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Man hat aber erst angefangen die Gesetze der Elasticitat in ihrem ganzen
Umfange zu studiren

;
bei jedem Schritte stb'sst man in diesen Untersuchungen auf

neue Eigenschaften der elastischen Korper ; je weiter man vorgeht desto mehr

Verwickelung. Bei solchen Umstanden 1st wohl in diesem Augenblick keine vollig

abgeschlossene Arbeit iiber irgend eine Eigenschaft der elastischen Korper moglich.

Kup/er.

I cannot doubt but that these things, which now seem to us so mysterious, will

be no mysteries at all ; that the scales will fall from our eyes ; that we shall learn

to look on things in a different way when that which is now a difficulty will be the

only common -sense and intelligible way of looking at the subject.

Lord Kelvin.

Works of this nature form, as it were, the principal fund of the science property
of mankind, the interest of which we may turn to further profit. We might

compare them to a capital invested in land. Like the soil, of which landed property

consists, the knowledge stored up in these catalogues, lexicons, etc., ma}- have l>ut

slender attractions for the vulgar, the man unacquainted with the subject can have

no idea of the labour and cost at which the soil has been prepared ; the work of the

husbandman appears to him terribly toilsome, tedious and clumsy. But although
the work of the lexicographer and physical science cataloguer calls for the same

painful and persevering industry as the labour of the husbandman, we must not

therefore hastily assume that the work itself is of an inferior character, or that it is

as dry and mechanical as it at first appears when we have the catalogue or lexicon

ready printed before us. For it is necessary in such compilations that all the

isolated facts should be selected by careful observation, and afterwards tested and

compared with one another, the essential sifted from the unessential, and all this

it is plain, he only can efficiently accomplish who has clearly conceived the end and

aim of his work, and the scope and method of the branch of science which it

concerns ; but for such an one each minute detail will have its own peculiar interest

from its position in relation to the whole science of which it is a part. Were it not

so, such work would indeed be the worst kind of mental drudgery it were possible to

conceive.



PREFACE.

years have elapsed since the manuscript of the earlier

part of this History was placed in my hands; seven years

since the first volume was published
1

. Some words of apology are

needful for this delay. Interest in my subject and a desire to

complete without breach of continuity a work which I had

commenced led me to persist in the task of editing even after

I had recognised how little prompt execution of that task was

compatible with the large demands which the work of a London

teacher makes upon limited physical strength. Rapid and efficient

fulfilment needed the single-hearted devotion of one to whom this

History would have been the first and not a secondary duty. To

complete the work, as I could have wished it completed, would

have needed the undivided energies, the fresh and undisturbed

intellectual power of several years' labour. As it is the Editor has

failed to fulfil the promise made on the title-page and bring the

History down "
to the present time." The Second Volume carries

the analysis of individual memoirs completely to the year 1860,

but beyond that year the work of certain elasticians only has been

dealt with up to the present date. These elasticians, however,

Saint-Venant and Boussinesq, Hankine and Lord Kelvin,

F. Neumann, Kirchhoff and Clebsch are those upon whose

researches the modern science of elasticity rests. It may be safely

1
Chapter X. of the present volume appeared in 1889 as an extract entitled : The

Elastical Researches of Barre de Saint-Venant.
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said that without a thorough study of their writings, it is impos-

sible to be an accomplished elastician, or to follow without great

difficulty the drift of modern elastical research. Their memoirs

and treatises form the frame, which the Editor had hoped he

might be able to fill up by briefer accounts of the discoveries due

to, perhaps, less distinguished but none the less useful workers in

the same field. This process of filling up is only completed for

the years 1850-60, but the Editor ventures to think that th-

reader of his Chapter XI. will be surprised at the wealth of

material, theoretical, technical and physical, which was brought to

light in that decade. Many facts have been discovered, more,

perhaps, rediscovered since 1860, but till the last few years it may
be doubted whether any period has been more fruitful of genuine

progress in the science of elasticity than these ten years.

The number of the memoirs included in this volume by no

means measures the work of preparation it has involved. The

study and analysis of many memoirs not included in its contents

had to be undertaken. But the chief task has been the veriii

tion of the analysis of all the more important mathematical

memoirs. In some cases the whole of this analysis has been

undertaken de novo, occasionally with different results. As

examples of this I may cite Resal's researches on the figure of

the earth, the whole of Winkler's work on the strained form of

the links of chains, and Lord Kelvin's analysis of the strains

produced by the tides in an elastic earth. In all the work

verification, not only of others' analysis but of my own, I have

had the most self-sacrificing and devoted assistance from Mi

Chree of King's College, Cambridge. Without his aid not only

would this volume have been much longer delayed, but I veritably

shudder to think of the blunders which would certainly 1

escaped my unaided revision. My thanks are due to him, not as

to a mere friendly proof-reader, but as to one- whose cooperation in

the task of editing has given the volume the major portion of any

freedom from error it may possess. I trust that many serious
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errors may not still remain to be found, but in a work of reference

like the present errors and misinterpretations of a writer's meaning
are sure to occur. I can only hope that my criticisms, especially

when they deal with the work of living men of science, will be

received in the spirit in which they were written
; namely, in that

spirit the sole motive of which is the impersonal one of attaining

truth and eliminating error. A somewhat lengthy list of additions

and corrections to the first volume is issued with this, arid I

should be glad of any suggestions or emendations of the present

volume which my readers may care to send me, and which might

be issued with later copies
1

.

Of others besides Mr Chree who have helped me in the work

of revision, I must refer in the first place to M. Flamant, Professeur

a 1'Ecole des Fonts et Chaussees, whose help especially in the

chapters devoted to Saint-Venant and Boussinesq has been very

considerable. To my colleagues Professors G. Carey Foster and

T. G. Bonney, and to Mr W. H. Macaulay of King's College,

Cambridge, I am indebted for assistance in special points. To

Lord Kelvin I owe a number of corrections in Chapter XIY. In

several instances I had misunderstood or misinterpreted passages

in his papers. He has enabled me to express something of the

gratitude which I among other elasticians feel to him for his

contributions to our science, by accepting the dedication of the

present volume.

The editorial preponderance in this volume the articles due

to Dr Todhunter 2
are practically confined to a few dealing with

1 Mr A. E. H. Love in his Treatise on the Theory of Elasticity, Vol. I. 107,

refers to certain terms in Saint-Venant's theory of flexure which are discussed in

Art. 96 of the present volume as expressing only a "
rigid-body rotation

" and states

that they "need not therefore be considered." It seems to have escaped Mr Love

that Saint-Venant's theory allows for what experimentally is easily demonstrated

to exist, namely, a small but finite change of direction in the central line of a bar

under flexure either at a section where a load is applied or at a built-in end.

The terms referred to do not therefore correspond to a "
rigid-body rotation," and the

deflections as given by Mr Love are really measured from a line, i.e. the tangent at

a load or at the built-in end, the position of which he has not determined.
2 Articles due to the Editor have their numbers enclosed in square brackets.
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Clebsch's Treatise arises chiefly from two causes. In the first

place Dr Todhunter omitted all memoirs dealing with the physical

or technical branches of our subject, and more than a third of the

present volume will be found to deal with physical or technical

problems. In the second place a still larger portion of the work

falls beyond the period to which Dr Todhunter had carried his

researches. On this point I may, perhaps, be permitted to r<

to the remarks I have made in the preface to The Elastu^il

Researches of Barre de Saint- Venant, and content myself here

with citing from them the following words :

...it has seemed to ine that the best memorial to the first Gamin

historian of mathematics would be that the last history bearing his

name should have the widest possible sphere of usefulness. That

usefulness will, I am firmly convinced, be best obtained by its com-

prehensive character, by its attempt to be a Repertorium of elasticity

rather than an Historique Abrege of its purely mathematical side.

For the Index to the present volume I alone am responsible.

In a work of this comprehensive character a complete and

systematic index is a first necessity. To prepare it is a duty

which experience has taught me no one can fulfil so efficiently

as the writer of a book.

Lastly, I have to express the great sense of the indebtedness I

feel to the Syndics of the University Press for the patience with

which they have submitted to the delay in the publication of this

History, and the kindness with which they have permitted these

volumes to grow so much beyond my original estimate. Should

the reader complain that the work after all remains a fragment,

then the blame must fall on the shoulders of the Editor, who

much underestimated the extent of his material and overestimated

his own powers, when he reported to the Syndics uin years ago

on the original manuscript.
KARL PEARSON,

UNIVKK-H
,
LONDON.

.Inn,- 7, l
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ERRATA.

PART I.

p. 3, 1. 5, from bottom dele reference to Hopkins.

p. 26, 1. 7, from top for J/=-8434G2/irw
2 &2/3 read 3/=-843462MTa,2//-

!

/3.

p. 68, 1. 2, from top for w on left-hand side of equation read >r.

p. 79, 1. 19, for ar=duldr read ur=du/dr.

footnote for co-latitude read latitude.

,, in first body-stress equation of sphere read 2rr for 2rr .

p. 113, 1. 13, for neutral line read neutral axis,

p. 114, 1. 4 of footnote, for central axis read central line,

p. 125, 1. 2, for S IG read S //t.

p. 244, add to footnote : see, however, our Art. 410.

pp. 379-81. Phillips's analysis for the case of a doubly built-in girder has

been shown by Bresse and Saint-Venant to be in error : see our Arts.

382 and 540. 11. 3 and 4, p. 380, and the footnote p. 381, must be

modified in this senpo. Arts. 552-4 woro written at a very diffcin ;

to Arts. 381 and 540, and the facts stated in the latter had escaped m .



CHAPTER X.

SAINT-VENANT, 18501886.

SECTION I. Torsion.

[1.] WE commence our second volume with some account of

the later work of the great French elastician whom we are

justified in placing beside Poisson and Cauchy. From the

last memoir referred to in our first volume till June 13, 1853 we
have nothing to report. A slight note, however, entitled : Divers

resultats relatifs ci la torsion, which was read to the Societe

philomathique (Bulletin, February 26, 1853, or L'Institut, no. 1002,

March 16. 1853), sufficiently indicates that our author had been

diligently at work during these years on his new theory of torsion.

On the 13th of June, 1853, his epoch-making memoir was read to

the Academy (fJolnptes rendus, T. xxxvi. p. 1028). The memoir was

inserted in T. xiv. of the Memoires des Savants etrangers, 1855,

pp. 233560, under the title :

Memoire sur la Torsion des Prismes, avec des considerations

sur leur flexion, ainsi que sur I'e'quilibre interieur des solides

elastiques en general, et des formules pratiques pour le calcul de

leur resistance a divers efforts sexercant simultanement.

We have referred to it in our first volume as the memoir on

Torsion, and shall continue to do so.

The memoir was referred by the Academy to a committee

consisting of Cauchy, Poncelet, Piobert and Lame. Their report

drawn up by Lame (Comptes rendus, T. XXXVIL, December 26,

1853, pp. 9848) speaks very highly of the memoir. We cite

the concluding words :

T. E. ii. 1
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Le travail dont nous venons de rendre compte, merite des e"loges

a plus d'un titre : par les nombres et les resultats nouveaux qu'il offre

aux arts industriels, il constate, une fois de plus, 1'importance de la

theorie de 1'equilibre d'elasticite ; par 1'emploi de la methode mixte, il

indique comment les ingenieurs, qui veulent s'appuyer sur cette theorie,

peuvent utiliser tous les precedes actuellement connus de 1'analyse

mathematique ; par ses tables, ses 6pures, et ses modeles en relief
1

,
il

donne la marche qu'il faut necessairement suivre, dans ce genre de

recherches, pour arriver a des resultats imme"diatement applicables a la

pratique ; enfin, par la varie"te de ses points de vue, il offre un nouvel

exemple de ce que peut faire la science du geometre, unie a celle de

I'ingenieur. (p. 988.)

The report gives a succinct account of the memoir. A second

account by Saint-Venant himself will be found in : Notice sur les

travaux et titres scientifiques de M. de Saint-Venant, Paris, 1858,

pp. 1931, and 7180. This work together with one of the

same title published in 1864, when Saint-Venant was again a

candidate for the Institut, gives an excellent resume' of our

author's researches previous to 1864. We shall refer to them

briefly as Notice I. and Notice II.

[2.] The memoir itself is principally occupied with the torsion

of prisms, a great variety of cross-sections being dealt with. This

particular problem in torsion has been termed by Clebsch : Das
de Saint- Venantsche Problem (Theorie der Elasticitdt, S. 74),

and following him we shall term it Saint- Venant
1

s Problem. The

memoir consists of thirteen chapters.

3. The first chapter occupies pp. 233 236
;
and gives an

introductory sketch of the contents of the memoir. If the values

of the shifts of the several points of an elastic body are given the

stresses can be easily found by simple differentiation. But the

inverse problem to find the shifts when the stresses are given

has not been generally solved, because we do not yet know how

to integrate the differential equations which present themselves.

Saint-Venant accordingly proposes the adoption of a mixed method

(mdthode mixte ou semi-inverse), which consists in assuming a part
of the shifts and a part of the stresses, and then determii

by an exact analysis what the remaining shifts and the remaining
1
Copies of these numerous models are at present deposited in the mathematical

model cases at University College. They represent much better than the poor
woodcuts of the original memoir the distortion of the various cross-sections.
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stresses must be. Before proceeding to the torsion of prisms
Saint-Venant illustrates this mixed method in the third and
fourth chapters of his memoir by applying it to simple problems.

[4.] The second chapter occupies pp. 236 288; it analyses
strain and stress and investigates the general formulae for the

equilibrium of elastic bodies. In 1868 Saint-Venant contributed

to Moigno's Statique another elementary discussion of the funda-

mental formulae of elasticity; the later work is somewhat fuller

and contains the more matured views of the author
;
the earlier is,

however, very good. I will note the leading features of the treat-

ment adopted :

(a) On p. 236 Saint-Venant defines the shifts as the deplacements
moyens or as the deplacements des centres de gravite de groupes d'un certain

nombre de molecules. He thus starts from the molecular standpoint,
but this definition does not appear to be absolutely necessary to the
course of his reasoning.

(/?)
On pp. 237 248 we have the analysis of strain. Here the

slides first defined by Navier and Vicat (see our Vol. i. p. 877), and
then theoretically considered by Saint-Venant in the Cours lithographic

(see our Art. 1564*), are for the first time introduced by name and

directly from their physical meaning into a general theory of elasticity.
The slide of two lines primitively rectangular is defined as the cosine

of the anole between them after strain (p. 238).

(y) On p. 239 Saint-Venant carefully limits his researches to very
small strains within the elastic limit, so that what he says later (pp.
281 288) on the conditions of rupture, must when applied to his

torsion problems be interpreted only of the elastic limit. Indeed, as for

certain materials, set is produced by any initial loading below the yield-

point and is not practically dangerous (i.e.
the material is not 'ener-

vated,' to use Saint-Venant's language), we can only look upon the

conditions of torsional rupture given in the memoir as of value when
either (1) the material is elastic and follows Hooke's Law nearly up
to rupture (cf. the steel bar H of the plate p. 893 of our Vol.

i.), or,

(2) the material has a state of ease extending almost up to the yield-

point.

(8) On pp. 242 5 we have the general expressions for sr and a-rr>.

The first is due to Navier in his memoir of 1821, the second is attributed

by Saint-Venant to Lame (Lecons...l'elasticite, 1852, p. 46) but as we
have seen it had been previously given by Hopkins in 1847 (see our
Art. 1368*). From the second flows naturally a discussion of principal
and maximum slide, together with a proof of Saint-Venant's theorem
that a slide is equal to a stretch and a squeeze of half the magnitude
of the slide in the bisectors of the slide angles (see our Art. 1570*).

12
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Finally the strain is expressed for small shifts in terms of the shift -

fluxions (pp. 246 8). There is reference in a footnote to the strain-

values for large shifts (see our Art. 1618*).

(e)
We next pass to an analysis of stress on pp. 248 254. Stress

is defined from the molecular standpoint as follows :

Nous appellerons done en ge'ne'ral Pression, sur un des deux cotes dune
petite face plane imagine'e

a Vinte'rieur (Fun corps ou a la limite de
separation

de deux corps, la resultante de toutes les actions des molecules situe'es ae ce cote'

sur les moUcules du cote" oppose*, et dont les directions traversent cette face ;

toutes ces forces e'tant supposdes transporters parallelement & elles-memes sur
un rnOme point pour les composer ensemble, (p. 248.)

The reader will find it interesting to follow the evolution of the

stress-definition by comparing this with Arts. 426*, 440*, 546*, 616*,
6789* and 1563*.

From this definition Saint-Venant deduces Cauchy's theorems (see
our Arts. 606* and 610*) and an expression for rP. On p. 253 prr is

erroneously printed for prr ,.

In a footnote to p. 254 a generalisation of the expression for >9 is

obtained. Suppose x, y, z to be any three concurrent but non-

rectangular lines, and let x, y', z' be lines normal respectively to the

planes yz, zx, xy. Then in our notation :

^ cos rx' /_ cos r'x' ^ cos r'y' ^ cos r'z'\
rr' = - (xx

-
7 + Ty - ,+x?- ; }

cos xx \ cos xx cos yy cos zz J

cos ry' (^ cos r'x' ^ cos r'y _ cos r'z'\
-1
--

/ ( yx 7 + yy--. + yz -, J

cosyy \ cos xx cos yy cos zz /

cos rz
+

rz' /^ cos r'x' ^ cos r'y' ^ cos r'z'\
7 I zx-> + zy

-^ + zz-> )
.

zz \ cos xx cos yy cos zz Jcos zz

The proof is easily obtained by the orthogonal projection of areas.

() Saint-Venant next proceeds to express the relations bet

stress and strain (pp. 255 262). It cannot be said that this portion of

his work is so satisfactory as the later treatment in Moigno's Sktt,

(see p. 268 et seq.) or the full discussion of the generalised Hooke's Law
in his edition of Clebsch (pp. 39 41). In fact the linearity of the

stress-strain relations is obtained in the text by assumption : Adm^tions
done avec tout le monde que les pressions sont fonctions line

dilatations et des glissements tant qu'ils sont ires-petit* (p. 257). A
long footnote (pp. 257 261) treats the matter from the standpoint
of central intermolecular action. Appeal is made to Cauchy (Exercices
de mattiematiques t. iv. p. 2: see our Art. 656*) for the reduction of the

36 coefficients to 15. Saint-Venant, however, consistent rari-constant

elastician as he has always been retains the multi-constant formulae,

remarking
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Mais des doutes ont ete eleves sur le principe de cette reductibilite des 30
coefficients a 15 inegaux. Bien que ce doute ait pour motif principal une
autre maniere de 1'etablir, et qu'il ne paraisse atteindre, tout au plus, que
les corps regulierement cristallise's dont nous n'aurons pas a nous occuper
dans la suite de ce memoire, et, meme, ceux seulement de ces corps ou des

groupes atomiques eprouveraient des rotations ou des deformations par-
ticulieres lorsque Ton deforme 1'ensemble, nous conserverons en general, a

1'exemple de M. Lame, 1'independance des coefficients, ce qui, comme il

1'a remarque, ne rend pas plus compliquees les solutions analytiques des

problemes.

The reference to atomic rotations was suggested by Cauchy's paper
of 1851 : see our Art. 681*.

(17)
We have next to deal with the reduction in the number of

coefficients which arises in certain symmetrical distributions of homo-

geneity or in cases of isotropy. Saint-Venant adopts Cauchy's defini-

tions of homogeneity and isotropy, which should have found a place
in our first volume under Art. 606* (see the Exercices t. iv. p. 2):

On dit alors que le corps est homogene, ou que Velastidte y est la meme
dans les mSmes directions en tons ses points (p. 263).

On the other hand a body is isotrope when it has une elasticity

constante ou egale en tous sens autour du point (p. 272).
Saint-Venant refers to a semi-polaire distribution of elastic homo-

geneity as an example of elastic distribution. He has, as we shall

see later, thoroughly treated the entire subject in a memoir of May 21,
1860.

The various cases in which one or more planes of symmetry exist are

worked out, but I think brevity as well as uniformity of method are

gained by adopting Green's expression for the internal work due to the

strains.

(0) As an example of Saint-Venant's method in this section we

may take the following problem. He has shewn that in the case of one

plane of symmetry, that of yz, the shears perpendicular to this plane
reduce to :

where f= \ xyxy \ h =
\ xyzx I

=
Izxy |

6 = \ZXZK\ ,

in the umbral coefficient notation : see Vol. I. p. 885.

Now by a suitable change of axes these shears can be expressed
each in terms of a single slide. This problem is not reproduced in

Moigno's Statique.
Turn the axes of yz round x through an angle /?,

then we easily find :

^x- psin 8 + *j?cos/?i /.. x^ ' '

i. ,.(ii).

xy' xy COS f$ + xz sin /3 )

vxy = ov cos ft
- ow sin ft\

0-^ = 0^ sin /5 + ow cos J
( }

'
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Substitute from (iii)
in

(i) and then the values so deduced in
(ii).We obtain

(iv).

> =
K-^T

+'_r Cos 20 + h sin 20

+ (- "

sin 20 + h cos
20) o-^

=
(^"F~^ cos 2^ ~ h sin 2

^)
"

sin 20 + h cos
20)

o-
xi/

Obviously, if we take tan 20 =
-^

- we reduce this last pair of

equations to

wheref}

and e
}

are roots of the quadratic /x

2

(f+ e) p. +fe - h
a = 0.

Such is substantially Saint-Venant's reduction. It is obvious.

however, that this result follows at once when a known problem as to

the invariants of a conic is applied to the work-function.

(i) A remark as to isotropy on p. 272 may be reproduced as

bearing on the uni-constant controversy :

Mais 1'isotropie paralt rare. Non-seulement les corps fibreux, tels que
bois, les fers e'tire's ou forge's, mais. meme les corps grenus ou vitreux, refroidis

de la surface au centre apres leur fusion, peuvent presenter des e'lasticite's

diffdrentes en divers sens.

Saint-Venant refers to the experiments and remarks of Regnault,
Savart and Poncelet already noted in our first volume : see Arts. 332 *,

978* and 1227*

(K) On pp. 272 8 we have deductions of the body-stress equations,
the body-shift equations and the surface-stress equations.

On p. 276 Saint-Venant deduces the body-shift equation for a

planar distribution of elasticity such as he requires for his torsion

problem.
He takes for the shears the expressions found in Equation (v)

above, and for the traction xx perpendicular to the planar system tin-

expression
7x = asx + bs

v
+ csz

with six independent constants. Substituting in the body-stress <

-<[\\;\.

i*~~* ff~^ //*"*

tion - - + --+-^- = X, and expressing the strain in terms of the
dx dy dz

shift-fluxions, he finds :
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d2u .. d
2u d2u , d2u d2u

a ~r~a +/ TT + e
, -n + y 7 i

+ e ^ r
aor '

dy"
l dz dxdy dxdz

c?
2
i? . <fw / cPw dftu \ d% d2w

+ ff 4. M ^ (Q + cj \. d I
1

j
4.f 2 4. e _ ^

C'est la seule Equation dont nous aurons besoin pour les problemes sur la

torsion, comme on verra.

It will be noted that it contains eight independent constants, and
that X is a body-force, not a body-acceleration, and acts towards the

origin. It is needless to say that Saint-Venant much reduces the

number of his constants before he applies this equation to his problem.
In Moigno's Statique (p. 637) he adopts in place of X the more usual

notation of pX where p is the density.

[5.] The concluding pages of this chapter (pp. 278 288)
contain matter which appears here for the first time, and which, as

it is of considerable interest, deserves an article to itself. The

section is entitled : Conditions de resistance cu la rupture dloignee ou

a une alteration progressive et dangereuse de la contexture des corps.

(a) We have already noted the misleading character of this title :

see Art. 4.
(y).

In the first place initial loads frequently produce set

which although neither progressive nor dangerous may alter the shape
or elastic homogeneity of the body ;

and in the second place, if the body
be in a state of ease, still in many cases the generalised Hooke's law
will be far from holding even approximately up to the elastic limit.

Saint-Venant recognises the first point by distinguishing between
small sets, "qui ne font cpi'ecrouir le corps ou rendre plus stable

1'arrangement de ses parties" (p. 278) and large sets, which he holds

either augment progressively so that "la matiere s'enervera bientot"

(p. 239), or else by change of form destroy the value of a structure.

But he hardly seems to have taken note of the second point, for he
does not hesitate on pp. 280 and 286 to use stretch- and slide- moduli
which connote a proportionality of stress and strain. The same point
recurs in almost each torsion problem, where a condition de non-

rupture ou de stabilite de la cohesion is given (e.g. pp. 351, 396 etc.).

It is essentially a limit to the proportionality of stress and strain which
is in each case given, but this limit in many materials has no sensible

existence or may in the case of a material which does not possess an
extended state of ease be safely passed.

(b) One further remark before we proceed to Saint-Venant's

process. He starts from the formula (p. 280)

sr = sx cos
2 a + sy cos

2

ft + sz cos
2

y + a-
y!l

cos ft cos y + cr^ cos y cos a

-f a-
xy

cos a cos ft (i),

but on p. 242 he has obtained this by supposing the stretches and
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slides to be so small that their squares may be neglected. It is

conceivable that in some materials before rupture and, possibly, before a

dangerous set is reached, this might not be allowable.

(c) Our author begins by noticing that the proper limit to be

taken for the stability of a material is a stretch and not a traction limit.

He attributes to Mariotte 1 the first recognition of this fact "que c'est

le degre d'extension qui fait rompre les corps" and remarks that

although it is legitimate, and occasionally convenient, to take si traction

limit given by T'= Es where * is the stretch-limit and E the stretch-

modulus, T need not be the stress across any plane, whatever, at tin

point in question.

Et cette sorte de notation est sans inconvenient si 1'on n'oublie pa.s que T
repr&ente simplement le produit Es, ou la force capable de dormer (aus.si par
unite" superticielle) a ce meme petit prisme suppose* isole, la dilatation limite *

relative a sa situation dans le corps, mais qu'il ne represente qui- >j >?</ mfois
et non toujours 1'eflfort inte>ieur ou la pression supported iiormalement p;<.:

section transversale pendant qu'il fait partie du corps, (p. 280.)

This it-mark is all the more important as the distinction has IMM-H

neglected by Lame, Clebsch and more recent elasticians : see our

Arts. 1013*, 1016* footnotes and 1567*.

(d) The stretch in any direction being given by the equation (i)

above, we have next to ask what in an aeolotropic body is the <li

bution of limiting stretch ? Saint-Venant having regard to equation (i)

assume* it to be ellipsoidal in character; in other words he t.

* = iix cos
8a + s

v
cos

2

/? + sz cos
2

y,

where sx ,
s
y ,

sz are three constants to be determined by experiment,
and the axes of ellipsoidal distribution are chosen as those of co-

ordinates. The condition of safety now reduces to the maximum value

of 8/s being = or < 1. By the ordinary max.-min. processes of the Differ-

ential Calculus we obtain for /* the equation :

The roots of this equation are known to be real and we must have

the greatest of them = or < 1.

Suppose the material is subject only to a sliding strain, th.-n

sx = 8y
= sz = <rm =

(To
= 0. Hence it follows that

In other words if i is the limit of *, thni I the limit of <r^ or

gives the .slide-limit. Let us represent it by a-^.

1 Traits du mnuvemint de* eaux, sixifcme et troisii^me alinea du oun.



5] SAINT-VENANT.

Similarly we have o^ = '2\fsz sx and a-
xy
= 2*Jsx s

Saint-Venant then rewrites his equation (ii) as :

-
**} (*-

- *JL\ (- -
?*}

- (
a

*}

2

f
8-- 8

^]-. (?*]*(?. -M
8 ij \s sj \s sj \a-yj \s sj \oW \* V

He remarks that this equation may be adopted as if the six

limiting strains sx ,
s
y ,

sz ,
a-

tjz , cr^, ar
mj ,

were all independent, and the

values of the slide-limits d- had to be found by experiment. At any
rate equations of the form d-

ye
2 JTy sz need only be used when there is

an absence of experimental data. (p. 284.)

(e) In the following paragraph (25) Saint-Venant explains how
we are to find s/s for every point in the body and then take its

maximum value for all these points,

1'on obtiendra, en 1'egalant ci 1'unite, la condition necessaire et justemeiit
suffisante de la resistance du corps a la rupture (p. 284).

We have noted that this language is hardly exact. The point where this

maximum takes place is called after Poncelet point dangereux, a name
which it is convenient to render by fail-point. This term will not

necessarily connote rupture, but merely a point at which 'linear

elasticity
1 '

first fails. The consideration of this point leads Saint-

Venant to a concise definition of the solid of equal resistance :

Souvent il y a plusieurs points dangereux, ou plusieurs points pour lesquels
la plus grande valeur de s/s est la meme, d'apres la rnaniere dont les forces sont

appliquees. Lorsque, dans un corps de forme allongee, il y -a un pareil point a

chacune de ses sections transversales, ce corps est dit d'egale resistance : tels

sont les prismes lorsqu'ils sont simplement etendus ou tordus par des forces

appliquees aux extremites.

(/) We have next the application of
(iii)

to the case of torsion

about x as axis. Here

whence it follows

We have thus the limiting condition

1 = or > (

It is obvious that the principal slide in any direction

is given by the ray of an ellipse of which a-xy
and

1 I use the words 'linear elasticity' in the sense in which 'perfect elasticity' has
been used by the writers of mathematical text-books, i. e. to connote the elasticity

which obeys the generalised Hooke's Law or the linearity of the stress-strain

relation.



10 SAINT-VENANT. [6

semi-axes. Saint-Venant uses throughout his memoir a slightly differ-

ent form. Let
/x,, ^2

be slide-coefficients and S
lt
S

9
the shears capable

of producing the slides er^ and a-xz ;
then the condition of 'non-rupture

par ylissement (i.e.
of nofailure of linear elasticity) is expressed by

/u. <

1 = or > (

~

The chapter concludes with a few general remarks on the physical
characteristics of rupture by torsion.

[6.] The third chapter occupies pp. 288 99 : it relates to the

simple case of a prism on any base, whose terminal faces and sides

are subjected to any uniform tractive loads. Lame' and Clapeyron
in their memoir of 1828 (see our Art. 1011*) had treated the

simple case of isotropy. Saint-Venant as an example of the

mixed or semi-inverse method gives the solution for the case when
there are three planes of elastic symmetry, the intersection x of

one pair being parallel to the axis of the prism. He assumes that

the tractions are constant and the shears zero throughout. This

satisfies the body stress-equations ;
the constant values of the trac-

tions are in this case given by the surface stress-equations. The

stress-strain relations then give in terms of the elastic constants

and the loads the values of the shift-fluxions. We thus arrive at

a system of simple linear partial differential equations, whose solu-

tion is extremely easy. The complete solution gives for each shift

a part proportional to the corresponding coordinate and a general

integral which is only the resolved part of the most general dis-

placement of the prism treated as a rigid body. On p. 292 Saint-

Venant determines the value of the stretch-modulus when the

tractive load on the sides of the prism is zero, and on p. 293 he

considers the simple cases of (1) the axis of the prism being an

axis of elastic symmetry, and (2) the material being isotropic : see

our Art. 1066*. On p. 293 we have a remark that some writers

have doubted the exactness of the above results, considering

them only as plausible but not necessarily unique. Saint-Venant

asserts that they are unique, which is undoubtedly true in this

case, but I am not quite satisfied with the nature of his proof, for

it would at first sight apply to any elastic body. It depends

essentially on the following line of reasoning: Take any particular

integrals of the equations of elasticity u , V ,
w

, put the shifts equal
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to u + u', v + v, WQ
-f w'

;
we now obtain equations of elasticity

without body-force or surface-load.
" On verra que u', v

f

,
w seront

les deplacements des points d'un prisme qui ne serait sollicite' que

par des forces nulles. Ces deplacements seraient nuls eux-mdmes.

Nos expressions offrent done la solution complete et unique."

(p. 294.) This is true for the prism, but it does not always follow

that where there are no surface- or body-forces, the body is without

strain, or has only rigid displacement. For example, take a

cylindrical shell, a spherical membrane of small thickness, or an

anchor ring of small cross section, and turn them inside out, we
have a state of strain with no applied force.

On p. 295 Saint-Venant shows that his results for the prism
still hold if the shifts are large, but their fluxions remain small.

[7.] A method of solving a still more general problem is

indicated on p. 296. Suppose a homogeneous aeolotropic body of

any shape to be subjected to a surface-load L which is the

resultant of xx, yy, zz, yz, zx, xy', these stresses being given constant

values throughout the body and at the surface. Then we have

six equations from which to find in terms of the 21 elastic constants

the six strains. These are six simple partial differential equations
which give at once the shifts. Saint-Venant suggests how the

stretch-modulus for any direction may thus be obtained as a

function of the 36 (21 or 15) elastic coefficients : see our Arts.

1357, 198 (c), 3068 and 796*

[8.] The final section of this chapter ( 33, pp. 2979)
relates to a point which Saint-Venant has frequently taken

occasion to refer to. The principle involved is the following :

C'est que le mode a"application et de repartition des forces vers les

extremites des prismes est indifferent aux effets sensibles produits sur le

reste de leur longueur, en sorte qu'on peut toujours, d'une maniere
suffisamment approchee, remplacer les forces qui sont appliquees, par des

forces statiques equivalentes, ou ayant memes moments totaux et m6mes
resultantes avec une repartition justernent telle que Texigent les

formules d'extension, de flexion, de torsion, pour etre parfaitement
exactes. (Notice I. p. 22.)

Saint-Venant does not clearly state the portion of the prism
over which he holds the influence of distribution to extend, the

term sur le reste de leur longueur is somewhat vague. In the

memoir itself he uses the words en excluant seulement les points
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tres-proches de ceux ou agissent les forces (p. 299). We can

perhaps, however, reach some conception of the field to which

he supposes the influence to extend by paying attention to a

footnote on p. 22 of Notice I.

Suppose the terminal of a prism subjected to any system of

load statically equivalent to that distribution which produces the

system of strains theoretically calculated. Impose upon the

terminal two equal and opposite loads having the theoretical

distribution. One of these will produce the theoretical strains,

the other will be in statical equilibrium with the actual load

distribution. The terminal is thus acted upon by two equivalent
and opposite systems of force. These systems will produce certain

small shifts in the end of the prism, and these shifts measure tin-

extent to which the prism is influenced by the difference between

the theoretical and practical distributions. Saint-Venant tells us

in his footnote that the influence of forces in equilibrium acting
on a small portion of a body extend very little beyond the parts

upon which they act.

L'auteur a fait deux experiences de ce genre sous k-s yeux <lr

1'Academic en lisant un de e.s memoires. Elles ont consist*'- si in] dement
a pincer avec des tenailles un prisrae de caoutchouc, et a dilator 1 1

versalement une laniere mince de meme imitirrr, en tirant ses hords en

l-ux sens opposes. Tout le monde peut les re"peter et voir <|iir

1'impression ou I'elargissement ne se fait ;><>/? .-ontir a '/->

excedant la profondeur dans le premier cos et Samplitude dans le

The reader will find this matter still further treated of in the

Navier, pp. 40 41 and the Clebsch, pp. 174 7. The principle is

of first-class importance, as it is scarcely possible in a practical

structure to ensure any given theoretical distribution of load. The

terminals will generally take a form which lies beyond theoretical

investigation and only the statical equivalent of the load system
will bo really ascertainable, e.g. the tractive load on a bar may be

applied by means of a nut carrying a weight, the nut itself being

supported by the thread of a screw cut on the bar.

[9.] Saint-Venant's fourth chapter deals with the problem of

flexure by the semi-inverse process. The important results 1

first published were afterwards considered at giv;it-r length in tin

wdl-known memoir on flexure: see our Art. 69 et A
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Throughout the chapter the writer supposes three principal

planes of elasticity, one of which coincides with the cross-section,

and the two others intersect in the line of sectional centroids, i.e.

in the axis of the prism. He thus makes use of formulae which
in his notation apparently involve twelve independent coefficients,

but these he at once reduces to three independent moduli (E, e, e')

and two coefficients (/, e) : see pp. 303, 311313.
As Saint-Venant justly remarks :

La determination exacte et generale des deplacements des points
d'un prisme sous Faction de forces qui tendent a le flechir, a echappe
jusqu'a present aux recherches les plus laborieuses des geometres.

(p. 299.)

But although his solution does not solve the problem for all

terminal distributions of load, it is yet as close an approximation in

practice as, say, Coulomb's solution of the torsion of a circular

cylinder. It cannot be too often repeated that the distributions

of tractive and shearing loads, such as occur in theory, are not

attainable in practice, and that we must be content with their

statical equivalent over small areas (see our Art. 8). But let us

hear Saint-Venant himself:

Aussi les resultats ci-dessus ne sont pas applicables d'une maniere
tout a fait rigoureuse.

Mais Fanalyse precedente nous prouve toujours que si sur deux
sections quelconques, extremes on non, les forces sont appliquees et

distributes de cette maniere, il en sera absolument de me"me sur toutes

les sections intermediaires, et que les deplacements, dans toute Fetendue

du prisme, seront repre"sentes par les autres expressions trouvees ci-

dessus. Les formules donnent done Fetat de choses vers lequel

converge Fetat interieur reel du prisme a mesure que Fon considere des

parties plus eloignees de ses extre"mites ou des points d'application des

forces qui font flechir.

II s'etablit ici, dans Fespace, une sorte d'etat permanent semblable a

celui qui est produit, dans le temps, par Faction continue de causes

constantes qui finissent par effacer Feffet des causes initiates d'un grand
nombre de phenomenes. (p. 314.)

Saint-Venant's solution of the problem of flexure is thus the

real solution of the problem, for were any other solution obtained

it could differ from his only by terms which would be really

insignificant as compared with the differences in terminal loading

which must occur, not only between theory and practice, but
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between any two practical cases of flexure. It is just as reasonable

or unreasonable to quarrel with Coulomb's torsion solution as with

Saint-Venant's flexure results.

[10.] With regard to the uniqueness of the solution obtained

by the semi-inverse method supposing the theoretical shearing
and tractive loads were applied to the terminals Saint-Venant

has some remarks on p. 307 which it is well to consider. After

remarking that the shifts satisfy all the conditions and equations
of the problem, he continues :

Et ils sont les seuls qui y satisfassent, car le probleme des

de"placements est completement determine si, en dormant les pressions et

tractions sur tous les points de la surface, on suppose fixes 1'un des

points du prisme (le point 0), et les directions d'un element line"aire et

d'un element plan qui y passent (un element sur 1'axe des z et un
element sur le plan yz) en sorte qu'il ne puisse y avoir ni translation

ni rotation gene"rale a ajouter aux deplacements provenant de la flexion,

(p. 307.)

He then proceeds as on p. 294 to put the shifts equal to the

particular solutions found plus additional unknown parts (u, v, w),
these latter he argues must be zero as they are shifts due to a

zero system of loading as appears by the vanishing of the load

terms from the equations on substitution. This sketch of a proof
of the uniqueness of solution of the equations of elasticity has

been adopted and expanded by Clebsch : see Kap. I. 21 of his

Theorie der Elasticitdt. I have suggested above that there is

need of applying the proof with some caution : see Art. 6.

[11.] In treating the problem of flexure Saint-Venant assumes

the longitudinal shifts and the lateral loading, hence he deduces

the transverse shifts and the terminal loading. The values of tho

longitudinal shifts were doubtless suggested by the Bernoulli-

Eulerian solution of the problem, but in this chapter they appear
to arise very naturally from the consideration of the simpler case

of uniform flexure, or the bendings of each longitudinal 'fibre'

into a circular arc
;
see pp. 292 304.

Saint-Venant makes two generalisations of his problem. The

first (p. 306) to the case when besides terminal shearing load,

there is also terminal tractive load. It is necessary, however, to

remark that when such load is negative, and the prism of con-
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siderable length as compared with the dimensions of cross-section,

the question of the buckling action of such load arises. This is a

point to which we have referred in our first volume: see Art. 911*.

Saint-Venant does not allude to it. The second generalisation is

to the case of large shifts, or as it is here termed : Extension de

cette solution a une flexion aussi grande qu'on veut. I cite the

following remarks as suggestions which have been adopted by
later writers (e.g. Kirchhoff) :

Les formules donnant u, v, w ne s'appliquent, comme les equations
different!elles dont on les a tirees, qu'a des deplacements tres-petits

ne produisant qu'une petite flexion. On peut cependant en tirer des

deplacements d'une grandeur aussi considerable qu'on veut, tels que
ceux d'une verge elastique longue et mince qu'on ploie au point de faire

presque toucher les deux bouts, ce qui est tres-possible sans alterer

aucunement la contexture de sa rnatiere, car les deplacements relatifs

et les deformations peuvent rester petits dans chacune des portions
d'une longueur bien moindre que le rayon p de la courbure, dans

lesquelles on peut diviser par la pensee un pareil corps ;
et c'est leur

accumulation qui produit, a 1'extremite, des deplacements considerables

(p. 308).

12. The section of the chapter pp. 308313 which deals with the

general problem of flexure is reproduced in the memoir in Liouville's

Journal and will be considered later : see our Arts. 69 et seq.

Two results are given on p. 312 without demonstration. The first of

these relates to the case of an elliptic section
;

it coincides with equation

(56) of the memoir in Liouville's Journal (see our Art. 86, Eqn. 25)
when we put C the constant of that equation zero. The second of these

relates to the case of a rectangular section
;

it is an approximation :

the memoir in Liouville's Journal gives the exact solution, but not this

approximation. It is however easy to supply the steps which lead to

the approximation. In equation (91) of the memoir in Liouville's

Journal the exact value of F (y, z) is given depending on F
l (y, z)

which is determined by (102). If we were to expand Fl (y, z) in

powers of y and 2, the term which involves z only would disappear by

(103); then the next two terms would involve y*z and z
3

respectively.

This suggests our taking a form like that of (85) in the memoir on

Torsion as an approximation; take this and calculate xz, that is

Wefindthistobe
dx d

then in order that this may vanish when y = and z = c we must have

Pt(E-fK)
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Then Saint-Venant assumes that jdu=-P; and this leads

to the value of K which he uses in this case: see p. 312 line 3 from the

foot.

13. On p. 311 Saint-Venant says that F = 0, and dF/dz =
0,

when y = and z = 0. Suppose that h and k denote very small

quantities ;
then the value of u at the origin being denoted by u

n
the

value at a jx)int very near the origin would be

(du\
, /du\ .

%r + Ur-
Nowf

j
is zero since u is an even function of yy

so that if we

have (-r I zero as well as un then the value of u vanishes all over
vfc/,

an element near the origin.

[14.] Pp. 316 318 are deserving of close attention
; they

give results which were partially published in the memoir of

1843 (see our Art. 1581*) and which followed up the suggestion

of Persy: see our Art. 811*. Saint-Venant namely finds the

plane of flexure when the load-plane does not coincide with t bi-

plane of one set of principal axes of the cross-sections.

Let Oz, Oy be the principal axes at the centroid of any c

section of area o>
; let KZ> K

V
be the swing-radii about these axes, and

<, \j/
the angles which the load and flexure planes make I'-j-c. tivcly

with the plane through Oz and the axis of the prism. Then Saint-

Venant easily shews that :

K/ 1 M /cos
2
d> sin

2
<f>-

8 tan*; - =^ .
+ "T- ,

where 1/p is the curvature, M the bending moment and E the longitudinal
stretch-modulus

1
.

AxNutuhiy that only longitudinal stretch produces -lanuer. Saint-

Venant deduces that if * = TjE be the limit of safe streidi tluMi

J/=or<the minimum of "

cos d> sin d>

*T- +y~>

For the rectangle (26 x 2c) we have

4r.iv
Iff

__
QJ. ^

3 (6 cos
<f>
+ c sin <)

'

1 The first equation expresses geometrically that the plane of flexui

dicular to the diameter of the momental ellipse (neutral axis) conjugate to the j>lanr
of loading : see our Art. 171.
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for the ellipse (26 x 2c)

M or <

Such results as these he has reproduced and considerably added
to in his edition of Navier, pp. 5260, pp. 122 126 and 128 136.

Indeed, we may affirm that Saint-Venant was the first to insist on the

practical importance of investigating the relation between the planes of
flexure and of loading, when the latter plane is not one of inertial

symmetry.

