de sorte “que les actions entre les molécules les plus voisines puissent
étre négligées devant les actions moindres mais plus nombreuses qui
s'exercent entre les autres,” ce qui, comme le remarque Cauchy,
conduirait aux mémes conséquences fausses que la substitution d’un
nombre infini de particules contigués aux molécules isolées et espacées.

Saint-Venant adds references to various parts of this sentence :
after complétement aussi to pages 41—46 of the memoir of October
1829 ; after des molécules to pages 32 and 42 of the same memoir;
after les autres to pages 370 and 378 of the memoir of 1828, and to
pages 7, 8, 13, 25, and 26 of the memoir of 1829 ; and at the end
of the sentence to various pages of Cauchy’s Exercices, troisiéme
année. See also a note on pages 261, 262 of the memoir on
Torsion by Saint-Venant’,

1 Or more recently in the Historique Abrégé, pp. clxi.—clxv.
T. E. 19
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543. The first section of Poisson’s memoir is entitled: Notions
préliminaires and occupies pages 4—8. Here some mention is
made of caloric as supplying a repulsive force in addition to the
attractive force which may be supposed to arise from the action of
particles of matter on each other. Thus on the whole what may
be called the molecular force between two particles at an assigned
distance apart may be positive or negative; and this consideration
is kept constantly in view, and constitutes one of the main
differences between the present memoir and Poisson’s previous
writings on the subject of elasticity.

544. The second section is entitled: Calcul des Actions molécu-
laires et Equations déquilibre relativement & des Molécules rangées
en ligne droite; it occupies pages 9—28. The main result is an
equation on page 20, namely pX =dp/dx; here pis what would be
the pressure if the investigation were relative to a slender column
of fluid, and what would be the elastic tension if the investigation
were relative to a straight solid rod. X denotes the applied force
along the column or rod. The special part of Poisson’s process is
that he finds an expression for p, which denotes the molecular force,
involving undetermined integrals, namely

p= f_ a,f (0) + 3a,ef” (0) = Baef™ (0) + ...
Here f () denotes the molecular force between two particles, each

of the unit of mass, at the distance s, and % is put for / ms f(s)ds ;
(1]

also e denotes the mean distance between two adjacent particles ;
a,, a, a,,... are numerical constants given by the general formula

2 1 1 1
a“_W{F+2—”+§ﬁ+ ...},

so that a, =1y a,= vl a,= gyieo- _

This value of p is obtained by the aid of various steps of
general reasoning, which are not very convincing I think. The
principal mathematical theorem used is that which is called Euler's
Theorem, made accurate by an expression for the remainder due
to Poisson himself, for which he refers to a memoir on Definite
Integrals in. Vol. V1. of the Paris Memoirs.
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I do not know that any application has ever been made of the
value of p which Poisson here obtains.

545. The third section is entitled: Calcul des Pressions mo-
léculaires dans les Corps élastiques ; Equatwns dzﬁ’e'rentzelles de
Péquilibre et du mouvement de ces Corps ; it occupies pages 28—68.
I notice some points of interest which present themselves.

546. Onp page 29 a definition is given of the term pressure
(stress) as used in the theory of elasticity. This corresponds with
that adopted by Lamé and Cauchy. The action exerted on a certain
cylinder of a body by the matters below the plane of the base is
estimated. This is perhaps the first introduction of this cylinder.

[547.] Poisson in his memoir expressly considers the solid body
first in the state in which there are no applied forces internal or
external. He finds that there is no stress within the body,
and that round any point Zrf (r)=0: see his page 34. Here
f has the same meaning as in Art. 443; and r is the distance
of a second particle from the particle considered as the origin: the
summation is to extend over all the particles round the origin.
On page 37 of the memoir Poisson uses a formula equivalent to
the following :

8 = (%:cos a +:iiy cos*’8 + "il cos’y + (‘5—;’+%)cosﬁcos'y

+ (Z: + ‘clia:) cosy cosa + (:L Zy) cosa cosf,

where s, is the stretch in direction r determined by the angles
(aB)-

The formula bad been already given by Navier, but did not
occur in Poisson’s memoir of April 1828 : see Saint-Venant’s
memoir on Torsion, page 243.

[548.] On p. 45 a result is given of the following kind ; tbhe
six stress components are expressed in terms of the strain by equa-
tions of the form

E=P.(l+§’—”—d—;’/—@)+0 (dZ+%’).
ﬁ=(p,+F)(Z—:+%). 7
19—2
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Poisson shews by a somewhat lengthy process and with a
different notation that,

G-F+2,=2(p,+F),

or G=3F.
This relation appears with our notation’, namely,
, du P dv | dw
zz =0+ 2u da: , ( dz + )

under the form »=p.

Some remarks by Saint-Venant on Poisson’s procedure at this
point will be found in Moigno’s Statique, p. 684. Poisson in fact
here improves upon the sixth section of the Memoir of 1828,

549. As a simple example, Poisson considers the case in which
the only applied force is a constant normal pressure at the surface
of the body, He shews that the equations are satisfied then
by taking

Z:—Z—;—(z—w = — 8, a constant,
and by supposing the other first fluxions of the shifts to be zero,
In this example the stretch will be uniform and equal to — s.

550. A simple proposition which is given on pages 61—63
may be noticed. If the stress on a plane at a point is always
normal to the plane and of the same value, then the stretch is
the same all round the point; and conversely.

For taking the equations for stress across a plane surface
(a, B, %), and applying them at any point in the interior of a body,
we are by supposition to have relations of the form,
Qcosa=mcosa+ zycos B+ zcosy,
where @ is a constant. These are to hold for all values of a, 8, ¢,
and so they lead to
m=y= == Q)

- o~

and - 7=0, 2=0, 7=0:

1 [See the note at the end of this volume for the terminology, and the footnote
p. 821 for the notation. Eb.]
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then by Art. 548 we get from these

dv d -
g__:=£j=d—1:=ssay, ............... 1Q),

dv  dw dw du du dv
=t F7 =0, ot =0, dy iz =0 ......... (2).

The equations (1) and (2) lead to the required result. The
converse may be established in like manner.

From equations (1) and (2) we can infer that s is a linear
function of z, y, £z; for we can eliminate u, v, w by suitable
differentiations, and thus obtain

d’s d’s ds _ds _d's - _is_

These lead to
s=a+Bz+By+8"z,
where a, 8, B/, B are constants.

551. Poisson transforms his equations by the aid of a process
which I think we ought to ascribe to Lagrange. This he had given
before : see Art. 445 of my account of the memoir of April, 1828.
At the close of the section Poisson arrives at the same equations
as he had previously obtained in the memoir of April 1828.
There is an important mistake on page 68: see Stokes's memoir,
Camb. Phil. Trans. Vol. viu. Part 1L p. 31 ; or, Math. and Phys.
Papers, Vol. 1. page 125.

552. The fourth section is entitled: Calcul des pressions
moléculaires dans les corps cristallisés ; réflexions générales sur ces
pressions dans les fluides et dans les solides, and occupies pages.
69—90. This is not so much a general theory as a particular
example. Poisson himself says on page 70:

Mais, pour donner un exemple du calcul des pressions moléculaires
dans Vintérieur des cristaux, nous allons faire une hypothése particulidre
sur laction mutuelle et la distribution des molécules, qui sera trés-
propre & éclaircir la question et & en montrer les difficultés.

The investigation resembles that in the second section;
expressions of a complicated character occur involving an
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unknown function under the form of a definite integral. I

am not aware that any application has ever been made of the
result.