[15.] The chapter concludes with the deduction of Saint-

Venant's all-important discovery that the cross-sections of a beam
under flexure do not remain plane even within the limit of

elasticity. There is also an investigation of the change in

the cross-sectional contour (pp. 318 323). We shall return to

these points later, but meanwhile may quote the concluding
words of the chapter as some evidence of the satisfaction

which Saint-Yenant legitimately felt at the results of his new

process :

On voit, par ce chapitre iv, que la methode mixte de solution des

problemes de 1'equilibre des corps elastiques peut, non-seulement confir-

iner des resultats connus, en apprenant a quelles conditions ils sont

exacts, mais encore les completer, et dormer sur les circonstances de la

flexion des resultats nouveaux.
*\

[16.] Saint-Venant' s fifth chapter defines torsion and deduces

the general equations by the semi-inverse method
;

it occupies

pp. 323333.
The definition of torsion which does not involve the main-

tenance of the primitive planeness of the cross-sections is contained

in the following paragraph :

Et nous nous donnerons une partie des deplacements ou de leurs

rapports, en ce que nous supposerons que ces deplacements ont produit
une torsion autour d'un axe parallele a ses aretes, torsion qui consiste en
ce que les deplacements transversaux des divers points appartenant
primitivement a une meme section quelconque perpendiculaire & I'axe ne

different de ceux des points homologues d'une autre section, que par une
rotation d'un meme angle pour tous, autour du meme axe ; en sorte que
les points qui se correspondaient primitivement sur les droites paralleles
a I'axe puissent etre ramenes a se correspondre encore, en les faisant

tourner d'un angle qui est le meme pour les points des deux memes
sections (p. 324).

T. E. II. 2
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We will now sketch the method by which our author reaches

the general equations of torsion.

[17.] The axis of torsion will be taken as axis of x\ the direction

of torsion will be from the axis of y towards that of z. The area of a

cross-section will be denoted by o>, and we shall write o>K2
8 = fy'du,

wKy*
=
fz*dw, these being the sectional moments of inertia. The torsion

referred to unit of length will be r
;
that is, if we draw the radius-vector

of a displaced point in one seoEibn,~and also that of the homologous point
in a section at distance from the first, then the second radius-vector makes
with a parallel to the first an angle of which the circular measure is T

;

this angle is measured from the axis of y to that of z. This language

implies that the torsion is constant, but the meaning of T, when it is not

constant, will be assigned in the same manner as before at any point,

provided we consider as infinitesimally small.

The above definition of torsion leads us at once to the results :

dvjdx = rZj dw/dx ry (i).

The consideration that there is no lateral load gives for every point
of a sectional contour the equation

Tzdy- ^dz = Q
(ii).

On p. 329 Saint-Venant fixes a point, line and elementary plane
as in our Art. 10, and remarks that the total torsion between the

terminal sections may be considerable provided each short element into

which we may divide the prism by two cross-sections receives only a

small distortion relative to itself, the length of the prism being great
as compared with the linear dimensions of the section. The total

shifts can then be obtained by summation from the solutions of the

above equations for each short element.

Referring to the equations in our Art. 4 (0) we easily obtain

*xy =/, (du/dy
-

TZ), Tz =
e^ (du/dz + ry) (iii).

Whence if M be the moment of all the stresses on a cross-section

about the axis of x,

M = I du
[e, (dujdz + ry) y-f, (du/dy -rz)z] (iv).

Jo

It will be seen that this agrees with the old theory which gave
f
wM =

e,r I da> (y* + 2*), only when e
l

=
/J
and du/dz = du/dy. This, since

du/dx is assumed constant, amounts to u = 0, or the old theory that

the cross-sections remain plane and perpendicular to the axis. Substi-

tuting in the equation of our Art. 4 (K), and in
(ii) above, we find for

body and surface shift-equations :

ad*u/dx* +/, d^ujdf + e
l tfujdz* + fd*u/dxdy + ecPu/du

+ (ey-fz)dr/dx=Q ...(v).

6^ (du/dz + ry)dy -/, (dujdy
-
rz) dz =
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Saint-Yenant (p. 331) at once simplifies these equations by taking
lda? =fd?u\dxdy = e d^ujdxdz = ;

these follow at once from the

supposition that du/dx, or the longitudinal stretch, is constant or zero,
or again from'tfie second supposition that it is constant only along
lines parallel to the axis of torsion and that a principal plane of

elasticity is perpendicular to this axis
(i.e. e=f=0).

In general we shall adopt the notation e1 = /x-2, J\ = p lt
so that our

equations become

/Xj d^ujdy
21 +

fjL2
d2

u/dz
2 = 01

/xa (dujdz + ry] dy p l (dufdy rz)dz = 0)

Saint-Venant for the purpose of simplifying the form of his results

takes
/Xj
=

yw,2
=

/x
in the following four chapters. Further to avoid the

complexity which would be initially introduced by treating at the same
time the problem of flexure Saint-Venant takes

We shall see in the sequel that Clebsch has combined the two

problems of torsion and of flexure by preserving the general form of the

equations.

The next four chapters of the memoir vi. IX. are occupied
with the torsion of prisms of various cross-sections. I shall

briefly give the results here for the purpose of reference
;

the

reader will find little difficulty in deducing the proofs for himself,

if the original memoir be not accessible. At the same time I

shall draw attention to one or two important points involved in

Saint-Venant's discussion.

[18.] The sixth chapter occupies pp. 333 352, and is entitled:

Torsion d'un prisme ou cylindre d base elliptique.

The following results are obtained, the axes of the cross-section

being 25 and 2c, and the notation being otherwise as before :

7)^ C^ 72 r^ ^ TQffZt \

=
-jIT7W w= TXy] W.

-. ()

xx = yy zz = yz =

We see at once from
(i)

that the primitively plane sections suffer

distortion (gauchissement), and become hyperbolic paraboloids. In the

22

'
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accompanying figure the contour lines of these surfaces of distortion are

marked
;
broken lines denoting depressions.

The principal slide er is given by

(iv).

The point dangereux or fail-point is obtained by making 6V -f c*y* &

maximum, thus it is at the extremity of the minor axis, i.e. is the point
nearest to the axis of torsion.

From (iv) we obtain by means of our Art. 5 (/), if Sl
= S* = S :

T2ba

c/(b* + c) .................... (v),

whence it follows that Af=or<
2

= or <

The general appearance of the prism under torsion is given in the

figures on the next page, the torsion being diagrammatically exaggerated.

[19.] There are one or two important points to be noticed in

this chapter. In the first place Saint-Venant solves equation (vi)

of Art. 17 by a series ascending in powers of y and z
;
one term

(a'^/z) suffices for the elliptic cross-section, he makes use of others

later. Secondly he points out pp. 339 341 that his results agree
with the theory of Coulomb only in the case of a circular section,
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for every other elliptic cross-section the value of the torsional

moment is smaller than that given by the old theory and there is

distortion. He shews by numerical examples on p. 352 how much

sooner the safe limit is reached in the true than in the old theory.
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[20.] On pp. .341 343 we have, thirdly, a footnote on

Oauchy's suggestions that the torsion r should be made to vary

transversally : see our Art. 684*. Saint-Venant shews that this

would require,- at least in the case of a circular cross-section and
an axis of elasticity coinciding with the axis of figure a shearing
load at each element of lateral surface. This is a supposition
which could hardly be attained in any practical case.

[21.] Fourthly we have on pp. 342 345 a very concise and

admirable consideration of the point referred to in our Art. 9
;

namely, the practical equivalence of statically equipollent systems
of terminal loading at very short distances from the terminals.

Nos resultats relatifs a la torsion d'un prisme elliptique par des

couples quelconques peuvent tre adoptes au meme titre et avec la meme
confiance qu'on adopte les formules, soit de 1'extension simple, soit de la

flexion par des forces laterales, et la formule plus analogue du cas de
torsion des cylindres circulaires (p. 345).

In all these cases there is the same assumption as to the

equivalence of the shifts produced by the theoretical and by the

actual equipollent load systems.

[22.] Fifthly 59 and 60 (pp. 3467) may be noted. The first

/"

w
/"

w
,

deduces from the equations I xy dot = I xz dot = that the axis of
Jo Jo

torsion for the shifts assumed must coincide with the line of sectional

centroids
1

: see our Art. 181 (d). The second treats of the case of large
torsional shifts, see our Art. 17, p. 18. Saint-Venant remarks that the

values v = rxz and w = rxy of our Art. 18, equation (i),
no longer hold,

but by an easy process of summation (p. 347) we find the new values :

v = - z sin TX y (1 cos rx)
w= y sin. TX z (I cos TX)

'

[23.] Lastly we may note on p. 349 the general argument by
which Saint-Venant would explain why the fail-points are those

nearest and not farthest from the axis of torsion as in the old

theory (la theorie ordinaire, S'-V.). He points out that at the

extremity of the major axis the slide produced by the distortion

of the plane section is zero and so we have only the slide produced

by the 'fibres becoming helical,' while at the extremity of the

minor axis the two components of the slide both exist and com-

pound, operating together. Hence generally we see how it is

possible for the slide to be greater at the latter than the former point.
1 This paragraph was cancelled in the copies of the memoir remaining in Saint-

Venant's possession.
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Chapter vii. of the memoir (pp. 352 360) is occupied with

the analytical solution of the equation uzz + uyy
= 0. The first form

obtained is that in a series of exponentials and sines or cosines of

multiples of y and z.

The second is in terms of cylindrical coordinates. Let y = r cos <,
z - r sin

<f>,
then :

u = 2<Anr
n cos n<j> + ^Bmrm sin m<,

n fr
n sin n<j>do>

rm cos m

These results are obvious. Special cases of uni-axial and bi-axial

symmetry lead to the vanishing of certain coefficients.

[25.] Chapter vm. (pp. 360 413) deals with the important
case of the torsion of prisms of rectangular cross-section (26 x 2c).

The chapter opens with some account of Cauchy's memoir of 1829 30

(see our Art. 661*) which had led Saint-Venant to recognise the general
distortion of the cross-sections in the torsion problem. Cauchy had

6
2 -c2

found as an approximation u = ^-2 ryz, Saint-Venant's expression
4- G

forjthe shift parallel to the axis in the case of an ellipse. This really is

only an approximation when b and c are very unequal. It makes the

greatest slides take place at the corners, but when we note that 7y~yx
and '7z = 'zx, then since yx and ^r are zero on the lateral surfaces, it

follows that at the angles the nullity of "xy and Icz connotes that the

stress can only be tractive to the cross-section, or that :

il n'y a, en ces points, aucun glissement, et la section a du se ployer de
maniere k rester normale aux quatre aretes saillantes devenues courbes

(p. 362).

TMstperpendicularity of the cross-section to the sides, at projecting

points or angles, holds for all prisms. The recognition of it led Saint-

Venant to the investigation of a more exact expression for the torsion

of rectangular prisms than that discovered by Cauchy.

[26.] The equations to be solved are

Idujdy = TZ for all values of z between c and - c when y

(du/dz ry for all values of y between b and b when z = c.

At the suggestion of Wantzel, Saint-Venant reduced these equations
to a known form by the substitution of u ryz + u', when they become

Idu'/dy = 2rz for all values of z between c and c when y = b,

(du'/dz = for all values of y between b and - b when z = c.
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These equations can be solved by the assumption

u' = ^Am (e
my e~my

)
sin mz

and the usual determination of the constants by Fourier's Theorem.

[27.] Saint-Venant obtains the following general results :

u=rbc

= rbc

to

u
^W2

"-^'

_, sinh -

2c

be 2W C**"1 (2w-l)
8

cosh (2?i-l)irc 26

cosh
uc

2c

2c

. ,
-

smh v

(2w-l)iry

^(an-iy^an-i).*" 26

26

cos

c /4

.

S
2c

C<

\n-\Y , (2n-l)7r6
C08h

'2c

cosh

(iii)

26

(an

c
/4\

5
6-

fc) c

(2w-

[28.] It will be noted that Saint-Venant obtains in each case

double values for his quantities which are unsymmetrical in b

1 Saint-Venant puts sinh for cosh in the denominator here by a misprint (p. 368,

equation 159).
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and c. Symmetrical values may be at once obtained by adding
and halving his solutions. Or, symmetrical values may be obtained

directly by the assumption of the particular integral

u = A, sinh cos + Bp sinh cos ,be c c

where p is a positive integer.

It will be found that the surface conditions are then very

easily satisfied, and the symmetrical forms of the results thus

deduced possess for some cases practical advantages.
Saint-Venant next proceeds to consider special cases of rect-

angular cross-section which will occupy us in the following seven

articles.

[29.] Gas oiju I'un des cotts du rectangle est tres-grand par
rapport a I'autre. (pp. 372 375.)

From the first of the expressions for M, we obtain

M =
fjirbc

3

(1
- 0-630249

c/ft),

and for a first approximation to u
u -

Tzy.

16 6V 6
2 -c2

Inese results agree with Cauchy sM = pr 2 and u = p-2
TVZ

O ~4~ ~T~ C

when c/b is very small.

Saint-Venant in a footnote deduces Cauchy's results, but at the same
time brings out the insufficiency of his method, for Cauchy neglects the

fourth powers of the dimensions of the prism, but it is not at all clear

what the quantity is in comparison with which he neglects them, for

the term omitted
'

^ seems really of the same order as that

b
2 -c2

retained - ^ 2 ryz (p. 375).

[30.] On pp. 376 98 we have the full discussion of the prism
of square cross-section. The numerical results are calculated from

the tables for the hyperbolic functions given by Gudermann 1
.

They are calculated from both expressions obtained in Art. 27.

Saint-Venant seems to have taken from three to eight terms of

his series, but he has not entered upon any investigation as to

whether those series satisfy Seydel's condition of equal con-

vergence.

3 Theorie der Potenzial- oder cyklisch-hyperbolischen Functionen, S. 263.
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The values of u are calculated and given in a table on p. 377.

The accompanying figures give the contour lines of the distorted

cross-section and the boundaries of the cross-section as cutting the

lateral faces of the distorted prism in elevation (diagrammatically

exaggerated).

For numerical values we have,

Jf= -843462 untb*/ 3

= or <1 -66532 S b
9
.

<r=l '350630 br is the maximum slide and occurs at the middle

points of the sides of the cross-section, which are thus the fail-points.

These values are all less than those obtained from the old theory.

[31.] On pp. 382387 Saint-Venant refers to the experi-

ments of Duleau 1 and Savart* as confirming his results. From

Duleau's experiments on circular bars the mean value of /x

obtained was 6,659,230,000 kilogs. but from his experiments on

1 See our Art. 229*. * See our Art. 334*.
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square sectioned bars it was only 5,636,625,000 on the old theory.
Saint-Venant's however brings it up to 6,682,750,000, which may
be considered in fair agreement with the result obtained from bars

of circular section; especially when we remember the non-isotropic
character which was inevitable in the iron bars of Duleau's experi-
ments (see table p. 383). At any rate Saint-Venant's theory
accounts for the greater part of the inferior resistance to torsion of

square as compared with circular bars of equal sectional moment
of inertia.

Some experiments on copper wires of square and circular

cross-sections are tabulated on p. 386. Here the mean for the

circular cross-section is
//,
= 4,174,825,000 ;

the old and the new

theory give for
//,

the values 3,384,121,000 and 4,012,180,000;

again to the advantage of the latter. The isotropy of these wires

is however very questionable.

[32.] Saint-Venant deduces on pp. 387391 the value of the

numerical factor which occurs in M (see our Art. 30) by an

algebraic expansion for u and a calculation after the manner of

Fourier (Thdorie de la chaleur, chap. III. art. 208, Eng. Trans,

p. 137) of the indeterminate coefficients. It does not seem a very

advantageous process. A remark on p. 397 as to the difference

between resistance d la rupture dloignee and rupture immediate is

to the point. Saint-Venant remarks namely that experiments on

the latter can throw little light on the mathematical theory of

elasticity. At the same time it is regrettable that he should have

retained the word rupture in reference even to the first limit. Some

support, however, for his theory may even be derived, he thinks,

from Vicat's experiments on rupture; see our Art. 731* and p. 398

of the memoir. For Vicat found that for pierre calcaire, brique crue

and pldtre the moment of the forces required to break a prism of

square cross-section and length at least twice the diameter was

less than in the case of an infinitely short prism, i.e. a case where

the plane section cannot be distorted. This result of Vicat is of

great interest and would be well worth further experimental in-

vestigation.

[33.] We now come to the general case: Gas d'un rapport

quelconque des deux dimensions de la base (pp. 398 413). Saint-

Venant has calculated numerically all the particulars of the
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special case when b/c
= 2. We reproduce the contour lines for the

distorted cross-section as given by Saint-Venant on p. 400 accord-

ing to the table on p. 399.

The reader will at once note the change that these lines

present, and Saint-Venant on pp. 400 1 determines the value of

b/c for which the change from tetra-axial to bi-axial congruency
takes place.

In order to ascertain this we must find when du/dz = at the point

y 6
?
% = 0. For, with the tetra-axial congruency of the contour lines

u is positive as we pass from z = 0, y = b along the line y = b into the

first quadrant, but in the case of biaxial symmetry du/dz is negative, for

u decreases or becomes negative as we pass along the same line. Our
author thus obtains the equation

1 . (2n-l)7TC /7T\ 2

^(2^nr
sech ~~^~ =(i]'

the numerical solution of which gives b/c= 1'4513.

[34.] The following general results are obtained (b
>

c) :

(

where ft
=. \^-

- 3-361327
j-
+ H -

1 (6 bo

, (2w-l)ir&
1 - tanh v

s-i-

(2^1 -I)
5

('maximum slide cr = cry,

/4\2 00

(ii) ^
where y = 2 - f -\

(2n
. (2n 1)

-I)
2
cosh 2 l

(p. 401),

(p. 412),
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and this maximum slide takes place at the centre of the longer side of

the rectangular cross-section, (p. 410.)

(iii) S = or > pyre, hence

M=or<bc*S =M .

y

These complex analytical results are rendered practically of service

by a table on pp. 559 60 of the memoir, the most serviceable portion of

which we shall reproduce later. This table gives the values of ft and
of fily for magnitudes of the parameter b/c varying from 1 to 100, after

which they become sensibly constant. We are thus able to determine
M and its limit M .

Saint-Venant, however, gives in footnotes empirical formulae which

agree with less than 4 per cent, error with the above theoretical values.

He appears to have reached them by purely tentative methods, but he
holds that they satisfy all practical needs. They are

406V
T*-*

{It should be noted that our <r = gj; ,
our /?

=
/&,

our T= 0, our p = G,
our = ^ of the memoir.}

[35.] On pp. 403 6 we have a further discussion of experi-

ments of Duleau and Savart on the torsion of rectangular bars of

iron, oak, pldtre, and verre cb vitre, the paucity of the experiments,

and the large variation in the values of the slide-moduli as

obtained from Saint-Venant's formula do not seem to me very

satisfactory. A series of experiments directly intended to test the

torsion of rectangular bars for variations of the parameter c/b

would undoubtedly be of considerable value.

[36.] We now reach Saint-Venant's ninth chapter which is

entitled : Torsion de prismes ayant d'autres bases que Vellipse ou le

rectangle. It occupies pp. 414 454.

The chapter opens with an enumeration of the various forms

of contour for which it is easy to integrate the equations of

Art. 17- We will tabulate them on the next page.
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Solutions (3) and (5) are really identical. No. 4 has given rise to

the solutions in terms of conjugate functions : see Thomson and Tait's

Natural Philosophy, 2nd Ed. Part n. pp. 2503.

[37.] In the present chapter Saint-Venant dismisses Nos. 1

and 2 on the ground that the resulting curves are very difficult to

trace. He contents himself with two closed curves of the fourth

degree and one of the eighth as given by No. 5. On pp. 421 434

he calculates and traces these curves at considerable length. The

most practically valuable results are those obtained on p. 439.

We have there the following characteristic sections treated :

(a) The equation of the first curve is :

= *6 (Square with rounded angles).

= 2-0636r 2

;
= -7174r

4 = l-0586<o
2

/27r;

M = -5873/*Tr
4 = -8186/xTa>K

2 = -8666/W/27T.

(b) The equation to the second curve is :

2
- -5

y
,

= -5 (Square with acute angles).r
o

r
o

=-- I'7628r
2

; a>*
2 = -5259r

4 = l-0634o>
2

/27r;

M = 4088ftTr
4 = 7783ftTo>K

2 = 8276/JtTO)
2

/27r.

(c)
The equation to the third curve is, if y = r cos <, z = r sin

r8

_ 48 16 r
4
cos 4<ft 12 16 r

8

cos8^ = _ 36 16

r * 49 '17 r
4 49*17 r 8 49

'

17

(Star with four rounded points).

<o = 1 -2202r 2
;

o>K
2 = -2974r

4 =

We add to these the results for the circle and square.

(d) Circle : M = p.** =
/xT<o

2

/27r.

(e) Square : M = 84346ftTo>K
2 = 88327/xTo>

2

/27r.
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From the above numbers we can deduce some important

practical inferences, which we will do in Saint-Venant's own words.

On voit qu'il faut, de Fexpression /x/rw/c
2 de Fancienne theorie,

retrancher, pour avoir M quand la section est le carre a angles arrondis

et cotes legerement concaves, une proportion des '1814. Nous avons vu

que, pour le carre rectiligne, il faut prendre M = '84346/xTWK
2 ou re-

trancher une proportion de '15654 seulement. La legere concavite des

cotes a plus influe pour diminuer le moment de torsion (pour meme
moment d'inertie) que Farrondissement des quatre angles n'a influe

pour Faugmenter.
Pour le carre curviligne a c6tes un peu plus concaves et angles

aigus, il faut retrancher les -2217. II suffit, comme Von voit, d'une

concavite assez legere des cotes de la base (1/22 environ) pour diminuer.

assez notablement le moment de torsion dun prisme carre.

Enfin, pour le prisme a cotes saillantes, il faut, de ///ru*
2

,
retrancher

Fenorme proportion de -4626, ou prendre seulement 5374/x,ro)/c
2 au lieu

de /XTWK
2

que Fon prend pour une section circulaire, ou de 84346/x.TWK
2

pour une section carree rectiligne.
Et comme on a, pour une section circulaire, K

2 -
w/27r, M =

/xTo>
2

/27r,

Fon trouve que les prismes ayant pour bases le carre arrondi, le carre

aigu et Fetoile, n'offrent respectivement que les '867, les -828, et

les '674 de la resistance elastique a la torsion qu'ils offriraient a egale

superficie <o de la section, ou a egale quantite de matiere, s'ils etaient a

base circulaire, bien que les moments d'inertie de leurs sections soient

l
fois

-059, l
fois

-063, l
fois -255 ceux de sections circulaires d'egale superficie.

Ainsi, les quatre saillies qui, malgre leur peu d'epaisseur, ont une
influence considerable sur la grandeur du moment d'inertie n'en ont

qu'nne tres-faible sur le moment de torsion. Les pieces a cotes, employees
si utilement contre les flexions, doivent etre exclues des parties des

constructions ou les forces tendent a tordre, ou, du moins, il faut
ne compter nullement sur une quote-part des quatre cotes ou saillies

dans la resistance (pp. 439 40).

[38.] Saint-Venant illustrates the inefficiency of projecting parts
still more effectually in a footnote to Art. 105, p. 454. He takes

a curve of the fourth degree whose equation is given in a footnote,

p. 448, and by ascribing a particular value to one of the constants

obtains two separate loops. The equation to the contour is :

if ** /I+ -. + a -
7^

b
2

c
2

\c
2

fr

and the longitudinal shift

b
2

c
2 4&r , 3 3

,

'
b* + c

2
b
2 + c

2 ^

The special value of the constant assumed is c
2 = - 6

2

/16. We have

then a figure of the form below and the value of M is only equal to

T. E. II. 3
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01857/xTWK
2

,
or the torsion of such a pair of cylinders round an

intermediate axis is only one fifty-fourth of that given by the old

theory : "Cela ne doit pas etonner, si Ton considere que le glissement

est nul aux points z = 0, y = bj%% ou & tres-peu pres au centre de

gravite de chaque orbe."

[39.] Saint-Venant on his pp. 4419 discusses the contour-

lines of the distorted cross-sections of our Art. 37. This he

accomplishes by numerical tables in a footnote (pp. 441 3).

Then he considers the maximum slides and fail-points of the same

sections and finally the limiting values of the torsional couples.

These values are as follows :

For section (a) of Art. 37 M = -8269 S = '7094 - ^ Sv
r
o "^TT

(i) JT.- -85614^^ =
-6812-^=^.T

^tjT

(c) ,. M = -7285 S = -5695 -^- Sv
T

2^/TT

The reasoning by which Saint-Venant deduces the fail-points
cannot be considered satisfactory. Indeed the statement as to the

/side of the triangle
'

and the deduction of the maximum slide on

p. 444 are unsound. The same judgment must be passed on *the

process of p. 447, where the maximum slide for the section (c) is

shewn to be on the contour. Thus Saint-Venant has not de-

monstrated his very general statement (237) on p. 448. The
reader will however find little difficulty in proving the accuracy
of Saint-Venant's results by casting the expressions on pp. 444 and

447 into other forms or by the ordinary processes of the Differential

Calculus. In his edition of the Lemons de Navier, our author has

recognised the defective reasoning of these pages and replaced
them by more accurate arguments. (Cf. his 31, pp. 308 310

and 37, pp. 3401 : see our Art. 181 (e).)

[40.] In the concluding pages of this chapter Saint-Tenant

points out how the solutions of a number of other sections can be

obtained. Thus we can take solutions like (3) of Art. 36 involving
terms of the 12th and 16th degrees and so obtain curves equally

symmetrical with regard to the axes of y and z.
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Et en y conservant des termes du deuxieme, du sixieme, du dixieme degre*
k puissances paires de y et 2, tels que 6ar

2 cos 20= 6
2 (y

2 - 2
), 6

6
r6 cos 60= etc.,

Ton aurait une multitude de courbes symetriques par rapport a chacun des
deux axes de y et 2, mais non egales dans leurs deux sens, et ayant Pellipse

pour cas particulier (p. 449).

We have referred to an example of this in Art. 38, and another is

given by Saint-Tenant in a footnote; namely the curve whose equation is

T
-jj-

+ b
3
r
3
cos 30 = constant,

where u = b
3
r
3
sin 30.

By taking 6
3
= and the constant = r&

2

,
the equation to the

contour of the section becomes

i.e. an equilateral triangle of height 36 and side = 2\/3, the axis of y
coinciding with a median line. We reproduce Samt-Venant's entire

treatment of this case as a good example of his method, and in order in

one point to indicate a weakness in his reasoning.

41. We find at once that

_

Let c be the greatest value of u which, on the side denoted by
7 2

b = 0, will be where z = - b
;
then c = ~

71
-

,
and consequently

o

r3

32
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Thus the form of the surface into which the originally plane
cross-section becomes changed by torsion is easily understood. In
the part between Oy and the perpendicular 0Z, we have u negative ;

in

the part between OL and OB we have u positive ;
in the part between

OB and yO produced through we have u negative ;
in the next piece,

which is vertically opposite to the piece between Oy and OL, we have u

positive ;
and so on.

We have as usual the equations

^ du ^ du
*" =

d-y-
n

'
*' =

dz
+ "J >

these by (ii)
of Art. 41 give

The moment of torsion by equation (iv) of Art. 1 7 is

M=

All these integrations are easily effected ;
for here if denote any

function of y and z, even in z, we have

where we integrate for z from z = to z =
-, ,

and for y from
v^

y = -btoy = 2b. Thus we find that

Then for the moment of inertia round the axis we have

COK' - fy'du +JW - 36V3 = O^TO ,
for a) = 36V3-

& *J3

i

Hence M= f/x/rwK
8 =^^ .

The new theory thus gives a value for M only '6 of that given by
the old.

42. To find the greatest slide, Saint-Venant considers the side

which is parallel to the axis of z; then he says that along this

3b
a

z
3

side y + b = 0, so that xy = 0, and *z = ^ T. Thus the greatest

value of xz is when z = 0. Hence he tells us that the fail-point is on

the boundary at the point which is nearest to the axis. The greatest
01

value of the glissement principal is then
;
and to ensure safety

m

we must have as before

S
o
= or > f(dr.
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Combining this with M = f/xw/cV we have at the limit

2=
5"

24/3

Thus next to the circular section, the section in the form of an

equilateral triangle gives the simplest results.

[The above reasoning involves the assumption that the point

of maximum slide lies on the contour and is thus unsatisfactory.

Samt-Venant has given a thorough investigation of the point in

his edition of the Lemons de Navier, pp. 287 9.]

[43.] In conclusion we may note that Saint-Venant holds that,

among the numerous curves he has considered, one can be found

sufficiently close to give practically the laws of torsion for a prism

of any given cross-section (pp. 451 2).

[44.] The tenth chapter of the memoir deals with those cases

in which the slide-moduli are not the same in the direction of the

two transverse axes taken as those of y and z. It occupies pp.

Nous y avons aussi ete determine par le desir de donner sous leur

forme la plus simple les seules formules que Ton puisse, jusqu'a present,

appliquer a la pratique ;
car on n'a pas encore trouve, par des ex-

periences, le rapport que peuvent avoir entre eux les deux coefficients

de glissement transversal /x l5 /x,2 pour diverses matieres, et il faut bien les

supposer ordinairement egaux (p. 454).

Although well-planned experiments on the possible inequality of

fjLv fjL2 arising either from natural structure or from some process of

working are still wanting, yet the inequality in the slide-moduli is

not without value as a possible explanation of several minor phe-
nomena of physical elasticity.

[45.] The equations which we have now to solve are those num-

bered (vi) in our Art. 17. Let us put in those equations y = tJi*< l y,

z = J\Lz
d

j they at once reduce to

(dujdz
1 +

r'y') dy'
-

(dujdy'
-

r'z'}
dz

f = O

where T = Jp^ r.

In other words our equations remain of exactly the same form

provided we write T = Jp^ r for r. Hence if we remember that every
contour must first be projected by means of the above relation between

y, z and y', z'
t
we may make use of all the previous results and

equations.
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[46.] Thus in the case of the ellipse (pp. 455 8 of memoir), we

must write for ^+ o=l, TTT + T/ = ! Thus we obtain at once
b
a

c* b
2

/^ c*/pa
the results :

2
. .. . _ ZTZO' _ -1-ryc

Similarly xy = - j-^ ^- ,
*, = rjj

and Jf= O-T- (see Art. 1 8).^

Saint-Venant remarks that with this inequality, the cross-section

of a circular cylinder will be distorted by torsion. The elliptic prism

however, for which the ratio of the semi-axes b/c
= J'ft,//n2 ,

will retain

undistorted cross-sections although under torsion (p. 456). Saint-

Venant in the course of the chapter again refers to relations of this

kind (p. 462), but it is obvious that such are extremely unlikely to occur

in practice.
It must be noted that the 'fail-limit' (condition de non-rupture,

pp. 456 7) now takes another form, namely that of our Art. 5 (f),

l=0r

From this we find at once

(ft

2

//*!
+ C

2

//^)
2 = OI> >

We have then to find the maximum value of the right-hand side.

It is easily seen to be on the contour of the cross-section, and at tin-

extremities of the minor or major axis according as b/c is > or < SJSf
In the first case we find that the limiting value of M is given by

M=S
[47.] Saint-Venant devotes pp. 458 460 to describing the

changes which must be made in the general solutions of our Art.

36 in order to adapt them to this case of unequal slide-moduli.

They follow easily from our Art. 45. On pp. 460 8 he treats at

some length the case of the prism with rectangular cross-section.

The results are the same as those of our Art. 27, provided we re-

c b
place the ratios 7 and - where they occur in our formulae by

? A/ ' and - A/ -2

respectively, and the exponentials
o V PI c\ Pi

e a c and e 2 *
by <

< V /*, an(j e 2 /,

respectively.
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The maximum slides still occur at the middle points of the

sides, but at the middle of the greater side 26 or the lesser side 2c

according as b/c > or < V/^/^. Saint-Venant gives at the con-

clusion of the memoir a very useful table, which we reproduce for

reference. It serves for equal slide-moduli when we simply put

LL = a . The parameter in the first column is - \ / and for it
c V /*!

values are taken from 1 to 100 as well as oo . The second column

TABLE I.

Torsion of Prisms of rectangular Cross-Section.

* /
o V m
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gives the value of /3, where M fipjbc
5
is the value of the torsional

couple. The third and fourth columns give the maximum slides

by means of the coefficients yl
and yz

where tr
l
= 7r

CT and <7
2
=

yjbr.

The fifth and sixth columns give the maximum value M of M

by means of the tabulated values of ^8/7, and ~ Tt >
where

2
72^/^2

M
l
=
(-} be* S

l
and M

9
=
(- ^ ^} b*cS,. M is to be taken equal

v/l' W2 "
Ptf

to the lesser of M
t
and M

z
.

[48.] Pages 468 9 of this chapter suggest the modifications

which must be made in the results obtained for prisms of other

cross-sections, when //,t
differs from

//,2 ;
while on p. 470 we have a

simple proof that in this case at corners and angles which
project

there is no slide, or the intersection of the lateral faces at such

corners remains normal to the cross-section.

[49.] Saint-Venant's eleventh chapter deals with the torsion

of hollow prisms (pp. 471 6).

In this case we have to satisfy the surface shift-equation

fjL2 (du/dz + TIJ) dy ^ (du/dy
-

TZ) dz - ............ (i)

over two surfaces. If then we form a family of surfaces satisfying this

equation and give to the arbitrary constant which appears on the right-
hand side two different values we shall obtain the two boundaries of

a hollow prism satisfying all the required conditions.

For example :

-ties the body shift-equation. Substituting in (i) we have on

integration

cy + 6V = constant.

Giving the constant different values we obtain a system of aim i Inl-

and similarly placed ellipses. Thus we find for a hollow elliptic cylinder
formed by the ellipses (26 x 2c) and (26' x 2c')

****"
1

T7r6V -
f 1 f

b\}
c>, 6'V^WY/J 6'//x l

+ c'//s l \bJS'
M-

(6) In the rectangular section

u = - ryz + 2A m sinh (my/Jfi,) sin

where

and
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Substituting in
(i)

and integrating we find :

By variation of C we get possible boundary lines for hollow sections,
but since only (7 = gives a rectangle, the boundaries will not be
similar rectangles. Most of these curves would be extremely difficult

to trace
;
for small values of C, however, we may practically assume

we have a hollow cylinder whose cross-section is bounded by two

nearly equal rectangles. Saint-Venant finds in curves thus obtained an

analogy to the surfaces isothermes of Lame.

(c) Lastly we find briefly described the method of dealing with
solutions of the form (5) of our Art. 36. The curves are sketched on

p. 476 for the double family given by the equation of our Art. 38. Any
two of either set might serve as the basis of a hollow prism. Saint-

Venant returns in the Legons de Navier (pp. 306, 325-332) to this family
and treats a special case of it Section en double spatule, analogue a
celle dun rail de chemin defer, at considerable length.

[50.] I now reach Samt-Venant's twelfth chapter which is

thus entitled : Gas ou il y a en meme temps une torsion, une flexion,
des dilatations et des glissements lateraux. Conditions de non-rup-
ture sous leurs influences simultanees (pp. 476 522). It deals with

the all important practical question of combined strain, and may
be described as the first scientific treatment of the subject : see our

Arts. 1377* and 1571*. The chapter may be looked upon as

an extension of the safe-stretch conditions formulated for the first

time in the Cours lithographic, see our Art. 1567*. In the treatment

of the problem to be found there it will be remembered that the

slide was dealt with as constant over the cross-section; here the

new results with regard to the flexural and torsional distortion of

the cross-sections are applied to that extended form of the earlier

formula which was cited in our Art. 5 (d).

[51.] Before I enter upon an analysis of Samt-Venant's results

I may refer to the substance of a footnote given on pp. 477 8 of

the memoir. Saint-Venant notes that under torsion the sides and

fibres of a prism originally parallel become inclined and helical and

so must suffer a stretch. This stretch is, however if the product
of the torsion r and the distance of the farthest fibre from the

axis be small a small quantity of the second order. Wertheim

in a memoir to be considered later (see our Chap. XI.) has referred

to certain phenomena which he attributes to this stretch.



42 SAINT-VENANT. [51

By a simple analysis Saint-Venant finds its absolute magnitude for a

right-circular cylinder of radius a. Take n/
a fibre at distance r from the axis and
let us consider the element PP of it be-

tween two planes at unit distance. Sup-

pose owing to torsion that the two planes

approach each other by a quantity rj and P P N
let PN be the perpendicular from the new position of P on the cross-
section through P,

PP = JPN* + PN* = (\- n)' + rV

= 1 -
rj
+
Y- nearly.

Saint-Venant takes for PP the quantity

T
T

but I do not think he obtains the first expression very rigorously. He
has practically the same value in the Lemons de Navier (pp. 240_

1).
The traction in the fibre will now be given by

where E is the longitudinal stretch-modulus. The quantity ^ must
be determined by the condition that the total traction is zero, or

Fl ^--n)smP'PN = 0.
\.

Since sin PPN =

it may be put = 1 in the integral.

We find = aa

r), giving 17
= r-

,
a result which agrees with

Saint-Venant's ;
our analysis thus proves that T;

is of the second order

in T.

Further we have for the total-moment of these tractions about the

axis

M = F
Jo

cos PPNx r

r*dr -
\

,
since cos PPN = rr

;

Eva
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If one takes account of the tractions produced by the lateral

squeezes of the fibres, we shall have a similar expression with a change
only in the elastic constant. Thus it appears that the effect produced

by the stretch of the fibres is of the third order in the torsion and may
be legitimately neglected if the torsion be small.

This point that the stretch only varies as the cube of tbe

torsion was first stated by Young without proof in bis Lectures on

Natural Philosophy, Vol. I. p. 139. He thence argued that torsional

resistance must be due to detrusion (slide) and not to stretch.

When the torsion T is considerable, then the quantity M above,

due to stretch of the fibres, becomes of importance, as appears from

Wertheim's experiments in the memoir referred to : see our

Cbap. xi.

[52.] Returning to the chief topic of the chapter under con-

sideration we first note with Saint-Venant the linearity of the equa-
tions of elasticity, so that it is possible to combine various strains

due to different forms of loading by vector-addition and so obtain

the total shifts due to a combined load system : see our Art. 1568*.

On pp. 479 80 Saint-Venant deduces the shifts for an elliptic

prism subject at the same time to traction, flexure and torsion.

Use is made of the results obtained on pp. 304 and 455 of the

memoir : see our Arts. 12 and 46.

[53.] Saint-Venant now turns to equation (iii) of our Art. 5 (d)

and after pointing out the difficulties of the general solution by

analysis for the case of any prism (p. 482) proceeds to some more

special and simple cases when the cubic can be reduced to an

equation of the second degree.

Case (1). Let the elasticity be symmetrical about the axis of x, and
let the solid be a prism subjected only to a uniform lateral traction, we
have

s
y
= szi Sy $zi **xy

~ &XZ an(^ Vyz
= 0.

Hence, if <rx
= Jcrxz

2 + crxy
2
,
we find

f \ / \ 2

^s sj \s Sy) a-x
'

or

In this equation we may put sx = TJlSl ,
s
y
= TJE2 ,

d-x

!/

=
j/ rn 9

7 1 /
7
7
and 8

y
=

tjsx,
where

rj
ratio of lateral squeeze to
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longitudinal stretch. Thus we find as safe-stretch limit

f .. I

(i)
... 1 = maximum of

We take the positive sign of the radical, because if <rx = we should
jf J? W

have the alternative between sx and -"n l -^-8x
=

-=^ s
y)
and the former

will be considered the greater (Saint-Venant, p. 484)*.

Case (2). A like equation is obtained, if, without supposing an
axis of elasticity, two out of the three slide components vanish at a

fail-point.

Case (3).
This is a case of approximation, Saint-Venant supposes

a
yz

to be zero
;
but - s

y/sy and -
sjsz without being equal to differ but

slightly, and he then takes them equal to
rjs _

x l une certaine moyenne
8X

entre ces deux rapports.' Thus he replaces (s/s-sy/sy) (*/s- 2/s2) by

(s/s + r)s
8xlsx)

2 and divides out all the terms by the same factor. We
thus reach the equation

and obtain for the safe-stretch condition

(ii)
. . . 1 = maximum of

Here
rj3 is given, I think, most satisfactorily by the arithmetic mean

KM:)~*r-\*f *2/ SX

Now if s
y
= -

rjsxt and 8Z = - I/A,.,

^=K4;^'D
= 2 (

rj -^i + rf ^ 8
J

sx : see our Art 5 (d),"

This result gives a constant value for v)a
and appears to agree with

Saint Venant's note on Clebsck, p. 275. I do not think the value given
for e"j(

= our
rja)

on p. 485 of the memoir is quite satisfactory.

It will be noted that in all three cases the resulting quadratic is

practically of the same form and the condition may for all three be

thrown into a somewhat different shape, namely, transposing and

squaring we find

= or > 0.
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On p. 486 Saint-Yenant gives the value of the moduli in terms of

the 21 coefficients, and points out the changes which arise when
we assume bi- or uni-constant isotropy. On pp. 487 8 we have a direct

deduction of the formula of Case (2) on the lines of the Cours litho-

graphie: see our Art. 1571*.

[54.] On pp. 488 491 Saint-Yenant points out the method by
which a general solution for a prism can be worked out. Let the axes
of z and y be the principal axes of inertia of the cross-section and
Px , Py, Pz the load-components parallel to the axes at one terminal and
Mx ,

M
yj
Mz the moments round the corresponding axes. Let ov^, <r'xz

be the slides at any point on the section w due to the flexure or to

My, Mz ; let o-"
xy)

a-"xz be the slide-components due to the torsional

couple Mx ,
then

P^ My* M^
j^CO J&^Ky" E^K*

'

Further the o-' and cr" components of slide will be known as soon as

the section is known and their sums must pair and pair be substituted
in equation (ii)

or
(iii) of Art. 53 for a-mj and <rxz .

The equations of equilibrium,

P
y
=

P-il <r'xyd<
j

, ,

(iv)

'

f
,
Mx = ^ <r"mydu-^ tr'^zdv,

P.-/*, <r'<*o
/o )

will determine the constants in terms of the applied forces.

[55.] In section 125 (pp. 492 4) Saint-Yenant treats the

exceptional case of a cross-section constrained to remain plane.

Telles sont celles qui sont soumises a ce que M. Yicat appelle un
encastrement complet, c'est-a-dire qui ne sont pas seulement contenues,
mais scellees ou soudees avec une matiere plus rigide ;

ou bien celles qui
se trouvent serrees et sollicitees lateralement dans leur plan meme

par des forces tendant a trancher, comme il arrive aux sections des

rivets dans le plan de contact des toles qu'ils assemblent, ou aux bases

des prismes tordus de longueur nulle comme dit le meme illustre in-

genieur (p. 492).

Other such sections occur from the symmetry of load distribu-

tion etc.

For such non-distorted sections, we can suppose the 'fibres' formerly

perpendicular to become equally inclined, or the slide due to flexure

constant, and that due to torsion to follow the old law of Coulomb, i.e.

whence by means of equation (iv) of our Art. 54, we can easily express
the slides in terms of Mxt Py

and Pz .
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The expressions (v) of course are only true for these excep-
tional sections, which can never occur in pure torsion as sections of

danger, while in practical cases of flexure combined with torsion

or slide they are frequently found to be specially strengthened

(e.g. built-in ends).

[56.] We will now enumerate the examples Saint-Venant gives
of the above condition of safety.

Case (1). Consider a rectangular prism (cross-section 26 x 2c) sub-

jected only to a force P parallel to the axis of 2 (or side 2c). Let the

built-in terminal of the prism be so fixed that it can be distorted by
flexure. Then if the length of the prism be a, and 2c be much greater
than 26, we have

"xy
= 0, ESX = Paz I ~~o~ >

so that, granting uniconstant isotropy, S = = T, -rj
= -

,
and thus the

O 4

equation (i) of our Art. 53 becomes

-3Pa[3z 5 /z* /c\
s

/i
1 = maximum of = -+o/v/~i + (~) I

* ~ ti )

Saint-Venant gives a table of the values of the quantity between

square brackets for values of z/c = to 1, and for values of 2c/a

(depth to length) from 3 to 6. From this table the following results

may be drawn. So long as 2c/a < 3 '05 the fail-point lies on the

surface of the prism where z/c= 1, or at that point wJiere there is no slide.

If then the ratio of depth to length be < 3-05, the prism's resistance is

just that of flexure without consideration of slide. If on the oth-r

hand 2c/a> 3'05 the maximum passes abruptly to the points for which

z/c = '2 about, and approaches more and more to those for which z = 0.

But this latter point lies on the neutral-axis, or it must be slide

and not flexure which produces the failure. When 2c/a = 3 '2 we may
calculate the resistance either from flexure or transverse slide, but

after 2c/a
=

4, it is the slide alone which is of important . Similar con-

clusions Saint-Venant tells us may be obtained for a circular set-'

(radius r)] in this case the fail-point passes abruptly when 2r/a = 43
from z = r to z = *2r about.

The reader who bears in mind Vicat's attack upon the matheni;

theory of elasticity (see our Arts. 732* 733*) will find that the above
remarks satisfactorily explain Vicat's experimental results.

Case (2). This is that of a prism (length 2, section 26 x 2c) t<

nally supported und centrally loaded. Here the section of grea
strain suffers no distortion. If the load J' In- in tin- direction of
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the axis of z, we have by equation (v) of our Art. 55, a-^
= and

<rxz
=

P/(w/x). Whence supposing uni-constant isotropy we find :

7/5 3Pa V / P V
V V8

'

4T6cV
+UW '

_ ?"
8

Suppose 6' and c' to be the values to be given to b and c that the

prism might safely withstand a couple Pa producing flexure only, and

6", c" to be the values to be given to b and c that it might safely
withstand a shearing force P applied to the undistorted section. Then
we easily find

andl-c* -

Hence :

_ 3
V_

/c'\
2 //5 6V

~8 b\c)
+ V \8 6c*y

gives the limiting safe values of b and c for the strain in question.
Saint-Tenant puts first c' = c" = c and so gets

whence he deduces and tabulates the values of b/b' and b/b" for various

values of b"/b' and 6'/6" respectively, and also the value of

2c / 3S b" 12 6"

From his table it appears that when

^-
= ,

^rr
= or > i the slide begins to influence sensibly the result,

|-
= or < 10 the flexure begins to influence sensibly the result.

Between 2c/2a = 1 and 10 we are compelled to take both into account.

Case (3). This is the treatment of a cylinder on a circular base

subjected at the same time to flexure, torsion and extension. Saint-

Venant neglects the flexural slides and ultimately the extension. He
obtains an equation similar in character to that of the preceding case

and tabulates the values of the radius of safety in terms of the radius

of safety in the case of flexure alone for different values of the elastic

constant
77^

He remarks (p. 503) that it is not necessary to consider

values of
rj l
> J for then a stretch would not produce a positive dilata-

tion,
*
ce qui n'est point supposable.' This remark is omitted in the

Lecons de Navier where a number of values of'
rj l

> ^ are dealt with.

I may add that the problem is far more completely treated in that

work (pp. 414 21). Saint-Venant's tables shew that the results

obtained are for values of
rj }

between 1/5 and 1/3 very much the same,
or we may adopt generally without fear of error the uni-constant

hypothesis rj l

=
1/4. This hypothesis Saint-Venant tells us is amply

verified by the experiments of M. Gouin (see page 486 of the memoir).
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I shall have something to say of these experiments when dealing with

Morin's Resistance des materiaux, 1853 : see our Chap. XL

Case (4). This case gives the calculation of the * solid of equal
resistance

'

for a bar built-in at one end and acted upon at the other by
a non-central load perpendicular to its axis, i.e. combined flexure and
torsion. Saint-Venant supposes uni-constant isotropy and neglects the

flexural slides. His final equation is

Here P is the load acting on an arm k, and r is the sectional radius

at distance x from the loaded terminal, (p. 504.)

Case (5). An axle terminally supported has weight II and carries

two heavy wheels (w and &') upon which act forces, whose moments
about the axle are equal and whose directions are perpendicular to the

axle. We have thus another case of combined flexure and torsion,

which is dealt with as before.

[57.] The next case treated by Saint-Venant is of greater com-

plexity; it occupies pp. 507 18 of the memoir. It is the investi-

gation of combined flexural and torsional strain in rectangular prisms

(26 x 2c), and possesses considerable theoretical interest. In practice
also the non-central loading of beams of rectangular section must be a

not infrequent occurrence.

Case (6). Saint-Venant in his treatment does not suppose the elas-

ticity round the prismatic axis to be isotropic, but takes the general case

of two slide-moduli, supposing, however, that bj 2̂
> cjfi l

.

He neglects also the flexural slide-components. Let the torsional

slide-components be given by tr
l

= -
yy

cr and <r
a
=
yjbr for z/c

= 1 and

y/b = 1 respectively, r must be eliminated by means of the relation

M" = finale
3

. If
<f>

be the angle the plane of the flexural load mak<-s

with the plane through the prismatic axis and the axis of y, and M' the

flexural moment at section x, we easily obtain for the stretch sx the value

3M'
fz

cos < y sin <f>\

8x = ~ ~~

3M' fz c .

Let us substitute these values in equation (ii)
of our Art. 53. Taking

these expressions alternately for the sides 26 and 2c we obtain :

1 = maximum
1 - w, ( c y . \

-^r^ (&* 4> + j ^
*

<t>)

/[l+^
L 2r-~

cy
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l-^3M'/z c . \
1 = maximum -^^2 (

- cos< +
^

sin
c/>J

'/2

t sm *
T fyzb^

)J
+
(s,

By means of the Table II. below and Table I. on our p. 39 all the

terms of these expressions can be calculated; for yy/yi and 7^/72 are given

for values of ^=? and also for values of y/b and z/c respectively.

Hence so soon as
<f>
and the section of danger, i.e. where M' is greatest,

are known we can solve the problem by equating to unity the greater
of the two maxima written down above and so determine be' for the

section.

Saint-Venant by using b', c', 6", c" with similar meanings to those of

our Art. 56, Case (2), throws the equation into a somewhat different

form.

If the section for which M' is greatest be so built-in or symmetrically
situated that no distortion is possible the values of the slides must
be those of equations (v) of our Art. 55 and not <r

lt
a~

2
as taken above.

TABLE II.

Slides at points of the contour of the Cross-Section of a Prism on

rectangular base subjected to Torsion.

(for z = c, or along the sides 26)
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(2) c so much less than b that c/5.tan< may be neglected as

compared with 1, i.e. the case of a 'plate' (pp. 511 2).

(3) Prism on square base, when tan< = 0, =
J, =1, and = anything

whatever when there is a non-distorted section for section of least safety

(pp. 512 4). The fail-points are also determined.

(4) Prism on rectangular base for which b = 2c, when tan< = 0,

= J} =1, =2, =00, and = anything whatever when there is a non-

distorted section for that of least safety (pp. 514 518). The fail-points
are also determined.

[59.] On pp. 518 22 we have the treatment of a prism on elliptic

base subjected at the same time to flexure and torsion. Saint-Venant

only works this out numerically for the case of uni-constant isotropy and
when tan< = oo .

It is found that after a certain value of the ratio of torsionul to

flexural couple, the fail-point leaves the end of the major axis (through
which the flexural load-plane passes ')

and traverses the quadrant of the

ellipse till it reaches the end of the minor axis (p. 522).

[60.] We now turn to Saint-Venant's final chapter (pp. 522

558). This consists of three parts : 135 Resume g6n6ral\ 136

Recapitulation des formules et regies pratiques and 137 Exemples
d'applications numdriques.

In the first article there is little to be noted. A reference is

made on p. 528 to the models of M. Bardin shewing tbe gauchis-

sement of the cross-section to which we have previously referred.

Saint-Venant also mentions the visible distortion of the cross-sec-

tions obtained by marking them on a prism of caoutchouc and

then subjecting it to torsion.

In the general recapitulation of formulae we have some results

not in the body of the memoir, as on p. 536 (dj where the flexural

slides for the prism whose base is the curve
f|j

+
(-)

=1 are

cited from the memoir on flexure : see our Art. 90. So again on

p. 546 for the flexural slides of other cross-sections. The best

resume', however, of formulae as well as numbers for both flexure

and torsion is undoubtedly to be found in Saint-Venant's Lecons

de Navier to which we shall refer later. The last section 1 37

contains some instructive numerical examples of Saint-Venant's

treatment of combined strain.

1 Saint-Venant terms this nollicitt de cJiamp. When the load-plane is
}

dicular to this the prism is sollicitt a /;/<//.
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The memoir concludes with the tables for rectangular prisms
which we have in part reproduced on pp. 39 and 49.

[61.] We here bring to a close our review of this great memoir.

Since Poisson's fundamental essay of 1828 (see our Art. 434*)
no other single memoir has really been so epoch-making in

the science of elasticity. It is indeed not a memoir, but a

classical treatise on those branches of elasticity which are of

first-class technical importance. Written by an engineer who has

kept ever before him practical needs, it is none the less replete

with investigations and methods of the greatest theoretical interest.

Many of its suggestions we shall find have been worked out in ful-

ler detail by Saint-Venant himself, not a few remain to this day
unexhausted mines demanding further research.

SECTION II.

Memoirs of 1854 to 1864.

Flexure, Distribution of Elasticity, etc.

[62.] Comptes rendus, T. xxxix. pp. 10271031, 1854. Me-

moire sur la flexion des prismes elastiques, sur les glissements qui

raccompagnent lorsquelle ne s'opere pas uniformement ou en arc

de cercle, et sur la forme courbe affectee alors par leurs sections

transversales primitivement planes. This is a resume" of the results

of the later memoir on flexure (see our Arts. 69 and 93). It

cites the general equations for flexure, and the particular results

for the case of a rectangular cross-section.

[63.] L'Institut, Vol. 22, 1854, pp. 6163. Solution du

probleme du choc transversal et de la resistance vive des barres

elastiques appuyees aux extremites. This is an account of Saint-

Venant's memoir presented to the Societe Philomathique. It con-

tains only matter given in the Comptes rendus, and afterwards

more completely in the annotated Clebsch : see our Art. 104.

42
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[64.] In the same volume of the same Journal, pp. 220 1,

are particulars of the memoir on the Flexure of Prisms communi-

cated to the Socidtt Philomathique.

[65.] In the same volume of this Journal, pp. 396 398, is

another communication of Saint-Venant's to the Socie'te' Philo-

mathique (July 8, 1854). This deals with the formulae for the

flexure of prisms and for their strength, when the cross-section

does not possess inertial isotropy. It gives the general equations
and treats specially the case of a rectangular cross-section : see

the Lemons de Navier, pp. 52 58 and our Arts. 1581*, 14 and 171.

A final paragraph to the paper points out that the resistance

to torsion varies more nearly inversely than directly as the axial

moment of inertia : see our Art. 290.

[66.] On pp. 428 31 of the same volume of the same Journal

Saint-Venant communicates to the Soci6t6 Philomathique (July 8

and October 21, 1854) the results obtained from the stretch-

condition of strength. These results were afterwards published in

the memoir on Torsion : see our Arts. 53 et seq.

[67.] Volume 23 of the same Journal, pp. 24850. Further

results of the memoir on Torsion communicated to the Socie'te'

Philomathique (April 12 and May 12, 1855), notably the case of

a prism on an equal-sided triangular base : see our Arts 40 2.

[68.] The same volume of the same Journal, pp. 440 442.

Diverses considerations sur Ittasticite' des corps, sur les actions

entre leurs molecules, sur leurs mouvements vibratoires atomiques,

et sur leur dilatation par la chaleur. An account of a memoir

presented October 20, 1855, to the Socitte Philomathique contain-

ing general remarks on the rari-constant theory of intermolecular

action. The expression for the velocity of sound on p. 441 b

should be x and not * : see L'Institut, Vol. 24,

p. 215. Saint-Venant refers to the labours of Newton, Ampere
and others on this subject: see our Art. 102. Ho points out that

in order to explain heat by translational vibrations, the second

differential of the function which expresses the law of intermo-

lecular force must be positive: see our Arts. 268 and 27 :;.
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The method, however, of dealing with the velocity of sound by
means of an initial stress in an isotropic medium is unsatisfactory.
This was recognised by Saint-Venant himself, and he cancelled

the entire paragraphs on p. 441, beginning Newton va meme and

Quelque differents, of 42 and 10 lines respectively: see Comptes
rendus, 1876, Vol. 82, p. 34.

[69.] Memoire sur la flexion des prismes, sur les glissements

transversaux et longitudinaux qai I'accompagnent lorsquelle ne

s'opere pas uniformdment ou en arc de cercle, et sur la forme courbe

affectee alors par leurs sections transversales primitivement planes.

Journal de Mathematiques de Liouville, Deuxieme Serie, T. i.

1856, pp. 89189.
This is Saint-Venant's classical memoir on flexure

;
extracts

from it will be found in the Comptes rendus, T. xxxix. 1854,

p. 1027 and T. XLI. 1855, p. 143.

Certain portions are reproduced in the Lecons de Navier,

pp. 389 414, but the analytical work does not seem yet to have

passed into the text-books.

[70.] Sections 1, 2 (pp. 89 98) are occupied with a history of

the old theories and an account of the Bernoulli-Euleriari hypothe-
sis as generally accepted at the date of the memoir. Saint-Venant

refers to the labours of Galilei (see our Art. 3*), Mariotte (Art.

10*), Hooke (Art. 7*), James Bernoulli (Art. 18*), Coulomb (Art.

117*), Leibniz (Art. 11*), Duleau (Art. 227*), Barlow (Art. 189*),

Hodgkinson (Art. 232*), Tredgold (Art. 197*), Girard (Art. 127*),

Navier (Art. 254*), Young (Art. 134*), Robison (Art. 146*),

Du.pin (Art. 162*) for the theory of beams, and to those of

Cauchy, Poisson, Lame and Clapeyron for the general theory of

elasticity. His remarks are reproduced at greater length in the

Historique Abrege, and as the reader of our first volume is already

acquainted with the researches of these scientists we pass over

these pages of the memoir.

In the second section Saint-Venant points out the falseness of

the Bernoulli-Eulerian theory, and refers to the corrections and

criticisms of Yicat, Persy and himself: see our Arts. 721*, 726*,

811* and 1571*.

As we have already pointed out Saint-Venant in the memoir
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on Torsion had given the outlines of the true theory of flexure :

see our Arts. 9 13.

[71.] The third section (pp. 98101) is entitled : Objet et

sommaire de ce memoire. Saint-Venant here indicates that he

intends to use the semi-inverse method (see our Art. 3) to test

how far the Bernoulli-Eulerian formulae :

(Traction

= Ez/p,

Bending moment = Ea)K*/p,

fzdco
=

0,

(see our Arts. 20*, 65*, 75*, etc.)

are correct, when consideration is paid to the influence of slide.

There is also a succinct account of the contents of Sections 4 32

of the memoir.

[72.] Sections 4 12 (pp. 101 120) contain an elementary
sketch of the general theory of elasticity. Saint-Venant wrote

three other such sketches, namely (i) in the memoir on Torsion

(see our Art. 4) ; (ii) in the Lemons de Navier (see our Art. 190) ;

and (iii) for Moigno's Statique (see our Arts. 224 9). This sketch

falls between (i) and (ii). It adopts rari-constancy and bases it

upon intermolecular action being central and a function of central

distance only. This rari-constancy Saint-Venant holds to be

without doubt true for bodies of
' confused crystallisation

'

such as

are used for the materials of construction (p. 108). At the same

time for the sake of the 'weaker brethren,' and as it does not

increase the difficulty of solving the elastic equations, he adopts
multi-constant formulae.

[73.] As a specimen of the mode of treatment, we reproduce
his proof of the equality of the cross-stretch and direct-slide

coefficients, i.e. in our notation \xxyy\ == \xyxy\
l
.

We have to shew that the coefficient of sy in ^ = the coefficient of

(T^ in xy.

Suppose all the strain-components zero except s
y
and o-^ and these

to be constant for all points of the body. Suppose the central distance

of two molecules m, m" to have length r, and projections x, y, z on the

coordinate axes before strain. After strain x and z remain unchain

but y will be increased by ysy owing to the stretch and xa-^ owing to

1 See the footnote to our Art. 116.
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the slide. Thus the distance r between the molecules will be increased

by the quantity

A mutual action

will thus be developed between the molecules by the displacement,
wheref (r)

is some function of r.

If these molecules m', m" form part of two groups situated at either

side of an elementary area o> taken perpendicular to the axis of x,
we shall have <o . xx and w . ^ for the stresses obtained by resolving such
mutual actions as the above along the axes of x and y respectively
and summing them for all actions which cross the area CD. (See our
Art. 1563*.)

Thus we have

>)(y*+r)?A

r r

The form of these expressions thus proves the identity of the cross-

stretch and direct-slide coefficients on the rari-constant hypothesis.

[74.] In Section 12 (pp. 117120) Saint-Venant applies the

general formulae of elasticity to the simple case of a prism under

pure traction. He then deduces the stretch-modulus in terms of

the elastic constants for various kinds of elastic bodies.

In a footnote to p. 120 he supposes the body to have weight and to

be vertically stretched. He obtains with the notation of our Art. 1070*
the following results :

These results agree with those of our Art. 1070*, if we take
r)
=

r/, or

suppose isotropy in the cross-section. Here
r), ij are the stretch-squeeze

ratios in the directions 2, x and
, y respectively.

I had not noticed this footnote when commenting in the first volume
on Lame's treatment of the problem.
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[75.] Section 13 (pp. 121123) deals with Poisson and

Cauchy's method of treating the problem of flexure by expanding
the stresses as positive integral algebraic functions of the co-

ordinates of the point on the cross-section referred to axes in

the cross-section: see our Arts. 466* and 618* (footnote). This

method Saint-Venant admits had served for the departure of his own
researches (p. 99), and he deals more gently with it here (p. 124)
than he does in his later work. The assumption of the possibility

of the expansion in a convergent series is a very dangerous one,

and leads in the case of torsion to very erroneous results : see our

Arts. 1626* and 191 (or Lemons de Navier, footnote pp. 621 7).

[76.] In 1417 (pp. 12536) Saint-Venant gives the general
solution of the problem of flexure, carefully stating his assumptions
and once integrating his equations. He reduces the solution to

the determination of a single function F, which can be chosen to

suit a great variety of cross-sections. I will reproduce as briefly

as possible the matter of these sections.

[77.] Taking a portion of a weightless prism between two

cross-sections Saint-Veuant proposes to determine its state of

equilibrium after it has been subjected to flexure on the following

suppositions :

(i)
The character of a certain portion of the shifts and strains is

assumed
; namely, the axis of the prism, or the right line joining the

centroids of the cross-sections, is supposed to become a plane curve

(elastic line here one with the neutral line), and further the stretches of

the longitudinal 'fibres' vary in a uniform manner with their distances

from each other measured parallel to the plane of the elastic line.

Let x be the direction of the line of centroids before flexure and let

the origin be its fixed extremity (see (iii)),
and let xz be the plane of

flexure (or of the elastic line), then the above condition is analytically

represented by
sx =Cz + C' (1),

where C and C' are constants for the cross-section.

(ii)
The character of a certain portion of the stresses is assume' 1 ;

namely, it is supposed that the fibres exercise no mutual traction upon
raeh other, or that their mutual action is solely of the nature of shear.

Further, on the terminal cross-sections there is supposed to be no

tractive loading.
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These assumptions may be expressed analytically by

9 = ^ = 9 = ........................... (2),

fxx du> = Q for a terminal cross-section ...............
(3).

Further, it is supposed that although the mode of application and
distribution of the load is unknown, yet the resultant load and its

moment (M) for each cross-section w at distance x from the origin are

known.
It follows that

M= fxxzdw for each section .................. (4).

Further, to simplify the equations of unnecessary elements all

motion of rotation, or translation of the prism as a whole, all stretching
of the central axis or torsion of the prism are excluded. The latter

elements by the principle of superposition of strains can afterwards be
added.

(iii)
One extremity of the central axis, the central elementary area

of the cross-section at that extremity and an elementary strip along the

trace of the plane of flexure on the cross-section remain fixed.

Analytically this gives us the conditions :

u = v = w =
0, du/dz = Q, when x=y=z=Q ............ (5),

v 0, dv/dz = 0, when y = z=Q for all values of a? ......... (6).

[78.] Let us adopt the following additional notation :
I, WK" and p

are the length, cross-sectional moment of inertia (= fz*du>) and radius of

curvature at any point of elastic line of the prism. Let us further

suppose that the material is such that the cross-sections of the prism are

planes of elastic symmetry, it follows easily that the stress-strain rela-

tions will be of the form
M = asx +fsy + e"sz + h<r

yz

d"s
y
+ csz

+

d'sz + k<ryz

=. h'sx + k's
y + risz + d<ryz

(7).

+f<Txy

See the annotated Clebsch, pp. 75, 6.

Since w = ** = yz = we can determine from the first four equations

ax, s
y ,

sz and <r
yz

in terms of 8m we may thus write :

w = Esx ,
s
y
= -rj^x ,

sz
= -r)2

sx , 003=6*3 ............ (8).

[79.] Considering the portion of the prism between the cross-section

o> at distance x and the cross-section at the origin we have by (3) and

(4):
- f^du = JE (Cz + (?) c?w,

M=fZx zdu - JE (Cz + C') zdu,

whence C" = and C = M/E<K
2
........................ (9).

It follows that M = zM/a>K
2
............................. (10).
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If we now turn to the body stress-equations we find they reduce to

dxy dxz Z

n
\
L 1

/>

-o, o|dx dx J

while the surface stress-equations reduce to the single one

"xzdy
- xydz = ........................... (12)

The last two equations of (11) lead us by means of the last two of

(7) to the conditions
1

^ _ d<r** - o
~dx

""' ^ =;
'

or, to

d?u d?v _ d?u d'w

dxdy dx9 dxdz dx*
~

Hence, putting for du/dx = sx its value zM/EuK*, we have, since M is

supposed aJunction of x only,

..................03).

The first equation tells us that there is no curvature in the

direction of y after flexure, the second that the curvature (]/p =

for small shifts
J
in direction of z is equal to

We thus obtain

the formulae of the Bernoulli-Eulerian theory, here deduced without its

invalid assumptions (i.e. that the cross-sections remain plane and normal

to the strained fibres).

[80.] The first equation of (11) shews that if M is variable or

in other words the curvature changes, the stresses !rj/, *xz and therefore

the slides cr^ a-^ cannot be zero, or it involves the contradiction of the

Bernoulli-Eulerian assumptions.
Further differentiating the same equation with regard to x, we deduce

by the second and third equations of (11) the result

............................. "=>

or M must be of the linear form in x,

= />(-*) .............................

Provided the relation e\h" K"lf does not hold between the elastic constants.
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if we suppose Pa to be the value of M when x = 0. In many cases a =
I,

the length of the prism.
This result (obtained on p. 130 of the memoir) is extremely im-

portant, and does not seem to me to have been sufficiently regarded.
I remark that it is obtained without any consideration of the surface

condition (12). It thus follows that the assumptions sx = Cz + C',

^ =^ ^ = are not legitimate, if M is other than a linear function

of the length of the prism. In other words all the important practical

cases of continuous loading are excluded from Saint- Venant's theory of

flexure, and it remains yet to be shewn that for such cases the Bernoulli-

Eulerian hypothesis o/(14) gives even an approximation to the truth.

[81.] With regard to the quantity P of the previous Article, we

obviously have - P equal to the resultant, in the direction of z of the

load, or to the total shear across each section, that is

XZ C?W = - P . .(17)

for all sections.

Thus we see that Saint-Venant's theory, even without the limitation

of equation (12). excludes the possibility of any discontinuous change
in the shear, or the transverse load. He supposes the resultant of the

whole external load to act either at the extreme section (x
=

l) or

beyond it in the central axis produced. This again narrows down very
much the number of practical cases for which the Bernoulli-Eulerian

equations have been shewn to be applicable.

[82.] Saint-Venant now proceeds to a first integration of his

equations and deduces the following results (p. 131) :

-x

a-x
2^0)K

2
- P

..-(18),

where <T
O

is a constant, representing the value of a-xz at the origin, and

F (y, z) is a function to be determined by the conditions

F=Q, dF/
,d*F
J-r-+(h +h

)
d^F

dydz dz
2

for all points of the cross-section ; and,

.dz
(h"-f~
\

J
dy

\

dy
+ + { e-h'"J-)

dyj

Zflut

for all points of the contour of the cross-section.

...(19).
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These results follow by simple analytical work if we start with the

value of u obtained from the equation sx = z/p
= P(a x) z/EwK* and then

proceed to those of v and w given by the second and third equations of

(8), the values so found being made to satisfy (11), etc.

[83.] Saint-Venant, however, does not deal in his special examples
with this general case of elastic distribution

;
he assumes the material to

have planes of elastic symmetry perpendicular to y and z, as well as

perpendicular to x. We then have h" = h'" = h = k = n = h' = k' = n = 0,

and clearly
= 0.

Further,

Ty^fv^ S = r, <r
yz
= Q (20).

The equations (18) and (19) now become, if we take
1

/=
Mi> e

fl
a

r* z throughout the section
;

dF Pyz\ , (dF P fy,z* yy
, ^2 + /

4 1^-+<ro+ o zl
15--

l

^^K
3

) *[dz 2wK*\na j^

over the contour of the cross-section.

...(19').

[84.] The last section of general treatment (pp. 133 6) gives
formulae for various quantities used for the special cases afterwards

dealt with. Thus we note :

First, the values of the stresses :

p(a-x) _ dF Pyz\= P T- z * =
P-i ( ~r + 7 1

- ^* }
(OK*

'

\dy 'V,WK /

(dF P /yaz* yyM= V-A j-+"o + s- A + H
r*\dz 2o>K

8

VM8 /x, )}

(20').

It follows that

<TXZ
=

//* or = <T
O

for y - a = 0,

that is the inclinations of all the cross-sections at thrir ctntics to the

axis is the same and equals <T
O
.

1 I have altered Saint-Venant's notation to correspond \\ith that of our II.

!_ . . MI ft"
he puts for our EJ ,

:
,<* "

I
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Secondly, the equation to the curved surface taken by the cross-

section, on neglecting small quantities of the second order, is shewn to be

x' = cr z' + F(y',z') ........................ (21),

where the origin is the centroid of the cross-section, the axis of x is the

tangent there to the elastic line, that of y is parallel to y and the plane

y'z' is the tangent plane to the cross-section at the origin.

It is obvious that x is not a function of x, or the cross-sections all

assume the same distorted form. Hence we see why it is that the

different fibres are stretched precisely as they would be, were the cross-

sections to remain plane.

Thirdly, the total deflection 8 (la fleche de flexion) is obtained by

putting y = z = Q and x = Z in the value of w in (18'), or,

......................
<

Saint-Venant assumes the resultant load to be applied at the

terminal, or that a =
I,
thus still further limiting his solution. In this

case S = -o- l+Pl3

/3uK
2
....................... (22').

[85.] The next twelve sections (1829), pp. 13668, deal with

the determination of <T
O
and F for various forms of cross-section.

In the first place Saint-Venant assumes F is to be a positive integral

algebraic function of y, z. In this case it must be of the form

4. P \^k^L*& + C''

(V-6
^ 2/V + 'V) + V"

(y**~ -V*) + -(23),
6/x2w/c

J

V /x 2 /* / fS '

in order to satisfy the first of equations (19').

If this value be substituted in the third equation of (19') we obtain

the differential equation to the corresponding contour-curve.

[86.] Saint-Venant deals however only with the special case, in

which the terms in y*z and s
3
are alone retained. He puts

2/X 0)K
2

m=l -y,
--

~p~
h

'

and thus throws F into the form

+pLl^^ ........... (24).

After some reductions and an integration he finds for the contour

from the third equation of (19') :

2v, - m , /OK v

............(25) -

where C is a constant.
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If C this represents a family of ellipses. If C be finite and we

give various values to m we have curves symmetrical with regard to

the axis of ?/, and symmetrical or not with regard to the axis of z

according as m/(l m) is even or odd. Equation (25) can be thrown
into a somewhat different form by assuming c to be the semi-axis of

the curve in the direction of z, and b the semi-axis in the direction

y. Thus y = 0, z = c, but for z = 0, y = + b always, = b also if

m/(l
-

ra) be treated as even.

In putting y = 0, z
2 = c

2 we find,

Equation (25) now becomes :

, _ i"_

3m -2 w*\b 3m -2 ^
Saint-Venant now proceeds (pp. 138 143) to discuss the various

forms that can be taken by this system of curves. This discussion

seems to me perhaps a little too brief. Thus, he says : Supposing

ra/(l m) to be treated as even, then it is sufficient and necessary in

order that the curve may be closed, and so capable of serving as a

contour for a cross-section, that z/c have a real value when yjb = \ \,

X being an extremely small positive quantity. This leads him to the

condition that m must lie between

and 1.

[87.] We may note the following cases :

The ellipse (26 x 2c) is obtained (not by putting m/(l
- m) = 2 which

leads to a logarithmic curve owing to the appearance of indeterminate

forms, but) by making the coefficient of y
ml(l ~ m] vanish. Thus we have

_ 2,

The circle (radius b) is obtained by putting b = c or

y4
z*

The false ellipse,
|^

+ -
t
=

1, is obtained by putting m/(l
- m) =4

in the case of isotropic material for which uni-constancy holds, or

More generally we must take m = 2yl
-l

1
for a similar curve in

bodies with tri-planar elastic symmetry.

[88.] On pp. 13940 Saint-Venant deals with and figures the
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various curves which arise in the case of isotropy, when m is given
different values, especially for the cases c = b and c = 2b.

On pp. 1413 he refers to the case of m/(l -m) being odd, and
shews that not only are the limits for m narrower than in the previous

case, but that the ratio b/c must remain within certain limits determined

by those for m.
The case of m = 5/7 and p l

= p2
is fully treated and it is shewn

that the equations represent for four values of b/c :

des ovales ou courbes ovoides dont un des bouts est plus gros que I'autre. Le

petit bout dege'nere en pointe pour la premiere et pour la dermere.

L'axe des z ne passe qu'exceptionnellement par le centre de gravity des

sections terminees par ces contours non symetriques ;
mais pen importe, car

comme les fibres restent toutes dans les plans, tout ce qui precede est

egalement vrai si Ton prend pour axe des x 1'une quelconque des fibres qui ne
varieront pas de longueur, (p. 143.)

[89.] We will next write down in a form corresponding to equa-
tion (25), the values of the three stresses; these we easily obtain from

equations (20). They are :

_ P(a-x)z _ P(l-m)yz^
xx =-

5
-

, xy =-g
-

-

As one terminal cross-section usually corresponds to x = I = a, we
see that x* across it, or the total external force exhibits itself as

a shearing load, the resultant of which P is distributed according to

a paraboloidal law.

Saint-Venant adds to these results that for the total deflection 8

from equations (22) and (26); thus we have (see his p. 148) :

The form of the distorted cross-section deduced from equation (21)

P ( m ra - y 1 - v, m \
5 ( 9

<>* ~ -*-- * jp- -y*z) (29).(OK \Z/Z2 0/X2 2/Xj /

is :

xf

If o/ =
"""^

^2
*

2 be the value of x when y = 0,
= -

c, this
2m + yg

Pc3

3
2/JL2

0)K

may be written :

#' 3m z

x' 2m + y2
c

'

2m + y2 \cJ
~"

"^ 2m + y2 V c/ c

[90.] Saint-Yenant specialises the results of the previous Article on

pp. 144 148 for definite values of m. Thus he takes the case of the
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false ellipse for a uni- constant isotropic material (m = 4/5, y i

= y2
=

1/10);
of the curve ra = 9/10 (or 18/20, considered as even), also for a uni-
constant isotropic material this curve approaches a rectangle of which
the angles have been rounded off and the top and bottom hollowed
out; and of m= 1 (= 2/2), the contour is here a quadrilateral formed
by four curved lines. Then he proceeds to cases which have for

practical purposes more definite contours, namely :

(i) TJie ellipse. Here, if q = /^eV/^fi*, we have :

1+3?
'

l+2?-2r ,
2P r 5c8 + 26* 4P

' =
"T73?-

~
.' L

= ~
37+T' 5^ '

r n'-<-^ isotropy
;J

iP g + 2y, yx IP 5c' + b yx n
"= ^ 1 + 3? c" [

=
fc VT65 7 '

for unl-constant isotr P>
;J

8=3Jg/l +
3

(
1

2Y^ 2y
-^l,

ZWF}'
, f r un-constant 'sotropy.

(ii)
TJie circle. We have only to put b = c in the above results.

[91.] We may note that the term to be added to the deflection

owing to shear is generally about 3 f -,

J
of that due to bending, if we deal

with a uni-constant isotropic material (i.e.
for circle

\?J
, for false

ellipse 3 (
^\

, for rectangle with flattened angles
"

g (Jj
, etc.). This

represents the amount neglected in the ordinary theory. If in practice
we may safely neglect an error of 1/100 in the deflection, it follows

that the ordinary theory will give sufficiently close practical results so

long as the length of the beam is 8 or 9 times its diameter.

[92.] On pp. 148 156 Saint-Venant goes through some most

interesting work to trace the form of the distorted cross-sections.

He traces these surfaces by means of level or contour lines for

different ratios of x'/x' [see equation (29')], that is by the trace of

the surfaces on planes parallel to the tangent plane at the origin.
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The form of these families of curves may be roughly described as

follows :

The critical member (x = 0) of the family is an ellipse (or in

special cases a circle) and its diameter (the neutral axis). The critical

member divides the family into two for
as'/a)'

a positive fraction,

we have a loop below the neutral axis and a ' snake
'

passing outside

and above the critical ellipse with the neutral axis for its asymptote ;

for x jx'Q a negative fraction we have curves congruent to these

only the loop is above and the 'snake' below the neutral axis.

The contour of the section itself falls almost entirely within

the critical ellipse and so gives a surface cutting the loops, the

'snakes' only apply for the distorted cross-section ideally produced.
The traces of the section made by planes parallel to the

plane of flexure are cubical parabolas and are hatched in Saint-

Venant's figures. It appears from them that the slide cr
xz has its

maximum value at the centre. Saint-Venant draws attention to a

noteworthy point on p. 152 : Since b does not occur in the equation

(29') the contour-lines are the same for all sections having the

same m, c and o/ . The constancy of #' involves P/w/c
2

remaining
the same, except in the case of the false-ellipse where the term

involving
-

disappears from the equation to the contour; thus
c

such ellipses are all orthogonal projections of each other.

We have reproduced three figures giving the form of the

distorted sections on the frontispiece to this volume.

Only in Fig. (i) the '

snakes/ which are contour-lines falling

outside the real section, are given. The contour-lines for elevations

above the tangent plane are given by whole lines, those depressed
below it by dotted lines. The traces by planes parallel to the

plane of flexure are shaded. The figure corresponds to a circular

cross-section when the material has uni-constant isotropy.

It gives very approximately the surface for elliptic cross-

sections when b is < l'5c.

In Fig. (ii) we have the contour-lines for & false ellipse.

In Fig. (iii) for the rectangle with rounded angles and hollowed

top and bottom referred to in our Art. 90 (m=9/10). We see

that the contour-lines become straight.

In calculating and plotting out both Figs, (ii) and (iii) Saint-

Venant has supposed uni-constant isotropy.

T. E. ii. 5
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It may be remarked that the conception of these surfaces

is much assisted by plaster-models, which exist for the case of thu

circular and square cross-sections (see below Art. 111).

[93.] Saint-Venant now passes to the discussion of the flexure

of a beam of rectangular cross-section. This occupies pp. 156 168.

By the assumption

Saint-Venant reduces the equations of condition (19') for F (y, z) to

= for all values

> *) everywhere,

//,, y
* + /A2

- -* = for all values of y and 3,

->*
= - <r

n
- x , + 7}

-j 2/

2
for = c and y between I

dz 2/A2U)K
2

/Xj(OK

= for v = b and 3 between c.

...(31).

Here 26 and 2c are the horizontal and vertical (flexure plane) sides

of the rectangle.

The first equation of (31) is satisfied by taking

^ ?
yj

......... (32).

The sines must however disappear in virtue of the second equation,
and since x = when y z = 0, we must have A

q
= - A _

q , or,

The condition d\jdz = for y = 0, z = 0, shews us that a certain

relation must hold among the coefficients A
q \

it will serve later to

determine CT
O

.

The condition dyjdy = for y = b will be satisfied if

mr

w being any whole number, and obviously it will be sufficient to deal

only with positive whole miinl>rrs. For n = 0, we iiui>t introduce a

term J (e
-*-

e~-*) which gives us a quantity A':.

Hence finally we may write :

*
rt ,

mrz /M,2A n smh -r~ -y/
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The fifth condition of (31) then gives us the following equation to

determine A n by Fourier's method

cosh

^/X,2
(OK

Saint-Venant indicates in a foot-note (p. 159) that the form (32) is

the most general form which will satisfy all the conditions of the

problem.

[94.] Equation (33) easily gives us the following results :

sech

We are thus able to write down the complete value of x> namely :

;)

PC* yPb
2

x = l-^o-^rz5+^-nl*

COBhA')* V p.J

C03

In order finally to fulfil the condition - = for y = z = we must
G>#

take

b

We have thus the complete determination of all the constants of the

problem.

[95.] In the following pp. 162 3, Saint-Venant deduces from (18'),

(20), (30), (34) and (35) the values of the three shifts and the three

stresses
;
we tabulate them for reference.

pJA PftPv P/i 2
<v 4. oo / 1 \n

~
L

/VfnJTZ JL y Z JTO #Tc2i^ JL
) l I

w
/ A*l

/mrz I fA,\ niry

4-r-iy- 1
smh V~rv MJ

COS ^T
"

7i

52
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Pc2

S-BM? /^
U)K

2
7T

2 V

'/%]}

3 2<UK2
V

/ / \

(a v s)

-*(i-r|
2a>^ V cV

,

^2
f4 L _ 3y'_12|(-l)-

1
cogh

mrz

Saint-Venant verifies these results by shewing that they satisfy the

boundary equation x? dy w dz = and the load-conditions fxzdw = -
P,

[96.] The next two sections 28 and 29 (pp. 1648) are occupied
with numerical, graphical and simpler algebraic expressions for the

quantities which occur in the previous sections.

For <T
Q
Saint-Venant obtains the following results when y,

= yV :

When|^ =
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The Bernoulli-Eulerian theory takes no account of the second term
within the brackets.

[97.] Saint-Venant devotes his next few pages to a calculation of

the value of x' which gives (see our equation (21)) the form of the

distorted surface. He treats especially the case of b = c, and uni-

constant isotropy (i.e. y }

- y2
=

1/10, /JL I

-
/x,3).

I have reproduced his diagram of the contour-lines, as Fig. iv. of the

frontispiece ;
the hatched lines as before denoting sections of the surface

by planes parallel to that of flexure. The contour-lines are drawn
for x' = to 1 by steps of -2.

The trigonometrical terms in x' have little importance when b < c, so

that in that case we can practically take

x =

72 l
c

This is equivalent to neglecting terms in the expression for x' in-

volving the factor b/c. It is obvious that the contour-lines now become

straight lines.

The above value of x' is obtained by Saint-Venant from very simple
considerations in a foot-note on pp. 184 5. It had already been given
in the memoir on Torsion (see our Art. 12) without the term y2

(circa 1/10); a similar proof of the formula is given in the Lemons de

Navier : see our Art. 183 (a).

[98.] Saint-Venant's thirtieth section (pp. 168 171) is en-

titled : Sections de forme quelconque. This amounts to little more

than the statement that, a solution having been found for the

equations (19) with regard to certain cross-sections we may
infer that a solution exists for all cross-sections. The inference is

strengthened by reference to a corresponding problem in the

conduction of heat.

[99.] Section 31 (pp. 171 187) is termed: Demonstration

directe et sans analyse des formules connues de la flexion des

prismes due a leurs seules dilatations longitudinales. This investi-

gation can be easily followed by those who have grasped the

analytical calculations, but it seems to me very doubtful if it

would be of value for elementary teaching (e.g. of engineering

students). Saint-Venant did not reproduce it in his Lemons de

Navier.
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[100.] The final section of the memoir ( 32, pp. 1879) is

entitled : Conclusion. Observation gdnerale pour le cos otY le mode

d'application et de distribution des forces exterieures vers les

extremit^s est different de celui qui rend tout d fait exactes les

formules auxquelles conduit la mdthode mixte.

This reiterates the principle of the practical equivalence in

elastic effect of two surface distributions of load which are

statically equivalent : see our Arts. 8 and 9.

101. Sur les consequences de la theorie de I'&asticitd en ce

qui regarde la thdorie de la lumiere. L'Institut, Vol. 24, IS .">;.

32 34. The article adopts the view that much remains to be

done to render the theory of Physical Optics satisfactory ;
it

supports the views of Cauchy, especially with regard to the

existence of a third ray as obtained by him in his discussion of

what is termed double refraction. The article concludes thus :

Quoi qu'il puisse 6tre de ces explications, que nous devons nous
borner & soumettre aux physiciens et aux physiologistes, et bien que
1'on puisse continuer sans doute de regarder le mouvernent de la lumK-n-

dans les cristaux comme represente approximativement par la surface

d'onde du quatrieme degre de Fresnel, nous pensons qu'il convient de ne

plus passer sous silence les composantes longitudinales des vibrations

pour eluder quelques difficultes dont elles sont le sujet, et que, pour
renclre la theorie de la lumiere exempte d'inexactitude logique, et

provoquer pour 1'avenir des recherches qui seront peut-etre suivii-s

d'importantes decouvertes, il y a lieu de ne plus presenter les vibrations

de Tether, dans les milieux birefringents, comme etant tout a fait

paralleles aux divers plans tangents a la surface des ondes lumineuses

qui s'y propagent.

102. Sur la vitesse du son. L'Institut, Vol. 24, 1856, 212

216. Newton obtained a certain expression for the velocity of

sound which gives a result much smaller than that found by

experiment. Laplace modified the formula, and thus obtained a

result agreeing with experiment : see our Arts. 310* and 68.

Saint-Venant is not satisfied with any investigation which lias

been given, even with the aid of the formulae of the theory

of elasticity. He says

On voit toujours, par ce qui precede, qu'il reste encore Im-n

u savoir sur la theorie du son, objet des recherches d'hommes tels <|uc

Newton, Lagrange, Euler, Laplace, Poisson et Dulong; qu'on ne doit
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pas s'etonner detrouver des differences entre les resultats de 1'observation

et ceux de la formule de vitesse la plus generalement adoptee jusqu'ici

-7j ni se hater de deduire de cette formule, probablement fausse,

des valeurs du rapport c/e', comme Font fait plusietirs physiciens eminents ;

enfin que ce qu'il paraitrait y avoir de mieux a faire dans Tenseignement,
jusqu'a eclaircissemeiit, serait de demontrer la formule newtonienne et

d'enoiicer simplement les raisons qui rendent son resultat trop faible

(pp. H5-6).

Saint-Venant's article contains valuable references to pre-

ceding writers on the subject. See too Die Fortschritte der

Physik im Jahre 1856, pp. 159 164.

103. Sur la resistance des solides. L'Institut, Vol. 24, 1856,

pp. 457 459. This article relates to the moments of inertia

and the situation of the principal axes of plane figures ;
the

results given are useful in connexion with the resistance of beams

to flexure, and are accompanied by various numerical calculations.

Two formulae are given with respect to the moment of inertia of

a triangle which may have been new at the time, but which now
are particular cases of a known general proposition, namely that

the moment of inertia of a triangle of mass M about any axis is

the same as that of three particles of mass -$M at the angular

points, and a particle of mass f M at the centre of gravity. From
this may be easily deduced another formula which Saint-Venant

gives : the moment of inertia of a trapezium of mass M about one

of the non-parallel sides is ^M (^/

2

+2/
/2

),
where y and y are

the perpendiculars from the two opposite angles on this side.

Again we have a formula respecting the product of inertia

for a right-angled triangle. Let M be the mass, and a, b the

lengths of the sides. Then if the origin be at the angular

point, and the axes coincide with the sides, the value as found

by an obvious integration is -fa Mab. Hence if the origin be

at the centre of gravity and the axes parallel to the sides, the

value is ^ Mab - % Mab, that is - ^ Mob. This will hold also if

the origin is on either of the straight lines through the centre of

gravity parallel to the sides, the axes remaining always parallel to

their original position.

[104.] Sur l
y

Impulsion transversale et la Resistance vive des

barres elastiques appuyees aux extremites. Comptes rendus, T. XLV.
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1857, pp. 204 8. This memoir was presented on August 10, 1857.

It was referred to Poncelet, Lam^, Bertrand and Hermite. An
extract by the author is given in the Comptes rendus. Some of

the results of this memoir were communicated to the Soci&d

Philomathique, November 5, 1853 and January 21, 1854, and

partially published in L'Institut, T. 22, 1854, pp. 613, under the

title : Solution du probleme du choc transversal et de la resistance

vive des barres tlastiques appuyees aux extrdmites. This is a special

case of the resilience problem experimentally investigated by
Hodgkinson and theoretically by Cox : see our Arts. 039*, 942*,
999* and 1434 7*. Saint-Venant, however, does not like Cox

neglect the vibrations of the bar, or assume that its form will be

that of the elastic line for a beam which centrally loaded has

the same central deflection. In the Comptes rendvs, Saint-

Venant gives some account of the history of both transverse and

longitudinal impact problems, but Cox's memoir seems to have

escaped him.

The following result is given in the Comptes rendus, p. 206 :

sin mx/l sinh mxjl
-. _. 4 cos m cosh m

y = FrS , s-p sin (wrt/r),m a 10 -

sec m - seen m + -.

m*Q
where the 2$ refers to all the real and positive roots m of the equation

m (tan m - tanh m) = 2P/Q,

and the following is the notation used :

27 = length of bar, P its weight, Q that of body striking the bar

horizontally with velocity V at its raid-section, y is the horizontal

displacement at distance x from one end and r - JPF/(2flEMK*).