553. We may notice a remark on pages 82 and 83. In
the ordinary mode of treating the subject of elasticity it is laid
down that each stress-component is a linear function of siz
quantities, namely the three stretches and the three slidings.
Poisson takes the following view: each stress may be assumed
to be a linear function of the nine first fluxions of the shifts,
80 we may take as the expression for a stress

du dv dw du du dy
A % av i @
da;+de+0dz Ddy+E Fdz

+ D dv dw dw

da;+E da:+F @y
Then these nine coefficients may be immediately reduced to siz.
For suppose the body as a whole to be turned through a small
angle a round the axis of z; thus we shall have
u=—ay, v=az, w=0;

theref, du dv .

erefore d—y=—a, =% and the other seven first fluxions
vanish, Thus the expression for the stress reduces to (D' — D) a;
but no relative displacement has taken place, and therefore no
stress is exerted : therefore D'~ D =0, so that D'=D. In the
same manner we obtain E'=E,and F'=F Thus the proposed
reduction is effected.

Poisson then, by appealing to Cauchy’s Theorem (Art. 606
tnfra), shews that the six shear components of stress reduce to
.three; thus on the whole there are six different stresses which
will involve 36 coefficients.

554. Saint-Venant, in Moigno’s Statique, page 627, makes
the following remark with respect to Cauchy’s theorem just
mentioned :

...déjh trouvé et appliqué par lui, [Cauchy] aussi dés 1822, et dont
Poisson a reconnu, en 1829 (12 octobre, Mémoire inséré au xx° Cahier
du Journal de U Ecole Polytechnique, Art. 38, p. 83), la grande généralité
d’ubord méconnue (t. Vil des Mémoires de U Instutat).
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Thus Saint-Venant holds that Poisson did not fully appreciate
Cauchy’s theorem ; the page of the memoir of April, 1828, which
Saint-Venant has in view is perhaps 385, where Poisson seems to
say that the theorem, which we call Cauchy’s, holds if a certain
quantity K vanishes.

555. 'With respect to the number of independent coefficients,
Saint-Venant remarks on page 261 of his memoir on Torsion:

On peut remarquer que M. Poisson, aprés avoir, le premier, présenté
les formules avec les 36 coefficients indépendants (Journal de PEcole
Polytechnique 20° cahier, p. 83), en a réduit le nombre & 15, méme
pour les corps cristallisés, dans son dernier mémoire relatif & ces sortes
de corps (Mémoires (nouv.) de U Institut, t. xviiL., Art. 36, 37).

[It is however to be noted that Poisson did not make this
reduction till ten years later; the date of the last memoir
being 1839.]

556. Poisson finishes his fourth section by some reflections
with regard to solid bodies and fluid bodies. They do not seem to
me very important. Among other things he is led to conclude
that in uncrystallised solids, in liquids, and in gases the pressure p
and the density p are connected, at least approximately, by the law

p=ap'+bpt;
a and b either are constants, or vary, when the temperature varies,
according to some law which is to us unknown.

557. The pages 90—174 of the memoir relate to the equi-
librium and motion of fluids, and are not sufficiently connected
with our subject to require notice here. Saint-Venant, in
Moigno’s Statique, refers twice to this part of the memoir: see
his pages 619 and 694. The part of the memoir which we have .
examined contains numerous misprints, so that a reader must be
on his guard. Important criticisms on the memoir of Poisson
by Professor Stokes will be found in the Camb. Phil. Trans.
Vol. vimL p. 287, or Math. and Phys. Papers, Vol. 1. p. 116.

558. An account of this memoir of Poisson’s is given in
Férussac’s Bulletin des Sciences Mathématiques, Vol. X1 1830,
pages 394—412. It offers nothing of importance. Another
account of the memoir by Poisson himself is given in the Anrnales
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de Chimie et de Physique, Vol. XLI1. 1829, pages 145—171. Here
in a note on pages 160 and 161 we have - a mathematical
investigation of which in the memoir Poisson had given only
the result. It is connected with the law stated in Art. 556 ; Poisson
combines this, he says, with the laws of Mariotte and Gay-Lussac
which are established by observation, and obtains the result
Y= 2 - W where « is the ratio of specific heat

under constant pressure to specific heat under constant volume,
0 is the temperature, o is the coefficient of dilatation of gases,
k the ratio of the pressure to the density when 8 = 0.

For by the laws of Mariotte and Guy-Lussac we have

P=kp(14@b)..c.cccvvvinrnnnan. Q).

Let ¢ be the quantity of heat contained in a gramme of the gas,
and consider ¢ as an unknown function of p and p. Let 3 be
the increment of the temperature, either when g becomes g+ ¢
the pressure p not changing, or when ¢ becomes ¢ + ¢’ the density
p not changing, Suppose ¢ very small, then we shall have

quo 1, and c—g— goz, and by reason of (1) we have

g’é—_-_l_’;_wwa,and a0= lﬁmo,sothat a8 ¢ = C'y, we get
dq , . %4
Py = Oiviiiiiiiiiinen, 2).
Pdp P‘Vdp 2)

Now suppose that p and p become p+ p’ and p + p’ respectively,
without any change in ¢ the quantity of heat; p’ and p’

being infinitesimal we shall have p Z— +p dq 0; and by

differentiating p = ap® + bp}, which holds in this case, we get
p=2(p+ibpt) P =2(p—1b"p/p. Thus

dq ydg _
Hence by (2) we get

7=2 (1= 37) =2 gy o0t 41
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559. In the Mémoires de UAcadémie...de France, Vol. X.,
we have a memoir by Poisson entitled : Mémoire sur le mouvement
de deux fluides élastiques superposéds ; it occupies pages 317—404.
A note at the foot of page 317 says:

Ce Mémoire est une partie de celui que j'ai lu & PAcadémie le 24
mars 1823, sous le titre de Mémoire sur la propagation du mouvement
dans les fluides élastiques.

This memoir does not concern us, but I quote a few words
from a note to pages 387 and 388 as they allude to the history of
our subject :

...6quations d’ott dépendent les petits mouvements des corps
élastiques, qui sont connues depuis la lecture de ce Mémoire...

560. In the same volume of the Paris Memoirs we have
another memoir by Poisson entitled: Mémoire sur la propagation
du mouvement dans les milieux élastiques. This memoir was read
to the Academy on the 11th of October, 1830: it occupies
pages 549—605 of the volume. After a short introduction the
memoir consists of two parts, :

561. The first part of the memoir is entitled: Propagation
du mouvement dans un fluide, and occupies pages 550—577.

Poisson starts with the ordinary equations of fluid motion :
du du du - du 1dp

X 'Ly VLT pds’
dv dv dv dv _1ldp
Z-—é'—”—udlu—v(—iw—w(—il’ dp

dt dr dy pdz’
dp  dpu  dpv  dpw
vt Yy ta
Let D denote the natural density of the fluid, gk the measure
of the elastic force there, g being. gravity and % the height of a
given liquid of which the density is taken to be unity ; so that in
the state of equilibrium we have

p=D, p=gh.

=0.
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During the motion we shall have

p=D(-3s), p=gh(l—ns),
where ¢ denotes the dilatation of the fluid, and « is a constant
greater than unity which represents the ratio of the specific
heat under constant pressure to the specific heat under constant
gy

volume. Put a* for D’ and neglect quantities of the second

order compared with 8, u, v, w; then supposing that there are
no applied forces the equations of motion become approximately

du _ ds dv - 1 s dw o ds
dt - d.z dt dy’ dt dz’
ds du dv dw

dt~ds Tyt ds-

562. The equations thus obtained are integrated exactly by
Poisson; he assumes that the fluid extends to infinity in all
directions, so that there are no boundary conditions to be
regarded. The process of integration is a fine piece of analysis
depending mainly on two important formulae. One of these
[(10) of the memoir,] is Poisson’s own integral of a certain partial
differential equation: see Art. 523 of my account of the memoir
of April 1828. The other formula [p. 555 of the memoir] may be
expressed thus:

@39 =g [[[[[[¢ @y, ) Vasdpay @z ay as,
where for U we may put
either cosfa(z—2)+Bly—-y)+v (-2,
or cosa(z—a)cosB(y—-y)cosy(z—2);
the limits of all the six integrals being + .
Respectmg a formula precisely of this kind, with four mteg'mls

instead of six, Poisson remarks in a note on page 322 of the
volume we are noticing :

M. Fourier a donné le premier cet important théoréme pour des
fonctions d’une seule variable, qui sont égales et de méme signe, ou
égales et de signe contraire, quand on y change le signe de la variable.
11 était facile de I'étendre & des fonctions quelconques, de deux ou d’'un
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plus grand nombre de variables. On en peut voir la démonstration
dans mes précédents Mémoires.
[Poisson’s fundamental integral is that marked (d) in the foot-

note on this page’. It has been obtained more concisely by
M. Liouville.]

1 M. Liouville’s method is contained in the following :
Note sur l'intégration d’'une équation aux différentielles partielles qui se
présente dans la théorie du son, Comptes Rendus, vi1. 1838, pages 247, 248.
Dans les Nouveaur Mémoires de UAcadémie des Sciences (année 1818),
M. Poisson a donné l'intégrale de I'équation
&\ _ (PN BN
Bee(5-2)
En désiguant par F (z, y, z), @’y (z, y, 3) les valeurs de A\ et % pour t=0,
il a trouvé

)\=——/ fh¢(3+atoosa y+atsinfsinw, s+ atsinf cosw) ¢ 8in 6 dddw

4"“/ /Y'F(z+ateo50 y+atsindsinw, z+ atsinfcosw)isinfdidw.

Les deux méthodes qui le conduisent a ce résultat sont assez simples, surtout
la seconde, d’ailleurs; il montre que l'on peut aisément en vérifier & posteriori
1’exactitude.

Mais, dans un auntre Mémoire sur la propagation du mouvement dans les
milieuxr élastiques (Nouveaur Mémoires de UAcadémie des Sciences, tome x.),
Villustre géomatre oonsidére, au lieu de I'équation (a), ’équation suivante :
dt‘ [ig ‘;::: + :l;’; + ¥ (z, ¥, z)] ..................... (e),

4 laquelle on doit )omdre les conditions définies que voiei :

¢=0, %:F{z, y, ) pour t=0,
¥ (z, ¥, 2), F (2, y, 2) étant deux fonctions connues de =z, y, z. Et le procédéd
qu'il emploie pour ramener l'intégration de I’équation (c) a celle de I’équation (a),
ou plutdt pour simplifier l'intégrale de I'équation (c), exige d’assez longs calculs.
On peut éviter ces calculs en adoptant la marche que je vais indiquer.

Je différencie 1’équation (c) par rapport & ¢, et je pose %’:x; je trouve
ainsi que A doit satisfaire précisement & I'équation (a); de plus pour t=0,
il vient

A=¥oFi g0,

a_dy ¢ d¢
a

puis =g = a? dx’+dy’+dz’+¢(x’ Y z)]

ou simplement %=a’¢ (=, ¥, 2),
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563. Having thus integrated the equation of motion Poisson
proceeds to interpret the formulae. This is an approximate in-
vestigation of a rough kind; the following is the main result:
suppose that originally a certain finite portion of the fluid is
disturbed, then the disturbance spreads in every direction about
this portion, and at an extremely great distance the wave will be
very approximately spherical, and the motion of a particle at any

point will be at right angles to the tangent plane to the wave at
that point.

564. The second part of the memoir is entitled : Propagation
du mouvement dans un corps solide élastique: and occupies pages
578—605. The equations to be integrated are (1) of Art. 523.
The following is the beginning of the process.

Put for brevity

S=ale—a)+8 y—y) +v(-2),
then the equations will be satisfied if we take

- , S_inPMt)
u= (.A cosphat + 4 e cospd,

v= ( Bcosprat + B %;"T—W) cospd,
w= (Ccosp)\at +C m:),:a)\.at) cospd ;

A,B C A, B, C,a,PB,v,p, &, y,2 being constants, the last four
of which are perfectly arbitrary, while the nine others are connected
by the equations

puisque ¢ s'évanouit en méme temps que t. La valeur de A ou % est done

celle écrite ci-dessus et fournie par la formule (b); pour en déduire ¢ il suffit
d’intégrer & partir de t =0, ce qui donne

) .
¢=4l/' f ~ F(z+atsiné, y+atsind sinw, s+ at 8in f cosw) ¢ 8in & dbdw
*Jo Jo
e (d).
1 [at (= [2x . o . .
+ 4—'[0 fojo y(z+poosd, y +psinfsinw, z + psind cosw) p sin fdp dbdw

C'est la formule de M. Poisson, telle qu'on la lit au No. 5 (p. 561) de son
Mémoire.
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3AN'=4 (3.7 + 8 +9") + 2BaB + 2Cay,
3B\ = B (38" + a' + o) + 24 B8a + 2CBy,
ON = C (3y" +a*+ 8°) + 24ya + 2ByB,
and the three which may be deduced from these by changing
A, B, Cinto A', B, O respectively.
Put D for Aa + BB + Cy and I for A'a+ B'8 + C'y; then as
we may without loss of generality suppose that
A+ 8 +q =1,
our equations become
A@BN-1)= 2aD A’ (3\'—1)=2aD,
B3N —-1)=28D, B (3\'—1)=28D,
CBN=1)=2yD, C (3\'—1)=2¢D’,
These equations may be satisfied in two ways; we may take
. BB C
»= 143' - a=-7P-
or we may take

Ay

=i1: B=AbTB) 0='a_) B'=A;.a§’ 0=4‘:z-

Hence we obtain two different solutions of the original equations
(1), and as these equations are linear the aggregate of the two
solutions will constitute a solution. Thus we take for a solution

={Acospat+A',Si—“’3ﬂ (11’3 C")eos bt

pa a
BB, C ry) sinp bt
-+ ) et
9= {AB cospat + —— 4 B SH;P at + B cos pbt + B’ su;zbt} cospd,
w= {iy cospat + — A 'y s“;P at + 0003pbt+ c m;zbt} cospd,

where b is put for ;/—3 .
‘We have thus gone far enough to obtain a glimpse of the two
forms in which the time ¢ occurs in the expressions : see Art. 526 of
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_ my account of the memoir of April 1828. Poisson by a most
elaborate analysis, starting from the particular solution here given,
arrives at complete integrals of the equations ; the process depends
chiefly on the extension of Fourier's theorem, to which we have
adverted in Art. 562. Poisson says that the integrals he now gives
are less simple but more symmetrical than those in his former
memoir : see Art. 523 of my account of the memoir of April 1828.
Poisson adds in a note another form of the integrals communicated
to him by Ostrogradsky since his own memoir was written; we
shall notice these hereafter.

565. Poisson then proceeds to interpret the formulae ob-
tained ; he supposes that the original disturbance is restricted to a
small portion of the body, and examines the nature of the motion
to which this gives rise at a great distance from the origin. The
process is an approximation of a rough kind but the results are
very interesting; namely: at a great distance, where the waves
have become sensibly plane in a part which is small compared with
the whole surface, these waves are of two kinds; in the wave
which moves most rapidly the motion of each particle is normal to
the surface of the wave and is accompanied by a proportional dila-
tation ; in the other wave the motion of each particle is parallel to
the surface of the wave, and there is no dilatation ; the velocity of

the first wave is »/3 times that of the second.

566. An account of the memoir by Poisson himself is given
in the Annales de Chimie et de Physique, Vol. XLIV., 1830, pages
423—433. This is very interesting ; but it relates not so much -
to our subject as to fluid motion, and to the controversies round
the cradle of the wave theory of light. I will extract a few words
which relate to the results mentioned in the previous article:
they occur on pages 429—431.