[105.] Saint-Venant makes the following remark :

Du calcul tant numerique que graphique d'une suite de ces valeurs

du displacement ?/,
on pent de"duire la suite des formes tres-variees prises

par la barre heurtee
;

ce qui permet de modeler un relief en platre

donnant la surface que decrirait cette barre supposee emportee trans-

ilement d'un mouvement rapide, perpendiculaire au sens ou elle

oscille. Cette surface est tres-ondu!6e a cause des oscillations provenant
vond et troisieme termes surtout de la s6rie 2 (p. 206).

This surface in plaster of ParU was actually prepared under

Saint-Yrnant's directions; and I have found a copy of it very

useful for locture purposes.
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When P/Q does not exceed 3, the deflection obtained is very

approximately that given by Cox in his memoir: see our Art.

1437*. It is not directly upon the deflection, however, but upon
the greatest curvature that the maximum resistance of the bar de-

pends, and this when P/Q= 2 is about 1*5 as great when obtained

from the true transcendental formula as when obtained from

statical considerations in Cox's manner. (See also Notice IT.

p. 20, under 2.)

[106.] If the transverse blow be vertical, we must add to the

above value of y the statical deflection and replace FT sin (m
2

t/r)

by the expression FT sin (m*t/r) (gr*/m*) cos (nft/r).

[107.] Saint-Yenant compares his results with the numbers

obtained by Hodgkinson : see our Arts. 1409* 10*, He finds

that the values of the stretch-modulus so obtained agree among
themselves, but differ from the statical values obtained from pure

traction-experiments. He attributes this to thermal differences,

such as had been considered by Duhamel and Wertheim : see

our Arts. 889* and 1301*. On p. 207 there is a brief reference to

some results for longitudinal impact.

[108.] The memoir itself appears never to have been published

but its results together with many extensions and developments
are given in the Note finale du 61 of the annotated Clebsch

pp. 490 596. Just thirty years after their discovery ! We shall

consider them in detail when dealing with that work, as the

problem is an extremely important one in the theory of structures.

See in particular Notice I pp. 36 41 and Notice II. pp. 19 20.

[109.] Etablissement dlementaire des Formules de la torsion des

prismes elastiques. Comptes rendus, T. XLVI. pp. 34 8, 1858.

The formulae in question are those of our Art. 17 but they are

obtained only for the torsion of isotropic bodies. Saint-Venant's

object is to deduce the results of the memoir on Torsion in an

elementary fashion for the use of technical schools and practical

men. The method does not seem to me entirely clear and

satisfactory, and it is not at once obvious why the reasoning only

applies to an isotropic body. Special proofs of various portions

of the theory of elasticity may be now and then of service, but it

cannot be denied that they, by tending to obscure the broad lines
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and general principles of the subject, may do more harm than

good to the student.

The fairly elementary treatment of the Lemons de Navier seems
to me more advantageous (pp. 245 250). The treatment of the

present paper is also reproduced in 7 (pp. 250 2) of the same
work.

[110.] L'Institut, Vol. 26, 1858, pp. 1789. Further results

on Torsion communicated to the Soci&d Philomathique (April 24

and May 15, 1858) and afterwards incorporated in the Lemons de

Navier (pp. 305 6, 273 4). They relate to cross-sections in the

form of doubly symmetrical quartic curves and to torsion about

an external axis : see our Arts. 49 (c), 182 (6), 181 (d), and 182 (a).

[111.] Vol. 27, 1860, of same Journal, pp. 212. Saint-

Venant presents to the Societt Philomathique the model de la

surface dtcrite par une corde vibrante transported d'un mouveincnt

rapide perpendicidaire d son plan de vibration. Copies of this as

well as some other of Saint-Venant's models may still be obtained

of M. Delagrave in Paris and are of considerable value for class-

lectures on the vibration of elastic bodies.

[112.] Vol. 28, 1861, of same Journal, pp. 2945. This gives
an account of a paper of Saint-Venant's read before the Socie'te

Philomathique (July 28, 1860). In this he deduces the comlitioi,*

of compatibility, or the six differential relations of the types :

2 -^% = (
d(T

+ d***- *?r-\"
dy dz dx \ dy dz dx )

d*<TyZ = d*8
y+ d*8,

dy dz dz* dy*

which must be satisfied by the strain-components. These con-

ditions enable us in many cases to dispense with the consideration

of the shifts. A proof of these conditions by Bouseinesq will be

found in the Journal de Liouville, Vol. 16, 1871, pp. 132 4. At

the same meeting Saint-Venant extended his results mi torsion t<>:

(1) prisms on any base with at each point only one plane of

symmetry perpendicular to the sides, (2) prisms on an elliptic 1>

with or without any j.lanc of synmn-iry whatever: sec our An.

190(4),
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[113.] Sur le Nombre des Coefficients inegaux des formules
dormant les composantes des pressions dans I'interieur des solides

elastiques. Gomptes rendus, T. LIU. 1861, pp. 1107 1112. This

paper gives very meagrely the outlines of Appendix V. to the

Lecons de Navier: see our Arts. 192 to 195. Cf. also Moigno's

Statique, Art. 270 and Stokes' Report on Double-Refraction, p. 260.

[114.] Sur les divers genres d'homogeneite des corps solides et

principalement sur Vhomogeneite semi-polaire ou cylindrique, et sur

les homoqeneites polaire ou sphericonique et spherique. This paper
was read to the Academy on May 21, 1860 and published in

Liouville's Journal de Mathematiques, 1865, pp. 297 349. An
abstract appeared in the Gomptes rendus, T. L. I860, pp. 930 4.

See also Notice II. p. 23 and Moigno's Statique, p. 668.

This memoir is important as the first attempt to explain various

results of experiment inconsistent with uni-constant isotropy by
an extended conception of homogeneity applied to aeolotropic

bodies. Cauchy had defined homogeneity as consisting in the

elasticity of a body being the same for the same directions at

all points. Saint-Venant alters the latter words and thus defines

homogeneity :

Un corps est homogene lorsque Vun quelconque de ses elements imper-

ceptibles est identique a tout element du meme corps pris ailleurs ayant
meme volume et meme forme, metis oriente cCune certaine maniere qui

pent changer d'un endroit a I'autre. II Test meme encore lorsque cette

iclentite de deux elements, pris n'importe ou et convenahlement orientes,

souffre exception pour certains points isoles ou ombilicaux (tels que soiit

ceux de 1'intersection commune des plans des cercles de longitude de la

sphere dont on vient de parler...).

Le mode d'orientation des elements, ou la direction relative de leurs

lignes homologues, determine le genre de Thomogeneite, genre dont

chactm admet, comme nous verrons au no. 3, des sous-genres ou les

orientations possibles en chaque point sont multiples, (p. 299.)

Let us take any two lines of the elastic system at right angles

and arrange all lines homologous to the first along the normals to

a given surface, the second system of lines may then be arranged

according to any law we please, e.g. as tangents to any system of

curves we please to draw on the surface. If the given surface be of

the ftth order, we have an n-ic distribution of elastic homogeneity ;

the curves on the surface to which the second system of homo-

logous lines are tangents determine the sous-genre or sub-class.
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[115.] The following paragraphs describe the quadric distri-

butions of elasticity with which Saint-Venant proposes to deal.

After describing the amorphic body or body of confused-

crystallisation, such as a rolled metal plate, the elasticity of which

varies in length, breadth and depth, Saint-Venant continues :

Qu'on enroule en tuyau cylindrique cette plaque homogene rectangu-
laire non isotrope supposee mince, en dirigeant, par exemple, les

generatrices dans le sens de sa longueur. Elle ne cessera pas d'etre

homogene; mais 1'egalite d'elasticite aux divers points n'aura pas lieu

pour les directions paralleles entre elles. II y aura egale elasticity

suivant les rayons qui vont tous couper perpendiculairement 1'axe du

cylindre : ce sera 1'elasticite clans le sens de 1'epaisseur. II y aura egale
elasticite suivant les diverses tangentes aux cercles ayant leur centre sur

cet axe. II n'y aura que les elasticites egales suivant la longueur qui
auront conserve des directions paralleles entre elles. (p. 298.)

We shall term this a cylindrical distribution of elastic homo-

geneity.

The following describes a spherical distribution :

Qu'on imagine maintenant une sphere solide pleine ou creuse, ou un

corps de forme quelconque divisible en couches spheriques concentriques.
Si la resistance ou la reaction elastique, pour memes deplacements de ses

points, est partout egale dans le sens des rayons, et partout egale aussi

dans certains sens perpendiculaires entre eux et aux rayons, ceux par

exemple ou se comptent les latitudes et les longitudes pour un equateur

donne, la matiere est homogene, mais polairement, ou d'une maniere que
nous pouvons appeler sphericoniqiw vu le role qu'y jouent les com* >?>'

latitude ayant un axe determine, le meme pour tous. (p. 298.)

Such distributions of elasticity are, Saint-Venant asserts, and

I hold him to be entirely right the true explanation of the

anomalies which occur in experiments on a variety of cast, rolled

and forged bodies. Even granted that isotropy is bi-constant, it is

certainly not scientific to seek by means of two constants to

account for the divergency between uni-constant formulae and

experimental results on wires, plates, or cylindrical and spherical

bodies. Physically it is obvious that the ?/v>/7,'/m/ of such bodies

really produces in them varied distributions of elastic homogeneity,
which bi-constant formulae only serve to mask. The '

isotropic

boilers' treated of by Lame' (see our Art. 10&S*) or his 'isotropic

piezometers' (see our Art. 1358*) liuve practically no exist

(see our Arts. 332* and 1357*), and all dasticians can adopt Saint-
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Venant's formulae with entire approval although they may not

accept his view of the equations of uni-constant isotropy :

Formulas qui sont les consequences obligees et rigoureuses de la loi

des actions moleculaires que tout le monde invoque ouvertement ou tacite-

ment, et meme sans laquelle tout etablissemeiit de formules matliema-

tiques d'elasticite est illusoire. (p. 300.)

[116.] Saint-Venant on pp. 301 3 makes some remarks on

the elastic coefficients, and on the subject of multi-constancy; for

the purpose of the memoir, however, he adopts the 21 constants

of Green 1
.

If the stress be given by formulae of the type

Pxx
=

\
x^^x\ Sx + }xxyy\ Sy + \xxzz\ Sz + \xxyz\ a~

yz + \xxzx\ azx + \xxxy\ o"xy ,

p!/z

= \yzxx Sx -f \yzyy \ s^ -f \yzzz\ Sz + \yzyz\ cr
yz + \yzzx\ azx -f \yzxy\ (7

X1J ,

then the coefficients can only be treated as constants when we

suppose the axes-system to vary in direction from point to point
of the material. This granted, the above expressions for the

stresses will be given in terms of constant coefficients.

[117.] In section 3 (pp. 303 6) after some general remarks as

to homogeneity and its various sub-classes, Saint-Venant supposes
the distribution of elasticity to be symmetrical with regard to

1 He refers to Kankine's terminology, which we may here throw into a form
brief enough for convenience :

\xxxx\=. direct stretch coefficient = the coefficient of direct elasticity of Eankine.

\xxyy\ Across stretch coefficient the coefficient of lateral elasticity of Eankine.

\xyxy\ ^direct slide coefficient = the coefficient of tangential elasticity of Kankine.

\xyyz\ = cross slide coefficient \

\xxxz\ direct slide-stretch coefficient
|

\xxyz\ = cross slide-stretch coefficient V = coefficients of asymmetrical elasticity

\xyxx\ = direct stretch-slide coefficient of Kankine.

\xyzz\ = cross stretch-slide coefficient J

All elasticiaus agree that the slide-stretch coe^cients whether direct or cross

are equal to the corresponding stretch-slide coefficients; further that the
_

cross

stretch and cross slide coefficients are equal for the pair of faces involved in the

cross. This amounts to saying that we may interchange the first and second pairs

of subscripts. We have thus the fifteen relations of Green. For a body with three

planes of elastic symmetry all the asymmetrical coefficients vanish. The rari-

constant elasticians assert that the cross stretch coefficients are equal to the direct

slide coefficients, when the cross is made for the two directions involved in the slide

(i.e. \xxyy\ = \xyxy\), and further that the cross slide-stretch coefficients are equal

to the cross slide coefficients when the direction of the stretch is involved in both

the slides which are crossed (i.e. \xxyz\ = \xyxz\). This gives the six additional

relations of Poisson, or we may interchange between the first and second pair of

subscripts.
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three planes, or all the asymmetrical coefficients to vanish. In

this case the types of traction and shear are :

(a) ^ = asx +fsy + e'sz ^ = d<r
yz ,

*yy =f'8x + bsy + d'sz "zx = ecr^,

"zz = e'sx + d'8y + C8Z 'xy =f(r ll/
.

(See our Art. 78.)

(b) If the normal to the distribution-surface be the axis of x and
the elasticity be isotropic in the tangent plane, we have also :

6 = c, e=f, e'=f a.ndb=2d + d'.

(c) If the material be aniorphic, there is an ellipsoidal distribution

of direct-stretch coefficients (see our Arts. 139 and 142), and we

(d) In the case of rari-constant elasticity, the dashed and undashcd
letters are equal. Thus for the amorphic body we have :"

efx*=3 + 8x +

= 6S + dS + 3 -
g

(See, however, our Art. 313.)

[118.] Before we can apply these formulae to any given
distribution of elasticity determined by curvilinear coordinates,

it is necessary to find :

(1) Expressions for the above strain-components (sx ,
sy) sz ,

(Tyz , o-^, axv) corresponding to the elements of the three rectangular

surface normals or intersection-traces in terms of the curvilim ar

coordinates.

(2) To express the body-stress equations in terms of curvi-

linear coordinates. Saint-Venant indicates in 4 (pp. 306 12)

two methods of attacking this problem, and compares them with

Lame"s method (in the Legons, 1852, 77) which he terms " un

proce'de' en quelque sorte mixte." The analysis of the problem
does not probably admit of much simplification, and for practical

purposes the general results of Lame"s treatise on Curvilinear

Coordinates may well be assumed: see our Arts. 1150* 3*.

In 5 (pp. 31218) and in 9 (pp. 3339) Saint-Venant obtains

expressions for the strains and tin- b-dy-stiv.s.s equations in t< ,
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of cylindrical and spherical coordinates respectively. These agree
with those of Lame 1

: see our Arts. 1087* and 1093*. The re-

lations between stress and strain are then given by the formulae

of the preceding article.

[119.] The novelty of the present memoir consists in the

solution of the elastic equations for cylindrical and spherical shells

subjected internally and externally to uniform tractive loads, when
the material of these shells is amorphic and has cylindrical or

spherical distribution of elasticity. By means of the solutions

given, we see that the difficulties encountered by Regnault and
others can be more naturally met by presupposing aeolotropy,
than by assuming bi-constant isotropy.

[120.] Saint-Venant takes first
( 7) the case of a long cylindrical shell

subjected to internal tractive load /> and external p^ As in Lame's

problem, we may suppose it closed by flat ends in such a manner that

the transverse sections are not distorted. Supposing dw/dz = y, we easily

deduce (see footnote) the equation --= + =
0, or substituting the

stress-values from formulae (a) of Art. 117 expressed in terms of the
strains given in the footnote we have, if ar = du/dr

a (urr + ur/r)
-
bujr

2 + (e

1 -
d')/(yr)

= 0.

1 As in this volume we shall have frequent occasion to refer to these formulae
I tabulate them here for reference the notation will readily explain itself :
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Hence we find for the shifts

/* /& (r _ p
i

u =Cr** + C'r-^+- fyr, v = 0, w =
yz.a o

The stresses and strains can be at once deduced
; they will contain

constant terms in y and powers of r of order \ / 1. The constants

C, C' and y are to be determined from the surface conditions and the
ffi

relation pQtrr^
-
pjnr*

= 2rr I zsnJr for total terminal tractive stress.
7 ro

[121.] Saint-Veuant considers various special cases:

(1) r
l

r is a small thickness e. (pp. 324 5.)

(2) a = b. Here the solution changes its form, we have (p. 326):

u = C
l
r+ d'/r + yr logr.

If d' = e the solution becomes that found by Lame and Clapeyron,
and applied by Lame to Regnault's piezometers : see our Arts. 1012*
and 1358*.

(3) When there is an ellipsoidal distribution of elasticity and rari-

constancy is assumed, i.e. when a 3ef/d, b = 3fd/e, c = 3de/f. In this

case u = Crdle + Cf
r~dle - dyr/{3f(d/6 + 1)}.

The values of the stresses are then easily determined, as well as

those of 0, a and y (p. 329).

The results contain three independent elastic constants, and

they differ in the form of the r-index from those found for the

case of isotropy. Hence we can explain by means of them as well

as or better than by biconstant formulae the divergencies remarked

by Regnault in his piezometer experiments.

[122.] A result is given on p. 331, which is worth citing. The
constants d, e,foi the ellipsoidal distribution are not easy to determine

by direct experiment. Let Er) E^ Ez however be the three stretch

moduli in directions r, <, z, then we easily find that :

From equations 50 (p. 332) Saint-Venant might have deduced the

criterion for failure arising first by lateral or first by longitudinal stretch.

These equations are :

_ _
'' ~

where r = r' - -= and
r,
= r' +

,
so that r'=
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So long as Ez> -4195 E^ s^ is > sz and failure will occur by lateral

stretch. If the absolute strengths Rz and R^ were, as some writers have

supposed, proportional to the moduli, and rupture took place in the
same manner as failure of linear elasticity, we should say the cylinder
would burst across a cross-section or open up longitudinally according
as the longitudinal absolute strength Rz was < or > than *4195 times
the transverse absolute strength R$.
A footnote on pp. 331 3 criticises with hardly sufficient severity a

memoir of Virgile to which we shall refer later.

[123.] Saint-Venant (pp. 339 47) obtains similar results for the
case of a spherical shell. He seeks first to find a solution of the equa-
tions (footnote p. 79 and stress-strain relations (a) of Art. 117) by
taking v = 0, w and u$ = 0. This gives three equations to be satisfied

which are inconsistent unless a certain relation is satisfied by the con-

stants. Now v = w = must for the case of uniform internal and ex-

ternal tractive loads be a necessary condition for change in size without
distortion. Hence the equation (74) arrived at by Saint-Venant must
be the condition for such a strain

;
it is :

b-c b + c + 2d'-e'-f

In this case the solution is simply
ft-c

(ii) u=Cr*-'\

The condition
(i)

is however not sufficient; we find also from the
surface equations that we must have

It will be seen that without elastic isotropy in the tangent plane, it

is only very special surface loads which will not produce distortion.

[124.] In 11 (pp. 3428) the problem of isotropy for all direc-

tions in the tangent plane is dealt with. In this case e' =ft
b = c, and

stresses and constants are easily obtained by aid of the solution :

/ -i n b + d e'
where rc = A A /l+8

a

the body-shift equations being now reduced to the single one :

aurr + 2aur/r -2(b + d'- e') u/r*
= 0.

By evaluating the constants Saint-Venant obtains the following

expression for u :

(n + 1) a _ 2

which gives the lateral stretches s^
=

s$
=
u/r at once.

T. E, II,
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The important point in the piezometer problem is the dilatation of

the spherical cavity. This is equal to

'

We see that it involves three elastic coefficients, and is thus, even as

an empirical formula, better adapted to satisfy numerically Regnault's

experiments than Lame's bi-constant isotropic formula obtained by
putting d' = e', b = a and n=3/2.

1 On the other hand it is physically
more plausible. The constants reduce to two, if we suppose the body
amorphic and of rari-constant elasticity ellipsoidally distributed If

we take r
Q
= r' - e/2, r

l

= r' + e/2, we easily find for the mid-sphere of

radius r' :

_ a (p -p)r'
*
~

*
"
a (b + d')

- 2e'
2

2e

or in the case just mentioned

3 (.-,)/

4*^-,
=

-^ by Art. 117 (C) if there be tangential isotropy.

Hence finally :

[125.] The final section of the memoir is entitled: Vase cylindri-

que termine par deux calottes spheriques (pp. 347 9). This treats a

problem similar to that dealt with by Lame in his Note of 1850 : see

our Art 1038*. The mean lateral expansion of the spherical ends is

made to take the same value as that of the cylindrical body by equating
the expressions for 8$ obtained in our Arts. 122 and 124. Saint-Venant
thus reaches a more general rule than that given by Lame as a result

of bi-constant isotropy. We have :

, SjE-Sr' 1 r

where the subscript l
refers to the spherical portions of the surface.

Hence

e / 8/JE+
-

In the case of the two portions being of the same ixotropic material,

we have E=E = E or

In Lnnn'-'s notation n \ \ 2n and . OUT Art. 1'
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This agrees with Lame's result : see our Vol. I. p. 564. If the thick-
nesses are equal, the radii ought to be as 3 : 7 :

ce qui est la regie indiquee par M. Lame pour les fonds spheriques
compensateurs, elevant en quelque sorte, dit-il, le systeme des chaudieres

cylindriques au rang des formes naturelles ou des solides d'egale re-

sistance, (p. 349.)

[126.] Sur la distribution des elasticites autour de chaque

point d'un solide ou dun milieu de contexture quelconque, par-
ticulierement lorsquil est amorphe sans etre isotrope ; Comptes
rendus, T. LVI. 1863, pp. 475479, p. 804. This is an abstract

of the memoir published in Liouville's Journal in 1863 : see the

following article.

[127.] Memoire sur la distribution des elasticites autour de

chaque point dun solide ou dun milieu de contexture quelconque,

particulierement lorsquil est amorphe sans etre isotrope. This

memoir was presented to the Academy, March 16, 1863, and some

account of it appeared in the Comptes rendus, see preceding article.

It is printed at length in Liouville's Journal de mathematiques,
Vol. vm. 1863, pp. 25795 and 353430.

[128.] The opening pages of the memoir (257 9) as well as

the concluding (42530) entitled respectively: Objet and Resume

et conclusions pratiques, give an account of the purpose and results

of the memoir. As these will sufficiently appear in our treatmeDt

of the intervening five sections (four, according to Saint-Venant,

but III occurs twice by mistake), we shall not reproduce here any

part of these preliminary and final remarks.

[129.] The second section is entitled: Formules diverses ou

entrent les coefficients dont Velasticity depend. Etablissement, de

plusieurs manieres, dune partie souvent omise, ou figurent six

constantes complementaires, qui sont les composantes des pressions

pouvant exister anterieurement aux deplacements des points (pp.

260286).
The aim of this section may be thus expressed : Let there be

an initial system of stress given by ^ , ^/ ,
**

, yz Q ,
**

, ^ ,
and let

the elastic nature of the body be given by thirty-six constants

\xxxx\
) \xyxy\, \xyyy\, etc. Green has decisively determined that

these thirty-six can be reduced to twenty-one by the law of

62
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energy : see the footnote to our Art. 117. It is desirable to

obtain a proof of the elastic formulae due to Cauchy without

appealing to the principle of inter-molecular action being central

and a function only of the distance.

Subscript letters attached to the shifts u, v, w denoting

fluxions, the formulae are given by the types :

xx = xx (1 4- Ux - V
y
- Wz) 4- 2w Uy +27xQ

Uz 4- x*i )

^ ^ ^ _ L_ _ } v
1 ))

yz = yzo (1
- ux) 4- yy

Q
w

y 4- vz + Zx
Q
vx + xy wx + yz^ }

where

}
'>

XXl = \xxxx\ 8X 4- \xxyy\ 8y 4- \xxzz\ 8Z 4- Ixxyz\ <r
yz 4- \xxzx\ cr^ 4- \xxxy\ cra

yz!
= \yzxx\ 8X + \yzyy\ 8

y
+ \yzzz\ 8Z 4- \yzyz\ <T

yz
4- \yzzx\ (Tgy. 4- \yzxy\ <ra

while the type of resulting body-shift equation is :

pX =
xx^Uy-y.

4- yy^Uyy 4- *zz
Q
Uzz 4- %yzo

u
v!3

4- 2zx UKC + 2xy Uy>y

4- \xxxx\ Uyx 4- \xyxy\ Uyy 4- \xzxz\ U^
4- 2 |zary| Wy3 4- 2 |aw*r| W^ 4- 2 \xxxy\ U^
4- kxry| V^ 4- \xyyy\ Vyy 4- |ry*| V^

4- {lyy*l 4- |ryy| }
V
yz + {\xxyz\ + \zxxy\\ V^ + {\xxyy\ 4- \xyxy\\ V^

4- \xxzx\ Wy-y. + \xyyz\ Wyy 4- \zxzz\ Wzz

+ {\zxyz\
4- ky|} Wyz + (\xxzz\ + \zxzx\} W^ + {\xxyz\ 4-

\xyzx\] W^
These results representing the most general equations of

elasticity for small strains were originally given by Cauchy, as is

implied iri our Arts. 615*, 616*, 662*, 666*. He obtained them by

calculating the stresses as the sums of intermolecular actions on the

rari-constant hypothesis. Saint-Venant in this section proposes to

deduce them from the principle of energy (by Green's method) in

a manner which will satisfy multi-constant elasticians.

[130.] The proof attempted by Saint-Venant is not legitim, it e,

because in the expression he takes for the work the linear term

occurs where sx ,
s
v ,

st ,
<r

tft ,
o-M , a-^ are stretches and slides. As-

suming this term correct, which it is not, these ought to be ex-

pressed to the second power of the shift-fluxions as in our Art.

1622*, for we want the work to the second power. This Saint-

Venant does not do, but treats the strains s and a as if they
were the quantities ex ,

ey ,
et , rjn) rja) rjxr

of our Art. 1619*. This

mistake was pointed out by Brill and Bouanneeq, and is a<kiH>u-
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ledged by Saint-Venant in a memoir of 1871 : see our Art.

237. The formulae (i) (iii) of the preceding article can thus

only be considered as valid, when we accept the rari-constant

hypothesis and deduce them after the manner of Cauchy. We
shall see this point more clearly when dealing with the memoir
of 1871. Green gets over the difficulty by expanding his work-

function in powers of the e's and ?/s ;
he thus gets a linear term,

whose constants vanish with the initial stresses, but are not

determined as functions of the initial stresses, still less does he

show what functions, if any, the remaining constants are of the

initial stresses.

[131.] In the course of this section Saint-Venant gives a

proof of Cauchy's formulae (i) to (iii) above on the rari-constant

hypothesis (footnote, pp. 273 5); he refers to the memoir of

C. Neumann (Zur Theorie der Elasticitdt, Crelle, LVII, 1860,

p. 281 : see our Chap. XL), where a similar method to his

own is used for the case of isotropy (footnote, pp. 275 80), and

to the memoir of Haughton (see our Art. 1505*) for a treat-

ment which generalised leads to the same formulae on the rari-

constant theory (p. 280 and footnote). Finally we may refer

to his footnote (pp. 284 5) for a process by which the body-shift

equations (iii) are deduced by means of the rari-constant hypo-

thesis, without a previous investigation of the stresses
1

.

[132.] The third section of the memoir (pp. 286 95) is en-

titled : Formule symbolique generate fournissant, en fonction des

coefficients delasticite pour des axes donnes, ceux qui sont relatifs d
d'autres axes aussi donnes et rectangulaires, et, aussi, les coefficients

qui doivent entrer dans ^expression d'une composante quelconque
de pression meme oblique.

Saint-Venant adopts a symbolic representation of the stresses,

strains and coefficients in order to express the relations among
them. He thus describes this method :

On abrege singulierement le calcul et Ton arrive a quelque chose de
fort simple an moyen de notations symboliques comme celles que plu-
sieurs auteurs anglais appellent Sylvestrian umbrae, parce que M.

Sylvester, qui les a employees avec succes, appelle ombres de quantites

(shadows of quantities) ces sortes de notations dont se sont servis

precedeinment, au reste, Cauchy et d'autres analystes (p. 290).
1 There is a wrong reference to Eankine's paper (p. 269, footnote), it should be

Vol. vi. (p. 63), not Vol. v., of the Camb. and Dublin Math. Journal.
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There is a footnote referring to Sylvester's papers in Camb.

and Dublin Math. Journal, Vol. vn. 1852, p. 76, and Phil. Trans.

1853, p. 543.

[133.] Suppose symbolically t^Wm = i
jk

tlm = i/^t^ to represent \jkim\ t

where j, k, I, m are any of the letters xyz, x'y'z etc. Further 7 9 to

represent the stress P, and c,.^ or
2

r to represent sr,
and finally 26^

to represent o^. Let c^ denote the cosine of the angle between the

directions r, r'.

We are now able to reproduce in symbolic form the following well-

known typical relations :

P = XX C^ Cr>x + M Cry c
r>y
+ ** CTZ Cr"z

+ 7 (Cry C,z + Crz Cr-y)
+ (Crz <VX + Crx C,,,) + w (Crx <Vy + C^ C^x) . . . (iv),

+ 0V* (Cytf C^ + Cyz
- C

zy) + OVaf (V C^ + C^ Czz) + V^ (c^ Czy
> + Cyv

> C^)... (Vl).

See our Arts. 659* and 663*.

(The last two are most readily obtained from the stretch-quadric of

Art. 612* for axes x'y'z, namely :

8* x'
2
+

8,, y'* + s^ z'
2
+ a-^ y'z' + a-^ z'x + v^ x'y

= 1 .

Substitute for x' its equivalent xc^ + yc^ + zc^ and similar quantities
for x and ?/', then the coefiicients of x2 and yz will be sx and <r

yz
as given

above.)
The symbolical forms are :

^ or ^=1^ or t
yz

x
(LX X + iy

c
y
+ Lz z)

2
............ (vii),

whence it follows from (iv) that

^ =
(hfirx + Wry + Wrz) (hflfx

Further we have from (v) :

whence we can take

Put j = x, y, z successively and substitute for ex.,
e
v , (._

in (viii),
we

have

t2Cr2) (l^C^ + LyCr'y
+ l^J X

W + VW *^ir) V
+ (Wat +W +^ M' ..................... (

X
)'

But we may obviously also express P in the form

P = Irr'yy | ^+ ...... -I- ......

+ |rrV*'| CT^,/+ ...... -f- ......

V V + l^ ^)
2
..................

(
X 1

)'
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Comparing (x) and (xi) which must on development give the same
result, we see that it is necessary to take :

Ln =

where in is given by (xii), and x', y' are any two of the three new axial

directions, (x', y', z'), r, r' any two directions we please, and n any arbi-

trary direction.

Thus we have any coefficient of one set of axes expressed in terms
of those obtained for another set. The product ir ir , . i^i]f ought to be
made in the order indicated, except that the first pair and the last pair

may have their members interchanged in themselves. If r, r' are both
axial directions

(i.e.
chosen from x, y', z) then the first pair may be

interchanged as a whole with the last pair. If we accept the rari-

constant hypothesis, however, for axial directions all interchanges of the

order of the t's will be permissible.

[134.] Saint-Venant notes one or two other symbolical results.

Thus, if < be Green's work-function and we suppose no initial stresses :

Further the types of stress and of the general body-shift equations

(i)
to

(iii)
of our Art. 129 become on the rari-constant hypothesis :

n -r
dy

d d d d

(XV),

d\ 2

n -r)
dzj

[135.] The next section, Illfo's (pp. 353 380), contains some

very interesting and important matter. It is entitled: Surfaces

dormant la distribution des elasticites autour d'un meme point.

Maxima et minima Distribution ellipso'idale des elasticites di-

rectes. Solides ou milieux amorphes. Integrabilite des equations.

Some of the results had already been given by Rarikine in his

memoir: On Axes of Elasticity and Crystalline Forms, Phil.

Trans. 1856, pp. 261 85, but there is much that is new and the

method is very good.
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[136.] The relation (xiii) gives for |mr| the value

lmr| =
[(

lxcrx + Wry + MVa)*]* (
xy

ii)j

or the direct stretch coefficient in direction r, (c^, c^, c,^),
in terms of

the system of elastic coefficients for the axes #, y, z.

If we put

and substitute, we obtain the surface

(xviii).

which expanded gives us Rankine's tasinomic quartic :

1 = \xxxx\ x4
4- \yyyy\ y

4 + \zzzz\ z*

4- 2
{\yyzz\

+ 2
\yzyz\\ ifz* 4- 2 {\zzxx\ 4- 2

\zxzx\\ zV 4- 2

4-2

4- 4 {i*.w*| + 2
|*x*jri} ofyz 4- 4 [\yyzx\ 4- 2 k^i} 7/

2
2a;

4- 4 {|ry| 4-

4- 4 l.v.v^l 2/
}Z 4- 4 \zzzy\ Z

3
y + 4 |wc| Z*X + 4

4- 4 \xx

This equation with its fifteen homotatic coefficients was first

given by Haughton in his memoir of 1846. These 15 coefficients

are the 15 coefficients of rari-constancy multiplied by the numbers

1, 6, 12 or 4, so that the expressions for the work, stresses etc.,

can on that hypothesis be given in terms of the coefficients

of this equation.

Its fundamental property is that the direct-stretch coefficient

in any direction varies inversely as the fourth power of the corre-

sponding ray.

[137.] Paragraphs 10 and 11 together with the footnote

pp. 359 62 reproduce results of Rankine and Haughton with

regard to the nature of the elastic coefficients. Thus it is pointed
out :

(i)
That there are sixteen directions real or imaginary for which

irrrri is a maximum or minimum. These directions cut the tasinomic

surface at right-angles, and possess the peculiarity that any stretch in

their direction produces a traction only across a plane normal to tlu-ir

direction (pp. 356 7).

(ii)
That if we take

or /S'^ equal to the sum of direct- and cross-stretch coefficients for the

direction x, then
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Thus So/ varies inversely as the square of the ray of the ellipsoidal
surface :

1 =
(<<XX

+
tyy

+ L^) (lyX

which developed gives us :

1 = A$>
2 + S

yy* + Szz
2 + 2R

yzyz
where Rnm = i_ + iyynm + izznm .......... e..........

(
xix).

This is the ellipsoid discovered by Haughton in 1846 and termed by
Rankine orthotatic. It shews us that by a suitable change of axes
we can put Ryz

= Rgx
= R

!Ky
=

Q, which give three inter-constant relations,
and so reduce the 21 (or 15) elastic constants to 18 (or 12).

(iii) That if an equal stretch s be given in the three orthotatic

directions
{i.e.

those of the axes of the ellipsoid (xix)} this stretch system
will produce no shear, for if x

lt y^ z be these orthotatic directions :

s + Im^il s (from Equation (ii)
of Art. 129).

The orthotatic directions are thus those for which the sum of the

corresponding (direct and cross) slide-stretch coefficients vanish.

(iv) That a body may possess orthotatic isotropy, or R^ = for all

rectangular systems x', y', z'. The orthotatic surface now becomes
a sphere or Sx = Sy

= /Sz . Such a body however does not possess

complete elastic isotropy.

(v) That there exists a surface which measures the difference D
between a cross-stretch and direct-slide coefficient, i.e.

D = \w*z?\ - is/vj/vi.

This is Rankine's heterotatic surface, and is given by

D
{\yyzz\ \yzyz\} tf^ + [\zzxx\ \zxzx\}

C
2

yx
> +

{\xxyy\ \xyxy\}
C
2^}

+ 2
{\xxyz\

-
\zxxy\\ Cy^C^ + 2

{\yyzx\
-

\xyyz\} C^C^ \
(
xx

).

+ 2 [\xxyz\
-

\yzzx\] C^Cy^j
The thorough-going rari-constant elastician will fail to observe the

existence of this surface, at least the Ossa of his multi-constant colleague
will appear to him a wart.

(vi) Finally that there exist nine axes at each point of a body for

which

or the two direct-slide-stretch coefficients are equal. These directions

Raiikine terms metatatic. The condition for the metatatic isotropy
of a body, or for metatatism in all pairs of rectangular directions, is

|j/y^l + 2 WM*\ = \ {li^yWI + l*v*vi} ............... (xxi).

Such a body, however, is not elastically isotropic
1

.

1 I have here introduced some portion of Bankine's work as given with great
clearness by Saint-Venant in order that it may be the more easy to refer to these

results in later articles.
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[138.] Saint- Veiiant ill the twelfth paragraph of this section of his

memoir (pp. 360 5) treats the case in which the elastic material has

three rectangular planes of symmetry. This reduces the 21 coefficients

to nine, for all the stretch-slide coefficients and cross-slide coefficients

(i.e. Rankine's asymmetrical elasticities) must now vanish.

Let a, b, c be the direct-stretch
^

d) e
> f ?j

direct-slide V coefficients.

d
* e',f ,,

cross-stretch J

Then the tasinomic surface (xviii) becomes :

1 = ax4 + by* + cz
4 + 2 (2d + d') ifz

z + 2 (2 +
e') z*x*+ 2(2/+/>y . . . (xxii).

The maximum-minimum values of \rrrr\ are now sought and are

found to lie in the three axial directions x, y, z, and in pairs of others

lying in each plane yz, zx, xy, or 9 in all. The first three solutions are

always real
;
the second six will be imaginary, since the ratio of their

direction-cosines become imaginary, when

2d + d' } (b and c }

2e +e' > lie between < c and a > respectively ...... (xxiii).

2/+/J (a and b)

Saint-Venant remarks that the conditions (xxiii) are those for the

gradual variation in one sense of the stretch -coefficients in the three

principal planes of elastic symmetry a physical characteristic, he holds,

probably possessed by all natural bodies.

[139.] In the following section we have the statement of the

conditions for ellipsoidal elasticity, i. e. that the first three

quantities of (xxiii) be respectively equal : (i) to the arithmetic,

or (ii) to the geometric mean of the corresponding second three

quantities of (xxiii). In either case the direct-stretch coeffi-

cient \rrrr\ can be represented by the ray of an ellipsoid. In

the first case the direct-stretch coefficient varies as the inverse

square of the ray of the ellipsoid :

and in the second case as the inverse fourth power of the ray

of the ellipsoid :

The practical application of this ellipsoidal distribution has

been discussed by Saint-Venant in the annotated Clebsch: see

our analysis of that work in Arts. 307 to 313.

[140.] The next two paragraphs (pp. 36772) are occupied

with an extrusion of Lame's solution of tin.- Aquations of clastic
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equilibrium by means of potential functions : see our Arts.

1061* 3*.

On the rari-constant hypothesis we should have d = d', e = e and

ff. As a sop to Cerberus Saint-Venant assumes that

d'ld=e'le=flf=i ..................... (xxiv).

We may, however, doubt whether Cerberus would accept this sop ;

for, while supposing the constants unequal, it yet assumes their inequality

isotropic in character. If multi-constancy really does exist, the relations

(xxiv) are still probably very approximately satisfied for many bodies :

see our Arts. 149 and 310.

Writing a/(2 + i)
= a2

,

c/(2 + i)
= c

a

,

and supposing ellipsoidal distribution of the second kind, Saint-Venant
finds

f=fli ab, d= d'/i
= be, e = eji ca.

This enables him to reduce his body-shift equations to the type

SMyy. + louyy + cuzz + (1 + i)
=

0,

where < = &ux + bv
y + cwz ........................ (xxv).

A very straightforward analysis then leads him to the result:

, /, y)

He also obtains (p. 371) the shift-type :

where v and w will have other arbitrary functions ^2, x3
-

These arbitrary functions Xi, X2 ' X3
^ no^ seem to me so arbitrary as

the reader might assume from Saint-Venant' s words. We have so to

choose x 1? x2 > Xs tna^ ^ne value f ^ obtained from (xxv) by means of

(xxvii) shall be the same as that obtained for
<f>
from (xxvi).

It appears to me that u, v, w ought to be the x-, y-, ^-fluxions respec-

tively of a quantity

In addition we might add to them certain expressions arising from

the twists and giving a zero value for
</>.

[141.] In the following paragraph Saint-Venant shows that

the ellipsoidal conditions of the type (2d + d')
= Jbc are necessary
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if a solution in terms of direct and inverse potentials is obtainable

(pp. 372-4).

[142.] Hitherto the set of ellipsoidal conditions of the type

has been seen as one only of the number which satisfies the rela-

tions (xxiii). Saint-Venant now attempts to give it a far more

important and special physical meaning. Namely, he proceeds to

show that these relations hold exactly or very closely for bodies

which originally isotropic have afterwards received a permanent
strain unequal in different directions. He describes the bodies in

question in the following terms :

En effet, dans les corps a cristallisation confuse tels que les metaux,

etc., employes dans les constructions, ou les molecules affectent indis-

tinctement toutes les orientations, si les elasticites sont egales dans trois

directions rectangulaires, elles doivent Petre en tous sens, car on ne voit

aucune raison pour qu'elles soient plus grandes ou moindres dans les

autres directions. Si les elasticites y sont inegales, cela ne pent tenir

qu'a des rapprochements moleculaires plus grands dans certains sens que
dans d'autres, par suite du forgeage, de 1'etirage, du laminage, etc., ou
des circonstances de la solidification. Calculons les grandeurs nouvelles

que doivent prendre les coefficients d'elasticite dans un corps primitive-
ment isotrope ainsi modifiS (p. 374).

Bodies with 'confused crystallisation' Saint-Venant terms amor-

phic solids, and he now proceeds to show that within certain limits

of aeolotropy, they possess an ellipsoidal distribution of elasticity.

He assumes that the bodies have rari-constant elasticity.

[143.] Let 8, s, s" be the principal stretches of the permanent set

given to the body, let p ,
r

,
#

, yQ ,
z be the density, distance between

two elements, and its projections on the directions of the principal
stretches before the isotropy is altered. Then if p, r, x, y, z be the value

of these quantities after aeolotropy is produced, we have

,
xxix)"

Let/(r) be the law of intermolecular action, and F(r)
= - - '

,

then we have, m being the mass of a molecule :

^=mF(r){y* } (xxx).
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These results flow at once from the definition of stress on the rari-

constant hypothesis and had been given by Cauchy in 1829 (see for

example the annotated Lemons de Wavier, p. 570, footnote and our Art

615*).
Further if r r be small, we have :

In the case of primitive isotropy we have

2 m F(r )
z 4 = 2 m F(r ) y* = c

4 , say,

&$m --^ {x
*

y*, or x 4
z

2

,
or y* z

2

,
or y* x

2

}
are all equal

We will also put

(xxxi).

,v,222X #0 ^0
~ C

2, 2,2-

Now substitute from (xxix) in (xxx) and using these values, we find

'

+

Now there are certain relations holding between the constants c,

which are easily found thus : Change the axis of x by linear transfor-

mation :

x
o
= ^o + $/o + 7*o where a2 + ^

2 + 7
2 =

1,

then from the initial isotropy we have

2 m x (r )
x 4 = 2m xW <">

and 3 m x (r )
^ 6 = 5 m x (r )

^ '6

,

where x(r )
^s any function of r and a, /?, y may be any direction-cosines

we please ;
it follows that :

(
a + p

2 + y
2

)

2 2 m X (r )< = S m x (r ) (aaJ + ^y + y
-(

These must be identities as they are true for all values of a, /?, y.
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Hence we may equate like powers of a, (3, y on both sides. In the first

relation by equating the coefficients of ft
4 and again of a

2

/3
2 we deduce

the first of relations (xxxi) and also

2m x (r>;=32m x (r> V,
or c

4
= 3c22 ........................... (xxxiv).

In the second relation by equating the coefficients of a4

/?
2

,
a4

y
2

,

f?y* and (Pa
2 we obtain the third of relations (xxxi), as well as the

new one
C = 5c

4 , 2
.............................. (xxxv).

By equating the coefficients of ft
6 we reach the second of relations

(xxxi) ;
and by equating those of a

2

/3
2

y
2
the new one :

C6=15c2l2l2
........................... (xxxvi).

From these relations
1

among the c's we have by multiplying out the

first two expressions of (xxxii) and neglecting the products of s, s, s",

\xxxx\ x IMWI = 9

= 9 \xyxy\*.

This is the required type of relation on the hypotheses of rari-

constancy and small permanent strain.

[144.] With regard to the latter assumption Saint-Venant

remarks that the terms neglected can only produce very small

errors :

...si Ton considere que les e"crouissages et la trempe, qui changent
tres-sensiblement la tenacite et les coefficients d'elasticite, alterent a

peine la densite des corps. On peut d'ailleurs s'assurer, par un calcul,

que les portions ainsi negligees de 1'expressiou de 3\xyjry\ sont constam-

ment comprises entre les portions correspondantes de celles de |X*M?I et

\yyyy\j en sorte qu'en supposant meme qu'elles alterent legerement les

valeurs absolues de ces trois coefiicients, elles n'altereront pas sensible-

ment pour cela la relation de moyenne proportionnalite de 3 \xyxy\ entre

\xxxx\ et \yyyy\, donnee par les termes du premier ordre en s, s', s"

(p. 379).

The calculation mentioned is made by Saint-Venant in a foot-

note pp. 37981.
The other assumption that ran-constancy holds for isotropy

seems very approximately, if indeed not absolutely, true in the

1 Saint-Venant obtains these relations among the c's by appealing to a general

principle given by Cauchy in his Naiiri'uu.r A.rc/r/ivx, Prague, 1835, p. 35. It

amounts to replacing 4 or 6 in (xxxiii) by the general index 2/t and then equating

general terms.
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case of metals. We may then, I think, very legitimately adopt the

ellipsoidal distribution indicated by the relations

together with rari-constancy d/d'
=

e/e =f/f = 1 for most cases of

worked metal such as is used in constructions.