Les intégrales des équations relatives aux vibrations des corps
solides, que j’ai donnée, dans I'4ddition & mon Mémoire sur I'équilibre
et le mouvement de ces corps, montrent que.le mouvement imprimé
4 une portion limitée d'un semblable milieu donnera naissance, en
général, & deux ondes mobiles, qui s’y propageront uniformément, avec
des vitesses différentes dont le rapport sera celui de la racine carrée de
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trois & 'unité. Ainsi, par exemple, si un ébranlement quelconque avait
lieu dans lintérieur de la terre, nous éprouverions & sa surface deux
secousses séparées I'une de I'autre par un intervalle de temps qui
dépendrait de la profondeur de I'ébranlement et de la matitre de la
terre, regardée comme homogine dans toute cette profondeur......
Quelles qu'aient 6t6 les directions initiales des vitesses imprimées aux
molécules dans I'étendue de cet ébranlement, il ne subsiste finalement
que des vitesses dirigées suivant les rayons des ondes mobiles et des
vitesses perpendiculaires 4 ces rayons. Les premiéres ont lieu ex-
clusivement dans les ondes qui se propagent le plus rapidement, et
elles y sont accompagnées de dilatations qui leur sont proportionnelles,
en sorte que ces ondes sont constituées comme celles qui se répandent
dans les fluides. Les vitesses perpendiculaires aux rayons, ou paralldles
aux surfaces, existent, aussi exclusivement, dans les autres ondes dont
la vitesse de propagation est i celle des premitres comme I'unité est
a4 la racine carrée de trois: elles n’y sont accompagnées d’aucune
augmentation ou diminution de la ‘densité du milieu; ecirconstance
digne de remarque, qui ne s'était point encore présentée dans les
mouvemens d’ondulation, que les géométres avaient examinés jusqu'a

présent.

567. Poisson published in 1831 his Nouvelle Théorie de Taction
caprllaire. Saint-Venant in Moigno’s Statique, page 695, refers to
pages 31 and 378 of this work as repeating Poisson’s objection to
the replacing of certain sums by integrals; see Art. 542. ‘Instead
of page 378 we must read 278.

568, 1833. In the Traité de Mécanique by Poisson, second
edition, 1833, there are portions which bear on our subject. In
the first volume pages 551—653 form a chapter which is entitled :
Ezxemples de Téquilibre d'un corps flextble; this consists of three
sections. The first section is on the equilibrium of a funicular
polygon ; it occupies pages 561—565. The second section is on
the equilibrium of a flexible cord ; it occupies pages 565—598, and
gives the ordinary theory of the catenary and other flexible
curves, such as we find now in the ordinary books on statics. The
third section is on the equilibrium of an elastic rod, and occupies
pages 598—653 ; this section requires some notice.

569. On his page 599 Poisson makes a few remarks as to the
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forces which are called into action when an elastic rod is changed
from its natural form into any other. He adds

Le calcul des forces totales qui en résultent et doivent faire
équilibre aux forces données, appartient & la Physique mathématique :
je renverrai, pour cet objet, &4 mon Mémoire sur U'équilibre et le mouve-
ment des Corps élastiques. Dans ce Traité, on formera les équations
d’équilibre d’une verge élastique, en partant de principes secondaires
qui sont généralement admis.

The memoir to which Poisson here refers is that of April
1828.

570. Poisson first works out the problem of the equilibrium
of an elastic lamina, following the method of James Bernoulli. He
obtains for the equation to the curve
024~ (0a-a-Pe-g[1+ ()]
da* dz) |°

The elastic lamina is supposed fixed at the origin, and its
original direction is taken to be that of the axisof 2. In obtaining
the result it is assumed that the action between two parts of the
lamina at an imaginary section transverse to the original du'ectlon
is at right angles to the section’.

571. On his page 620 Poisson proceeds to a more general
problem, which he introduces thus:

Formons maintenant les équations d’équilibre d’une verge élastique
quelconque, dont tous les points sont sollicités par des forces données.

The problem had been considered by Lagrange, Binet, and
Bordoni, as well as by Poisson himself: see Arts. 159, 174, 216,
and 423. Poisson’s treatment of the problem in his Mécanique
agrees with that which he gave in 1816: this is now I believe
admitted to be unsatisfactory, and Saint-Venant, following Bordoni
and Bellavitis, objected to it, but I have not yet found the place

1 A better solution of the question, taking into account the transversal action,
is given by Mr Besant in the Quarterly Journal of Mathematics, Vol. 1v.
pages 12—18. He arrives at the same equation as we have just quoted from
Poisson. [The problem has been most thoroughly discussed in Germany by Heim,
Klein, Grashoff etc. in works to be considered later. Eb.]



POISSON. 305

where Saint-Venant published his criticism®. Kirchhoff states
that Saint-Venant has shewn that the suppositions on which
Poisson proceeded are partly wrong but gives no reference:
Crelle, Vol. 56, p. 285. A memoir by Saint-Venant on curves
which are not plane curves is published in the 30th Cahier

of the Journal de UFcole Polytechnique. He objects to the
phrase angle of torsion to.denote the angle between two con-
secutive osculating planes of a curve; and says that it may
lead to considerable errors such as have already been committed
more than once: see page 55 of the memoir. In a note Saint-
Venant cites Poisson’s Mécanique, Arts. 317 and 318 ; and also the
Comptes Rendus, XviL. 953 and 1027, X1X. 41 and 47. See also
my account of Bellavitis’s memoir of 1839.

572. The general investigation which Poisson gives on his
pages 620—629 is very simple and seems correct on the principles
which he assumes; so that it is interesting to compare it with
the criticisms which have shewn it to be wrong. I presume that
the result dr=0 which is obtained on page 627 may perhaps be
one which is attacked®. '

573. On page 621 Poisson makes an allusion to the memoir
of April 1828 ; the passage to which he alludes is on page 451 of
- the memoir: it is Art. 469 of my account of the memoir. On
page 629 Poisson makes another allusion to the same memoir:
the passage to which he alludes is on page 454 of the memoir.

574. On his page 629 Poisson takes the particular case in
which the mean thread of the elastic rod forms a plane curve ; and
in page 631 he limits his process still further by taking the rod
homogeneous and naturally prismatic or cylindrical. This leads
to an interesting discussion extending to page 643, in which
various problems are solved. The treatment however is not very
satisfactory ; see later my account of Kirchhoff’s Vorlesungen,
namely of page 435 of that book. We may notice especially
the problem in which the rod is supported in & horizontal position

1 [See however the Historique Abrégé pp. cxxx. et seq. Ep.]
8 Poisson’s Mécanique was translated into English by the Rev. H. H. Harte,
2 vols., Dublin, 1842; but there is no note on this matter.

T. E. 20
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and a weight is hung at its middle point; an analogous problem
is discussed by M. Chevilliet, who refers to Poisson : see page 6 of
his Thesis, 1869".

575. Poisson’s pages 643—653 are devoted to the investiga-
tion of formulae in pure mathematics to which he has referred in
the immediately preceding pages; the formulae are those which
give the expansion of a function in a series of sines or cosines of
multiple angles.

576. In Poisson’s second volume the portions with which we
are concerned are comprised between pages 292 and 392; but
some of these pages are very slightly connected with our subject:
the whole constitutes a chapter entitled: Ezemples du mouvement
d’'un corps flexible. The first section of this chapter extends over
pages 292—3816; it is entitled: Vibrations d'une corde flexible ;
here we have the ordinary theory of the vibrations transversal and
longitudinal of a stretched cord. Suppose that the tension of the
cord is such as to produce the extension « in a cord of length 7; let
n denote the number of transversal vibrations, and n’ the number of
longitudinal vibrations per second, the vibrations corresponding in
both cases to the lowest notes: then the theory shews that

&1

Ce rapport trés simple du nombre des vibrations longitudinales &
celui des vibrations transversales d’'une méme corde, a 6t6 vérifié par
une expérience que M. Cagniard-Latour a faite sur une corde trds
longue, dont les vibrations transversales étaient visibles et assez lentes
pour qu'on pfit les compter.

Poisson says,

1 [The whole of Poisson’s analysis for the general case of a rod subject to any
system of forces is practically vitiated becanse he has really assumed the bending
moment to be proportional to the curvature. He has fallen into the same error as
Euler and Lagrange in applying Bernoulli’s theory without modification to the case
when there is any force other than transverse applied to the rod. As I have
had frequently to point out, if there be any longitudinal stress the so-called neutral
axis does not run through the line of centres, and the bending moment is not
neoessarily proportional to the curvature, e.g. a vertical pols bent by its own weight.
See the footnote also to Art. 570. Ebp.]
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The solution to which Poissori here refers has been simplified

and corrected by M. Bourget in the Annales...l Ecole Normale
Supérieure, Vol. 4, 1867.

577. The second section of Poisson’s chapter is entitled:
Vibrations longitudinales d'une verge élastique; it occupies pages
816—331. The matter is very simple and Poisson had contented
himself with a brief notice of it in his memoir of April, 1828: see
page 452 of the memoir. At the end of the section Poisson
compares the propagation of sound in a solid bar with that of air
in a straight tube, and refers to a memoir of his own in the
Mémoires de U A cadémaie, Vol. 11.

578. The third section of Poisson’s chapter is entitled : Choc
longitudinal des verges €lastiques; it occupies pages 331—347:
this is simple and interesting. A curious mistake occurs on page
840. Poisson has found an expression in terms of sines of multiple
angles which from =0 to #=c¢, excluding the last value of z, is
equal to A, and from z=c to 2=c+ ¢, excluding the first value of -
z, is equal to A’; then he-professes to shew that for & =c¢ the
expression is equal to A': but we know by the general theory of
such expressions that the expression must be equal to § (A+A)..

Poisson by mistake has put sin lc cos 2% l ©, where I stands for ¢ + ¢,

equal to (—1)'sin WTG: this is wrong: he should put it equal to

. 2mic _ tr(c+l—-c¢) (=1) . vmw(c—c)
}smT-—hun 7 =>—gsin T

579. Another mistake occurs in this section, which may be
illustrated thus. Suppose we have 7' elastic balls, all exactly
equal in contact in a row ; let there be also n others, exactly equal
to the former, in contact in a row; let the second set be in the
same straight line as the first, and let them be.started with a
common velocity to impinge on the first set at rest. Then in
analogy with theory and experiment we conclude that out of the
n + n’ balls the foremost n will go off with the common velocity,
and the hindmost n’ will remain at rest. Poisson then substantially
holds that to ensure, this result »" must be greater than n; but

20—2
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this seems to be unnecessary. The mistake, if such it be, appears
to be introduced at the first line of page 342; where it is assumed
that ¢’ is greater than c, apparently without any reason.

580. The fourth section of Poisson’s chapter is entitled:
Digression sur les intégrales des équations aux différences partielles ;
it occupies pages 347—368. This is a discussion in pure mathe-
matics, and does not fall within our range.

581. The fifth section of Poisson’s chapter is entitled:
Vibrations transversales dune verge élastique; it occupies pages
368—392. This section is taken substantially from Poisson’s
memoir of April, 1828, to which he refers for developments. The
problem reduces to the solution of the differential equation

gtyﬁb'j;{ 0;

the corresponding pages of the memoir are 475—488. The pages
382—384 of the Mécanique consist of a simple example which was
not given in the memoir; the motion of rotation of which it treats
must be supposed to hold through only an infinitesimal time. On
the last page of the chapter we have this note, “pour la comparaison
de ces formules & I'observation, voyez les Annales de Chimie et de
Physique, tome XXXVI, page 86.”

Between the dates of the memoir and of the Mécanique
Cauchy, in his Mémorire sur Uapplication du Calcul des Résidus
@ la solution des problémes de physique mathématique, considered
the differential equation. This adds to Poisson’s solution a fact
which amounts to giving the simple value of his {X*dz between the
limits. The whole formula is stated by Cauchy on page 35 of his
memoir to have been given by Brisson in 1823. Again Cauchy
on page 44 of the memoir has a more simple form than that
of Poisson. I think Poisson should have noticed these matters.

582. The mext memoir by Poisson to be noticed is entitled :
Mémoire sur Uéquilibre et le mouvement des corps cristallisés. This
was read to the Academy on the 28th of October, 1839; it is
published in the memoirs of the Academy, Vol. xvi., 1842, where
it occupies pages 3—152. Poisson died on the 25th of April, 1840 :
the memoir as we shall see was left unfinished at his death.
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583. A few introductory remarks occupy pages 3—6 ; these
are also printed in the Comptes Rendus, Vol. 1X. pages 517—519.
After these the memoir is divided into three sections; the
first section entitled: Notions préliminaires occupies pages 6—46 ;
the second section, entitled: Calcul des pressions moléculaires qui
ont liew dans Uintérieur des corps cristallisés; équations de
Uéquilibre et des petits mouvements de ces corps occupies 47—134;
the third section entitled : Lois-de la propagation du mouvement,
dans un corps cristallisé occupies pages 134—151, and is only a
fragment, unfinished by reason of Poisson’s illness and death,

584. In the introductory remarks Poisson states very briefly
some of the results of his previous memoirs, and then speaks of
the present, and of another which was to follow ; from this part I
extract some sentences :

Dans ce nouveau Mémoire, je considérerai le cas beaucoup plus
compliqué des corps cristallisés. Les équations de leur équilibre, et
par suite celles de leur mouvement, sont au nombre de six qui ren-
ferment un pareil nombre d’inconnues. Dans le cas du mouvement,
trois de ces inconnues se rapportent aux petites vibrations des molécules,
et les trois autres & leurs petites oscillations sur elles-mémes dont
ces vibrations sont toujours accompagnées. On peut facilement éliminer
les trois derniéres inconnues, et l'on parvient ainsi & trois équations
aux différences partielles du second ordre, d’oti dépendent, & un instant
quelconque, les distances suivant trois axes rectangulaires, des molécules
4 leurs positions d’équilibre dont elles ont 6t6 un tant soit peu

Je présenterai 4 I’Académie, le plus t6t qu’il me sera possible, un
autre Mémoire ol se trouveront les lois des petites vibrations des
fluides, déterminées d’aprés le principe fondamental qui distingue ces
corps des solides; que j’ai exposé en plusieurs occasions, et dont il est
indispensable de tenir compte, lorsque le mouvement se propage avec
une extréme rapidité, ce qui rapproche en général les lois de cette
propagation, de celles qui ont lieu dans les corps solides. J’appliquerai
ensuite les résultats de ce second Mémoire & la théorie des ondes
lumineuses, c’est-i-dire, aux petites vibrations d’un éther impondérable,
répandu dans l'espace ou contenu dans une matitre pondérable, telle
que l'air ou un corps solide cristallisé ou non ; question d'une grande
étendue, mais qui n'a ét6 résolue jusqu'a présent, malgré toute son
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importance, en aucune de ses parties, ni par moi dans les essais que
J'ai tentés & ce sujet, ni selon moi par les autres géomdtres qui s'en
sont aussi occupés.

A note to the word occasions gives a reference to Poisson’s Traité
de Mécanique, Art. 645.

585. The first section of the memoir is devoted to preliminary
notions ; I will notice a few points of interest.

Two kinds of motion with respect to the molecules are con-
templated in this memoir. Each molecule may execute vibrations
parallel to fixed axes, and, as is usual in this subject, the
shifts of a molecule from its mean position parallel to fixed
axes are denoted by u, v, w respectively. Also each molecule may
turn on itself ; thus a set of rectangular axes is supposed to be
fixed in each molecule, and equations are obtained for expressing
the change in direction which these axes undergo; this is one of
the specialities of the memoir: see pages 16—18 of the memoir.
The molecules are not assumed spherical in general, and thus the
resultant action of one molecule on another is not necessarily a
single force acting along the straight line which joins what we
may call the centres of the molecules.