[145.] The fourth section of the memoir (pp. 381 414) is

entitled: Consequence, en ce qui regarde la theorie du mouvement de

la lumiere dans les milieux non isotropes, en tenant compte des

pressions anterieures aux vibrations excitees.

This section more properly belongs to the history of physical

optics, and I shall content myself here with referring to its chief

points without reproducing the analysis.

[146.] In the first place Saint-Venant refers to Green's memoir
of 1839 (see our Arts. 917 18*), and states the conditions Green

thinks needful in the optical medium which doubly refracts. These

conditions in our notation are :

\xxxx\ = \yyyy\ \zzzz\ = 2 \yzyz\ + \yyzz\ 2 \zxzx\ + \zzxx\

= 2 \xyxy\ + \xxyy\

. )

\yyyz\ = \zzzy\ = \zzzx\ = \xxxz\ = \xxxy\ \yyyx\ = (J

=
j

"|

(xxxviii).

\xxyz\ + 2 \zxxy\ = \yyzx\ + 2 \xyyz\ = \zzxy\ 4- 2 \yzzx\

They are obtained on the hypotheses of multi-constancy, of what

Green terms extraneous pressures, but Saint-Venant better initial

stresses (pressions ante'rieures), and finally of transverse vibrations

being always accurately in the front of the wave. These conditions

are practically identical with those obtained by Lame : see our

Art. 1106*

[147.] Saint-Venant asserts that these conditions involve the

isotropy of the medium in question, and therefore destroy the

possibility of double refraction. If we suppose rari-constancy they
are of course the conditions for isotropy, does this however remain

true in the case of multi- constancy ?

Glazebrook in his Report on Optical Theories (British Associa-

tion Report, 1885), p. 171, holds that Saint-Venant's criticism fails

to reach Green. Let us endeavour briefly to indicate the lines of

Saint-Venant's attack.
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On pp. 384 393 he shews that Green's conditions flow from

the hypotheses with which he has started. He then proves :

(i) From the tasinomic relation that the stretch-coefficient is

the same for every direction or

= \xxxx\.

Thus an equal stretch always produces the same element in the

traction whatever its direction.

(ii)
That the second set of Green's conditions are fulfilled for all

axes, i.e.

iy/yvi = |*v*yi = 0, etc.

(iii)
That the conditions whose type is

= 2

are true for any change of rectangular axes.

(iv) That the third set of conditions of the type

l^yVI + 2 |*V.ry| =

are also true for any change of rectangular axes.

(v) That the reciprocal theorems are true, ie. if any one of the

relations in (i)
to (iv) hold for all rectangular axes, then Green's

fourteen conditions follow.

It will thus be noted that Green's conditions are not based upon any
conception of direction in the body, if fulfilled for one set of rectangular
axes they are fulfilled for all. So far as these conditions are concerned

the body possesses isotropy of direction, i.e. there is nothing of the

nature of crystalline axes, or the peculiarity of t/ie medium has no
relation to direction in space. This seems to me the element of isotropy
in Green's conditions which Glazebrook misses, and which Saint-Venant
overstates when he identities it with absolute elastic isotropy. Glaze-

lirook well points out that if we give a stretch sx only we have the

following system of stresses
1

:

xr = \xxxx\ 8XJ yz = \yzxx\ 8m
*xy
= \xxyy\ 8X ,

zx = 0,

^ = \xxzz\ 8xy xy = 0.

Here we are at liberty to take the stretch in the direction of the axis

1 By choosing as our axes the orthotatic axes we can reduce the stress-strain

relations as given by Green to the following types :

where a=
|xxxx\ = same for all directions

I _
> -

J

_ values for orthotiitic a
e-\zrzx\ >

-dirr.-t slulr , Mi< ;.

/= |
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of x, because of the directional isotropy of Green's conditions. It
follows that such a stretch produces no shear on a face perpendicular to
its direction. Glazebrook notes that it does produce a shear J7, and
that this shear together with the tractions w, ** may be functions of

the direction, since Green's conditions do not involve

\xxyy\ f \xxzz\j and \yzxx\

being the same for all systems of rectangular axes.

But is this the system of stresses we should expect to find in

the ether in a crystallised medium ? It seems to me physically

very improbable, but it is best to let Saint-Venant speak himself,

only remarking that the reader will do well to understand by Saint-

Venant's use of the word isotropy, the independence of Green's

conditions of all sense of direction, as explained above :

II en resulte que 1'exacte transversalite des mouvements moleculaires,
ou leur parallelisme a des ondes de toutes les directions dans un milieu

transparent, exige une foule de conditions qu'on ne voit remplies que
dans les corps isotropes. On remarque, surtout, que non-seulement une
dilatation s^ ne produit qu'une pression exactement normale irv, ou aucune

composante tangentielle de pression sur une face qui est perpendiculaire
a sa direction

(|*y*'*'|
= \afafofof \

=
0) et, aussi, qu'un glissement sur une

face, n'y engendre jamais que des composantes tangentielles (\x
rxr

x'y'\ = 0),

mais encore qu'en tout sens, ou quelle que soit la direction x' dans ce

milieu, une egale dilatation s^ y produit une pression d'egale intensite

tf (\xfxfxfyf\ constant).
Or une pareille egalite est contraire a toutes les idees qu'on peut se

former, d'apres les faits, des corps doues de la double refraction. Us
sont cristallises sous des formes polyedriques nori regulieres et variees

;

ils offrent des clivages suivant certaines directions
; ils sont, en un mot,

d'une contexture essentiellement inegalc dans les divers sens, et qui doit,

tout porte a le faire presumer, rendre inegaux les rapports ^/s^ = \af*afaf\

des pressions dans Tether dout ils sont impregnes, aux petites dilatations

qui les engendrent, et rendre les pressions obliques aux dilatations,

excepte pour certains sens principaux. Cette presomption est changee
en certitude, si Ton considere la birefringence artificiellement produite

par une compression donnee dans un seul sens, ou inegalement dans

plusieurs, a un corps amorphe primitivement isotrope et uni-refringent, tel

que le verre. On a en effet calcule, au no. xxxii (equation of our Art.

143), Finegalite des coefficients \xxxx\, \yyyy\ due a Tinegalite des rapproche-
ments moleculaires dans les sens x et y. Ce calcul etait for.de, il est vrai,

sur les expressions (equation xxx) assignees aux deux coefficients par

1'analyse des actions s'exergant entre les points materiels suivant leurs

lignes de jonction deux a deux, et proportionnellement a une fonction

de leur distance. Mais quelque motif qu'on puisse s'alleguer de

revoquer en doute cette grande loi qui ne prejuge pourtant rien quant
a la forme de la fonction, et quelque chose qu'on puisse concevoir a sa

T. E. II. 7
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place, il est impossible de ne point convenir que 1'inegal rapprochement
moleculaire en divers sens doit influer sur la grandeur des elasticites

directes \xxxx\ = xx/sx comme elle influe bien certainement sur celle

des autres elasticites, dites laterales, \xwy\ = xx/8y ,
ou tangentielles,

\xyxy\ = xy/Vyy, etc., puisque sans les ine"galites au moins de celles-ci en

divers sens, les formules ne donneraient pas de double refraction. Un
milieu ne peut etre elastique et vibrant si ses parties n'agissent pas les

unes sur les autres, et quelque soit le mode de leur action, il n'est pas

possible d'imaginer qu'elles engendrent des elasticites directes parfaite-
ment egales, lorsqu'il y a une inegalite de contexture qui rend inegales
les elasticites laterales ou tangentielles. (pp. 396 8.)

This argument seems to me of great weight (see, however, a

point raised in our Art. 193 (1)), and would incline me to reject

Green's conditions (especially when we remember that Green him-

self supposed the ether-density to vary in refracting media), even

were there no other grounds for questioning his hypotheses.

[148.] Saint-Venant now proceeds to deduce the exact wave-

surface of Fresnel on the supposition that the vibrations are not

accurately in the wave-front. He does this on the lines of

Cauchy's memoir of 1830, but he does not assume rari-constancy

and in many respects his method is an improvement on Cauchy's.
This leads him to the following inter-constant conditions; the

structure of the ether being supposed to have three planes of

symmetry and thus its elasticity to be represented by the nine

constants of our Art. 117 (a) :

<-/) -/) = </+/)' ,.,
e)

If the relations (xxxix) are satisfied we shall have Fresin-l's

wave-surface. If we make a = b = c we shall reduce these con-

ditions to Green's, which are thus only a particular case of those

of Cauchy and Saint-Venant. (pp. 398406.)

[149.] On pp. 406 411 Saint-Venant demonstrates that the

relations (xxxix) give practically the same results as the ellipsoidal

distribution of (xxxvii). He supposes d/d' = i and then solves the

first equation of both sets (xxxix) and (xxxvii) for d\ let the values

so obtained be respectively d
l
and d^. Then by a numerical

calculation we reach the following results :
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If b/c varies from I'l to 1/5, then for values of i between J

and 2 the ratio of djdz always lies between '98641 and '99962.

In other words whatever the multi-constant i is between these

limits, the relations (xxxix) and (xxxvii) give practically the same
value of d.

Thus the Cauchy-Saint-Venant conditions correspond closely to

the ellipsoidal distribution, which is the distribution we should

expect in a body like the ether originally isotropic, but, owing to

its presence in the doubly-refracting medium, subjected to an

initial state of strain.

The fourth condition of (xxxix) is shewn to be very nearly true

if the first three are satisfied (pp. 409 411).

[150.] The objections to Saint-Venant's theory are given by
Glazebrook (op. cit. pp. 172 3). They consist in: the difficulty

of reconciling the theories of double refraction and reflexion so

long as we suppose the latter to depend
" on difference of density

and not of rigidity in the two media," and the existence of the

"quasi-normal wave." The latter objection is met by Saint-

Venant with the arguments of Cauchy (see his pp. 411 13), and

it does not seem insuperable ;
the former is in some respects

serious, and is not discussed by Saint-Tenant. At the same time

we must observe that the ellipsoid-distribution to which the

Cauchy-Saint-Venant conditions approximate does suppose a

change in the elastic constant \yzyz\ owing to the isotropic ether

being rendered aeolotropic in the doubly-refracting medium: see

our Art. 143, equation xxxii.

The whole subject is of peculiar interest apart from its bearing
on the theory of light, as tending to introduce as by means of the

elastic constants into the molecular laboratory of nature indeed

this is the transcendent merit of rari-constancy, if it were only
once satisfactorily established !

[151.] Saint-Venant's fifth section (pp. 414425) is entitled :

Distribution, en divers sens, des modules on coefficients de'lasticite

definis d la maniere de Young et de Navier. This is the determina-

tion of the stretch-modulus quartic as first given by Neumann

(see our Art. 799*). It is shewn how this may be determined for

multi-constancy, but it is pointed out that in the most general

72
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case there will be a denominator of 720 terms in the constants,

and Saint-Venant wisely contents himself with the case of three

planes of symmetry and a 9-coristant medium.

The conclusions drawn as to the nature of the quartic and its

special reduction to an ellipsoid, are all treated with somewhat

fuller detail in the annotated Clebsch, and we have accordingly

discussed them in our analysis of that work : see our Arts. 308 to

310.

[152.] We may note that Saint-Venant (pp. 424 5) attempts to

apply the ellipsoidal distribution of elasticity, which leads to the

ellipsoidal distribution of stretch-modulus, i.e.

_ . + _JBi+ ^ai

to the case of wood. He appeals to Hagen's results (see our Art. 1229*)
and compares Hagen's empirical formula

with that given by the ellipsoidal distribution

He shews the theoretical impossibility of Hagen's formula, arising
from the fact that if Ex E

y,
Er is not equal to them, and endeavours to

shew by curves that (ft) and (a) coincide within the limits of experimental
error. By graphical representation of the curves it is seen that only
the ellipsoidal distribution gives anything like a satisfactory theoretical

as well as practical figure, and Saint-Venant concludes that, although

proved for a different kind of medium (see our Arts. 142 and 144), it

may be practically of use in the case of fibrous material like wood. Later

Saint-Venant saw occasion to alter this opinion ;
he treats this im-

portant material very fully in the Lemons de Navier (pp. 817 25) and
in the annotated Clebsch (pp. 98 110). Under the latter heading we
shall discuss his more complete treatment of the subject : see our Arts.

308 310. The memoir ends with the resume to which we have befiv
referred.

[153.] Sur la determination de I'Mat d'equilibre des tiges

tiques d double courbure. Les Mondes, Tome 3, 1803, pp. 568

575. This note was a contribution to the Societd Philomatlu'ijne,

August 8, 1863; see also L'Institut, 1863, pp. 3245.
Consider a rod of double curvature; let M

t ,
J\f

n ,
M

ft
be tin-

moments of the applied forces about the tangent to the central
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axis, the normal to the osculating plane and the principal radius

of curvature. Let /, I' be the moments of inertia about the

principal axes of the cross-section, and let e be the angle the

radius of curvature p makes in the unstrained state with the axis

of/'; then Saint-Venant gives the two following formulae, where
e is the increment in e and Bs is an element of central axis :

P

dM
1 = Mp

ds
"

p
'

Hence when e = or 7r/2, or / = I', e depends only on M
p the

moment of the forces round the radius of curvature.

The second equation shews that the moment of torsion M
t

is

only constant when M
p
=

along the whole length of the wire.

Saint-Venant refers to the work of Poisson, Wantzel and Binet:

see our Arts. 1599* 1607*. He also reproduces the example of

the Comptes rendus: see our Art. 155, and that of the horizontal

semi-circular bar of rectangular cross-section built-in at both

terminals and loaded at its mid-point used in the Lecons de

Navier, p. cxxxiv, which bring out clearly the need of taking into

consideration the angle e.

Saint-Venant refers to Bresse : Cours de mecanique appliquee:
Resistance des materiaux, 1859, p. 86, for a good investigation of

the general formulae for elastic wires of double-curvature when
the shifts are small.

[154.] Sur la theorie de la double refraction: Comptes rendus,

T. 57, 1863, pp. 387391.
This is a note on a memoir by Galopin, and points out that

there is no need to put the initial stresses zero in the ether in

order to obtain Cauchy's conditions for double refraction : see our

Art. 148. The contents of this note are practically involved in

the memoir of 1863: see our Art. 127, and concern properly the

historian of the undulatory theory of light.

[155.] Sur les flexions et torsions que peuvent e'prouver les tiges

courbes sans quil y ait aucun changement dans la premiere ni dans

la seconde courbure de leur axe ou fibre moyenne : Comptes rendus,

T. 56, 1863, pp. 115054. See also L'Institut, Vol. 31, 1863, pp.

1956.
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This memoir draws attention to the point considered by Saint-

Venant in his memoirs of 1843 and 1844
;
see our Arts. 1598* and

1603*
; namely the importance of taking into consideration the

'

angle of torsion
'

or angle between new and old osculating planes
in dealing with the elastic equilibrium of wires of double-curvature.

Saint-Venant brings out the importance by a good example, namely
a curved wire turned upon itself so as to have the same curvature

at each point of the central axis, but so that the naturally longest
and shortest

'

fibres
'

interchange places.

He points out that the stretch in a fibre distant z from the

central axis is : _
z Jl/p*-2/pp . cose + l//o

2

,

where p, pQ
are the new and the primitive radii of curvature and e

the angle the new and old radii of curvature make with each

other. In the example above referred to p pQ
and e = TT, so that

the stretch becomes

Generally when p = p ,
the stretch equals

In conclusion Saint-Venant refers to the contributions of

Lagrange, Poisson, Binet, Wantzel and himself to the subject : see

our Art. 1602* for references.

[156.] Memoire sur les contractions dune tige dont une extrdmite'

a un mouvement obligatoire ; et application au frottement de roule-

ment sur un terrain uni et tlastique: Comptes rendus, T. 58, 1864,

pp. 4558.
This memoir was written in 1845, and is an attempt to apply

the theory of elasticity to the phenomena of rolling friction. The

chief results were published in the Bulletin de la Societd Philomv-

thique of June 21, 1845. The following conclusions are given in

the resumd in the Comptes rendus :

On en deduit que le frottement de rouleraent sur un pareil sol est :

1 proportionnel a la pression; 2 en raison inverse du rayon du cylindn ;

3 independant de sa longueur (on de la largeur de jante, si c'est une

roue); 4 proportionnel a la vitesse; 5 d'autant moindre que le terrain

elastique est plus roide ou moins compressible.

Saint-Venant remarks :

Ces resultats sont d'accord avec un certain nombre d'expe"riences de

Coulomb et de M. Morin. (p. 457.)
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There is a general indication of the method of treatment adopted
in the original memoir, but it is not sufficient to replace its

analysis. The memoir itself appears never to have been published.

157. Travail oupotentiel de torsion. Maniere nouvelle d'etablir

les equations qui regissent cette sorte de deformation des prismes

elastiques. Comptes rendus, T. 59, 1864, pp. 806809. Translated

in the Philosophical Magazine, January, 1865, pp. 61 64.

In his memoir on Torsion Saint-Venant used one equation
which holds at every point within a body, and one which holds at

every point of the convex surface : see equations (vi) of our Art. 1 7

on that memoir. In the present paper Saint-Yenant undertakes

to obtain these equations simultaneously by the aid of the principle

of Work.

The potential of elasticity, that is to say the molecular work <

which a deformed element is capable of furnishing, is thus expressed for

the unit of volume of the element :

Now the values of the component stresses xx, w/ ,
..... can, we know,

be expressed as linear functions of the six strains sx,
s
y,

s2,
<r

yia o-^, CT
J:IJ ;

substitute these values in
(/>,

and we obtain an expression of the second

degree in the strains, consisting of twenty-one terms. In the case of

torsion which we are considering, the strains reduce to the two v
xy

and <TXZ,
so that we have

where
ju, t

and
/u-2

are the slide-moduli in the directions of y and z : see

Art. 17 of our account of the memoir on Torsion.

Now let M denote the moment of torsion so that

M= jdy dz
(x~z y xyz).

Thus if the moment of torsion is measured by an angle r we have

M - for the molecular work ; so that by equating the two expressions
2

for this work we obtain

^ffdydz^cr^j + ^cr
2

^) = ^rjjdy dz(y - Tyz) ......... (1).

Now we assume that the body has three planes of symmetry perpen-

dicular to the axes of x, y, z respectively ;
so that

du du
also ^=dy-

TZ
'

<r-=&
by equation (iii)

of our Art. 1 7.
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Substitute in the above equation (1) and we obtain

dudu

Integrate this equation by parts in the usual way, and it becomes

- cos (ny) + /*,
+ T cos W* ds

u d*u~

here (ny) and (nz) denote the angles which the normal to the surface

at the point (x, y, z) makes with the axes of y and z respectively ;
and

ds is an element of the curve of intersection of the body by a plane at

right angles to the axis of x.

If we equate to zero the term in brackets in the double

integral we obtain the equation which must hold at every point of

the interior
;
and if we equate to zero the term in brackets in the

single integral we obtain the equation which must hold at every

point of the surface.

But Saint-Venant does not explain why we must equate these

terms separately to zero
;

that is, he does not explain why he

breaks up equation (2) into two equations. Moreover the whole

process borrows so much from the memoir on Torsion that it has

not the merit of being an independent investigation.

Saint-Venant says :

Or la deuxieme et la premiere parenthese carre"e, egalees separement
a zero... :

by this he means the terms contained within the square brackets

in (2). The English translation has very strangely
" Now the

squares of the second, and of the first parenthesis, each equated
to zero,../'

[158.] A remark of Saint-Venant's on p. 809 may be cited :

Le calcul du potentiel de torsion a aussi, en lui-rueme, une valmr

pratique; car les ressorts en helice, qu'on oppose souvent a divers chocs,

travaillent presque entierement par la torsion de leurs fils, ainsi que je
1'ai montre en 1843, et que I'ont ermarquS, au reste, Binet des 1814,

M. Giulio en 1840, et rScemment des ingcnieurs des chemins de frr.

See our Arts. 175*, 1220*, 1382* and 15935*. The 1814 ,-unl

the recemment (1864) mark thf wide interval which too often

-purates theory from practice !
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[159.] Theorie de Velasticite des corps, ou cinematique de leurs

deformations. Les Mondes, Tome 6, 1864, pp. 607 and 608. If a

body is deformed any small portion originally spherical becomes

an ellipsoid: see our Art. 617*. In the present paper Saint-

Venant undertakes to establish this proposition by simple general

reasoning ;
the process does not seem very satisfactory.

SECTION III.

Researches in Technical Elasticity.

[160.] Resume des Legons...sur I'application de la mecanique
a Vetablissement des constructions et des machines Premiere sec-

tion. De la Resistance des corps solides, par Navier Troisieme

Edition avec des Notes et des Appendices par M. Barre de Saint-

Venant. The title-page bears the imprint, Paris, 1864. A foot-

note, however, on p. 1 tells us that pp. 1 224 appeared in 1857,

pp. 225336 in 1858, pp. 337496 in 1859, pp. 497688 in

I860, pp. 689849 in 1863, while the Notices et I'Historique, pp.

i cccxi, were finally added in 1864. Thus the whole work of

more than 1100 pages occupied some seven years in the production,

and thus necessarily lacks somewhat of the unity which is to be

met with in other treatises. Under the form of notes to a few

sections of Navier's original work (see our Art. 279*), Saint-Venant

has given us a complete text-book of elasticity from the practical

standpoint. At the same time, by additional notes and appendices,

he has rendered his text-book of surpassing historical value and

physical suggestiveness. The leading characteristics of the book

are simplicity of analysis and copiousness of reference. See Notice

I., pp. 412 and Notice II., pp. 289.

[161.] The cccxi. pages of introductory matter are occupied

with the following subjects: Table of Contents, pp. i xxxviii;

Notice biographique sur Navier by de Prony extracted from the

Annales des ponts et chaussees (1837, l cr
semestre, p. 1), pp. xxxix
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li
;
the funeral discourses on Navier by Emmery and Girard, pp.

11 liv : a bibliography of the works of Navier with copious remarks

due to Saint-Venant, pp. Iv Ixxxiii
;
the original prefaces to the

editions of Navier's Lemons published in 1826 and 1833; pp. Ixxxiv

xc
;
and finally Saint-Venant's Historique abregd des recherches

sur la resistance et sur V6lasticit6 des corps solides, pp. xc cccxi.

[162.] The Historique abre'gd is practically the only brief

account of the chief stages of our science extant. Girard had

written what was for his day a fair sketch of the incunabula (see our

Art. 123*), but it remained for Saint-Venant, without entering into

the analysis of the more important memoirs, to describe their

purport and relationship. It fulfils a different purpose to our own

history for it makes no attempt to replace the more inaccessible

memoirs but as a model of how mathematical history should be

written, we hold it to be unsurpassed, and can only regret that a

recent French historian has not better profited by the example
thus set

1
.

We would especially recommend to the student of Saint-

Venant's memoirs pp. clxxiii cxcii, which treat of the relation of

his own researches by means of the semi-inverse method to the

work of his predecessors. The point we have referred to in our

Arts. 3, 6, 8 and 9 is well brought out in relation to Lame"s pro-

blem of the right-six-face.

We will note one or two further points of the Historique in the

following five articles.

[163.] On p. cxcviii in the footnote Saint-Venant gives the exjrrs-
sion for the work-function in terms of the stresses when there is an

ellipsoidal distribution of elasticity : see our Art 144. He finds

_ 1 + i /** yy 5V
~2(2 + 3t)\a b c) 2bc 2ca '2ab

'

where for isotropy i = A//U, and a2 = b* = c2 =
/x.

1 The essential feature of scientific history is the recognition of growth, the

interdependence of successive stages of discovery. This evolution is excellently
summarised in Saint-Venant's lli*trinne. Our own 'history' is only a biblio-

graphical repertorium of the mathematical processes and physical phenomena
which form the science of elasticity, as a rule for the purpose of convenience

chronologically grouped. M. Marie's Histoire des sciences imithSmiitiqucs is a

chronological biography, without completeness as bibliography or repertorium.
Excellent fragments there are in it, but the conception of evolutionary dependence
is wanting.
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Generally :

\xxxx\ = (2 + i) 0?, | yzyz \

=
bc, \ yyzz \

=
ibc,

I yyyy I

=
(2 + i)

62
, \zxzx\ = ca, I

zzxx
\

=
ica,

I
zzzz

|

= (2 + i) C
2

, |ffjwy| = ab, \xxyy \

= iab.

[164.] Pages cxcix ccix deal with the history of the problem
of rupture. According to Saint-Yenant, two kinds of rupture may
be distinguished : rupture prochaine and rupture eloignee. The
former falls outside the theory of 'perfectly elastic' bodies, the

latter he thinks may be deduced from the hypothesis that

when the limit of mathematical elasticity is passed, i.e. when
the stretch is greater than the limit at which stretch remains

wholly elastic and proportional to traction, then the body
will ultimately be ruptured if it has to sustain the same load.

The reader who has followed our analysis of the state of ease

and the defect in Hookes Law given in the appendix to

Vol. i. and also our Arts 4 (7) and 5 (a) in the present volume

will recognise that this hypothesis has only a small field of

application. What we have really obtained is a limit to linear

elasticity. It is the more important to notice this because Saint-

Venant argues that we must take as our limit the maximum

positive stretch, for, as Poncelet has asserted :

"
que le rapprochement

moleculaire ne peut etre une cause de de'sagregation" (p. cci). It is

probably true that rupture can only be produced by stretch, but

squeeze can surely produce failure of linear elasticity when the body
is so loaded that no transverse stretch is possible. Hence when
Saint-Venant introduces the stretch and slide-moduli into his con-

dition for safe loading and so makes it a question of linear elasticity,

it seems to me that he ought at the same time to alter his statement

as to the greatest positive stretch being the only quantity we are

in search of. Indeed, his condition seems partly based upon an

idea associated with rupture, and is then applied to constants and

equations deduced from the principle of linear elasticity (see his

p. ccviii, XLVIIL). The limitations to which his theory is sub-

jected were, however, partially recognised by Saint-Venant himself

(see his pp. ccv vii). Thus he writes :

Nous ne pretendons pas, au reste, qu'une theorie subordonnant

uniquement le danger de rupture d'un solide a la grandeur qu'atteint
une dilatation lineaire n'importe dans quelle de ses parties, et indepen-
damment cles autres circonstances ou il se trouve en meine temps, soit

le dernier mot de la science et de Tart.
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He refers on this point to the experiments of Easton and
Amos : see our Art. 1474*.

[165.] Pages ccxiv xxiv deal with the problems of resilience

and impact.

In the footnote p. ccxvii, there is an error in the integral of the

equation -^
= g cos a --,. z there given. It should be

z =/cos a 4- FA/- sin ./ ^ t -/cos a cos */? t.

The error was noted by Saint-Venant himself in a letter to the
Editor of this History, August, 1885.

On p. ccxxii and footnote there should have been a reference

to Homersham Cox with regard to the factor k 17/35. His

memoir of 1849 (see our Art. 1434*) seems to have escaped Saint-

Venant's attention.

A further consideration of the effect of impact on bars when
the vibrations are taken into account occurs on pp. ccxxxii viii,

and then follows (pp. ccxxxix xlix) an account of Stokes' problem
of the travelling load (see our Art. 1276*). Saint-Venant refers

to the researches of Phillips and Renaudot, but his account wants

bringing up to date by reference to more recent researches.

[166.] On pp. ccxlix ccliii Saint-Venant refers to the rupture
conditions given by Lams' and Clapeyron and again by Lam^ for

cylindrical and spherical vessels. It seems to me that he has not

noticed here that these conditions are, on his own hypothesis of a

stretch and not a traction limit, erroneous : see the footnotes to our

Arts. 1013* and 1016*.

[167.] After an excellent and succinct account of the course

of the investigations of Euler, Germain, Poisson, Kirchhoff &c. with

regard to the vibrations of elastic plates (pp. ccliii cclxxi) the

Historique closes with two sections LXI. and LXII. (pp. cclxxi cccxi)

on the experiments made by technologists and physicists previously

to 1864 on the elasticity and strength of materials. Good as these

pages are, they are insufficient to-day in the light of the innumer-

able experiments of first-class importance made during the last

twenty years.
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[168.] In considering Saint-Venant's edition of Navier we

shall leave the original text out of consideration, and note only

those points of Saint-Venant's additions (ten-fold as copious as the

original text) which present novelty of treatment or result. We
put aside all matters already discussed in the memoirs on Torsion

and Flexure. Those memoirs are here to a great extent embodied,

their processes simplified and their results extended.

[169.] (a) On pp. 2 3 we find Saint-Venant basing the theory
of elasticity on the principle of a central inter-molecular action

which is a function of the distance.

(6) On p. 4, 6 we have ecrouissage and enervation defined.

These definitions are rather theoretical than practical. Thus

Saint-Venant defines as Ecrouissage the arrangements taken by the

molecules of a body when they pass by changes which are persistent

from a less to a more stable condition of equilibrium, as enervation

the arrangements when they pass to a less stable condition. It

will be noted that the physical characteristics of set, yield-point

and plasticity are not clearly brought out by these definitions.

(c) Pp. 5 14 treat of rupture by compression. Saint-Venant

rejects the theory of Coulomb (see our Art. 120*) as giving a stress

not a stretch limit. He adopts that of Poncelet, who in 1839 in a

course given at Paris, ascribed rupture by compression to the

transverse stretch which accompanies longitudinal squeeze (pp. 6

and 10, and compare with footnote p. 381). That short prisms of

cast iron, cement &c. often take 8 to 10 times as great a load to

rupture them by negative as by positive traction and not the 4

times of the uni-constant theory, is attributed not to bi-constant

isotropy but to terminal friction which hinders the lateral ex-

pansion, or to want of isotropy (pp. 10 and 12). Such rupture,

however, really lies at present outside theory.

(d) On pp. 15 19 we have the generalised Hooke's Law and

the definition of the stretch-modulus (E) and the stretch-squeeze
ratio

(77).
Saint-Venant remarks, that theoretically 77

= J (i.e. on

the uni-constant hypothesis), that Wertheim finds it differs little

from i, and that it can never be > ^ as otherwise a traction would

diminish the volume of a prism of the given substance,
"
ce qui

nest pas supposable" There is no further reason given why we
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cannot suppose the volume to diminish. We may, however, look

at the matter thus :

Let = the ratio of the slide-modulus to the dilatation coefficient

(= /i/X), then (Vol. i. p. 885) :

Hence, since is necessarily positive, we must have IS
/p.
> 2 and < 3

(the mean of these gives the uni-constant hypothesis IS
/p.

=
5/2). But

ri

rj
= ---

1, or
rj
can only have values from to i.

/

This proof holds only for an isotropic material. In the case of

an aeolotropic material it does not seem obvious why a longitudinal
stretch should not produce a negative dilatation. The ratio of dilatation

to stretch

and in the case of wood the values obtained for ^ r/2
would seem to

give this a negative value, for they are >
J. Saint-Venant admits later

this possibility : see his pp. 821 2. Hence any set of experiments
which give values for

77
> J may be taken to denote that the material in

question is not isotropic and homogeneous.

(e) On pp. 20 21 it is suggested that for some substances

it is advisable to consider the stretch-modulus E as varying over

the cross-section of a prism. Saint-Venant refers to the experi-
ments on this point of Collet-Meygret and Desplaces : see our

Chapter XI. He also regards Hodgkinson's experiments as lead-

ing to a like conclusion notwithstanding a special experiment to

the contrary : see our Arts. 952* (iii), 1484* and references there.

We thus have the formula

P. = tJEji

put forward by Bresse, where Px is the total traction in a prism
stretched sx in the direction of its axis x, and (JEjdoo)/(o is the

mean value of the stretch-modulus over the cross-section &>. For

metals coults ou lamints, where on the lateral faces there is a surface

or skin change of elasticity, Saint-Venant would take :

Px
= sx (> + eX),

X etant le p6rimetre de la section supposee dirninuSe d'un a deux
millimetres tout autour, afin de repre"senter le developpement moyen de
la croute done"e ge"neralement de plus de roideur et de ix-if |in- !< r

et E et e Otant di-ux coefficients a determiner par les me"thodes connues de
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compensations d'anomalies en faisant des experiences d'extension sur
des barres ayant des grosseurs on des formes sensiblement differentes

(p. 21).

(/) Saint-Yenant returns to this same point on pp. 42 44,

and pp. 115 118 when treating of the problem of flexure. In

the former passage, Saint-Venant gives reasons for adopting in the

case of metal a skin change only in the elastic-modulus. He pro-

poses the formula

P

for the bending-moment, I/p being the curvature, / the moment of

inertia of the section, and i that of its contour, or rather of the

mean line of the skin zone (ligne qu'on peut placer a 1 ou a 2 milli-

metres a 1'inte'rieur). E
Q
and e are to be determined by experiments

on the flexure of bars of the given material but sensibly different

in size and form.

In the case of wood, Saint-Venant, referring to the experiments
of Wertheim and Chevandier (see our Art. 1312*), adopts a para-
bolic law for the variation of the stretch-modulus. Let E and E

l

be the moduli in the direction of the fibre at the centre (r
=

0) and

circumference (r
= r

t )
of the tree, then at any other point (r) we

have

Saint-Venant determines the value of fEy^dco i.e. the 'rigidity'

for a bar of rectangular cross-section (b x c) whose centre of gravity

was, before it was hewn, distant r from the centre of the tree

(p. 44).

In the second passage to which I have referred the rupture
condition (rather the failure of linear elasticity) is deduced from

the like hypothesis of skin-change. Saint-Venant obtains a formula

where M is the maximum bending moment which will not cause

the elasticity of a 'fibre' at distance y from the neutral axis (where

the stretch-modulus = E) to fail by giving it a greater stretch than

TJE. We have then to find the fibre for which TJEy is smallest.

Si Ton a des raisons de penser que c'est la fibre la plus dilatee

comme quand la matiere est homogene, ou que la contexture heterogene
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est telle que le rapport TJE varie moins que y, 1'equation sera, en

designant comme a 1'ordiuaire par y la grandeur de 1'ordonnee de cette

fibre, et par E', T'w les valeurs correspondantes de E, T ;

ou bien, C et c designant deux constantes dependant comme E et e de la

nature de la matiere et de son mode de forgeage ou de fusion,

Saint-Venant calculates the value of M
Q

for a rectangular

section, and also deals with a similar expression for the case of

the wood prism referred to above; see his pp. 117 8.

(g) In 812 (pp. 2226) the reader will find some account

of the behaviour of a material under stress continued even to

rupture. This account was doubtless for the time succinct and

good, but there are several points which could only be accepted

now-a-days with many reservations. For example the statement

(11): Le calcul thdorique est toujours applicable pour limiter les

dilatations et etablir les conditions de resistance d la rupture

dloignee is one which requires much reservation. We have seen

in Vol. I. p. 891 that a material may be in a state of ease and yet
not possess linear elasticity for strains such as often occur in

practice. Further that even when there is linear elasticity its

limit can often be raised without enervation almost up to the yield-

point, where one exists. Hence when Saint-Venant takes s to

be the stretch at which material ceases de secrouir et commence a

s'dnerver, ce qui se manifeste par la marche des allongements per-

sistants, and puts P = or < Ews
Q
as the safe tractive load where

E is the stretch-modulus and &> the sectional area we find some

difficulty in ascertaining what limit s really represents. In most

cases before enervation begins, linear elasticity will be long gone,

and all the formula really can tell us is the stage at which linear

elasticity fails ;
this fail-limit may be very far from the yield-

point, and in some materials very far indeed from the elastic limit.

Saint-Venant refers to the '

fatigue
'

of a material due to re-

peated loading and to the question whether vibrations can change

the molecular structure from fibrous to crystalline (see our Arts.

1429*, 1463* and 1464*). These are points on which we knew

to-day a good deal more than was accessible in 1857.
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[170.] Article III. is devoted to the flexure of prisms and
commences with a criticism of the Bernoulli-Eulerian hypothesis
as expounded by Navier. Saint-Venant shews with the simplest

analysis that the cross-sections neither retain their original contour

(not even in the simple case of
'

circular
'

flexure, 3, p. 34) nor

their original planeness ( 4, pp. 36 9). To 6, p. 40 2, we have

already referred when dealing with the question of equipollent

load-systems in Art. 8 of our account of the memoir on Torsion.

[171.] Pages 52 58 of this Article reproduce with some

important additions the formulae of Art. 14 of our account of the

memoir on Torsion. Saint-Venant proves the following results for

the case when the load plane is not a plane of inertial symmetry :

(a) The neutral line is the diameter of the ellipse of inertia

conjugate to the trace of the load-plane on the cross-section. (This
theorem was given by Saint-Venant and Bresse about the same

time: see our Arts. 1581* and 14.)

(6) The '

deviation
'

or angle between the load- and flexure-

planes is a maximum when the former has for trace on the cross-

section a diagonal of the rectangle formed by the tangents at the

extremities of the principal axes of the ellipse of inertia.

A good illustration of a simple kind shewing the deviation is

given in 7, p. 57.

[172.] The notes on pp. 73 85 deal with the elastic line

when the flexure is not so small that we may neglect the square of

the slope which the elastic line makes with the unstrained position

of the central axis. The results here given express the maximum
deflection and terminal slope in series ascending according to

powers of . .;.
-

,
further the load and maximum stretch

rigidity

max. deflection , ,, ,,

in series of ascending powers of ,
and finally tne

stretch-modulus in terms of max. deflection, span and load.

Saint-Venant in Notice I. (p. 42) claims some originality for

these results. This I think can only refer to the convenient form

into which he has thrown them : see our Art. 908*.

T. E. II. 8
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[173.] Article IV. (pp. 86186) is entitled : Rupture par
Flexion.

This practically deals with the formula for the maximum
moment

M -M -

where h is the distance of the 'fibre' most stretched from the

neutral axis
1 and co/c* the sectional-moment of inertia about that

axis. The question then arises : what is T ? Samt-Venant holds

that if T be the stress at which enervation commences, we have

in reality a condition for the safety of a permanent structure. This

involves the enervation-point being very close to the limit of linear

elasticity. In many materials this is certainly not the case, even

were it possible to define exactly this enervation-point. We must

treat the results of this article as applying only to the fail-limit,

i.e. the failure of linear elasticity (p. 91). Saint-Venant indeed

fully recognises that the formula does not give any condition for

immediate rupture, and that no argument against the mathematical

theory of
'

perfect elasticity
'

can be drawn from experiments on

absolute strength. He states clearly enough that for beams of

various sections, for which co/c
z

/h retains the same value, T varies

with the form of the section and is greater than, even to the double

of, the value obtained from pure traction experiments (this is the

well-known 'crux' which the technicists raise against the mathema-

ticians) : see his pp. 90, 91. Yet it seems to me that even the

extent to which he adopts the formula is not valid. It only gives

the fail-limit, which in some cases, perhaps, may indicate rupture

tloigne'e.

[174.] On pp. 95 101 our author treats of 'Emerson's

paradox
'

or the existence of '

useless fibres '. In other words,

the expression coK
2

/h can be occasionally increased by cutting

away projecting portions of CD.

We have the cases of beams of square, triangular and circular

cross-sections fully treated, as well as that of the croix d'dquerre.

1 We use ' neutral axis' for the trace of the plane of unstrained 'fibres' on the

cross- section, while we retain 'neutral line' for the succession of points in the plane
of flexure through which pass real or imaginary elements of unstretched fibre. It

will only coincide with the ' elastic line
'

or distorted central axis when there is no
thrust.
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The elastic failure of such outer fibres does not however denote that

the truncated section possesses greater strength than the complete

section, as Emerson argued from the formula, Rennie confirmed

and Hodgkinson refuted by experiment: see our Arts. 187* and

952*
(ii). Saint-Venant very aptly terms them fibres inutiles.

We may indeed calculate the maximum elastic efficiency of such

sections by supposing them truncated till c0K?/h is a maximum,
but the difference is generally so small as not to repay the labour

of calculation, albeit it suggests a method of economising material.

[175.] Pages 103 105 treat of the obscure point of how to

determine the value of T in the formula of Art. 173, so that

there shall be no danger of rupture eloignee. Saint-Venant

apparently recognises that the exact point at which enervation

begins is difficult to discover experimentally, especially when
the duration and repetition of loads have to be taken into account

(p. 105).

Let T
,
T '

be the stresses which in positive and negative traction

respectively mark the limit of rupture eloignee ;
let Tit T be the corre-

sponding easily discovered stresses which mark cohesion instantanee. Then
Saint-Veiiant observes that we may learn from previous constructions and
from our experience of structures submitted to long use what fraction

T is of T
lf and that we are justified in taking for the same kind of

material, even in its several varieties, a constant ratio between T and

Z\, e.g. ro
= |?V

On n'aura pas pour cela la dilatation liniite s =T /E e*gale au 1/8 de la

dilatation finale positive ou negative, puisque la proportionality des efforts

aux effets cesse longtemps avant. Mais on aura un certain rapport aussi k

peu pres constant entre ces deux dilatations (p. 106).

Saint-Venant even suggests (p. 107) thatT may be taken proportional

4: (OK"
to the T obtained from the formula P = T .

-
. -=- where P is the concen-

l h

trated mid-load which will rupture immediately a bar of length I

terminally supported. As the T obtained from this formula when used

for rupture is found to be a function of the section, this suggestion seems

to me a dangerous one.

[176.] On p. 109
( 13) a formula is given for finding T ' when T

is known. Suppose that the material is a prism with longitudinal stretch-

modulus E, and that E
t

is the same modulus for all directions trans-

verse to the axis; let T
0tt

and T
1Jt

be the limiting elastic and the

82
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rupture stresses when the material sustains a tractive load in the

transverse sense, 17 .the stretch-squeeze ratio. Then :

-^r
= stretch in transverse direction due to T

0it ,

1 T
- -- = squeeze in longitudinal direction...,

1 TE - -~ it = safe limit to negative traction in longitudinal direction.

Thus we must have :

T' I E Tot
hence -^

- -=
-=$- .

Now by what precedes, Saint-Venant holds that we can legitimately

replace T
0it/TQ by T

lit/Tlt a ratio easily found from rupture experi-

ments, thus :

fTf *
~Ef

*

fjl
*

In the case of isotropy Tlt
= T

lt E = E
t,

and thus on the uni-

constant hypothesis we should have T' /T =
l/rj

= 4.

Saint-Venant finds from experiments of Wertheim and Chevandier,
that for oak T' /T = 1-21 or 1'08

;
for cast-metals he suggests 3, for stone

8 to 10, and for wrought iron 2. He holds the value 6 as obtained by
Hodgkinson for cast-iron much too large to be prudently adopted, and
discusses at some length Hodgkinson's experiments on the beam of

strongest section : see our Art. 243*.

Finally we may note that on p. 115, he states that for different

varieties of the same material it is more legitimate to take TQ proportional
to ^of the formula of Art. 175, than to the stretch-modulus as some
writers have done.

[177.] Pp. 122 171 are occupied with what is generally

known as the comparative strength of beams of various sections

in reality it is the failure of linear elasticity and not strength

with which we are dealing.

(a) On pp. 123 5 we have the fail limit determined for cases of

loading in planes of inertial asymmetry. The formula of our Art. 1 1

namely :

M = minimum of
,

-

z cos
</>

*9*
\v<> find repeated.
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When, as in the case of a rectangular section, 2, y have values independent
of < corresponding to a maximum of the denominator, we find at once

**

Saint-Yenant applies these results to rectangular and elliptic

sections.

(b) On pp. 143 156 we have a very full investigation of the

X-section with special reference to Hodgkinson's section of greatest

strength. Although Hodgkinson's experiments were made on absolute

strength, Saint-Venant finds that his results are true for the fail-limit

(rupture eloignee). The general conclusions given on p. 155 are : (1)
When T\ is sensibly greater than T the X-section with unequal flanges
has a higher fail-limit, but a less resistance to flexure, than one with

equal flanges, provided the squeeze of the smaller flange is not

accompanied by lateral stretches more dangerous than the longi-
tudinal in the larger flange, nor the smaller flange receive lateral

flexure (buckle) owing to its compression. (2) When the height of

the section is increased by -4 to -7 of itself we obtain for the same
area a X-section of equal flanges with a higher fail-limit than one

of unequal flanges and the lesser height; at the same time the

resistance to flexure is largely increased. Such increase of height,

however, increases the possibility of deversement being produced by a

slightly oblique load and facilitates the lateral flexure of the squeezed

(c) On pp. 156 163 we have a discussion of the fail-limit of

feathered axes. Saint-Venant shews that their advantages are not so

great as has been frequently supposed, while as we have seen (Art. 37)
in the case of torsion they give no increased resistance worth mentioning.

[178.] The next point we have to notice is one of considerable

interest and has recently been again attracting the attention of

the technicists
1
. It is the calculation of the absolute strength

from an empirical relation between stress and strain supposed to

hold nearly up to rupture. That strain increases more rapidly

than stress after the beginning of set even up to rupture had been

long noticed by experimentalists, and various modifications of

Hooke's Law had been suggested by Varignon, Parent, Bulfinger
and Hodgkinson : see our Arts 13*, 29 0*, 234* and 1411*. There

has been, however, considerable obscurity about the various

empirical formulae suggested, and they have only been applied to

the old Bernoulli-Eulerian theory of flexure with its unchanged
1 See the discussion and references in Stabilite des Constructions : Resistance

des Materiaux by M. Flamant, pp. 3229, and also in the Engineer, Vol. LXII., 1886,

pp. 351, 392, 407.
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cross-sections. To begin with, they can hardly be taken as ap-

proximate for any material having a distinct yield-point ;
nor in

the second place is it clearly stated how far they represent stress-

strain relations for bodies whose elasticity is non-linear, or how far

elastic-strain and set are to be treated as coexistent.

Saint-Venant after citing Hodgkinson's formulae (see our Art. 1411*)
takes by preference the following for the positive and negative tractions

plt p2 at distances y19 y^ from the neutral axis of a beam under flexure :

where P19 P2 are the tractions at distances Ylt Yz from the axis, and
m1 ,

m2 are constants. On p. 177 traces of the curves for p in terms of

y are given for values of m from 1 to 10, and they are compared with

the curves obtained from Hodgkinson's formula.

It will be observed that the difficulty of stating exactly the

physical relation between stress, elastic-strain and set is avoided

by an assumption of this kind. There is, however, another assump-
tion of Saint-Venant's which does not seem wholly satisfactory.

He states it in the following words :

Observons d'abord que lorsque la dilatation d'une fibre a atteint sa

limite, comme une faible augmentation qu'on lui fait subir produit la

rupture ou bien fait decroitre tres-rapidement sa force de tension, il est

naturel de regarder la courbe des tensions comme ayant a 1'instant de la

rupture sa tangente verticale ou parallele a 1'axe coordonne des y,

d'autant plus que cet instant a ete precede d'une enervation graduelle

(pp. 1801).

This paragraph assumes that for the material dealt with the

rupture stress is an absolute maximum, but in several automati-

cally drawn stress-strain relations which I have examined this does

not appear to be the case (see Vol. I. p. 891), and at any rate

in some materials it could only refer to the maximum stress

before stricture and not to the rupture-stress.

On pp. 178 184 the case of a rectangle is treated at some length.

Saint-Venant obtains general formulae on the supposition that the

curves for negative and positive traction coincide at the origin. La "n

the supposition that the stretch- and squeeze-moduli for very sni<iH

strains are equal (m1Pl/Y1
= m^P,JY2). The limiting value of the

bending moment is then calculated.

In 3 various values are assumed for w, and m2 ;
in particular

if m
l Wj= 1, it is shewn that to make the initial stivtch- and sqm-

moduli unequal is to increase th< M to rupture by flexure.
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In the case of m1
= mzj Pl

= P2 ,
Yt

= Y^ we easily find for a rect-

angular cross-section (b
x

c) :

fo2

3m(m + 3)

which increases from R -~-iQ R
Q

as m increases from. to GO .

If we take m2
= 1 and m1 any value, we obtain a more complex

6c
2 6c2

value for ^/
,
which increases with m^ from R to .Z?

-^-
. Thus in all

o J

cases the value lies between those given by Galilei's theory and by the

ordinary Bernoulli-Eulerian. hypothesis.
Saint-Venant does not venture into the analysis required to deter-

mine how the constant n given by MQ n 7 6c
2

/6 varies with the shape
of the section, which must be the true test of any theory of this kind,
i.e. the constant m must be found to have the same value for all

sections.

[179.] Saint-Venant gives on pp. 186 204 an excellent

elementary discussion of slide and shear
;
on pp. 206 214 a like

discussion of the effect of slide in changing the contour and shape
of the cross-sections of a beam under flexure. The method of

treatment is very simple, and by the consideration of a special case

the action of the slide is well brought out.

[180.] Pages 216 237 are devoted to combined strain, flexure,

stretch due to pure traction and slide. The fail-limit is deter-

mined by simple geometrical considerations, and the examples,
chosen from those of Chapters xil. and XIIL of the memoir on

Torsion (see our Arts, 50 to 60), are treated with considerable

numerical detail. The example on the combined flexure and

slide exhibited by the strained axis of a pulley is new (p. 234).

[181.] On pp. 239 271 the general equations of torsion are

deduced. The treatment is in some respects better than in the

memoir of 1853. We may note a few points :

(a) Pages 240 242 give a fuller discussion of the resistance to

torsion due to longitudinal stretch of the ' fibres' : see our Art. 51.

(6) Pages 244 5
( 4). Elementary proof that the cross-sections

of all prisms, except the right- circular cylinder, are distorted by torsion.

(c) Pages 261 2. The expressions J^dw and f^du = for every
section of a prism under torsion. This is true whether or not the axis

of torsion passes through the centre of the section, supposing it to have
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one. Saint-Venant had only treated of this matter in the case of
the elliptic section (59 of the memoir on Torsion : see our Art. 22).
A general proof is here given in a footnote.

(d) In 15, pp. 264 7, we have a fuller treatment than occurs in

the memoir on Torsion of eccentric torsion, or torsion about any axis

parallel to the prismatic sides. Taking the equations of torsion for an

isotropic material (equations vi. of Art. 17) :

uw + uzz
= 0,

(uz + ry) dy - (uy
-

rz) dz = 0,

for which the origin lies on the axis of torsion, let us put y = y + y,

z' = z + we find
rj
and being constants :

= 0,

axis

These equations have for solution

u = u' - T (ttf
-

yz'),

where u' is the value of u when
rj
= = 0, or in other words the shift

when the torsion operates round an axis through the new origin. The
shifts u and u giving the distortions in the two cases differ only by

T (ttf
-

r}z')
= r(fy- rp),

or the two distorted surfaces are superposable by rotating the one

through small angles TV) and - T round the axes of y and z respec-

tively.

Further, \

z + ry = U * + ry
\ or the slides determined for either

\uy -rz~ u'y,
-

rz')

are equal for the same points. Thus it follows that the torsional couple
will in both cases be the same.

Saint-Venant then shews how by placing two prisms of equal cross-

sections with corresponding lines parallel, and fixing their terminal

faces so as to remain parallel after torsion about a mid-axis, we can

obtain eccentric torsion. The torsional couple will be just double of

that obtained from the simple torsion of either. Their axes it is true

will be bent into helices, but the bending introduced is a small quantity
of the second order in the torsion.

(e) In 17 (pp. 268 71) we have an investigation of the

maximum-slide and the fail-points. We cite the following passage:

Si o-x
2

[<rx
= le plus grand glissement principal] croissait toujours de

1'interienr a 1'exteYieur de la section pour chaque direction, ce serait

constamment sur son contour qu'il faudrait chercher les points dan-

gereux. Mais nous savons qu'il y a souvent des points du contour ou le

glissement est nul, et il peut y avoir, dans 1'inteVieur, quelque point de

maximum absolu de orx
2

(quoique cela ne se soit pre"sente" dans aucun des

exemples ci-apres traite"s); et il n'est pas impossible que ce maximum
excede toutes les valeurs de <rx

*
relatives aux points du contour (p. 269).
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We have then an analytical investigation of the fail-points,

which suggests a general method of investigation adopted in the

sequel for the special cases. This method avoids the ambiguities
of some of the paragraphs on this subject in the memoir of Torsion :

see our Arts. 39 and 42.

[182.] Pages 271 372 treat very thoroughly of the torsion-

problem. They reproduce to a great extent the formulae and

tables of the memoir on Torsion, but at the same time make

frequent additions and improvements. We may note the following:

(a) Eccentric torsion of a right-circular cylinder. The coordinates

of the centre referred to the axis of torsion being 77, ,
we find with

the notation of our Art 181 (d), a being the radius :

/ ^2
while M=pr I r2

do> = /mo .

^-,
as in the case of central torsion.

J o 2

(b) A fuller treatment of the prisms whose cross-sections are

included in the equation :

+ &2r
2 cos 2^ + 4r

4 cos 4< = const. (See our Art. 49 (c).)
2i

The most interesting of the cross-sections included in this equation
is entitled by Saint-Venant : Section en double spatule analogue a celle

d'un rail de chemin de fer (p. 365). It has the shape given in the

accompanying figure.

c/2 6/2

C'

y

case of c = b/5

See pp. 305307, 312317, 325335.

(c) The accurate investigation of the fail-points for the bi-symmet-
rical curves of the 4th and 8th order; see pp. 308312, 339341.
Of. our Arts. 37 and 39.

(d) In a foot-note to p. 335 Saint-Venant treats a special case of

the curve of the fourth degree

+ a (f - *
2

)
+ 4 (2/

4 - - const.
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By taking 2
= -

1/^/2, 4
= 2 (,/2

-
l)/6

3 and the constant = 0, we
obtain an isosceles triangle having for base a portion of the hyperbola

y
z

=b*/4:+(j2
-

1)
2
22 and for sides lines making with the bisector of the

base angles whose tangent = /s/2- 1. The length of the bisector

from vertex to hyperbolic base is then 6/2. The torsion takes place
round an axis through the vertex. Saint-Venant finds approximately,

M=. 56702

This value agrees very closely with that of the equilateral triangle :

see our Art. 41.

[183.] Pages 372 460 deal with the conditions for resistance

to rupture e'loignee under simultaneous torsion and flexure.

Most of this matter had already been given in Chapters xn. or

XIII. of the memoir on Torsion or in the memoir on Flexure:

see our Arts. 50 60 and 90 8. One or two points may be

noticed :

(a) In the memoir on Torsion Saint-Venant when seeking for

tbe fail-limit neglects as a rule the flexural slides (see our Art. 56,

Case (iii) etc.). Here he commences with an investigation of the

values of these slides. The approximate methods of Jouravski and

Bresse for obtaining the slide in a beam of small breadth are con-

sidered (see our Chapter XL), and are applied to the rectangle,

ellipse and JL-cross-sections. A footnote gives the value of the

slide in the same approximate manner for an isosceles triangle.

See pp. 391 8. But the expressions thus obtained are not exact,

and in a considerable number of cases differ sensibly from the real

values, especially when the section has a measurable breadth per-

pendicular to tbe load plane. The expressions found by Jouravski

and Bresse give the total shear upon a strip of unit-breadth

taken on a section of the beam perpendicular to both the cross-

section and the load plane, but they do not determine how such

shear is transversely distributed, still less the magnitude of the

maximum slide on the cross-section. Saint-Venant then proceeds
as in the memoir on Flexure to deduce exact expressions for the

flexural slides (pp. 399 414). The notation used differs from

that in the original memoir. The reader will find the two nota-

tions placed side by side in the footnote, p. 405. The treatment

in the Lemons de Navier i> B! i"l n<>t nearly so complete as
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in the memoir. The diagrams reproduced in our frontispiece are

given in a footnote on pp. 410 12 : see our Arts. 92 and 97.

(6) Pages 414 60 are occupied with combined flexure and

torsion in those cases where we may neglect the flexural slides.

They reproduce with some modifications and extensions the results

of Chapter xii. of the Torsion memoir. There is a good summary
on pp. 453 9.

[184.] On pp. 461 9 Saint-Tenant treats of rupture (rupture

immediate) by torsion.

(a) He shews that the moments capable of producing rupture are

for similar sections as the cubes of their homologous dimensions. A
footnote (p. 463) refers to Vicat's experiments which apparently con-

tradict this result
j

see our Art. 731*. Saint-Venant attributes this

divergence to flexure having taken place in the short prisms of pldtre
and brique crue used by Yicat.

(b)
In 61 (p. 464) Saint-Yenant endeavours to find the absolute

strength of a circular prism (radius a) under torsion by the assumption
of an empirical formula, similar to that of our Art. 178, for the shear q
at distance r from the axis of torsion. Namely :

where Q is the shear at distance 6, and m is a constant.

We are only told in favour of this formula, (1) that for small values

of r and for very small shears q is proportional to r and thus to the

slide, (2) that q increases less rapidly than r, or the slide, when the slide

becomes greater.
If S1 be the rupture shear and correspond to r = a, we have

e=^1/{i-(i-/6n.
Then, introducing the same sort of questionable condition as in our

Art. 178, namely that dq/dr
= Q when r a, we have further

a = b and S Q.

fw

This leads us to a rupture coupleMl
= I rq c?o>,

\

3/
'

Or, as m changes from 1 to oo
,
Ml changes from J to f of va3^ (p.

466)
1

.

(c) Saint-Yenant then attacks the problem of the prism of rectan-

1 Saint-Venant's result seems to be of the real value, owing to the displace-
ment of a factor 2.
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gular cross section (6 x c) for which b is much greater than c. Here the

approximate values of the slides before the linear limit is passed are:

2Vi
<r

!ffy

= -
ZTZ, <rxz

=
-^

-
ry.

These results may be deduced from Art. 46 by replacing the

elongated rectangle by its inscribed ellipse and neglecting c
2

/f4 as com '

pared with b*/fr. See also Table I. p. 39, and Art. 47.

He assumes that after the linear limit is passed :

Hence, since for small slides or small values of z and y, xy =

and xz = fao-xz, we must have :

These give, "*='' ^ J J
'

Further, since the fail-points are the mid-points of the much longer
side 6, the rupture points are taken there also. Thus it is necessary
that:

dw/dz = 0, w = S' when z = c/2.

It follows that h = c/2 and Q
f = S'

9
the absolute shearing strength in

direction of y.

To proceed further Saint-Venant assumes that the slide o^ always
remains much less than the slide o^, so that for the former it is sufficient

to retain the linear strain form, we have thus

{/
2z\m'\l_n --

j
i

It easily follows that

m 2m~ 1 m

Cases (b) and (c) confirm the law of the cube stated in
(a). Such

formulae, although by no means satisfactory from the theoretical stand-

point, are yet useful as suggesting lines for future experiment.

[185.] Pages 46977 ( 62) contain a useful discussion of the

various methods of determining the elastic and fail-point constants,

especially in the case of prisms whose material is transversely aeolo-

tropic. Saint-Venant (p. 471) adopts the result given in Art. 5. d.

of our account of the memoir on Torsion, <rvz
= %'J^v8t , to obtain a
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plausible relation between shear fail-limit ($ ) and tractive fail-limits

T and T f

. We have thus the formula SJG = ZjTJE x T^E'.

[186.] Pages 477480 deal with the problem of the torsion

of circular cylinders (radius a) having a cylindrical distribu-

tion of elastic homogeneity. In this case /A is a function of the

axial distance r. There will be no distortion of cross-sections.

Saint-Venant supposes //, to remain constant from the axis up to a

radius a
,
and then at distances r from a to a to follow the

law

where z = r-(a-

He easily deduces the following formula for M,

Special cases are :

(1) Wooden cylinder whose axis is about the same as that of the

tree out of which it has been cut
;
here we may put = a, and wp have :

(2) Forged or cast iron cylinder with skin change of elasticity :

M= r OvoK
9 + 727ra

3

)
where y =^^.-

Supposing the fail-point to be on the surface, we have S = ppa, and

eliminating r :

where A and B are two constants depending only on the elastic nature

of the material. Thus the fail-couple depends partly on the cube, partly
on the square of the radius of the cylinder.

[187.] The text of the work concludes with numerical examples
such as are given on pp. 551 8 of the memoir on Torsion. The

remainder of the volume is filled with five appendices and an

Appendice compUmentaire occupying pp. 510 849, which from

their historical and physical aspects are perhaps the most interesting

portions of the work.

[188.] Appendix I. (pp. 51219) contains certain elementary

proofs due to Poncelet as to the curvature, deflection etc. of the

elastic line. A point on p. 518 on the question of built-in
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terminals (encastrements) may be noted. Poncelet remarks that

for a cantilever we may suppose two forces, whose resultant is

equal and opposite to that of the load, to act at the built-in end.

These forces whose points of application are very close, one on

the upper and one on the lower surface of the beam are very

great and alter the surfaces of the built-in beam and the sur-

rounding material, so that the elastic line at this end is not

horizontal, but takes a certain inclination varying as the terminal

moment directly and inversely as the profondeur de Vencastrement.

Small as this inclination is, it affects sensibly the experimental

accuracy of the theoretical results based on the perfect horizon -

tality of the elastic line at the built-in end. This was noted by
Vicat: see our Art. 733*. Saint-Venant holds that careful ex-

periments ought to be made to determine its influence.

[189.] Appendix II. is entitled : Sur les conditions de Vexacti-

tude mathdmatique des formules tant anciennes que nouvelles d'ex-

tension, de torsion, de flexion avec ou sans glissement. Ddmonstra-

tion sytnthttique de ces formules quand on suppose ces conditions

remplies. This appendix contains first an easy refutation of

Lamp's ill-judged sneer at the proce'des hybrides, mi-analytiques,

et mi-empiriques ne servant qud masquer les abords de la veritable

science: see our Arts. 1162* and 3. Saint-Venant shews that his

methods have precisely the same validity as those adopted in the

cases of simple traction, of the old theories of flexure, and of torsion

for a circular cylinder. In the sequel he demonstrates afresh the

torsion and flexure equations. He starts from an axiom and

definitions involving the hypothesis of central intermolecular action

as a function of the central distance only. The appendix occupies

pp. 520541.

[190.] Appendix III. contains a complete theory of elasticity

for aeolotropic bodies so far as the establishment of the general

equations of elasticity and the usual formulae of stress and strain

are concerned. It occupies pp. 541 617. Proceeding from central

intermolecular action, Saint-Venant on pp. 556 9 reduces the 36

constants of the stress-strain relations to 15. We may note one

or two points of interest :

(a) 23 (pp. 562 74) with its long footnote is specially worthy
of the reader's attention. Saint-Venant obtains expressions for the
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stresses on the hypothesis that initial stress has produced considerable

initial strain in the body. In this case the strain developed by the

initial stress sensibly influences the effect of the later strain. We can

no longer add initial and secondary stresses as independent factors of

total stress.

Let the initial stresses be xx
, xy etc...., the secondary stresses xx

lt xyi

etc., and the total stresses *x, Jy, etc.

Let ajj, ylt z be the directions of three right-lines slightly oblique to

each other which were initially the rectangular set x, y, z
;

let x, y', z'

be three other lines rectangular or slightly oblique among themselves,
taken close to the former (x, y, z) and normal to the three planes by
which we determine the six stress-components. Then, if crs be the

cosine of the angle between the lines r and s we have as stress types :

^ = ^ (1 + 8X
- S

y
- 8g) + 2 xy^Cyg + ZzxQCgj,

+^ , | "

To these we must add the purely geometrical relations of the type :

c
V
l
*> + Cz

i
tf
= <r

ve
+ C

tf*{
........................... (")

which reduce if x', y\ z' are taken rectangular to the type :

When, however, the initial stress is not such that the shears are

zero or can be neglected when multiplied by small strains, we may
simplify equations (i) by a proper choice of a/, y', z. Thus if a/, y', z' be

taken perpendicular to ylt ^, x^ or zl , a^, y1 respectively, which is

compatible with their rectangularity, then either cz y>
= c^ # c

y # = 0,

or, Cy !f
=

Cg a/
= cx y'

=
0, and we can replace the remaining cosines in

(i)

by the slides cr
yzj

vzx ,
o-xy . By taking x, y', z bisectors of the angles

between the lines a^, ylt z:
and the perpendiculars to the three slightly

oblique planes y^, z
l
xl ,

x
l yl ,

i.e. the closest rectangular system to

Xi,yi,Zi, we obtain:

as the type of equation (iii).

In the case (le seul qui ait ete suppose par les divers auteurs de

mecanique moleculaire, ftn. p. 571) in which the shifts are very small

and consequently the directions a^, ylt % almost coincident with x, y, z,

we can take the latter for th<, rectangular system a/, y' }
z and we thus

find:

"1 i i

and reach the equations (i)
of our Art. 129.

These again reduce to the relations of our Art. 666*, if we put
^ =:p = a

}
ZZ

O
=

GJ and yzQ
= zx = xy = 0, and give the proper values to

the secondary stresses.

Saint-Venant proves equations (i) by the molecular method in the
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footnote before referred to. He makes some remarks on the Navier-
Poisson controversy, and refers to a paper of his own published in

1844 on Boscovich's system ; see our Arts. 527* and 1613*.

(b) On p. 587 the remark is made that the stress-strain relations,
the body stress-equations and the body strain-equations remain true

whatever be the amount of the shifts in space provided the relative

shifts of adjacent parts or the strain-components are small. In this

case, however, the values to be given to the strains in terms of the
shifts are those of our Art. 1618*. The ordinary shift-equations of

elasticity hold only for small portions of an elastic body, when the

total shifts are not small. Hence they cannot be directly applied to

large torsional or flexural shifts. The whole treatment on pp. 587 92
is good, and better than that of the memoir of 1847: see our Art. 1618*.

(c) Saint-Venant points out that it is not sufficient to find values

of the stress-components which satisfy the body and surface stress-

equations. There are also certain conditions of compatibility between
the strain components deduced from these stresses which also must be
satisfied : see our Art. 112.

These equations hold for all values of the shifts, provided the strains

remain small, i.e. if they take the forms given in our Art. 1618*.

(d) Pp. 603 17 contain a direct investigation of Saint-Venant's

torsion and flexure equations from the general equations of elasticity.

In both cases the method adopted assumes a given distribution of stress

and deduces the corresponding shift-equations.
In dealing with torsion Saint-Venant supposes a single plane of

elastic symmetry perpendicular to the axis of torsion, and starts from

formulae for the shears of the form

where h and h' are supposed unequal. See our Art. 4 (&) on the memoir
on Torsion. He deduces the general torsional equations, which now
contain four constants, and solves them for the case of the ellipse. The
discussion does not seem to me of much value, as all elasticians, multi-

or rari-constant, would agree that h = h', in which case by a change
of axes we can take h = h' = : see the same Article. In the case

of an elliptic contour a direct analysis gives :

'xTCU
=

where a is the angle between the direction in which the slide-modulus

is
/A!

and the axis of the ellipse about which the swing-radius is *,.

The reader must note that /^ and
/w-j

are not the same constants as in

Art. 46 of our discussion of the memoir on Torsion, where we supposed
' the principal axes of elasticity

'

to coincide with the principal axes of

the elliptic section.

[191.] The fourth Appendix occupies pp. 617 45 and contains

a careful comparison of Saint-Venant's theory of Torsion with the
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experimental results of Wertheim, Duleau and Savart : see our

Arts. 1 339* and 31. It is followed by some discussion of torsional

vibrations. This appendix is practically directed against Wertheim's

memoir on Torsion of 1857: see our Art. 1343*. It will be

remembered that Wertheim had asserted the theoretical accuracy
of Cauchy's erroneous torsion formula (see our Art. 661*), had

persisted in retaining the value for the squeeze-stretch ratio which

he had deduced by a fallacious theory in 1848 (see our Art. 1319*),
and finally had exhibited complete ignorance of Saint-Venant's

results for the elliptic cylinder. Saint-Venant easily shews the

insufficiency of Wertheim's criticism, and how the mean results of

Savart and Duleau for rectangular prisms, and of Wertheim him-

self for elliptic prisms confirm the new theory : see our Arts. 31

and 35,

In the discussion on torsional vibrations, Saint-Venant re-

produces the matter of his memoir of 1849 : see our Art. 1628*.

He regards of course the theory given as only approximate (p. 633),

but sufficiently so for all practical purposes, as indeed appears
from the comparison of theory and experiment (p. 643).

[192.] The fifth Appendix, devoted to the elastic-constant

controversy, occupies pp. 645 762. It is an excellent piece of

scientific criticism, to which some multi-constant elasticians have

insufficiently replied by squeezing caoutchouc or loading piano-

forte wires. The difficulty of critical experiments lies first in

obtaining a purely isotropic material free from all initial stress

and without any superficial elastic variation, and then in assuring

the extreme nicety required to determine successfully the stretch-

squeeze-ratio. In our first volume we have referred to the leading

features of the controversy (see our Arts. 921* 932*) and the

chief of the earlier experiments in this field (see our Arts. 470*,

1034*, 686* 90*, 1358*). We shall find other remarkable ex-

periments as well as theoretical conclusions have sprung from the

controversy in the last 40 years ;
these will lead us on more than

one occasion to examine the validity of Saint-Venant's arguments.

Meanwhile we may refer to one or two points brought forward in

the present essay.

(a) Saint-Venant's criticism seems to me unanswerable, when he

attacks the validity of the method by which Poisson, Cauchy, Green, or

T. E. II. 9
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Lame have deduced the linearity of the stress-strain relation without

any appeal to experiment or any statement of physical fact or any
axiom of intermolecular action : see Saint-Venant's pp. 660 5 and our
Arts. 553*, 614*, 928*, 1051* and 1164* footnote.

(b) On pp. 665 676 we have a long and careful numerical

examination of the experiments of Regnault on piezometers of copper
and brass. In general they accord with the uni-constant theory, or at

least better with that than with Wertheim's (see our Art. 1319*). This

is followed by some remarks on Wertheim's and Clapeyron's experiments

on caoutchouc. The former found Y
= ~ * f>

an(^ tne latter ^ = ^-^ :

A A
see our Art. 1322* and Chapter xi. Results so discordant as these lead

Samt-Venant to remark that neither uni- nor bi-constant isotropy, nor

me"me des formules lindaires quelconques, ne sont pas applicables au
caoutchouc, liquide coagule" ou epaissi plutot que solidifie, et d'une nature en

quelque sorte interme'diaire entre les fluides et les solides (p. 678).

(c) Pages 679 89 are occupied with a criticism of Wertheim's

hypothesis, that 2/x A, and with the results of his experiments. Saint-

Venant points out the great probability of a want both of homogeneity
and of isotropy in the cylinders used by Wertheim (see our Art. 1343*)
and he examines analytically the ratio of longitudinal to transverse

stretch-moduli, when such isotropy is not presupposed. We shall return

to some of Saint-Venant's arguments when examining Wertheim's later

memoirs.

(d) On pp. 689 705 we have a consideration of Cauchy's hypothesis
of 1851 : see our Art. 681*, namely, that it is possible if a body be

crystalline that :

les coefficients des defacements et de leurs de'rive'es dans les Equations
d'dquilibre inte'rieur ne sont plus des quantity's constantes, mais deviennent
des fonctions pdriodiques des coordonne'es (p. 689).

In other words we arrive at stress-strain relations in which the

36 constants are not connected by 21 relations. Saint-Venant conducts
a new investigation (pp. 697 706) with fairly simple analysis. The

turning point of rari- or multi-constancy for such regularly crystallised
bodies is then seen to lie in the legitimacy of bringing stretches like

s'x outside certain summations of the form

2XR cos
3

(rx) . s x ,
2X R cos (rx) cos2 (rz) . 8 Z ,

and replacing them by their mean values 8X ,
sz . Here ax is the

mean value of s'x for all the atoms under consideration, and we m.ty

replace s'x by sx if the body is isotropic or possesses confused crystal!

lion. On the other hand in regularly crystallised bodies, there may be

terms in s'x periodic in the coordinates and we cannot replace s'x by sx
and bring the mean stretch outside the summation. Hence we have

not the 21 relations between UK- o>i-llk-iniis fulfilled. S;unt- Vrinmt
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holds, however, that even if this periodicity be true for regularly

crystallised bodies, it can only introduce small differences into the

otherwise equal constants. But further, if it does exist

cette alteration ne peut regarder que certains cristaux re*guliers. Elle n'est

jamais relative aux corps & cristallisation confuse, comme sont tous les

materiaux de construction, et comme sont aussi tous les corps isotropes.
II n'y a done aucune raison de changer les formules trouvees depuis un tiers

de siecle pour les pressions dans ces sortes de corps (p. 705).

[193.] On pp. 706 742 we have an analysis and criticism of

the various methods which English and German elasticians have

adopted in order to obtain the fundamental equations of elasticity;

there is also a resume of their views on the elastic-constant contro-

versy. Here the memoirs of Green, Neumann, Haughton, Clebsch,

Clausius, Thomson, Kirchhoff, Maxwell and Stokes are briefly con-

sidered. Saint-Venant devotes special attention (pp. 721 32) to

the value of Green's results as bearing on double refraction and

the disappearance of the stretch-wave. This discussion is only of

importance to us in its bearing on the elastic-constant controversy.

Green's treatment of the ether demands the independence of the

21 constants, but we may question whether his results are

the only possible ones, nay, even whether they are so satisfactory,

as to stand per se as a justification of multi-constant formulae.

In order that the vibrations may be exactly parallel to the wave-face

Green finds the relations xxxviii. of our Art. 146.

If to these 14 conditions of Green we were to add the six additional

conditions of rari-constancy, namely :

\yyxz\ = \yzyz\, \xxyz\ = \zxxy\ ,
etc

(i)

we should then have :

\xxxx\ \yyyy\ \zzzz\ 3 \yzyz\ = 3 \zxzx\ 3 \xyxy\ 3 \yyzz\

= 3 \zzxx\ = 3 \xxyy\ (ii)

and all the other constants zero.

Thus the condition for exact parallelism would be isotropy, or

this parallelism would be incompatible with double refraction.

Now are Green's conditions so extremely probable that we

ought to reject the six molecular conditions (i)
which render them

nugatory ? Saint-Venant argues that they are not, chiefly for the

reason that they involve : \a/afafaf\
= \xxxx\.

This is proved in the footnote p. 726. It denotes physically

92
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that, in whatever direction we take x, the same stretch s? will

produce a traction * of the same intensity. Such an equality
seems opposed to our ideas on the nature of bodies endowed
with double refraction. The arguments used to support the

improbability of this relation are identical with those of the

memoir of 1863 and have been cited in our Art. 147.

[194.] While recognising the weight of Saint-Venant's

reasoning in this Appendix and in the memoir of 1863, and

admitting the difficulty of conceiving a double-refracting medium
to obey such conditions as those given by Green, we have yet to

notice a point with regard to the arguments Saint-Venant advances.

A distinction must be drawn between an isotropic body held by
external pressures in an aeolotropic state of elastic strain, and a

body also primitively isotropic which has received set of different

intensity in different directions. In the former case the initial

stresses may enter into the elastic constants (as in our Art. 129)
and so affect the elasticity in different directions. In the latter

it would appear as if the molecules must be brought in some

directions nearer together and so the direct stretch coefficients be

affected and varied. But is this experimentally the fact ? If a

bar of metal be taken and stretched beyond the elastic limit, so

that it receives set, it is found that its stretch-modulus, which is

certainly a function of the direct stretch-coefficients remains nearly

constant. Now this set may be of two kinds, first : a set occurring

far below the yield-point, which is often little more than a removal

of an initial state of strain due to the working : and secondly, a set

which denotes a large change in the relative molecular positions

and can occur after the yield-point has been reached. If it can

be shewn that the stretch-modulus remains nearly constant not-

withstanding one or both of these sets, it would be interesting to

investigate experimentally whether such is also true for the slide-

moduli and the cross-stretch coefficients before we condemn Green

entirely.

Experiments on simple traction and torsion of large bars before

and after very sensible set would throw light on this matter.

[195.] Saint-Venant further remarks that Green's conditions

are not necessary in order that we may obtain exactly Fresnel's

wave-surface. Saint-Venant in a foot-note gives a fairly easy
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analysis leading to Cauchy's four conditions which are compatible
with rari-constancy (see the memoir of 1830

;
Exercices mathema-

tiques 5e
anne'e). These conditions are given in our Art. 148 as

Equations xxxix.

Les quatre relations ou conditions (xxxix) n'ont rien d'arbitraire

ni de bizarre, bien qu'elles soient d'tine forme moins simple a coup sur

que les cinq conditions de Green (xxxviii of our Art. 146) qui n'en sont

qu'un cas particulier En effet lorsque les trois coefficients d'elasticite

directes a, b, c, entre lesquels elles permettent telle inegalite qu'on veut,
ont des rapports mutuels n'excedant pas 1 J ou 2, il est facile de s'assurer

par des calculs qu'elles sont, numeriquement, presque identiques aux

relations 3d + d' = Jbc, 2e + e = Jca, %f+f = Jab que nous verrons

etre celles qui donnent la distribution la plus simple des elasticites

autour de chaque point dans les corps heterotropes, et appartenir, au
moins avec une grande approximation, aux corps dont 1'isotropie primi-
tive a etc alteree par de simples compressions ou dilatations inegales,
c'est-a-dire generalement aux corps amorphes ou a cristallisation confuse.

Or tous les pliysiciens admettent que c'est seulement a cet etat d'inegal

rapprochement moleculaire en divers sens que se trouve Tether dans les

cristaux dont la forme n'est pas un polyedre regulier (p. 731, foot-note).

We have ventured so far from our subject into that of Light,

only to shew that Saint-Tenant brings forward strong reasons

why, even if we dogmatically assert the elastic jelly character of

the ether, it is not necessary to summarily reject the rari-constant

hypothesis.

[196.] Pages 732 42 are occupied with an excellent discussion

of Stokes' memoir of 1845 : see our Arts. 925* 6* and 1264*.

There are also a few remarks upon Maxwell's memoir of 1850:

see our Art. 1536*. Saint-Venant states that Thomson and

Kirchhoff while adopting multi-constancy have not added any
additional reasons for its validity. This at the present time is

hardly true. I may note Kirchhoff's memoir of 1859: see Poggen-

dorff's Annalen, Bd. 108, p. 369, and Thomson's of May, 1865 :

see Proceedings of Royal Society for that date. Saint-Venant's

objections to those arguments of Stokes which are drawn from

the 'doctrine of continuity,' practically from the equivalence
of the plasticity of metals and the viscosity of fluids seem to me

very forcible and should be read by all scientists interested in

the ultimate molecular constitution of bodies. In the question
of rari- or multi-constancy are involved, not merely points of
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technical expediency, but principles going to the base of our

knowledge of matter, such as our proofs of the equation of

energy and the application of the laws of motion to inter-mole-

cular action.

[197.] Pages 742 46 are occupied with a review of Clausius'

memoir of 1849 : see our Art. 1398*. It is only necessary to

remark here that recent experiments would, we think, have

removed Saint-Venant's doubt as to the existence of elastic after-

strain in metals (p. 745). The appendix concludes with a resume

of all the arguments brought forward in favour of rari-constanc^

(pp. 74662).

[198.] The Appendice complementaire is chiefly occupied with

an examination of the elastical researches of Rankine, Clebsch and

Kirchhoff, which Saint-Venant tells us had not then been properly
studied in France. We note one or two points :

(a) In 78 (pp. 764 7) Saint-Venant cites experiments of

Morin to prove the linearity of the stress-strain relation. These

experiments are really not conclusive, and I especially distrust

the results cited for cast-iron. For elastic strains of such magni-
tude as occur in structures, the stress-strain relation for this

material is certainly not linear. Nor again can arguments drawn

from wires reduced to a state of ease serve the purpose Saint-

Venant has in view of demonstrating the linearity and perfect

elasticity of all materials for small strains.

(6) 80 (pp. 7714) treats of what Saint-Venant terms

rdtat dit naturel ou primitif. This is the state of no internal

stress. It is used as a means of deducing the uniqueness of the

solution of the elastic equations. If there be no body force or

surface load the internal stresses are all zero, and vice-versd.

I have already had occasion to remark on the caution with

which this principle must be accepted: see our Arts. 6 and 10.

The arguments of this section do not seem to me very convincing.

(c) On pp. 783 86 the reader will find some interesting

notes and valuable historical references on the origin of the terms

potential and potential function.



199] SAINT-VENANT. 135

(d) 84 (pp. 789 96) reproduces the erroneous method of

the memoir of 1863, for finding the stresses when there is an

initial state of stress. C. Neumann (see our Chapter XL) had

previously obtained similar results for the case when the initial

stress is given by an uniform traction : see our Arts. 129 31.

(e) Pages 801 25 are occupied with an important discussion

of the distribution of elasticity in aeolotropic bodies. Saint-

Venant using the symbolic method of Rankine arrives at some

of the results of his memoir of 1863 : see our Arts. 135 7.

The investigation of the tasinomic equation for particular

cases, of the distribution of the stretch-moduli, and of the ellip-

soidal distribution of elasticity in amorphic solids or cases of

confused crystallisation follow the lines of the memoir of 1863 :

see our Arts. 136 and 151. They are accompanied by a discussion

of the experimental results of Hagen, Chevandier and Wertheim, as

bearing upon this theoretical distribution of elasticity. We shall

return to this point when treating of the annotated Clebsch:

see our Arts. 30613.

(f) The remaining pages of the volume (825 49) are

occupied with a sketch of Clebsch's treatment of the problem of

torsion and flexure (see his Theorie der Elasticitdt 23) and

Kirchhoffs memoir on rods (see Crelles Journal, T. 56, p. 285,

Ueber das Gleichgewicht und die Bewegung eines unendlich-dunnen

elastischen Stabes). Saint-Venant shews how they are in agree-
ment with his treatment of the problem, but does not contribute

any additional matter.

[199.] Our analysis of Saint-Venant's edition of the Lecons

de Navier will, we hope, have gone some way to convince the

reader of the thorough study which this work deserves. Taken

in conjunction with the annotated Clebsch (see our Art. 297) it

forms the best introduction to the wide subjects of elasticity and

the strength of materials yet published.
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SECTION IV.

Memoirs of 18641882.

Impulse, Plasticity, etc.

[200.] Complements au Me'moire lu le 10 aodt 1857 sur

I'impulsion transversale et la resistance vive des barres, verges ou

poutres dlastiques.

Comptes rendus, T. LX. 1865, pp. 4247 and pp. 73235, T.

LXI. 1865, pp. 3337 and T. LXII. 1866, pp. 130134. These

extracts of additions to the memoir of 1857 (see our Arts. 104 8)
are all more fully developed in the annotated Clebsch: see our

Arts. 342 et seq.

[201.] Note sur les pertes apparentes deforce vive dans le choc

des pieces extensibles et flexibles, et sur un moyen de calculer

dlementairement Iextension ou la flexion dynamique de celles-ci :

Comptes rendus, T. LXII. 1866, pp. 119599.
This note suggests the application of the principle of virtual

displacements and of the hypothesis that dynamical strain is of the

same form as statical strain to the problem of impact. Saint-

Venant apparently considers that in his papers of 1865 66 he had

been the first to adopt this method, but as we have seen it is

really due to Cox : see our Art. 1434*. The discussion in this

Note appears in a more consistent form in the annotated Clebsch :

see our Art. 368. It is Saint-Venant's great service to have

shewn that the accurate and approximate methods agree fairly

closely, and why they agree. Cox's method gives a result which

is almost the same as that given by taking the term involving the

principal vibration only. This point is well brought out in the

concluding paragraphs of the Note, pp. 11989.

[202.] Demonstration dUmentaire : (1) de ^expression de la

Vitesse de propagation du son dans une barre e'lastique ; (2) des

formules nouvelles donne'es, dans une communication pre'ce'dente,

pour le choc longitudinal de deux barres: Comptes rendus, Tome
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LXIV. 1867, pp. 1192 5. This is an extract from a memoir
afterwards published in the Journal de Liouville: see our Arts.

203 20. Other parts of the same memoir are extracted in

Oomptes rendus, T. LXIII. 1866, pp. 11081111, and T. LXIV.

1867, pp. 10091013.

[203.] Sur le choc longitudinal de deux barres elastiques de

grosseurs et de matieres semblables ou differentes, et sur la propor-
tion de leur force vive qui est perdue pour la translation ulterieure;

...Et generalement sur le mouvement longitudinal d'un systeme de

deux ou plusieurs prismes elastiques : Journal de Liouville,

T. xn. 1867, pp. 237 376, (the last two pages containing

errata).

This is a long and theoretically very interesting memoir on

the longitudinal impact of rods. It is the first complete treatment

of the subject published. German writers have made some claim

in this respect for Franz Neumann, who in his Konigsberg lectures

of 1857 8 dealt with the problem in somewhat the same fashion.

But Neumann's investigations as first published in the Vor-

lesungen uber die Theorie der Elasticitat, 1885, pp. 340 346, are

very insufficient and incomplete as compared with Saint-Venant's.

Experimental investigations have been made by Boltzmann,
W. Voigt, Hausmaninger and Hamburger with a view to testing

the theory. Their results are not in full accordance with Saint-

Venant's formulae. I shall refer to certain points of difference in

discussing the present memoir, but the articles devoted to their

memoirs must be consulted for fuller details.

[204.] The memoir is divided into two parts, the first treats

of the impact of two rods of the same material and of equal cross-

section. It is divided into seven articles. The first of these

(pp. 237 244) deals with the history of the problem. At the

invitation of Coriolis in 1827 Cauchy had investigated the influence

of the vibrations produced by impact in altering the translational

energy of two rods
;
Coriolis having recognised that these vibrations

must be a source of loss in visible energy. Cauchy accordingly

presented on February 19, 1827, a short note to the Academy,
which was printed in the Bulletin...de la Societe Philomathique,
December 1826, pp. 180 182, and afterwards in the Memoires de

rinstitut. Cauchy treated only of the longitudinal impact of two
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rods of the same material and section. He concluded that the

impulse terminated whenever the two bars had not the same

speed at their impellent terminals. This, as we shall see, is not

true, and the conclusion vitiated some of Cauchy's results, the

analysis of which does not appear to have been published.

Poisson in the second edition of the Traite de Mdcanique (1833,

Vol. II. pp. 331 47) also attacked the problem supposing his rods

of the same material and cross-section. He used a double condition

for separation, namely, not only that the bar which precedes shall

have a greater speed at the impelled terminal than that which

follows, but that the squeeze in both at the impellent terminals shall

be simultaneously zero. This condition led Poisson to the singular

conclusion that two unequal bars would never separate. He had

forgotten that physically they can never sustain a stretch at the

impellent terminals. In fact Cauchy's condition of excess of speed
in the preceding bar is insufficient, and Poisson's additional one of

no squeeze is superabundant. The true condition is clearly excess

of speed at a time when there is zero squeeze at the impellent

terminals, which can never sustain a stretch. It will also be

necessary to shew that the bars thus separated are separated for

good, and do not, owing to their vibrations, come again into

contact.

[205.] Saint-Venant's method of treatment is to investigate

the vibrations of a bar, of which the initial condition is given by
zero stretch throughout, and by speeds constant for each of the

several parts into which the rod may be supposed divided. The
first instant at which a zero stretch at the section between any
two of these parts is accompanied by an excess speed in the terminal

of the preceding section marks a disunion if the parts are not

those of a continuous rod. In this manner Saint-Venant shews

that if two bars of the same section and material are in impact
the shorter takes ultimately and uniformly, while losing all strain,

the initial speed of the longer.

This result was stated by Caucliy in 1820. Saint-Venant

refers to the elementary proof of it given by Thomson and Tait in

302304 of their Treatise on Natural Philosophy which in

1867 w;is in flic pn-ss. His notice had been drawn to this proof

by an article in The Engineer (February I ">, LsiiT) <luu to
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who, reviewing the extract in the Comptes rendus of Saint-Venant's

memoir, had also given an elementary proof of one of his results

for rods of different materials and cross-sections.

[206.] The second paragraph of the memoir (pp. 244 251)

gives the general solution in finite terms of the equation for the

longitudinal vibrations of a rod, when the initial speed and stretch

of each point are given. The third paragraph deals with the

special case of this when a rod of length a = a
l
+ a

2 -f a
3 + . . . has

these parts initially subjected to uniform speeds Vv F
2 ,
F

2
...

and uniform squeezes Jv /2 ,
J

3
... etc. respectively (pp. 252 259).

On pp. 254 and 258 we have diagrams which exhibit graphically
in the special cases of two or three parts the speed and squeeze
at each point of the rod during the motion. These diagrams are

extremely instructive, and a similar method might be used with

advantage in other cases of vibratory motions solved by arbitrary
functions.

[207.] The fourth paragraph is entitled : Probleme du choc

longitudinal de deux barres de longueur a
i}
a

2 parfaitement elasti-

ques, de meme matiere et de meme section, animees primitivement
de vitesses uniformes V1?

V
2
sans compression initiate (pp. 259

262). This applies the results of the preceding paragraph to the

simple case of impulse above stated, taking V
l
> F

2
and a

1
< &

2
.

Diagrams are given for the values of the speed and squeeze up
to the time t given by kt = 2^ + 2a

2
for the two cases 2^ < &

2
and

a
l
< a

2
< 2ar Here k = velocity of sound (

=
\f-E/p)- I have

reproduced these diagrams reduced in scale on p. 140. Along the

horizontal axis the values of kt are laid down, and along the vertical

we have the various points of the combined rods, OA l
= av A^A= a

2
.

In each area is placed the value of the speed and squeeze for that

area, so that by means of the coordinates kt and x we can find the

speed and squeeze of any point of the rod at any time. We see

from this that at time t = 2ajk the contiguous terminals will be

moving with unequal velocities F
2
and ^(V^+V^ but that this is

only for the instant, and as there is no stretch at those terminals,

the bars will not separate. They afterwards move till t = 2ajk with

the same velocity at the contiguous terminals and no squeeze.