586. The ordinary expressions for stretch and dilatation
which involve u, v, w and their differential coefficients are in-
. vestigated on pages 18—27 of the memoir; to these are added
on pages 28—30 some formulae relative to the change of direction
of a plane section of a body, which we will now give.

Let M denote a point the coordinates of which* are «, y, 5 ;
suppose a plane section passing through M, and let MP denote a
straight line drawn from M at right angles to this section; let
A, p, v be the direction angles of MP.

By reason of a deformation of the body the original plane
section will take a new position, though still remaining plane ;
suppose M’ the new position of M, and let M'P’ denote the
straight line drawn from M’ at right angles to the new position of
the plane section; let A, &/, ¥ be the direction angles of M'P’:
it is required to obtain expressions for cos\’ —cosA, cosu’ — cosu,
and cosy’ — cos v.
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Let z + 2, y +Y,, 2 + 2, be the original coordinates of a point
N in the original position of the plane section, and let N’ be the
position of N after deformation; let 2+ u, y +v, 2+ w be the
coordinates of M’, and let 2+ +u, y+y +v, 2+ 2 +w be the
coordinates of N'. Then since MP is at right angles to MN we
have

2, cosh+y, cospu+ 2, cosy =0............... (1).
And since M’P’' is at right angles to M'N' we have
&’ cos\' +y cosp' +28 cosy’ =0...............(2).

Also if we suppose N very close to M we have

du du du)
Y= gt hay T
dv dv dv

Y =0 =gt g F A e 3).
dw dw dw
f—2 =m0, 4y, +2
1 ldw yldy leJ

From (1), (2), and (3) we must obtain the required result.
From (1) and (2) when we reject the product of 2'—a, into
cos\’ — cos\ and similar terms, we have
(@' —a,) cosh+ (¥ —y,) cospu+ (¢ — 2,) cosv

+ @, (cosA’ —cos)) + y, (cosp’ — cosp) + 2, (cosy’ —cosv) =0;
and by (3) this becomes

(%cos)\.+3zcosp +:—:’cosv+ cos\' — oos)\.)
du dv dw ,
+Y, (@cosx+@cosp + Eycosv+cosy. —cos/.c)

+2, (Zucos7\.+zzcos;» +chosv+cosv —cosv) 0;

we will denote this for brevity thus
Az, + By, + Cz,=0.

Now the last equation must be identical with (1) as the point
N is subject only to the condition of lying in a certain plane ;

therefore

4 _ 1?__ O, 4).

COSA  COSp  COSY
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Again we have
cos’A+cos*u + cos'v=1,
cos*\’ +cos' u’ +cos*r' =1;
subtract, neglecting the square of cosA'—cosA, and the two
similar squares; thus
(cos\' — cos\) cosA + (cosu” — cos w) cosu + (cosy’ — cosw) cosy
=0...... (5).

The equations (4) and (5) supply three linear equations for
finding cos\' — cos, cospu’ — cosy, and cosy’ — cosy: thus we get

, _ (du dv dw
COSA — COSA = (@ cosA + @ (1 97) +d—cosv) COSA COS b
du dy dw
+ (dzcosx +d cosu + iz cosw) COSA cos¥

du dv dw . s
(Z— COSA +da: cosyu + —— iz cosv) SIN°A.
The values of cosuy’— cosu and cosy’'—cosy can be written
down by symmetry.

587. On his page 32 Poisson says that it is well to verify a
statement which is evident of itself, that a movement of the body
as a whole has no influence whatever on the stretch or on the
dilatation.

First suppose the motion to be one of translation; then
u, ¥, w are functions of the time which are independent of , y, #;
so that the differential coefficients of %, », w with respect to
&, y, z are zero,

Next suppose the motion to be one of rotation round an axis;
then by known formulae we have

Z_Z = (y cosn” — zcosn') w, glt, = (2 cosn — cosn) ,
dw ’
— = (@ cosn’ —y cosn) ,

where o is the angular velocity; and 7, 7', #” are the angles
which the instantaneous axis of rotation makes with the axes of
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@, y, z respectively. The four quantities w, 7, %', 9” will be
functions only of the time; let

Jocosndt=¢, [wcosn'dt=¥, [wcosy dt=¢",
the integrals being taken from ¢ =0 as the lower limit: then

u=yl" —28, v=2{-at", w=al-yi;

du dv d
and these values make == 0, — d 0, T 0; also

dv  dw dw du du dv
(E + @ =0, dz + 5 az =0, d da: =0,
Thus the stretch and the dilatation vanish.

588. On page 45 the following sentence occurs, the correctness
of which is probably now generally admitted :

Dans la réalité, cet équilibre n’'a pas lien rigoureusement, et ce que
nous prenons dans la nature pour I'état de repos d’un corps, n’est autre
chose qu’un état dans lequel ses molécules exécutent incessamment des
vibrations d’'une étendue insensible, et des oscillations sur elles-mémes,
également imperceptibles ;......

589. The object of the second section of the memoiris to calcu-
late the stresses at any point of an elastic body, and thence
to form the equations for the equilibrium and motion of the body.
The first and second sections taken together constitute in fact a
treatise on the theory of elasticity so far as concerns the general
equations of the subject, without any applications.

590. On page 47 we have a definition of.the term pressure
(stress) as used in this subject ; it coincides with that which Poisson
had formerly adopted : see Art. 546 of my account of the memoir of
October 1829. Saint-Venant objects to the definition as leading
to inconveniences which Poisson himself perceived: see Moigno’s
Statique, page 619, and the memoir on Torsion, page 249.

591. In his second section Poisson proposes to consider two
successive states of a body under the action of different forces; the
second state may be a state of equilibrium differing but very little
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from the first, or it may be a state of motion. Accordingly pages
47—70 are devoted to the consideration of the first state of the
body. Poisson obtains on his pages 48—52 expressions for the
stresses; these are left in the form of summations which
are indicated, though they cannot really be performed. Then on
pages 53—56 he forms the three equations of equilibrium which
must hold at every point of the interior of the body, by resolving
the forces parallel to the three axes; on pages 57 and 58 he
considers the three equations derived from the principle of
moments, by virtue of which the nine stresses hitherto used
are reduced to six; and on pages 59—61 he obtains the three
equations which must hold at every point of the bounding
surface, by a method which presents a little novelty.

592. On page 65 Poisson adopts a special hypothesis, which he
does not state very distinctly, but which amounts to assuming a
symmetrical arrangement of the molecules round any arc; in
virtue of this he comes to the conclusion that all the shears must
vanish. Then on page 69 he says that if the first state of the
body is its natural state the three tractions must also vanish.