The impulse is terminated, but the bars do not yet separate.
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Unequal speeds occur again when t = 2ajk, and now the

upper bar has a negative squeeze, j

' =
(Vl

F
2)/2& at the

og-^ o'

CASE !
<

2
< 20^.

A" A"'

fU-O

impelled terminal. Hence the solution no longer holds, and we
have to treat each bar from this epoch as a distinct one. The

bar
ttj

moves obviously without strain and with the speed F
8

which the bar a
2 initially had. To deal with the bar a

s,
we have

to distinguish two cases. Let us suppose :

(1) 2a, < a,.
We have to enquire how a bar of which a
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portion 2a
x
has initially a speed v = %(Vl

+Va)
and a negative

squeeze j
= ^(V1 ^/^ an(^ a Porti n a

2
~" %a

i
a sPeed ^ = "P"

2

and a squeeze j
= subsequently moves. This has been ascertained

in the second paragraph of the memoir and is represented by
Saint-Venant in the accompanying diagram.

W=aa W=2fl1+a2 A'"

We see at once that after = 2a
2/& the terminal moves with

speed Fj and therefore separates from the terminal of a
t
with

speed F,
- F

8
. This lasts till = 2 (^ + a

2)/&, when what

happened at time t = 2ajk repeats itself and the terminal moves

with speed F
8 ,

i.e. with the same speed as the terminal of ar
Thus it alternately moves with greater and equal speed, or the

two terminals never again come into contact.

(2) dj < a
2
< 2ar We have to enquire how a bar of which

a portion 2a
2

2a
x

has initially a speed v
-| (
F

1
+ F

2 )
and

negative squeeze j
=

J (Fa
F

2)/&, and a portion 2a
t

a
2 ,

a

speed v = Fj and squeeze j
= subsequently moves.

The motion is represented in the first diagram on p. 142, and

we see that after the time t = 2ajk these bars never again come

into contact.

[208.] The second diagram on p. 142 represents the whole

motion of the two bars supposing them to be endowed with a

uniform velocity perpendicular to their lengths during and sub-

sequent to the impact. The full lines give the paths of various
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points of the rods, the dotted lines give the points at which the

speed or squeeze of the rods changes abruptly. They corre-

spond to the sloping lines of the previous diagrams. Saint-

Venant calls the points at which velocity and squeeze change

abruptly points d'ebranlement. It is hardly necessary to add that

the stretch and squeeze of the rods are for diagrammatic purposes

enormously exaggerated.

The separation of the two rods is discussed in Saint-Venant's

sixth paragraph, the fifth having been devoted to a verification by
means of the solution in trigonometrical series of the general

results of the fourth paragraph : see pp. 262 269 of the memoir.

[209.] The seventh paragraph (pp. 27886) is entitled
;
Con-

sequences. Farce vive translatoire perdue dans le clmc </<>.-<
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barres elastiques de meme grosseur et de meme matiere. Vitesses

de translation apres le choc. Let Uv U
2
be the centroidal speeds

after the impulse, i.e. at time t = 2ajk ; then, as we have seen on

p. 140, U1
= F

2
. To obtain U

z
we have only to make use of the

principle of conservation of momentum, or

aJJi + a
9
U

9
=

ajFj + a
2
F

2 ,

whence we find

together with I

We easily deduce

(a V* + a V 2
}

'

2
v i !

-f 2 2/

= F
(i).

_ma, T 2_ ma
O -^WF-

Or, the loss of kinetic energy of translation

Writing M^ = maiy
M

z
ma

2 ,
we see the following differences

between Saint-Tenant's theory and the ordinary theory of the

impact of perfectly elastic bodies :

Saint-Venant's theory Ordinary theory

Loss of

Energy

Comparison with the so-called inelastic bodies of the ordinary

theory gives no better agreement.

[210.] It may be noted here that Voigt's results for rods

of equal cross-sections do not agree with Saint-Venant's theory

when the shorter is the impelling rod. (Annalen der Physik,
Bd. XIX. 1883, p. 51.) Further Saint-Venant makes the duration

of the impulse = 2a
1/&, or = 2ajk if we take it till the instant

when the rods actually separate. In either case the duration
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of the impulse is proportional to the length of one of the rods

and independent of the area of the cross-section. These results do
not agree with Hamburger's experiments (Untersuchungen uber die

Zeitdauer des Stosses elastischer cylindrischer Stdbe: Inaugural-
Dissertation, Breslau 1885, pp. 23 27). Hamburger finds that

the duration is a function of the velocity of impact, which con-

tradicts Saint-Venant's results.

[211.] The second part of Saint-Venant's memoir is entitled :

Choc de deux barres dont les sections et les matieres sont differentes.

The first paragraph ( 8, pp. 286 98) gives in a double form

the solution of the problem of the motion of two contiguous rods :

1 in trigonometrical series. This result Saint-Venant had

obtained in an earlier memoir: see our Arts. 107 and 200. He
adds the solution for beams in the form of truncated cones as

given in the Comptes rendus, LXVL; see our Art. 223. He remarks

of these solutions :

Au me"moire cite, complement de ceux que j'ai presentes depuis

1857 et qui vont e"tre imprimes au Journal de VEcole Poll/technique, on
trouvera le developpement de cette solution, a laquelle il convient de

recourir quelquefois meme pour les barres prismatiques, comme nous
verrons plus loin, notamment quand une des deux parties a une section

relativement fort grande, une longueur fort petite ou une resistance

elastique considerable
; suppositions qui poussees plus loin encore,

permettent de reduire 1'une des deux parties ou barres a une masse

etrangere parfaitement dure, pouvant etre venue heurter 1'autre barre

suppos6e libre aussi, ce qui constitue un probleme dont la solution

directe, a ete presented en 1865 (Comptes rendus, T. LXI., p. 33 : see our

Arts. 200 and 221).

2 in finite terms. This solution is somewhat lengthy, but is

accompanied by diagrammatic representations of speed and

squeeze of the same character as in the simpler case when the

bars have equal cross-sections and sound-velocities. It is of a

more complex nature, however, in particular the sloping lines

become more numerous and change their slope abruptly at the

horizontal line which marks the contiguous terminals : see p. 297

of the memoir.

[212.] The general solution is applied to the special case of the

impact of two rods where initially the squeeze is zero throughout



213] SAINT-VENANT. 145

and the velocities are respectively Vlt
F

2
: see the ninth and tenth

paragraphs. The results are again of a somewhat complex nature,

but are rendered more intelligible by the aid of diagrams. They
occupy pp. 299 326 of the memoir.

[213.] The eleventh paragraph is entitled: Consequences, en

ce qui regarde le mouvement des deux barres apres I'instant de leur

choc, leur separation, et les vitesses a linstant ou elle sopere

(pp. 327336).

Let J/i (
= m1

a
1), fljj,

klt E-L, Fj, v
i9 j be the mass, length, velocity of

sound, stretch-modulus, initial velocity, and velocity and squeeze of any
point at any time of the first bar; similar quantities with the subscript
2 will refer to the second bar. Let r = mjc^{mji^ 9

and rl
= a1 /k1 ,

T2
= ajkp We shall suppose TX

< r2 or that sound traverses the following
in less time than it does the preceding bar; this supposition is allowable as

we can choose arbitrarily which sense of the velocity shall be considered

positive. In discussing the results of the investigation we have to

consider three possible cases :

r = 1, r > 1, and r < 1.

Case (i).
r = 1, or mjc2

= m^.
The impulse ends when t = 2r1} but the bars do not separate until

t = 2r2 . We have for the centroid-velocities after impact,

Thus the two rods behave in this case exactly like bars of the same

material and of equal cross-section.

Case
(ii). r>l, or nijez > m^.

The impulse ends and the bars separate when t = 2r1
.

In this case :

Case
(iii).

r < 1 or mjc^ <

The bars no longer separate when t=2rlt but at the instant given

by t = 2r2 .

If n be a whole number such that

then :

T. E. II. 10
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-
_ /r2

Yz +

u^v^jj^-uj.
where the value for U-^ on the right of the value for 72 must be substituted

from the first expression.

[214.] It will be observed tbat tbese formulae are again

widely removed from those of the ordinary theory. They have

been tested by Voigt for the velocities U
l
and U

9
of rebound,

and by Hamburger for the duration of the impact. Neither find

a really sufficient experimental accordance. Voigt attributes the

discrepancy to the hypothesis adopted for the contiguous terminals,

and considers that the rods cannot, while the contiguous terminals

are in contact, be replaced by a single rod. He proposes a new

theory, which introduces an elastic couch of some indefinite

material (Zwischenschicht) between the terminals. This in a

limiting case reduces the expressions for U
l
and U

9
to those of the

ordinary theory, which in the same case agrees fairly with the

results of experiment. In the general case, however, he has

neither sufficiently specialised his hypotheses nor worked out his

analytical results, so that we are unable to form any but the

vaguest comparison of theory and experiment. His constants are

unknown functions of material and of cross-section, and there

seems no means of determining their form : see our discussion of

his memoir later. A good test of Saint-Venant's theory might be

made by experimenting in a vacuum and so removing a portion
of Voigt's couch. I am inclined to think the discrepancy has

more to do with thermal effect than with the couch of air, and

that we ought to seek for results corresponding to those of the

ordinary theory not when the coefficient of elastic impact is taken

as unity, or the '

elasticity perfect/ but when it has a value

differing from unity and so allowing for a loss of energy by heat.

The problem ought not to be impossible with the aid of Duhamel's

thermo-elastic equations.

[215.] In the twelfth paragraph (pp. 336342) it is shewn

that the bars after separating at time t = 2r
t ,

or = 2r
8
as the case

maybe, do not again come into contact. The thirteenth paragraph

represents by diagrams similar to the figure on our p. 142 the moti- >n
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of the two bars before, during and after the impact. These diagrams

bring out very clearly the time of separation, and in Case (iii.), r < 1,

shew how both bars retain a portion of the energy in the vibrational

form, while in the previous case one bar only has any vibrational

energy: see pp. 342 7 of the memoir, especially the diagram

p. 345.

[216.] The following or fourteenth paragraph (pp. 347 50)
is entitled : Condition generate de separation des barres a un
instant donne quelconque, exprimee en fonction des vitesses et des

compressions de leurs extremiUs jointives a cet instant.

Let F2', J2

'

be the velocity and squeeze of the bar 2, supposed to be
the impelled or preceding bar, at the point of contact.

Let F/, J-l be the like quantities for the impelling or following bar.

Saint-Venant deduces the necessary and sufficient condition for

separation as follows :

Supposons en premier lieu, ce qui est permis, qu'elles se separent pendant
un temps infiniment petit. Le diagramme (23) du no. 3 relatif aux barres se

mouvant isolement, ou le theoreme qu'on en deduit, enonce & la fin de ce

meme numero, montre que leurs vitesses, au point de leur jonction, devien-
dront imme'diatement apres :

V^ lc^J^ pour 2 ,

pour av

Cette soustraction 2
7
2

'

et cette addition #!<//, faites h leurs vitesses

positives, viennent, comme on a dit alors, de la detente de compressions
Ji t

J
2'. Si la nouvelle vitesse de a

2
excede la nouvelle vitesse de a

1?
elles

s'eloignent alors 1'une de 1'autre.

La condition de separation ou d'eloignement est done

This arises from the fact that a wave of squeeze j is propagated along
the rod with the velocity k of sound kj is then the velocity at which
a cross-section is shifted (vitesse de detente), and if the whole of the rod

were moving with velocity v, the rate of transfer of the section

through space would be v kj. But in the case of a free terminal

section this must denote its absolute velocity, where v now becomes
the velocity through space of the element at the end of the rod : cf. pp.
357 8 of the memoir with p. 347.

[217.] The fifteenth paragraph treats of the loss of kinetic energy,
or the energy of translation transformed into energy of vibration. All

the formulae of our Art. 213 may be included in the forms

102
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The energy lost is then represented by

Since there must always be a loss of energy, it is necessary that

Saint-Venant shews from the values of a in the various cases referred

to in Art. 213 that this is always true (pp. 361 355).
The coefficient of dynamic elasticity e as investigated by Newton

(Principia, Ed. Princeps, p. 22) has probably relation to the energy lost

not only in vibrations, but also in the form of heat. To make Newton's

formula agree with the above, it is necessary to take a = . ^ (I +e),
M.\ ~f- -M-<2,

supposing for a moment Newton's laws to hold for rods and that the

energy lost is principally vibrational, not thermal. This gives us, for

example in Case (ii)
of Art. 213,

11 -r 6 = &

Thus if the rods were of different materials, it is difficult to

see how e could be independent of their masses, which Newton

proved for the impact of spherical bodies. Further in the case

of equal rods of the same material e would always equal unity.
This again is not true for most bodies. Hence we are driven to

conclude either that the amount of tbermal energy generated is

generally of importance or that the conditions at the surface of

impact adopted by Saint-Venant are not satisfactory. It would

be interesting to make experiments for a material for which e is

nearly unity, the rods being of equal cross-section and the same

material, and then endeavour to ascertain by varying their masses

whether there was any change in e. Haughton's experiments
seem to indicate that e is not constant but a function of the

velocity of impact ;
this does not suggest Saint-Venant 's form, but

it is interesting as pointing out a want of constancy in this coeffi-

cient: see our Arts. 1523* and also 941*, 1183*.

[218.] In his sixteenth paragraph (pp. 355 373) Saint-Venant

proceeds to give an elementary proof of the formulae of Art. 213.

This proof does not involve differential or integral processes, but

it seems to me that, while luminous and suggestive to the read, r

of the previous analysis, it would not in the more complex cases

be of equal value to the student who approached in this manner
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for the first time the problem of the impact of bars. Similar

proofs for the simpler cases have been given by Thomson and

Tait ( 302 305 of their Natural Philosophy), and by Rankine

(The Engineer, February, 1867, p. 133).

[219.] The elementary discussion opens with a deduction of

the value of the velocity of longitudinal sound vibrations in a rod

(= J'Ejp). At that time Saint-Venant thought it novel, believing
that no elementary proof had been offered since Newton's rather

obscure demonstration of the velocity of sound. In a Note in the

Comptes rendus, LXXI. 1867, p. 186, Saint-Venant acknowledges
the priority of Babinet, who had given the proof in oral lectures

40 years previously and published it in his Exercices sur la

Physique, Second Edn, 1862. In the same Note Saint-Venant

gives in a footnote_an elementary demonstration of the velocity of

slide waves (=

[220.] We shall not reproduce any of Saint-Venant's elemen-

tary treatment, but merely refer the curious reader to the sixteenth

paragraph of his memoir. We conclude with a short extract on

this point from the resume of his memoir which he gives in the

seventeenth paragraph :

J'aurais pu borner mon travail a ces sortes de demonstrations. Mais
les solutions analytiques, telles que celles qui m'ont conduit aux resultats

presentes, portent leur genre de conviction comme les solutions synthe-

tiques, et ce n'est pas trop du concours de deux genres de recherches et

de raisonnements pour etablir comf)letement des resultats tout nouveaux
et controverses, Et puis, il eut manque quelque chose, savoir la preuve

que les deux barres, apres s'etre separees pendant un temps fini, ne se

rejoindront pas en vibrant (p. 374).

[221.] Choc longitudinal de deux barres elastiques, dont I'une

est extremement courte ou extremement roide par rapport a I'autre :

Comptes rendus, LXVI. 1868, pp. 650 3.

This may be looked upon as a supplement to the memoir in

the Journal de Liouville: see our Art. 203. Saint-Venant had

treated this case in that memoir by expressions involving trigono-

metrical series; he now proposes to give its solution in finite terms.

If a
lt

a2 be the lengths of the two bars, &
15

&2 the corresponding
velocities of sound, M^ M2 the masses, F

1} F2 the initial velocities, Ult U2

the final mean velocities of the impelling and impelled bars, then Saint-

Venant had obtained in that memoir the following results for the case
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in which ajk or the time sound takes to traverse the second bar, is an
exact multiple n of the time a^/^ it takes to traverse the first bar :

where, r = ^ -^ < 1.

Now if the impelling bar is infinitely short or infinitely hard (if
a

a
=

or &, = oo
),

the number n ( = -rr -)
will be infinitely great, hence it

follows that :

and the formulae
(i) become :

= F2 4- jf./j/, . (i
-*-.) ( r,

- F2).

[222.] Saint-Venant also shews in this memoir how to obtain

from the results of his previous memoir the velocity and squeeze
of each bar at each instant of the impact. Thus :

(1) For the impelling bar. From t = to 2a2/&, ,

velocity - F2 + (
Vl
- F2)

e
-*J*1 ' **'/a2

,

squeeze = 0.

(2) For the impelled bar. First from t = to

(velocity- Fi+(F,- F2)
e
- .--*o,

From e = to kjt { , lle
. ..

( squeeze =
(
7l
- F2)/>fc2

. e'
M^ ' (klt"

( velocity = Fo,From a: =^toa2 , \

( squeeze = 0.

Secondly from t = a2/&2 to 2 2/&2 :

From x = to 22 - kj the velocity and squeeze have the same values

as previously from x = to k^t.

From x = 2 2
- knt to %,

jvelocity= r, + (r,- Vt) {

(squeeze =
( Fi- T,)/*,. {

This gives the whole state of the bars up to the end of the impact or

until t = 2a2/ a.
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Saint-Venant tests these results : 1 by the principle of con-

servation of momentum, 2 by that of conservation of energy, 3 by

comparing the above finite forms with the solutions in trigono-

metrical series. He finds them verified in all cases. In the con-

cluding paragraph he promises in a future communication to deal

with the case of a bar with one terminal fixed and the other

terminal struck by a load represented by an infinitely short second

bar. This is a fundamental problem in suspension bridge bars,

and solutions in trigonometrical series had been given by Navier

and Poncelet: see our Arts. 272* and 991*. Saint-Venant

promises one in finite terms.

[223.] Solution, en termes finis, du probleme du choc longi-

tudinal de deux barres elastiques en forme de tronc de cone on, de

pyramide : Gomptes rendus, LXVI. 1868, pp. 877 81.

This is again a complement to the memoir in the Journal de

Liouville (see our Art. 213). It gives in finite terms a solution

for a case in that memoir, which Saint-Venant had only solved

in trigonometrical series. Namely the case when the bars instead

of being prismatic are truncated cones or pyramids.

The equations for the vibrations are in this case of the form :

d (E-fi-t du^dx^ _

where p1 is the density and Oj the cross-section wj (1 + x^h^f, o^ and 7^

being constants. If we put E-Jpi
= kf, we have an integral of the form :

_

Similarly there will be two arbitrary functions fz ,
F

2
for the

second bar. The problem is to determine these four functions by
the initial conditions dujdt = V^ from to av dujdt = V

2
from

to a
2 ,
while the initial squeeze is zero throughout the bars. The

terminal conditions have also to be satisfied throughout the

motion. The forms of the functions are given on pp. 879 80 of

the memoir, and the general treatment of the problem indicated,

without, however, any numerical details for special cases.

La solution s'etendrait meme a plusieurs barres juxtaposees bout a

bout, et par consequent au choc de deux solides allonges quelconques a

axe rectiligne, car ces solides peuvent toujours tre approximativement

decomposes en troncs de pyramide a base quelconque (p. 881).



152 SAINT-VENANT. [224 227

[224.] Lemons de mecanique analytique, par M. 1'Abbe Moigno.

Statiqae. Paris, 1868. The last two Lemons of this work, the

twenty-first and twenty-second, pp. 616 723, contain a general

theory of elasticity by Saint-Venant. This is the fourth such

general theory that we have from his pen, the former three being

respectively in the memoir on Torsion, in that on Flexure, and in

the Lemons de Navier: see our Arts. 4, 72, and 190. Saint-Venant's

treatment is in the main a modified and improved form of that of

the second, third and fourth years of Cauchy's Exercices de mathe'-

matiques ; that is to say it starts from the molecular definition

of stress (p. 617). After a very full analysis of stress and strain

we reach the general elastic equations. The hundred odd pages
form one of the best introductions to the subject of elasticity,

though they naturally contain no new results. We may refer to

one or two points.

[225.] Saint-Venant rejects like Lame' that definition of stress

across a plane, which considers stress as the force necessary to

retain the plane in equilibrium if it were to become rigid (footnote

p. 619). This apparently simple definition conveys, he holds, no

exact notion and its simplicity is a pure delusion. In other words

he insists upon the importance of the molecular-definition of stress:

see Lamp's Lemons sur Velasticite, 5, and our Arts. 1051* and 1164*.

[226.] The well-known theorems of Cauchy and the equations
to his ellipsoids are reproduced with short proofs : see our Arts.

603* 12*. We may note also on p. 630 a demonstration of

Hopkins' theorem: see our Art. 1368*. Relations for change of

direction of stretch and slide, such as those of our Art. 133, are

given on pp. 644 5. Saint-Venant remarks that these relations

were first given by Lame' in 1851, but that he assumes that the

shifts are small; the proof given by Saint-Venant holds for any

shifts, provided the relative shifts, i.e. the local strains, are small.

[227.] On pp. 652 3 Saint-Venant states as a Lemma and

proves the principle of linearity of the stress-strain relations, i.e.

the generalised Hooke's Law. The proof appeals to the rari-

constant hypothesis. The reader will remember that there is an

unjustifiable assumption often made in the proof of the generalised

Hooke's law by Green's method : see our Art. 928*. We may note
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here how Saint-Venant as a rari-constant elastician proves his

Lemma. After stating that the stresses must be functions of the

strains he continues :

Et elles en sont fonctions lineaires ou du premier degre ; car, comme
les actions reciproques entre molecules sont fonctions continues de leurs

distances mutuelles r, celles que developpent de tres-petites augmenta-
tions rsr des distances leur sont proportionnelles; et les changements
tres-petits des inclinaisons mutuelles de ces actions a composer ensemble

pour avoir les pressions sont proportionnelles aussi a des augmentations
rsr de distances. Or ces petites augmentations positives ou negatives :

rsr = rc2

rxsx + rc
2

ry
s
y
+ rc\^sz + rc

nj
crza-yz + rc^c^o-^ + rcrj.cry<rxy ,

[see our Art. 547*]

sont sommes de produits des premieres puissances des dilatations et

glissements s, a- par des quantites rc2
rm ...rcrxcry qui ne dependent que de

1'etat ante"rieur aux de"formations Les composantes xx. . .xy des pressions
sont done fonctions du premier degre des memes six quantites tres-

petites s et or, ce qui est le lemme enonce.

It will be noted that a clear reason is here given for the

legitimacy of Taylor's theorem and the retention of the first

powers. It depends on the rari-constant hypothesis. A slight

discussion of this point with a reference to the Appendice V. of

the Lemons de Navier will be found on pp. 654 6 : see our Arts.

192 and 298. There is a footnote on the arbitrary assumption
of the stress-strain relations for isotropic bodies by Cauchy and

Maxwell : see our Arts. 614* and 1537*.

[228.] On p. 670 there is a footnote citing the values of the

stretches and slides for large shifts. This requires modifying in

the sense of my remarks in Art. 1619* 22*.

There is an excellent proof on rari-constant lines following

Cauchy of the most general elastic equations with initial stresses

on pp. 673 689. It is followed on pp. 694 7 by some useful

remarks on the difficulties whi-h occur in the treatment of stresses

as the sums of intermolecular actions: see our Arts. 443* and 1400*.

The pitfalls into which Poisson, Navier and others have fallen are

well brought out.

[229.] This discussion on elasticity concludes with a deduc-

tion of the expression for the strain-energy (Green's function) by
means of Lagrange's process and the rari-constant hypothesis (p.

717). The method is similar to that used by C. Neumann ia his
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memoir of 1859 : see our Chap. XL It is pointed out that if

Navier's error of taking (r l r)f (r) instead of f(r) + (rt r)f (r)

for f(r^ be avoided, and if the summations be not replaced by

integrals, then Poisson's objection to the application of the Calculus

of Variations to molecular problems falls to the ground (p. 719):
see our Arts. 266* and 446*. Finally there is an account of Green's

process and an unfavourable criticism of his theory of double

refraction (pp. 71923) : see our Arts. 147 and 193.

[230.] Formules de Ve'lasticite des corps amorphes que des

compressions permanentes et indgales out rendus heterotropes.

Journal des mathdmatiques, Tome xm. 1868, pp. 242 254. In

his memoir of 1863 Saint-Venant has shewn on the rari-constant

hypothesis that the ellipsoidal distribution of elasticity holds for

aeolotropic, but amorphic bodies, i.e. bodies such as the metals,

whose primitive isotropy has been altered by a permanent strain,

which has not converted their elements into crystals; such a

permanent strain for instance as would be produced by the pro-

cesses of rolling, forging, etc. This ellipsoidal distribution he has

applied to explain the phenomena of double refraction, without

adopting exact transversality of vibration, but obtaining without

approximation Fresnel's wave-surface. The ellipsoidal conditions

are of two kinds :

(i) a group of the type 2c + d' = Jbc )
...

or, (ii)

"

If the differences of the direct-stretch coefficients (b c, c a,

a b) are so small that their squares may be neglected, these two

groups of conditions are identical ;
this is probably the case in the

metals used for construction, and in doubly-refracting media:

see our Arts. 142 7. The conditions by which Saint-Venant

would replace Green's relations the Cauchy-Saint-Venant con-

ditions as we have termed them amount to an ellipsoidal dis-

tribution of elasticity (see our Art. 149), but this distribution

Saint-Venant has only discussed on the basis of rari-constant

equations. Boussinesq in a memoir entitled : Me'moire sur les

ondes dcms les milieux isotropes deformfa, which immediately pre-

cedes the present memoir (pp. 209 241 of the same volume) has

deduced the Cauchy-Saint-Venant conditions for double refraction

on the basis of the ellipsoidal distribution without any appeal to
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rari-constancy. The ellipsoidal distribution is proved by Bous-

sinesq for amorphic bodies on the multi-constant hypothesis,

provided we assume the elastic coefficients to be themselves

linear functions of three small quantities corresponding respec-

tively to the three principal rectangular directions of the perma-
nent strain given to the initially isotropic material. Saint-Venant

proposes to give a new proof of Boussinesq's result, so that the

ellipsoidal distribution may be accepted for the amorphic bodies

in question even by multi-constant elasticians.

[231.] Suppose the body initially isotropic to be permanently
strained in such manner that at each point there are three planes of

elastic symmetry, then the stress-strain relations are of the form :

M = asx +fsy + e'sz, w = dcr
yz,

\

M=fsx + bsy + d'sz,
^ =

60-^, I ..................
(ii).

lez = e'sx + d'sy + csz , Zy =fcrxy. J

Let c, e', e" be the three small quantities corresponding to the three

rectangular directions x, y, z of which the elastic constants are, accord-

ing to hypothesis, to be functions, or let the types be

a = a + l^ + m^' + n^",

d' $ + P!

d=& + r1

Then since the original condition is isotropy, a must be related to e'

and e" in the same way, and further in the same way to e as b to e' and
c to e". Thus j

= w2
= ns ,

and m = n^ = 12
= n2

= 13
= m3 . Similar

relations hold for the constants of d and d'. Thus we may write as

types :

a = a + le + m (e'
4- e"),

b a + le + m (e + e"),

s (e + e")...etc.

Now if we take e' = e", or the stretch the same all round the

direction x, we ought to have not only b = c, e =ft
e' =f, which

easily follows, but in addition the values of the constants ought not
to be affected by a rotation of the axes round that of x. This
however is easily shewn to involve

b = 2d + d',

or what is the same thing

a + me +
(I + m) e = 28 + 8' + (2r 4- p) + (4s + 2q) t.
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This involves, as an identity true for all values of e and
,
the

further results

a =

Whence we easily find generally :

b + c = 2a +
(e' + ") (I

+ m) + 2ra
,

= 2(28+ 8') + 2
(

'

+ e") (2s + q)+2 (2r +p) e,

or

the type of ellipsoidal condition for the second group. It will be

identical with the group of type (2d + cT)
= v&c, when we may neglect

the squares of the differences of a, b, c, or quantities like (lmf (e e')
2
.

Hence the ellipsoidal conditions have been deduced on a hypothesis

very probable in character and not opposed to multi-constancy.

[232.] The memoir concludes by noting that to the stress-strain

relations (ii) subject to the inter-constant relations
(i), we must add

terms of the type :

XXQ (1 + Uy. Vy Wg) tO XX,

yy W to ^
if there be an initial stress jcx

, yy ,
Tz symmetrical with regard to the

planes of symmetry of the primitive strain. Saint-Venant appeals for

these to his memoir of 1863, but as we have seen he has really only

proved them there for rari-constancy (see our Art. 129).

[233.] Calcul du mouvement des divers points d'un bloc ductile,

de forme cylindrique, pendant qu'il s'tfcoule sous une forte pression

par un orifice circulaire ; vues sur les moyens d'en rapprocher les

rdsultats de ceux de Vexperience: Comptes rendus, LXVI. 1868, pp.

1311 24. This memoir deals only with the motion of the parts

of a ductile mass, and does not take into consideration the stresses

which produce those motions. Its methods thus approach those of

hydrodynamics rather than of elasticity ;
it belongs as Tresca's own

theory, to which it refers, to the pure kinematics of deformation.

A report drawn up by Saint-Venant on Tresca's communications to

the Academy immediately precedes the above memoir (pp. 1305-11).

It deals with and criticises Tresca's pure kinematic theory.

Memoirs by Saint-Venant treating of the flow of a ductile solid

or of a liquid out of a vessel will be found in the Comptes rend"*,

LXVII. 1868, pp. 1317, 203211, 278282 and LXVIII. 1869,

pp. 221237, 290301. They cannot be considered to fall in

any way under the title of the elasticity or even the strength of

materials.
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[234.] Note sur les valeurs que prennent les pressions dans un
solide elastique isotrope lorsque I'on tient compte des derivees d'ordre

superieur des deplacements tres-petits que leurs points ont eprouvds :

Comptes rendus, LXVIII. 1869, pp. 569 571. This note gives
without proof expressions for the traction and shear at any point
of an elastic solid, when we do not neglect the squares of the

shift-fluxions. Saint-Venant says that his results have been

obtained from rari-constant considerations. He finds :

dw

dydz \dz dy

dydz \dz dy

d? d? d*
Here 6 is as usual the dilatation, V 2

is the Laplacian -=-= + ,-^ + ^-5,
dx2

dy
2 dz2

and e
, j, ea,

e3 ... are constants depending on the elastic nature of the

body.

Saint-Venant concludes his note with the remark :

Ces formules serviront peut-etre a expliquer des faits relatifs a

certaines substances elastiques pour lesquelles le rapport entre les

efforts et les effets varie plus rapidement lorsqu'on les comprime que

lorsqu'on les etend, en sorte que les vibrations qui y seraient excitees

augmenteraient leurs dimensions comme fait la chaleur, dont les effets

de dilatation peuvent etre attribues, comme j'ai eu 1'occasion de le faire

remarquer (Societe Philomathique, October 20, 1855: see our Art. 68), a

ce que les actions entre les demiers atonies suivraient une loi analogue,

(p. 571).

[235.] Sur un potentiel de deuxieme espece, qui resout Vequation
aux differences partielles du quatrieme ordre exprimant Vequilibre

interieur des solides elastiques amorphes non isotropes : Comptes

rendus, LXIX. 1869, pp. 11071110,
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This note merely refers to E. Mathieu's discussion of the potential
of the second kind

* = SS5f(*> A y) J(* - Y + (y- 0)
3 + (*

-
y)

2

M&*y,
by means of which the equation V

2V2
< = can be solved. This equation

occurs in the treatment of an isotropic solid. Saint-Venant notices the
form

which solves the equations of elasticity when there is an ellipsoidal
distribution of elasticity : see our Arts. 140-1.

Saint-Venant speaks highly of Cornu's memoir of 1869 and its

bearing on the constant-controversy : see our Articles below on that

physicist's work.

[236.] Preuve thdorique de VegaliU des deux coefficients de

resistance au cisaillement et d Vextension ou a la compression dans

le mouvement continu de deformation des solides ductiles au dela

des limites de leur elasticity : Comptes rendus, LXX. 1870, pp. 309

-11.

The object of this note is to prove the equality between the

coefficient of resistance to slide and the coefficient of resistance to

stretch or squeeze, wben both slide and stretch are plastic.

Saint-Venant takes a right six-face of edges a, b, c, and supposes
the two faces a x b to be subjected to shearing forces in direction

of a which produce a plastic slide-set a x c, so that the limit of

elasticity is passed. If K' be the force necessary per unit of area,

the work expended in producing this set is

K'ab x a x c,

or, it equals K'<r per unit of volume.

Now this same slide-set could have been produced by diagonal
stretch and squeeze of magnitude <r/2: see our Art. 1570*. Let

us take the right six-face abc and divide it up into others of the

same breadth 6, but of length a' and height c' making angles <>{'

45 with a and c and having their end-faces a' x c' in the faces

axe. In order to produce set-stretch it is necessary to apply to

the faces be a traction given by Kbc' and to the faces ba a

negative traction given by Kba, where K is the coefficient of

resistance to both stretch and squeeze. Hence to produce a

si n-tch of er/2 and a squeeze of <r/2 parallel to a and c' respectively.

we require work equal to
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Kbc'.^a' and Kba'.^c',2 2

or, per unit volume of the little prism a'bc
'

,
we require work equa

to

K<r.

But this quantity must equal the previous K'a or

K' = K,

the result experimentally ascertained by Tresca.

Saint-Venant concludes the note as follows :

Ce raisonnement me parait, aussi, justifier I'hypothese, hardie au

premier apergu, mais, en y reflechissant, tres-rationnelle, de 1'egalite des

resistances a 1'extension et a la compression permanente, par unite

superficielle des bases des prismes qu'on y soumet
;
bien entendu, sous

la condition generale, que tout ceci suppose remplie, de mouvements
excessivement lents, ou tels que leur vitesse n'entre pour rien dans les

resistances aux deformations qu'ils produisent.

In a footnote he refers to a method by which the flow-lines of a

plastic material might be obtained experimentally.
It must be noted that the proof assumes the coefficients K^

K
2
of resistance to squeeze- and stretch-set to be equal, otherwise

we should have

jra +;~*jr.
The reader may compare Coulomb's results on shearing and

tractive strength referred to on p. 877 of our first volume.

[237.] Formules des augmentations que de petites deformations
d'un solide apportent aux pressions ou forces elastiques, supposees

considerables, qui deja etaient en jeu dans son interieur. Comple-
ment et modification du preambule du memoire: Distribution des

elasticites autour de chaque point, etc. qui a ete insere en 1863 au

Journal de Mathematiques,(sQe our Arts. 127 152). This memoir

is published in the Journal de Mathematiques, Tome xvi. 1871,

pp. 275 307, and is divided into two parts; the Premiere Partie

(pp. 275 291) is occupied with correcting an error which Brill

and Boussinesq had pointed out in the memoir of 1863 (see our

Art. 130); the Deuxieme Partie deals with the relations between

the elastic constants \xxxx\
t
etc. and the six components of initial

strain. It occupies pp. 291 307 and forms the subject of a note

on pp. 355 and 391 of the Gomptes rendus, T. LXXII. 1871,
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[238.] The error in question was really indicated in our first

volume (see Art. 1619*), namely that the true relations between
the strains, sx , o-'^ and the shift-fluxions are in their most general
form of the types

1
:

+ Sy) (1 + Sg = V2 + Wy + UyUZ + VyVZ + WyW; }

' "

but that these are not the values taken by Saint-Venant in his

memoirs of 1847 and 1863: see our Arts. 1622* and 130.

Accordingly Saint-Venant's attempt to deduce Cauchy's equations
from a multi-constant hypothesis is erroneous.

The full value of the potential energy is

(I+Sy)(l+Sz)+ ...... + ...... > .............
(ii),

*,

as Boussinesq had pointed out, and not

as assumed in the memoir of 1863 (see our Art. 130). But the expres-
sion

(ii)
has been deduced onlyfrom molecular considerations on the rari-

constant hypothesis. The fact is that we can on the multi-constant

hypothesis expand < in linear and quadratic terms of the strain-com-

ponents cx , y ,
ez , rjyz> 7)^, ri^ of our Art. 1619*, as Green in fact did

(Collected Papers, pp. 298-9), but we cannot determine to what extent
the resulting coefficients are functions of the initial stress-components.
This apparently requires us also to make some molecular assumption.

[239.] Starting with expression (ii) for the potential energy,
we should arrive at the equations of Cauchy (as Saint-Venant had

done in his memoir of 1863 by a double self-correcting error), but

we must renounce the hope of arriving at (ii) on the simple

assumption of a generalised Hooke's Law. We may note one or

two further points in the first part of the memoir :

(a) To the second order of small quantities,

<TVZ
= vz + wy + uy

ug
- vywy

- vgw

This was first noticed by Brill: see p. 279 of Saint-Venant's memoir.

1
ff'yt differs from the o^ of our Art. 1621*, it being the cox i in- jiml not tin

cotangent of the slide-angle. See Saint-Venant's definition of slide in Art. 1564*.
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(b) If we assume that the work-function may be expanded in

powers of sx) sy ,
sz ,

<r
zy ,

<rxz ,
o-
yx ,

and write

\

[
..................

(iv),

then we are throwing a portion of < involving initial stresses into
<f>2 ,

which thus differs from the
<^>1

of
(ii).

We thus obtain for the stresses

the types :

M = ^J (1
-

Vy
~ WZ)

~ P (Vx
-

Uy) + M (Uz
~ WX) + ^2

I" ^ vz + ^ vx + P wx + H*2 }
"

But xxz and yz2 while being of the same form as Cauchy's xxlt yz [see
our Art. 129, (ii)],

will in reality have constants increased by the corres-

ponding initial stresses, as is shewn by the rari-constant investigation.
Thus:

\xxxx\ 2 \xxxx\ + xx \

! yyyz I 2
=

I yyyz \
+ ^o r (v

'

1
)-

I zzyz | 2
=

I zzyz \
4- 'yz /

It is the impossibility of determining on the multi-constant theory
how these initial stresses occur in the changed values of the constants,
which throws us back on rari-constancy for a proof of

(ii).
Results (vi)_

combined with (v) convert the latter into Cauchy's formulae : see our

Art. 129, (i).

[240.] The second part of the memoir deals with the following

problem: If \xxxx\
t \xxxy\^ \xxyz\

t
etc. are the elastic constants when

there is an initial state of stress XX
Q>

xy ,
etc. it is required to

determine these constants in terms of \xxxx\
Q)

\xxxy\
Q)

\xxy*\
o)

etc. the

elastic constants before this initial state of stress.

Saint-Venant deals with the problem on rari-constant lines. We
have, with abbreviated symbols (see our Art. 143) :

|a?*| or \yW\ or \y*z\ or \x*yz\ ^ 3m j-
%^- {x

4 or ?/V or y
sz or x"yz\ . . .(vii).

Further we have, if x
, y ,

z be the position of the molecule m
relative to a second before the initial strain, w

,
v

,
w its shift due to

that strain, and x, y, z the relative position after the strain,

OC :==-

T. E. II. 11
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dv
* + +

dw, VI%+ -

)J

ft

A
+
</A A

+ f^oVj r
^oN _ dv^dw, _

\ dx )\ dj \ dz, ) dza ddy \ dz, dza d% dxa dza dy,

if we suppress squares and products.

Substituting in Equation (vii) and remembering that

l*\or ly^loor iif*| or \**yz\ = ^2m j- f
- 1

{o;
4 or T/V^ o

1 rQdr ( r )

we obtain the typical results :

I*
4

!

= I^I (1
- 3U

XQ
- V

V()

- W
gQ)

+ 4 (|*y| U
Vo
+ \*z\9 U

Z(),

y<)
+ W

ZQ
) + 2 (|y*\ V

2()

+ |*yz| V^ + |y*| w^ + \y*z\

v
VQ

} + 3

2

Here U
XQ ,...

denote du /dx ..., and since the stresses S
, y* ai*e gi\ '-n

functions of U
XQ

v
Vo
...u

fo ...etc.,
"we can express the new coefficients IT* ...

in terms of the old |**| ... and the initial stresses. These results are

obviously only a more general case of the formulae of our Art. 616*.
The following pages 297 304 are concerned with other modes of

looking at these results or expressing the stresses in terms of them.

[241.] Let us take as a special case that of a bar of primitively

isotropic material subjected to a traction xr, there being an initial

traction xx . We have

% =
o/^o, \ = 8* = -V4 '

Further, if |*VI = X =
/*, then |*% = 3X and EQ

=
5X/2.
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Thus, |jr*|
= 3X(l--|sa .

)
), W\ = \y\ = 3\,

= 1*8*81 = A. (1 + 8
XQ ),

\y*z\ = \tfyz\ = etc. = 0.

Substituting in the traction-type as given by Cauchy's formula,

Eqn. (i)
Art. 129, we have

Whence we find from the second equation :

or 8y
= -%sx {l + -y- %}, neglecting s\.

Substituting in the first we easily deduce

5X
,

- S X fft, + Aft

= ^ + 8x

^-^o w 79 __ ^--
Thus if j^ be the new stretch-modulus, we have E = E

Q
-

$awr .

This shows that a large initial traction can alter to some

extent the value of the stretch-modulus. It slightly decreases it.

Saint-Venant obtains in our notation

but I do not think this result is correct. It would denote an

increase of the stretch-modulus. Saint-Venant in fact puts the

stretch-squeeze ratio after the initial stress = J, (thus on p. 305

he writes sz = sy
= J sx\ but it seems to me that this ratio

= -
(1 + ^)/(4

-
f 8^ = - i (1 + V 8^,

and is only =
1/4 when sxo

=
Q/E = 0, or, when there is no

initial stress.

The matter is one of theoretical rather than practical interest,

for supposing E were 30,000,000 Ibs. per sq. inch, it is unlikely
that XX

Q
could be at most more than 40,000 to 60,000 Ibs. per sq.

inch
;

hence the change in E would not amount to more than

140,000 to 200,000 Ibs., or at most to 1/150 of E, which with

the want of uniformity in any material is in practice almost

within the limits of experimental error.

112
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[242.] In Tome XV. of the Journal de Liouville, 1870, there

are two articles by Saint-Venant, but they refer to a matter

which I have thought it well to treat as lying outside our field,

namely the stability of masses of loose earth. The history of the

memoirs in question may be briefly referred to. Maurice LeVy in

1867 had presented to the Academy a memoir entitled : Essai sur

une theorie rationnelle de Vequilibre des terres fraichement remuees,

et ses applications au calcul de la stability des murs de soutenement

(published in the Journal de Liouville T. xvui. 1873, pp. 241

300). This memoir had been referred to a committee including

Saint-Venant for report. The report appeared in the Comptes
rendus, T. LXX. 1870, pp. 217 28, and was reprinted in Vol. xv.

of the Journal, pp. 237 49. LeVy as well as the committee

appear to have been ignorant of Rankine's memoir: On the

Stability of Loose Earth (Phil. Trans. 1857, pp. 927) which had

contained most of Levy's results. LeVy had started from Cauchy's
stress-theorems (see our Arts. 606* and 610*), and arrived at

certain general equations. Saint-Venant in his first note solves

to a first approximation LeVy's equation (pp. 250 63 of Tome

xvui.) and hopes some mathematician will proceed further. This

was done by Boussinesq, who proceeded to a second approximation
in a memoir occupying pp. 267 70 of Tome xv. of the Jourmil.

Saint-Venant then reconsidered the whole matter in a second me-

moir, which occupies the following pp. 271 80. In a footnote he

recognises Rankine's priority of research. The memoirs of Saint-

Venant and Boussinesq appear also in the Comptes rendus. T. LXX.

1870, pp. 21728, 71724, 7514 and 8947.

[243.] Rapport sur un mdmoire de Maunce Ldvy: Comptes
rendus, T. LXXIII. 1871, pp. 86 91. This is a report by Saint-

Venant and others on Levy's memoir establishing the general

body-stress equations of plasticity in three dimensions : see our

Art. 250. The Rapport speaks well of LeVy's memoir as

advancing the new branch of mechanics, "pour laquelle 1'un de

nous a hasarde', sans le pre'eoniser comme le meilleur, le tc;

d'hydroste're'o-dynamique" This branch of research has been called

later plastico-dynamics, a better word, and we shall refer to it

simply as plasticity.

[244.] Sur la mdcanique des corps ductiles : Comptes rendus,
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T. LXXIII. 1871, pp. 11811184. Saint-Venant here replaces his

first name hydrostereo-dynamics by plastico-dynamics. He re-

fers to the Complement to his memoirs on this subject in the

Journal de Liouville : see our Art. 245, (iii), and to the two ex-

amples of the plasticity of a cylinder under torsion and of a prism
under circular flexure dealt with there. The object of this note

is to show that a formula obtained by Tresca for the torsion of

a semi-plastic cylinder contributes no more than Saint-Venant's

formula of the above-mentioned Complement, while it is at the

same time obtained in a semi-empirical fashion. While Tresca's

formula involves a new constant K
',
Saint-Venant depends only

on the elastic slide-modulus
fju

and the plastic-modulus K.