593. On page 70 Poisson proceeds to consider the body in its
second state. He says

Occupons-nous maintenant du second état du corps, dans lequel
ses molécules ont été trés-peu déplacées des positions qu’elles avaient
dans le premier, soit par de nouvelles forces extérieures ou intérieures
qui se font encore équilibre, soit par des causes quelconques qui les ont
mises en mouvement,

The pages 70—122 form the most important part of the memoir ;

the investigations are rather complex, but they are exhibited very -

fully, so that they may be followed without difficulty. In conse-
quence of the change of the body from its first state to its second
the symbols denoting distances and angles receive slight increments,
and we have to find the consequent changes produced in the
expression for the stresses and the equations of equilibrium and
motion. )
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594. Poisson obtains on his pages 71—83 expressions for the
stresses in the second state of the body; these involve three
quantities @, H,, K, which occur in the expressions relative
to the first state, and which are in fact the tractions in the
special hypothesis of Art. 592; the expressions involve also fifteen
other quantities which take the form of summations, and which
will be constants if the body is supposed homogeneous and of the
same temperature throughout. On his pages 84—87 Poisson
forms the first three equations of equilibrium which must hold at
every point of the body, and on his pages 88—91 the second three ;
on his pages 92—95 he forms the equations which must hold at
every point of the surface. In these investigations squares and
products of small quantities are neglected, and expansions by
Taylor’s Theorem are limited to terms involving first differential
coefficients ; under these limitations the process is satisfactory.
Some points of interest which may be considered as digressions
from the main investigations will now be noticed.

du dv  dw .
%+T+d— expresses the dilata-
tion at the pomt («, y, 2); also ga; g; expresses what we may

595. We know that

term the spread or areal dilatation in the plane zy at this point:
that is if A denote the original area of any small figure in
this plane near the point, its area after deformation will be

A(l+g: g”). Now
og-fded) -t

that is: the spread is equal to thedilatation diminished by the stretch
in the direction at right angles to the plane considered. This pro-
position is general, for the directions of the axes of #, y, z may be
any whatever which form a rectangular system. Now the stretch

in the direction determined by the angles a, 8, « is (see Art. 547)
du dv cos® dw du  dv
dzoos’ +dy B+—cosfy+(dy+dx)cosacosﬁ

dv  dw du

(dz+ dy) cosry cosfS +(d.'c dz) CO8ry cosa.
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du dv  dw .

g +d_y+ &’ and we obtain for the spread
in the plane of which the normal has the direction angles
a, B) — »

g; sin®a + % sin*g + %:—U sin®y — (Z—;: + %:) cosa cosf3,

Subtract this from

dv  dw dw  du
- («Tz + dy) cosf8 cosry — (Jw— + d_z) cosry Cosa. |
This is given by Poisson on his pages 96 and 97.

596. In order to verify by an example the system of
equations which he has obtained, Poisson applies them to the case
of a homogeneous non-crystallised body; see his pages 101—109.
His results are in agreement with those of his earlier memoirs,
when the proper limitations are introduced.

597. As in a former memoir Poisson holds that molecular
force is really the difference of an attraction exerted by the
molecules themselves and a repulsion exerted by the caloric round
them : see Art. 543 of my account of the memoir of October 1829.
He says on pages 113 and 114 of the present memoir :

Dans un corps solide, on est obligé d’exercer une trés-grande pression
4 la surface pour produire une trés-petite condensation; I'augmentation
aussi trés-grande de la pression moléculaire qui en résulte dans I'intérieur
provient donc alors d’'un trés-petit rapprochement des molécules; or,
cela ne peut avoir lieu & moins que l'action mutuelle de deux molécules
voisines ne soit la différence de deux forces contraires, dont chacune est
extrémement grande eu égard & cette différence ou & la force apparente ;
de manidre que pour ce trés-petit rapprochement, chacune des deux
forces contraires varie d’une trés-petite fraction de sa propre grandeur,
et qu'il g'ensuive néanmoins dans leur différence une variation com-
parable & sa valeur primitive, ou méme bien plus considérable, qui
rende, par exemple, la force apparente décuple ou centuple de ce qu'elle
était d’abord entre les deux mémes molécules. C’est tout ce que nous
pouvons savoir sur la répulsion et l'attraction dont nous n’observons
jamais les effets séparés, et dont 'exces de l'une sur ’autre produit tous
les phénoménes que nous pouvons connaitre. J’ai déja eu plusieurs fois
Poccasion de faire cette remarque conforme & ce qui a été avancé au
commencement de ce mémoire.
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598. On his pages 115—119 Poisson notices the case in
which the molecules of the crystal are supposed spherical, so
that crystallisation consists merely in the regular distribution
of the molecules round each other. In this case the fifteen
quantities mentioned in Art. 594 reduce to nine, including
G, H, K,; if the first state of the body be the natural state, the
last three vanish, and the quantities reduce to siz.

599. Poisson returns on his page 119 to the general equations
which he had obtained for a crystal, and simplifies them by
the supposition that the first state of the body is the natural
state; also the body is supposed homogeneous. He thus finds.
that the differential equations for determining u, », and w
involve twelve constants. But three more constants occur in
the equations by which we determine the changes in the position
of the axes supposed to be fixed in each molecule: see Art. 585.
Saint-Venant refers to the number of constants: see Moigno’s
Statique page 706, and the memoir on Torsion page 261.

600. The third section relates to the propagation of motion
in a crystallised body. This is only a fragment. Poisson here
shews how to integrate the equations of motion, supposed to
be in the simple state noticed in Art. 599 ; he follows the method
of integration given in his memoir of October, 1830: see my
Art. 564. With respect to the equations to be integrated Poisson
says on his pages 135 and 136:

Elles sont comprises, comme cas particulier, parmi celles que M.
Blanchet, professeur de physique au collége de Henri IV, a intégrées
sous forme finie, dans un mémoire lu 4 ’Académie, il y a environ un an,

ou il est parvenu & exprimer les valeurs de u, v, w, par des intégrales
définies doubles et triples.

The memoir by Blanchet was published in Liouville’s Journal -

de mathématiques, Vol. v. 1840, and is considered in our
Chapter viII.

601. The following sentences occur after the memoir: -

M. Poisson n’a pas achevé d’écrire le troisiéme paragraphe de ce
premier mémoire, & la suite duquel, ainsi qu'il le dit au préambule de
celui-ci il se proposait encore de présenter & 1’Académie un second
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mémoire sur la lumiére. Pendant la maladie longue et douloureuse
qui I'a enlevé aux sciences, il a bien souffert du regret d’emporter avec
lui les découvertes dont son imagination infatigable était pleine. Quand
le mal moins avancé lui permettait encore de causer science avec ses
amis, il a dit qu'il avait trouvé comment il pouvait se faire, qu'un
ébranlement ne se propageft dans un milieu élastique que suivant une
seule direction; le mouvement propagé suivant les directions latérales
étant insensible aussitdt que I'angle de ces directions avec celle de la
propagation était appréciable. Il arrivait ainsi & la propagation de la
lomiére en ligne droite. Plus tard, cédant au mal, et se décidant enfin
4 interrompre I'impression de son mémoire: c’était pourtant, a-t-il dit,
la partie originale, c’était décisif pour la lumidre; et cherchant avec
peiue le mot pour exprimer son idée, il a répété plusieurs fois: c'était
un filet de lumidre. Puissent ces paroles, religicusement conservées
par les amis de M. Poisson, les dernidres paroles de science qui soient
sorties de sa bouche, mettre les savants sur la trace de sa pensée, et
inspirer un achévement de son ceuvre digne du commencement'’.

On the death of Malus in 1812 Delambre said :

8i Malus efit vécu, c’est lui qui nous efit complété la théorie de la
lumidre ;

and the words might be applied to Poisson, who succeeded to
the place of Malus at the Inmstitut: see Mém. de UInstitut 1812,
page xxxiii. A brief, but very good notice of Poisson will
be found in the Monthly Notices of the Royal Astronomical
Soctety, Vol. v., pages 84—86; it says, he “was placed, by
common consent, at the head of European analysts on the death
of Laplace.”

[His labours ‘as an elastician are only second to those of
Saint-Venant, scarcely excelled by those of Cauchy. There is
hardly a problem in our subject to which he has not contributed,
and many owe their very existence to his initiative.]

1 Some attempt has been made to reveal the meaning of Poisson’s dying words:
see Comptes Rendus xx, 561.




CHAPTER V.

CAUCHY.

602. 1823. Recherches sur Uéquilibre et le mouvement intérieur
des corps solides ou fluides, élastiques ou non élastiques. This
is published in the Bulletin... Philomatique, 1823, pages 9—13; it
is the first of the numerous writings of Cauchy on the subject
of elasticity; it consists of an abstract of a memoir presented
to the Paris Academy on the 30th of September, 1822.

603. Cauchy was one of the commissioners appointed to
examine the memoir sent to the Paris Academy by Navier on the
14th of August, 1820 ; and this led him to turn his own attention
to the investigation of the subject. He here states, without
the use of any mathematical symbols, the results at which he had
arrived. We see that he must at this date have constructed a
complete elementary theory including the following particulars:
the existence of the siz stress-components which have to be con-
sidered at any point; the representation of the stress on a plane
by the reciprocal of the radius vector of a certain ellipsoid;
the existence of principal tractions; and the representation
of the resolved part of the stress at right angles to an
assigned plane by the reciprocal of the square of the radius of
a surface of the second order’. Also he had obtained, I presume,
the general equations for the internal equilibrium of a solid body.
He speaks of these as four in number, one of which deter-

1 [The reader will do well to consult the note on elastic terminology at the end
of this volume. Eb.]
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mines separately the dilatation; but it should have been stated
that there are only three independent equations.

604. The name of Fresnel is introduced after mention of the
stresses. Cauchy says:

J’en étais & ce point, lorsque M. Fresnel, venant & me parler des

travaux auxquels il se livrait sur la lumiére, et dont il n’avait encore
présenté qu'une partie 4 I'Institut, m’apprit que, de son cbté, il avait
obtenu sur les lois, suivant lesquelles 1’élasticité varie dans les diverses
directions qui émanent d’un point unique, un théordme analogue au
mien.

605. I am not certain what property Cauchy has in view
in the following sentence: [It probably refers to what may be
termed the strain-ellipsoid : see Clebsch, Theorie der Elasticitdt,
p. 41; Weyrauch, Theorie elastischer Koirper, p. 72, erroneously
attributes it to Clebsch. Compare our Arts. 612, 617.]

De plus, je démontre que les diverses condensations ou dilatations
autour d’'un point, diminuées ou augmentées de 1’unité, deviennent
égales, au signe prés, aux rayons vecteurs d’un ellipsoide.

[606.] The paper is of importance in the history of the subject,
as we have here the origin of the theory of stress. We may
especially notice the following theorem which may be termed
Cauchy’'s Theorem. The stress on any infinitesimal face in the
interior of a solid or fluid body at rest is the resultant of the
stresses on the three projections of this face on planes through its
centre. The projections may be -right or oblique: see Saint-
Venant on Torsion, pages 249 and 250; also Moigno's Statique,
pages 627, 657, 693. Resal on page 4 of his Thése de Mécanique
cites the paper, but ascribes tq it the date 1825 instead of 1823.

607. BSur la théorie des pressions. This is published in
Férussac’s Bulletin, Vol. 1X. 1828, pages 10—22. It does not
relate to our subject but to the well-known indeterminate problem
of Statics, a simple example of which occurs when a body is on a
horizontal plane and in contact with it at more than three points,

608. We have now to notice variaus writings by Cauchy
published in his Exzercices de mathématiques; the second volume

N
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of this collection is dated 1827, and contains memoirs relating
to our subject of which we will give an account in the following
five articles.

609. On pages 23 and 24 there is an article entitled: De la
pression dans les fluides. The object is to demonstrate the
equality of pressure in all directions round a point: it appears to
me unsatisfactory from not explaining what is meant by a fluid, so
that it is not very clear what is the foundation of the demonstra-
tion. It is referred to in Moigno's Statique, page 620. '

[610.] An article entitled: De la pression ou tension dans un
corps solide, occupies pages 41—56, and is followed by an
Addstion on pages 57—59. The article may be described as an
investigation of the fundamental equations with respect to elastic
stresses ; Cauchy refers to the Bulletin... Philomatique for January
1823, in which he had enunciated his main results. The following
propositions are here substantially investigated by Cauchy:

(i) The stresses exerted at a given point of a solid body
against the two faces of any plane whatever placed at the point
are equal and opposite forces (p. 46).

(if) Suppose two infinitesimal faces of equal area to have
the same centre at any point of a solid body at rest; then
the stress on the first face resolved along the normal to the
second face is equal to the stress on the second face resolved
along the normal to the first face. Cauchy only treats the case of
the two planes being perpendicular. In our notation this is
represented by rs=1ar'.

1 [For the purposes of this history I have settled with some hesitation to adopt
a slightly modified form of the double-suffix notation originally introduced by
Coriolis and afterwards adopted by Canchy. In some cases where this notation
however luminous would be still too cumbrous, the convenient but not very suggestive
notation of Lamé has been followed.

The modification adopted consists in printing & for p,, and so avoiding the
troublesome subscripts by suppressing the unneocessary letter p. Thus ~ denotes
either the stress component at a point on a plane whose normal is r in the direction
s, or on a plane whose normal is s in the direction r.

T. E 21
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(iii) The properties of the stress-quadric, whose equation is
zd'+wy +2l+2ryz+ 2usr + 2y =11,

namely, that the stress on any plane is normal to that plane which

is diametral to the perpendicular to the original plane, and is

inversely proportional to the product of the radius vector and central

perpendicular to the tangent plane parallel to the given plane

(pp. 48—51).
(iv) The property of what we may call Cauchy’s siress-
ellipsoid :

(=@ + zyy + z22)' + (2 + Wy + v22)' + (ma + @y + 22)' =1,
namely, that the reciprocal of the radius vector gives the value at
the point of the stress on a plane perpendicular to the radius
vector, p. 54. These propositions all seem to be due to Cauchy,
and are demonstrated here for the first time.

The following table will serve to connect the various notations for the system of
stress components :

Oorlolls,fcl:,ueh Lamé
Polsson Cunchy | 1 Gaic Vonant, inkler, |  Kiein Beer
earlier) Maxwell, and umm.m)u
Castigliano
Z|y|s|z|y)= z|y|z z|y|sfjz|y|z])=|y|*
Z | Py|Qs| By A | 'F | E| Dy | Pay | s | Ny | Ts| Ts| Ny [Ty | Tea] Na | Ta | Ty
Y |Ps[Qs[R| F | B|D| 9y | o | Pyu | Ts | Ny | T2 [Tu| Na|Tyu] T | Ny | T2
z Pl QlRl E D'C’ Pox Pq'p- Tl Tl NlTquNt TUTzN-
Kirchhoff, fol-
Riomannand | Thomson | Grashot | Clebscn | Notatlon
‘Weyrauch
z|y'lzyzzyzxgzzyz
2 | X XX PV |T]o|m | n]ltultultul |55
AP AP AL A R4 AN PN PN PP PN P
$ 12,2, Z T8I R]tylre|o,|tnltnlta]zc]|ala

Of these notations Poisson’s, Cauchy’s (earlier) and Thomson’s, are not very
suggestive, Lamé’s has obvious advantages, but for a single-suffix notation is
inferior to Kirchhoft’s, Klein and Beer do not much improve on Lamé, mor
Grashof on Kirchhoff. Clebsch’s notation has all the disadvantages of the double-
suffix notation without its generality or luminosity. Wand follows Coriolis
replacing the latter's p,,... by K,..... I have, after balancing the claims of these
various notations, adopted Coriolis’s, which has the use of great autborities in its
favour; at the same time to avoid subscripts I use an umbral notation. Ep.]

-— il
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611. In the Addition Cauchy demonstrates some formulae
used by Fresnel in his theory of double refraction. They are
equivalent to the well-known relations between the component
stresses at the centres of the four faces of a tetrahedron:
see Saint-Venant on Torsion, page 250; Moigno’s Statzque, page
627"

612. [An article entitled: Sur la condensation et la dilatation
des corps solides occupies pages 60—69 of the volume. The stretch,
or linear dilatation close to an assigned point, in any direction,
is shewn to be related to the radius vector of a certain ellip-
soid. This is the first formal appearance of the strain-ellipsoid :
see Arts. 605 and 617. I use the word stretch generally for linear
expansion or contraction. Cauchy also finds an expression for the
cubical dilatation or as I term it simply : the dilatation. He then
proceeds