Saint-Venant distinguishes in his cylinder only two zones, an

elastic and a plastic one, Tresca supposes a mid-zone in which

elasticity alters to plasticity or, as Tresca terms it, fluidity. Saint-

Venant's discussion has the theoretical advantage, but it seems

not improbable that physically something corresponding to Tresca's

mid-zone has an existence.

[245.] We have next to turn to a series of interesting and

important memoirs by Saint-Venant in which he deals with the

plastic equations. These are :

(i) Memoire sur I'etablissement des equations differentielles des

mouvements intdrieurs operas dans les corps solides ductiles au deld

des limites ou Velasticite pourrait les ramener a leur premier etat.

Journal de Mathematiques. Tome xvi. 1871, pp. 308 316. [See

also Comptes rendus, T. LXX. 1870, p. 473.]

(ii) Extrait du memoire sur les equations generates des mouve-

ments interieurs des corps solides ductiles au deld des limites ou

I'elasticite pourrait les ramener d leur premier etat. Par M. Maurice

Levy. Ibid. pp. 369 372. [See also Comptes rendus, T. LXX. p.

1323, and Saint-Venant's correction referred to in our Art. 263.

Some account of the memoir itself will be given under the year

1870.]

(iii) Complement aux memoires du 7 mars 1870 de M. de

Saint-Venant et du 19 juin 1870 de M. Levy sur les equations

differentielles
'

indefinies
'

du mouvement interieur des solides duc-

tiles etc. ;... Equations 'definies' ou relatives aux limites de ces

corps; Applications, Ibid. pp. 373 382.
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[246.] The first paper begins with an interesting account of

the history of the theory of plasticity. It refers to Tresca's memoirs

and to the attempts of Tresca and Saint-Venant himself to obtain

solutions by means of pure kinematics. It is pointed out that the

problem is essentially mechanical as well as kinematical and

involves a consideration of stress as well as of mere continuity.

In the first place the ordinary equations of fluid-motion must be

replaced by others involving inequality of pressure in different directions.

Thus the well-known type of hydro-dynamic equation :

dp / v du du du du\
-/- = p (

X- -=r
- u -, v . w -_

) ,dx ^
\ dt dx dy dzj

'

becomes the plastico-dynamic type :

dZx dxy d f du du du du\
-r- +-r- + -T~ = - P (X- -J7-U-J V-, -W -3-\ (l).dx dy dz r

\ dt dx dy dz)

The change of sign is due to change from pressure to traction.

To this we must add the equation of continuity :

du dv dw
-J-+-T + -y-=0 (11).dx dy dz

The four equations given by (i) and (ii) represent the relation between
the flow (velocity-components u, v, w) of the material and the stress-com-

ponents. The material in the plastic state is treated as incompressible.

[247.] Now Tresca has demonstrated that, if a material is in

the plastic stage, the maximum shear across any face must have

a constant value K, which he has ascertained experimentally for a

variety of materials. This constant resistance to maximum slide

we shall term in future the plastic modulus. Hence to obtain

the plastico-dynamic equations we must express the fact that

the maximum shear across any face = K. (iii).

Again, Tresca has demonstrated that the direction of the

maximum shear is also that of the maximum velocity of slide.

This forms then our last condition :

maximum shear and maximum slide- ) ...

velocity are co-directional J

' '

Equations (i) and (ii), with conditions (iii) and (iv) should

the complete plastico-dynamic equations.
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[248.] Saint-Venant only treats the case of what we may
term uniplanar plasticity, or the motion the same in all planes

parallel to that of x, z. Thus the co-ordinate y disappears from his

results.

Let x', z' be two rectangular axes making an angle a with those of

x, z, then it easily follows from the first formula in our Art. 1368* that,

sin 2a + zxcos 2a.
2

This takes its maximum value for

and is then of the intensity

(v),

(-**)".

Thus condition (iii)
becomes

Further the slide-velocity is easily found to be given by

did dur

fdw du\ (dw du\- + =(-----
)
sin 2a +

(
-=- + -j- )

cos 2a,
dx' dz' \dz dx) \dx dz)

and therefore takes its maximum when

dw du

dz dx
tan 2a =

dw du
'

dx dz

Hence condition (iv) becomes

zz - xx /dw du\ / /dw du\ ,.
2xz \dz dx) / \dx dz/

Finally equations (i) and (ii)
take in this case the simpler

forms :

du du du*

dx dz
_

dt dx

du dw _ .

dx dz

Equations (vi), (vii), and (viii) are those for uniplanar plasticity.
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[249.] Saint-Venant remarks that even these equations will

be difficult to solve for any except the simplest cases. He suggests,

however, that those for a cylindrical plastic flow would not be

difficult to obtain.

In a final paragraph (p. 316) to the first paper Saint-Venant

remarks :

Je ferai seulement une derniere remarque : c'est que si, aux six

composantes de pressions ci-dessus, xx, Jp, 1'on ajoute respectivement
les termes : 2eux,

2fv
y, 2fW2,

c (vz + wy), c (wx + uz),
e (uy + vx), repre"sentant,

comme on sait, ce qui vient du frottement dynamique du aux vitesses de

glissement relatif dans les fluides non visqueux se mouvant avec regula-

rite*, les Equations des solides plastiques, ainsi completees, s'etendront au

cas ou les vitesses avec lesquelles leur deformation s'opere, sans etre

considerables, ne seraient plus excessivement petites, et pourraient en-

gendrer ces resistances particulieres, ordinairement negligeables, dont on
a parle au No. 3. Les memes equations, avec tous ces termes, seraient

propres, aussi, a exprimer les mouvements reguliers (c'est-a-dire pas assez

prompts pour devenir tournoyants et tumultueux) des fluides visqueux,
ou il doit y avoir des composantes tangentielles de deux sortes, les unes

variables avec les vitesses u, v, w, et mesure'es par les produits de e et de

leurs derive"es, les autres independantes de ces grandeurs des vitesses, ou

les rne'mes quelle que soit la lenteur du mouvement, eb attribuables & la

viscosite, dont K representerait alors le coefficient specifique.

[250.] In the second paper to which we have referred in our

Art. 245, Maurice LeVy establishes two sets of results. In the first

place he obtains the general equations of plasticity ;
in the next

he considers the special case of a cylindrical plastic flow.

We cite the general equations here, but refer to our later

discussion of LeVy's memoir for remarks on his method of obtaining

them.

The general equations (i)
and

(ii)
hold for this case. The condition

(iii)
becomes :

4 (#
2 + q) (4J5T

2 + q) + 27r* = (ix),

where q = AyA2 + A2Aa. +

r = Axy7
2 + Ay x2 -f

and *xx Ax = yy A
1/

= 7r Aa =j (xx +M+ zz)'

The condition (iv) becomes

yz zx xy yy ^7 *zz -*

Thus
(i), (ii), (ix) and (x) are the requisite equations.
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[251.] On p. 371 Levy remarks that Saint-Venant in the case of

uniplanar plasticity has not considered the stress y~y. From equation (x)
since v

y
=

0, and therefore wz + ux from
(ii), we have

yy zz zz xx

Or, 'yy J (zz + xx) (xi).

[252.] On p. 372 we have the equations for a cylindrical plastic
flow. If z be the axial, r the radial directions, <f>

the meridian angle,

u, w radial and axial velocities, they take the form :

d'rf d"t

dr d

dTz

'z rr
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These conditions are of various kinds. A certain portion of

the block of matter alone is plastic (called by Tresca the zone

d'activite), other portions may remain elastic, or after passing

through a plastic condition return to elasticity (e.g. a jet of metal

after passing an orifice).

The conditions break up into three classes :

1st. Those which relate to the surface of the material at points
which have retained or resumed their elasticity. Let such a surface be

exposed to a traction Te and let the elastic stresses be 7xe aye,
the

suffix e merely referring to their elastic character. The type of surface

condition will be

e cos (nx) + Tye cos (ny) + Tze cos (nz)
= Te cos (Ix) (xvii),

where n is the direction of the surface-normal and I that of the applied
traction Te.

2nd. The material is in a plastic stage at the bounding surface, Tp
being the traction: the type of equation, if Zxp p̂ denote the plastic

stresses, is :

MP cos (nx) + 7yp cos (ny) + MP cos (nz)
= Tp cos (Ix) (xviii).

3rd. Equations which must hold at the surface at which the

material changes from plasticity to elasticity. These are of the type :

( e
-
Mp) cos (nx) + (w e

~
Wp) cos (ny) + ( e

-
p)

cos (nz)
= 0. . . (xix).

In the equations (xvii) (xix) the elastic stresses and plastic stresses

must be obtained from the general equations of elasticity and of plasticity

respectively.

[255.] On pp. 378380, Saint-Tenant treats the special case of a

right circular cyUnder of radius r subjected to torsion till plasticity
commences in the outer zone from r to r. He easily finds if J/ be the

torsional couple, fj,
the slide-modulus and r the torsional angle :

while at the surface of elasticity and plasticity we must have

firr9
= K.

There will be no plasticity then so long as

K ,f Trr
3

7.T< ^ F M<
'2

A "

If T be greater than this we have :
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[256.] On pp. 380 381 we have the case of plasticity produced by
the equal or ' circular

'

flexion of a prism of rectangular section.

Let 2c be the height in the plane of flexure, 26 the breadth of the

section, 2c the height of the middle portion which remains elastic, and

l/p the uniform curvature. Then it is easy to see that the bending
moment M is given by :

p

At the surface of separation of the plastic and elastic parts :

= 2K.
P

Whence we find :

where we must have p < j- or the prism will remain elastic.
*

[257.] Saint-Venant in conclusion indicates that only after

first ascertaining experimentally the general form taken by the flow

in special cases will it be possible to attempt approximate solu-

tions of the equations of plasticity.

I may remark that Saint-Venant assumes that elasticity and

plasticity are continuous. This does not seem to me at all borne

out by experiment, the stresses have long ceased to be proportional
to the strains before plasticity commences: see the diagram on

p. 890 of our Vol. I. and my remark in Art. 244.

[258.] Two memoirs by Saint-Venant on plastico-dynamics
or plasticity occur in Vol. LXXIV. 1872, of the Comptes rendus.

They are entitled :

(1) Sur Vintensite des forces capables de deformer avec conti-

nuite des blocs ductiles, cylindriques, pleins ou evides, et places dans

diverses cirConstances (pp. 1009 1015 with footnotes to p. 1017).

(2) Sur un complement a donner d une des equations presentees

par M. Levy pour les mouvements plastiques qui sont symetriques
autour d'un meme axe (pp. 1083 1087).

These memoirs may be looked upon as supplements to those

of Saint-Venant and Levy in the Journal de Liouville : see our

Arts. 24557.
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[259.] The general principle, Saint-Venant tells us in his first

memoir, of plastic deformation is that the greatest shear at each

point shall be equal to a specific constant (denoted by K in Tresca's

memoir of 1869). It follows by Hopkins' theorem that at each

point the greatest difference between the tractions across different

faces ought to equal 2K : see our Art. 1368*.

Saint-Venant treats two special cases, and a third by approxi-
mation. We will devote the following three articles to their

discussion.

[260.] The first is that of a right six-face of ductile metal.

If the axes of coordinates be taken parallel to its edges, and its faces

be subjected to uniform tractions xx, yy, **, then these tractions will be

the principal tractions at any point of the material, and it will be

necessary if ^ ~ ? be the greatest difference that :

~Tz = 1K (i).

This condition is fulfilled if

xx = yy = zz =K
t

Or if xx = yy='zz=-K.
Of this Saint-Venant remarks :

C'est dans ce sens qu'il faut entendre, avec M. Tresca, que la resistance,
soit k 1'allongement, soit & raccourcissement du solide plastique, est constante,
et e*gale k sa resistance au cisaillement (p. 1010).

An extension of this case is that of a cylinder on any base, for which

yy ^ without being equal to K, that is to say the transverse or radial

tractions which we will denote by rr are all equal and the longitudinal
tractions xx are greater than them. We have then for the condition of

plasticity :

Zx = 2K+ (ii).

If the radial tractions are greater than the longitudinal we have :

^ = 2K + (iii).

Either equation (ii) or
(iii) gives us by variation

Bxx = 8rr
,

or, any increment of longitudinal, is accompanied by an equal increment

of transverse traction. This is Tresca's principle that in plastic solids

pressure transmits itself as in fluids, although he proves it by the

principle of work.

[261.] The second case dealt with by Saint-Venant is that of

a hollow right circular cylinder placed between two rigid fixed
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planes perpendicular to its axis. The external face being submitted

to a pressure p, we require the internal pressure plt necessary to

reduce the material to a plastic condition.

This problem can be solved by introducing the velocities, here

solely radial, of the points of the material. The principles which

determine these velocities for a plastic material are: 1st, that

there is no change in the volume of the element; and 2nd, that on

each elementary area in the material the direction for which the

shear is zero, must be that for which the slide-velocity is zero.

The latter principle involves the ratios of the half-differences of

the tractions to the corresponding stretch-velocities being equal
two and two.

Let r be the radial distance from the axis of any element of the

material, R and R
l
the external and internal radii of the cylinder ;

V
the radial velocity of the element at r, and ^ , 44, the tractions along the

radius, in the meridian plane and parallel to the axis at the same element.

Then for the equilibrium and conservation of volume of an elementary
annulus '2-rrrdrdz, it is necessary that :

d'rr 'rr fah dV V
-T- + - -=0, +- =

(iv).dr r dr r

Further from the second principle it follows that :

dV/dr dV/dr-V/r"

Eliminating dV/dr between the second equation of (iv) and (v) we
have

whence it results that rr 44 is the greatest difference, and therefore by
Eqn. (i)

^-a = -2* (vi).

It follows from the first equation of (iv) that

cK?/dr = 2JT/r.

Or, integrating 'Tr pl + 2E log (r/R^ (
y
ii)-

Hence from (vi) we deduce :

- p1
+ K + 2K log (r/jy.

We see from these equations that : (a) the pressure on the rigid faces

is not uniformly distributed over the surface of the material in contact

with them, (6) the meridian traction will increase and generally change
from a negative to a positive value as we pass outwards,
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If we make r = 7?, we have = -
p,

or, Pl =p + 2K\og(R/^l ) .......................... (ix).

If the pressure applied p^ has a less value than this, the * annular
fibres' near to the inside face can very well acquire stretches exceeding
the limit of elasticity and even that of cohesion for isolated straight

fibres; but as the fibres in the neighbourhood of the external face

remain elastic, there will not be rupture, nor sensible deformation.

Saint-Venant refers to the well-known experiment of Easton and Amos :

see our Art. 1474*.

In the last Section 5 of the Note Saint-Venant refers to Tresca's

somewhat unsatisfactory proof of the formula (ix).

[262.] In a foot-note pp. 10151017, Saint-Venant deals

approximately with the following case : the outer surface of a

right circular hollow cylinder (radii R, RJ is supposed to rest on

a rigid envelope, the internal surface is then subjected to great

pressure which diminishes the thickness (R Rj, but increases

the height (h), to determine the pressure which will produce this

plastic effect. Tresca had obtained a solution of this problem on

two hypotheses, which cannot be considered as entirely satisfactory.

The general equations of plasticity are indeed too complex to offer

much hope of an exact solution for this case. Saint-Venant gives

a solution involving only the acceptance of Tresca's second hypo-
thesis namely : that the upper base of the cylinder and all the

plane-sections parallel to it remain plane and perpendicular to

the axis of the block, and that lines parallel to the axis pre-

serve their parallelism. It is obvious that this hypothesis is

only approximately true
;

but Saint-Venant's investigation is

an interesting one, as it deals with one of those cases, in

which the maximum difference of the principal tractions is not

given by the same pair for all values of the radial distance.

This breaks up the solution into two parts corresponding to

3r* < or > R*, and the case itself into two sub-cases corresponding
to 3-Rj* < or > R2

. Saint-Venant's results are not in accordance

with Tresca's.

[263.] Sur un complement a donner a une des equations

presentees par M. L^vy pour les mouvements plastiques qui sont

symttriques autour d'un rndme axe: Comptes rendus, T. LXXIY.

1872, pp. 10837.
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Saint-Venant refers to Levy's third equation for plasticity with

axial symmetry. This equation is (see our Art. 252, Eqn. xiv.) :

He remarks that this equation is only the true condition for plastic

motion, when the greatest and least of the negative tractions (pressures)
are in the meridian plane of the point considered. This is not always
true and Levy's third condition requires to be replaced by the following
one :

2K= the greatest in absolute value of the three quantities :

^_^ rr + zz

This follows at once from the consideration that the discriminating
cubic for the principal tractions is :

xy (T Isz)

and this becomes when we put :

rr, 00, zz, 0, *rz, for xx, yy', *zz, yz,

respectively

Levy appears to have divided out by T 00 and neglected this root.

[264.] Saint-Venant remarks that 00 is, however, sometimes the

greatest or least of the three principal tractions, as for example in the

problem of our Art. 261, for in that case

_ rr + 00
zz = ^

In the approximate solution of our Art. 262, the traction 00 is

involved also in the maximum difference when 3r2 <^2
. Thus Levy's

memoir requires to be corrected so far as this equation is concerned.

In a foot-note Saint-Venant points out that his solutions (see our

Arts. 261 2), are really obtained by the semi-inverse method and he

suggests that the same method might be used to solve other plastic

problems.
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[265.] Sur les diverses manieres de presenter la .theorie des

ondes lumineuses. Annales de Chimie et de Physique, 4e
sdrie,

T. xxv. 1872, pp. 335 381. This memoir was also separately

published by Gauthier-Villars in the same year.

The contents belong essentially to the history of the undulatory

theory of light. Saint-Venant considers at considerable length the

researches of Cauchy, Briot, and Sarrau in this field and points out

the defects in the various theories which they have propounded.

Finally he deals with Boussinesq's method of obtaining from a

general type of equation the special differential equations which

fulfil the conditions necessary for explaining the various phenomena
of light. Saint-Venant praises highly Boussinesq's hypothesis, and

considers that his theory :

qui offre & la fois plus de simplicite, d'unite, de probabilite, et je
crois aussi, de rigueur que les autres (quel que soit le remarquable talent

avec lequel ont etc presented ces autres essais, qui ont toujours avance
les questions), merite d'etre enseignee de preference (pp. 380 1).

I must remark, however, that convenient as Boussinesq's

hypotheses may be as a grouping together of analytical results

under one primitive formula, it cannot be held as sufficient till

we understand the reasons why and how the molecular shifts are

functions of the ether-shifts and their space and time fluxions,

and are able to deduce the form of these functions from some

more definite physical hypothesis.
1 2 treat of the early history of elasticity. As in the

memoir of 1863 (see our Art. 146 7) Saint-Venant holds that the

conditions presented by Green for exact parallelism and those

suggested by Lame* for double refraction are only consistent with

isotropy.

Aussi Lam6 et Green ne sont pas compris dans 1'analyse que je fais

des recherches de divers auteurs sur la lumiere. II importe que des

hommes de talent ne s'egarent plus, en pareille matiere, sur les errements

des deux illustres auteurs de tant d'autres travaux plus dignes d'eux.

(Footnote, p. 341.) See our Arts. 920*, 1108*, 146 and 193.

[266.] Rapport sur un Memoire de M. Lefort prtsente' le 2

aodt 1875. This report is by Tresca, Resal and Saint-Venant (r<>/>-

porteur) and will be found in the Comptes rendus, T. LXXXI. 1875,

pp. 459 464. It speaks favourably of the memoir, which deals

with the problem of finding the bending moment at the several
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sections of simple and continuous beams traversed by moving loads.

We shall refer to the memoir under Lefort.

[267.] De la suite quil serait necessaire de donner aux recher-

ches experimentales de Plastico-dynamique : Comptes rendus, T.

LXXXI. 1875, pp. 115122.
This note refers to the need of new plastico-dynamic experiments

with a view of extending the number of solutions hitherto obtained

and also the basis of the existing plastico-dynamic theory. Saint-

Venant points out the insufficiency of Tresca's method of dividing
the plastic solid into separate portions and applying to these the

laws of fluid-continuity ;
he refers to his own researches in this

purely kinematic direction: see our Art. 233, and then to his later

theory and equations, as supplemented by Levy, and based on

Tresca's law of the equality of the stretch and slide coefficients of

resistance : see our Arts. 236, 245 and 258. He points out that to

develop this theory, what we want is not the form taken by jets
of plastic material, but the absolute paths of the elements in the

material. He suggests how this might be ascertained by allowing
the same load to act in the same manner but for different periods
on a number of like plastic blocks, in which a series of points had
been previously marked by a three-dimensional wire netting placed
in the molten metal. He notes also other methods likely to give
the same result. In the course of the note he refers to the simple
cases of plasticity solved by Levy, Boussinesq and himself: see

our Arts. 255 61. At the end are a few lines from Tresca, who

recognises the importance of the experiments proposed by Saint-

Venant, which, I believe, he did not live to undertake.

[268.] Sur la mani&re dont les vibrations calorifiques peuvent
dilater les corps, et sur le coefficient des dilatations; Comptes rendus,

1876, T. LXXXII., pp. 3338.
This is an attempt to represent thermal effects by the change

produced by thermal vibrations directly in intermolecular distance

rather than indirectly by their influence in altering the constants

of molecular attraction. Saint-Venant deals with two molecules

only and supposes one fixed.

Let r be the intermolecular distance in equilibrium, r = r + v the

displaced distance and f (r) the law of intermolecular action, then we
easily find for our equation of vibration :

T. E. II. 12
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m

If dvjdt
= VQ ,

for v and t = 0, we have as a first approximation

v = sin at, wheref (r )/m a?.

For a second approximation :

v = - sin at + |^ (1
_ cos at}\ where

T
^a a m

Let us find the mean value vm of v from t = to 2?r/a ;
we have :

Hence the stretch due to the thermal vibration

Thus we see that the stretch is proportional to the kinetic energy

/2, which is generally regarded as a measure of the absolute tempe-
rature, and will be positive if f" (r )

is positive.

Saint-Venant states that these conclusions will still hold, if the

two molecules be replaced by a system. The thermal effect would

thus depend on the derivatives of the second order of the function

f(r).
If there should be a point of inflexion in tbe curve which

represents tbe law of intermolecular action plotted out to distance,

we should bave a case in which increase of temperature reduced

tbe volume, as occurs in certain exceptional substances. Saint -

Venant suggests tbe form of the figure below for tbe curve

?/=/(r); OD being the distance and Oy the force axis.

Here Ok = r marks the point at whicb tbe action changes frm

repulsion to attraction; if the axes Oy, OD are asymptotic in

character, we have the infinitely great force and infinitely small

force at infinitely small and infinitely great distances respectively

well marked. pM marks the maximum attractive force between the

molecules, and any force greater than this, if maintained, will product

rupture. It corresponds to a distance Op, which defines that <>f

rupture. Great thermal vibrations whicb impose such a velocity
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on the molecule that the intermolecular distance exceeds Op may
perhaps, indicate liquefaction by heat. The point i corresponds
to a point of inflexion, and to a contraction due to heating the

substance in the liquid state.

The discussion, if not very conclusive, is interesting especially
in its bearings on rari-constancy. See our Arts. 439* and 977*.

[269.] Sur la constitution atomique des corps : Comptes rendus,

T. LXXXII. 1876, pp. 122326.
Saint-Yenant in this note refers to a remark of Berthelot on

the paradox involved in the indivisibility of an atom supposed to

be endowed with matter and therefore of necessity extended. He
refers to his memoir of 1844 (see our Art. 1613*), and declares that

he considers partly for metaphysical, partly for physico-mathernatical

reasons, continuous extension to belong neither to bodies nor to

their component atoms. The point which alone concerns us here

is his reference to the rari-constarit hypothesis :

A cette occasion je ferai une remarque. Plusieurs auteurs, soit

anglais, soit allemands, dans des cenvres qui sont du reste d'une haute

portee, voulant etendre a des substances elastiques celluleuses, ou spon-

gieuses, ou derni-fluides, telles que le liege, les gelees, les moelles vegetales,
le caoutchouc, les formules d'elasticite des solides, decouvertes et etablies

en France de 1821 a 1828 par Navier, Cauchy, Poisson, Lame et

Clapeyron, et ayant besom, pour une pareille extension, d'augmenter en

nombre ou de rendre independants les uns des autres des coefficients de

ces formules, se sont pris a condamner vivement, sous le nom de theorie

122
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de Boscovich, non pas son ide"e capitale de reduction des atomes a des

centres d'action de forces, mais la loi merne, la loi physique generale des

actions fonctions des distances mutuelles des particules qui les exercent

re"ciproquement les unes sur les autres. Et ils attribuent ainsi au celebre

religieux lerreur grave ou sont tombes, suivant eux, Navier, Poisson et

nos autres savants, createurs, il y a un demi-siecle, de la Mecanique
moleculaire ou interne. Or cette loi blame"e, cette loi qui a ete mise en
O3iivre aussi par Laplace, etc. et prise par Coriolis et Poncelet pour base

de la Mecanique physique, n'est autre que celle de Newton lui-meme,
comme on le voit non seulement dans son grand et principal ouvrage,
mais dans le Scholie general de sa non moins immortelle Optique.

L'usage fait de cette grande loi n'est point line erreur
;
et les formules

d'elasticite a coefficients reduits ou, pour mieux dire, determines, ou elle

conduit pour les corps reellement solides, tels que le fer et le cuivre,
sont conforines aux resultats bien discutes et interpreters d'experiences
faites sur ces metaux (Appendice v. des Lemons de Navier: see our

Art. 195), experiences au nombre desquelles il y en a de fort concluan-

tes, recemment dues a M. Cornu (p. 1225).

That Boscovich deprived an atom of its extension, but that

Newton treated intermolecular force as central, is a point which

deserves to be recalled to mind : see our Art. 26*.

[270.] Sur la plus grande des composantes tangentielles de

tension inte'rieure en chaque point d'un solide, et sur la direction des

faces de ses ruptures. Comptes rendus, 1878, T. LXXXVIL, pp.

8992.
Potier had given the following formulae for the shear across a

face whose normal r makes angles a, ft, y with the directions of the

principle tractions T^ T
z ,
T

3
:

^* = (Tl

- T
2)

cos'a cos
2

/3 + (Tt
- TJ cos

s
cos

2

? + (T9
- 2

1

,)
cos'7 cos'a,

maximum value of =
(difference of greatest and least principal

tractions).

He had then proceeded to apply these formulae to the conditions

of rupture. Saint-Venant notices that these results had been

given by Kleitz in 1866, by LeVy in 1870, and by himself in

1864. He might also have added by Hopkins in 1847. The note

then points out that rupture in the direction of maximum shear is

hardly confirmed by experiments, which point rather to rupture in

the direction of maximum stretch. Saint-Venant finally considers

the results of some then recent experiments, but remarks on tin-

need for further research in this direction.
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[271.] Sur la dilatation des corps fohauffes et stir les pressions

qu'ils exercent Comptes rendus, 1878, T. LXXXVII., pp. 713 18.

This memoir should be read in conjunction with that of 1876 :

see our Art. 268. It shews us how the phenomena of heat may
possibly be accounted for by the law of intermolecular force as

assumed by rari-constant elasticians. The assumption made by
Saint-Venant is that the vibrations of the molecules, to which the

phenomena of heat are due, are translational vibrations, and not

of the nature of surface pulsations. This does not seem to me

very probable, because in a highly rarified gas, it would denote the

absence of any thermal vibration
; for, there seems no reason why

a molecule should have a periodic translational vibration when its

fellow-molecules exercise little or no influence upon it.

The bright line spectra of such gases appear indeed to con-

tradict the assumption, and it seems probable that if the thermal

vibrations are pulsatory in the case of gaseous molecules, they will

be of a like nature in the case of liquids and solids.

[272.] Saint-Venant commences his article with some account

of his earlier memoirs, namely the communication made to the

Societe Philomathique in 1855 (see our Art. 68), and the first

memoir of 1876 (see our Art. 268). He deduces by similar

analysis to that of the latter memoir the same result

v
v = sin at ........................... (i),a

shewing that it is necessary to take into account the terms of the

second order, if we are to deal on these lines with thermal

phenomena.

[273.] In addition, however, he here proceeds to consider the effect

that translational vibrations would have on the pressure exerted by a

system of molecules on a surrounding envelope. To obtain some idea

of this he supposes a free molecule placed between two fixed ones at a

distance 2r from each other. He easily obtains for the vibrations of

the free molecule the equation :

If we put y (r )
= ma'2

,
and neglect only the cubes, we find

v=. sin a't.
a
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As the other two molecules are fixed, there is no question here of

dilatation. To find the reaction on either molecule we have to substitute

this value of v inf(rQ + v) and we obtain

.........
(iii).

Thus the mean value of p, the pressure upon the envelope of the

vibrating elementary mass, would be

Saint-Venant remarks that as/' (r )
is obviously negative (= ma'*/ 2),

we have only to suppose f" (r ) negative in order that this may connote
an increase of pressure due to the vibration.

Referring to the value of the pressure as given by Eqn. (iv) he

suggests in a footnote :

Cette sorte de consideration, avec mise en compte, comme il est fait

ici, des derivees du second ordre/"(r) des actions, n'est-elle pas propre
a remplacer, avec avantage, ces chocs brusques des molecules des gaz
contre les parois de leurs recipients, avec reflexions multiples et repete~es,

que des savants distingues de nos jours ont inventes ou revivifies, dans

la vue de rendre compte mathematiquement des pressions exercees sur

ces parois, etc. ? (p. 717.)

[274.] Saint-Venant in his fourth paragraph (p. 717) asks

whether we can extend the results here found for two or three

molecules to a multitude of molecules. He replies, yes, because it

is easy to see that the new terms of the second degree due to the

first derivatives /' (r) will add to the second derivatives in f" (r).

On this point he refers to a footnote on p. 281 of his memoir in

the Journal de Liouville, 1863 (see our Art. 127), and to one by

Boussinesq in the same Journal, 1873, pp. 305 61.

Saint-Venant concludes therefore that when on the rari-constani

hypothesis, we calculate the stresses by means of the linear terms

only for the shifts, we destroy all dilatation and all stress due to

increase of temperature ;
we annul in fact all thermodynan

According to his theory then thermal effect is entirely due to the

second derivatives of the intermolecular action expressed as a

function of intermolecular distance. The point is obviously im-

portant in its bearing on the rari-constant hypothesis. Do the

constants of /(r), the law of intermolecular reaction, vary with

the temperature as would be the case if the "strength of the

intermolecular reaction" were to vary with the energy of
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tional vibrations, or, does heat only affect the mean distance of

the molecules by producing molecular translational vibrations, so

that/(r) is no direct function of the thermal state of the body ?

[275.] De la Constitution des Atomes. This paper was con-

tributed to the Annales de la Societe* scientifique de Bruxelles,

2 e
annee, 1878. No copy of this Journal is to be found in the

British Museum, the Royal Society Library, or the Cambridge
Libraries, and my references will therefore be to the pages of an

off-print (Hayez, Bruxelles) for which I am indebted to the

kindness of M. Raoul de Saint-Venant. The off-print contains

78 pages, and deals with considerable historical, philosophical and

scientific detail with the continuity of matter and Boscovich's

theory of atoms. It may be considered as Saint-Venant's final

resume of the arguments brought forward in the memoirs of 1844

and 1876 : see our Arts. 1613*, 268 and 269 1

.

[276.] The theoretical basis of the theory of elasticity and

the strength of materials must be ultimately sought for in the law

of molecular cohesion; the discovery of that law will revolutionize

our subject as the discovery of gravitation revolutionized physical

astronomy. Hence it is that the elastician looks for aid to the

atomic physicist, who in his turn will find much that is suggestive
for the theory of molecular structure in experiments on the

constants of elastic and plastic materials. Bearing this in mind,
a great deal that is profitable may be obtained by a perusal of the

above memoir, although many scientists would disapprove of much
of the method and of several of the conclusions of the author.

In order to place clearly before the reader the scope of the

memoir, I preface my discussion of it with one or two remarks.

We may legitimately question whether the laws of motion as

based upon our experience of sensible bodies really apply to those

elementary entities which form the basis of the kinetic properties
of sensible bodies

2
. It is, however, most advisable to investigate

1 In a footnote (p. 1) Saint-Venant remarks from hearsay that the memoir of

1844 (of which I have only seen the extracts in VInstitut), appeared in full in a

Belgian Journal Le Catholique in 1852.
2 For example the Second Laic of Motion depends on the masses of the reacting

bodies A and B not being influenced by the presence of a third body (7, but it is

conceivable that the 'apparent mass' of an atom is a function of its internal vibratory
velocities, and that these are themselves dependent upon the configuration of

surrounding atoms (see Arts. 51 and 52 of a paper in the Camb. Phil. Trans. Vol.

xiv., p. 110).



184 SAINT-VENANT. [276

what results must flow from applying the principles of dynamics
to atoms and throwing back the origin of those principles on some
still more simple entity. There is much that would induce us

to believe (e.g. bright line spectrum of elementary gas at small

pressure and not too high temperature) that an atom has an inde-

pendent motion of its parts, and this suggests that we should try
the effect of applying the principles of dynamics not only to the

action of one atom upon another, but also to the mutual action of

an atom's parts. If multi-constancy be experimentally demonstrated,
then we must suppose either (i) the law of intermolecular action is

a function of aspect, or (ii) the action of the element A upon another

B is not independent of the configuration of surrounding elements

(Hypothesis of Modified Action : see our Vol. I., p. 814). There

may be other possibilities, but these, as the most probable, deserve

at least early investigation. If the law of intermolecular action is

a function of aspect, then we should expect to find that inter-

molecular distance is commensurable with molecular dimensions.

According to Ampere and Becquerel the former is immensely

greater than the latter; according to Babinet, they are in the

ratio of at least 1800 : 1 (see 13 of Saint-Venant's memoir).
It is difficult to understand under these circumstances how aspect
could be of influence, it would be sufficient to treat each molecule

as a mere point or centre of action, which is practically Boscovich's

hypothesis. According to the more recent researches of Sir

William Thomson, who deals with a molecule as an extended,

material body, the mean distance between two contiguous mole-

cules of a solid is less than the toooioooo f a centimetre while

the diameter of a gaseous molecule is greater than aooofroooo f a

centimetre (Natural Philosophy, Part II., p. 502). Thus inter-

molecular distance would be less than five times molecular

dimensions. In this case it would seem probable that the law

of action between parts of two molecules must be the same as the

law of action between parts of the same molecule, for it is difficult,

although, perhaps, not impossible to understand how one could

begin and the other cease to be of importance at such small

relative distances as 5 to 1. Resistance alike to positive and

negative traction shews that the mean intermolecular distance

cannot differ much from that at which intermolecular action

changes its sign ;
further the capacity of the molecule itself to
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vibrate or suffer relative motion of its parts must point to a

further change of sign in the action between parts of the molecule,

or if this action be really intermolecular action, we are compelled,
on the hypothesis of the elementary parts of a substance having

extension, to presuppose a law of mutual action capable of thrice

changing its sign within very narrow limits indeed. An analytical

expression for such a law may not be hard to discover, but it

would probably be difficult to conceive any mechanical system
which could give rise to such an expression. On the other hand,

it is perhaps impossible to conceive "
aspect

"
as a factor of a

centre of action according to Boscovich. Nor is it easy to picture

the latter centre as the source of a vibration such as seems required

by the bright line gas spectrum, such a vibration, on the other hand,

being easily explained as the free vibration of an extended material

molecule. If we turn, however, to the hypothesis of action modi-

fied by surrounding elements, there seems no reason why we
should not apply it to the Boscovichian centre just as well as

to the materially extended molecule of Thomson. The essential

characteristic of the theory of Boscovich is the non-extension of

the ultimate source of action, not the hypothesis that inter-

molecular action is a function of the individual molecular distance

only. Rari-constancy is not then a necessity of the fundamental

portion of Boscovich's doctrine, the two do not stand or fall

together as some writers have assumed. Thus Saint-Venant's

supposition as to the constitution of atoms in the present memoir
is essentially Boscovichian, but he writes :

La supposition dont nous parlons entraine celle que 1'intensite de

chaque action entre deux particules tres-proches soit generalement
fonction iion-seulement de leur distance mutuelle propre, mais encore,
a un certain degre, de leurs distances aux particules environnantes, et

meme des distances de celles-ci entre elles
(p. 17, 7).

This hypothesis of modified action leading to multi-constancy
1

1 The Hypothesis of Modified Action leads to results akin to those I have referred

to in the second footnote to p. 183, and which are expressed by Saint-Venant in the

following sentences on p. 17 :

On remarquera qu'elle entraine aussi que la force totals, sollicitant une particule
n'est pas exactement la resultante geometrique, composee par la regie statique du

para!161ogramme ou du polygone que Ton connait, de toutes les forces avec lesquelles
la solliciteraient separement les autres particules si chacune existait seule avec elle,

comme on 1'a cru jusqu'a nos jours ;
cette regie ne serait plus vraie que pour les

actions a des distances perceptibles, dont 1'intensit^, rdciproque aux carres des
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is presupposed by Saint-Venant throughout the memoir, although,
as he remarks, he does not agree with it. It forms indeed the

essential difference between this memoir and that of 1844 : see

his 7, p. 18.

[277.] Saint-Venant's arguments in favour of the ultimate

atom being without extension are of a threefold character :

(i) arguments from the known physical properties of atoms;

(ii) metaphysical arguments ;

(iii) theological arguments.

We will briefly refer to some points with regard to these in

the following three articles.

[278.] 3 21 deal with more purely scientific arguments
based on known properties of atoms. In 3 we have arguments
from the theory of elasticity with special reference to the con-

troversy between Navier and Poisson : see our Arts. 527* 534*.

Saint-Venant points out how the continuity of matter is related

to the possibility of replacing atomic summations by definite

integrals. He proves with great clearness in a footnote pp. 12 15,

on the hypothesis of continuity, the following propositions, which

are really involved in the result of Poisson's memoirs of 1828 and

1829 and Cauchy's memoir of 1827 (see especially Journal de

I'Ecole polytechnique, 1831, p. 52, and the Exercices de mathema-

tiques, 1828, p. 321, comparing our Arts. 443*, 548* and 616*):

1. The stress across an elementary plane in a solid body will

like that of a liquid at rest have no shearing component.

2. The traction at auy point varies as the square of the

density.

3. If there were no initial stresses, no state of strain would

produce stress.

Thus on the rari-constant hypothesis, we reach impossible

physical results or it follows that matter cannot be continn

This applies also to the ether which could not propagate slide

distances, est celle de la pesanteur universelle, toujours nlgligeablr vis-A-vis des

actions a des distances iuiperceptibles qui produisent I'elasticiU', la capillarity, lea

chocs, les pressions < t I. s vibrations; et ces dernieres et dnergiques actions se

soustrairaient a lu iv^l'
1

.statiiiiu: dont nous parlons.
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vibrations if continuous. Elementary proofs of the same propo-
sitions apparently not involving the hypothesis of rari-constancy
are given in | 9 and 10.

The following 11 17 contain various arguments against

the continuity as well as against the extension of the ultimate

elements of matter; they are certainly not conclusive, but they
are extremely suggestive, especially with regard to the difficulty

I have indicated on pp. 184 5 of the rapid changes in sign which

must be attributed on the hypothesis of extension to the law of

action. 18 21 consider the explanation of various phenomena

e.g. crystallisation and inertia on the Boscovichian hypothesis,

while a footnote pp. 36 7 deals with a possible form for the law

of action and some results of it : compare our Arts. 268 and 273.

[279.] 2239 deal with what Saint-Venant terms the

metaphysical objections, which he says have been the only ones

raised by those to whom he has communicated his theory. Some

light on Saint-Venant's method of treatment may be gained from

his remark on p. 9 :

Je soumets d'avance, du reste, ce que j'enoncerai, dans les cas

surtout ou. je serai force de me placer plus avant sur le terrain

metaphysique, a toute autorite ayant pouvoir pour prononcer sur ce

qui serait faux, et condamner ou signaler ce qui pourrait etre

dangereux.

It is beyond our province to enter into a discussion of the

metaphysical arguments propounded, or the very wide range of

philosophical reading evidenced by these sections
1

. It must
suffice to say that Saint-Venant shews a decided preference for

the scholastic writers, and an occasional tendency to imitate

late-scholastic quibbles, as for example the arithmetical paradox
on p. 55 by which

Sans etre done dans les secrets du Createur nous pouvons prononcer
. . . qu'il n'a compose ni les corps perceptibles ni leurs dernieres parties,
d'un nombre infini de points de matiere.

[280.] A consideration of the theological arguments up to

which the metaphysical lead would be out of place here, as they

are, I venture to think, out of place in the pages of a scientific

1 There is a good criticism of the antinomy of Kant (du terrible penseur) with

regard to the divisibility of matter on pp. 37 9.
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journal. Those who are anxious to determine the real source of

cohesion will not be hindered from adopting the principle of

extended material atoms, if it agrees best with the facts of

observation, by the assertion that if they accept and comprehend

thoroughly the system of Boscovich it will preserve them from the

deux principales et plus funestes aberrations philosophiques de notre

temps et des temps ancieus, le pantheisme et le materialisme (p. 74).

Notwithstanding that many readers will find themselves unable

to approve either the method or conclusions of the latter portion of

the memoir, the whole should certainly be read for the interesting

questions it raises with regard to the physics of elasticity.

[281.] Des parametres d'e'lasticite' des solides et de leur deter-

mination expe'rimentale. Comptes rendus, T. LXXXVI, 1878, pp.

7815.
This is a good rdsume' of the relations holding between the

various elastic coefficients and moduli in the case of a body pos-

sessing three planes of elastic symmetry, and of the experimental
methods of finding their values.

[282.] (1) The stress-strain relations will be those of our

Art. 117 (a). The coefficients are now nine in number; namely,

the three direct stretch-coefficients, a, b, c the three direct slide-

coefficients d, e, f and the three cross-stretch-coefficients d, e, f.
We have the following special cases :

(2) Elastic isotropy in planes perpendicular to the axis of x :

e =/ e
'

=/, b = c = 2d + d'.

Saint-Venant states the conditions erroneously and says they
reduce the nine constants to six, a, b, d, e, d', e

,
but d' is known in

terms of b and d, or we reduce them to five.

(3) Complete elastic isotropy, or as Saint-Venant puts it,

isotropy in two of the axial planes :

a = b = c = 2d + d'=2e + e' = 2f+f, and d = e=f.

This reduces the nine coefficients to two, namely d' = \ the

dilatation coefficient, and d =
/JL

the slide modulus. Saint-Venant

has forgotten to state the relations d = e f.

(4) Que si, sans vouloir (ce qui n'a aucune utilite") 6tendre Papplica-
bilite de ces formules aux deformations perceptibles de corps spongicux
stratifies, comme est le lie"ge, ou de melanges celluleux de solides et de
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liquides, tels que sont les gelees, et meme le caoutchouc, on se borne aux
vrais solides, et si Ton admet que cliacune des actions mutuelles entre

deux molecules, dont les xx...zy sont les sommes de composantes, est

fonction d'une seule distance, savoir celle des deux molecules qui 1'exer-

cent Tune sur 1'autre, on pent prouver tres-facilement (sans user de ces

integrations autour d'un point que Lame a desapprouvees en 1852) que
Ton a

d' = d, 6 =/,/=/.

This reduces the coefficients in cases (I), (2) and (3) to six, three

and one, respectively (p. 782).

In the second case Saint-Venant says four, but this is an error.

With regard to these rari-constant conditions the memoir

continues :

Et ces egalites peuvent tre admises
; car, outre la presque evidence

de leur principe, I'unite de parametre (X
=

\L
on d' = d) dans tout corps

reellement isotrope se trouve prouvee par des faits nombreux, dont les

derniers sont fournis par les ingenieuses experiences de 1869 de M. Cornu

(p. 782).

In a footnote Saint-Venant refers to the experiments cited by
Sir W. Thomson in the Philosophical Magazine, Jan. 1878, p. 18 :

see our Chapter devoted to that scientist. He holds that the

discordant results there given for copper, prove either a fault in

the experimental method adopted, or aeolotropy in each specimen
of a diverse liiud...probablement tfcroui de maniere d rendre, dans

plusieurs d'entre elles, Ex , beaucoup plus grand que Ey
ou E

z
.

The results for flint-glass and iron are he considers sufficiently

near the rari-constant values, while those for cork and caoutchouc

may be dismissed as proving nothing either way.

Turning to the stretch-modulus we easily find :

(5) in case (2),
p

Ex
= a- 277^', and 77^

= qn = J j-^, ;

(6) in case (3),

(7) in case (4),

(8) For amorphic materials, or bodies without regular crystal-

lisation, such as drawn or rolled metals, stratified stone, wood etc.,

the aeolotropy of which can be regarded as due to unequal initial
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stresses in three directions, or to a fibrous formation, three relations

of the type :

a= ~ +
2d + d'

+
(i) '

will sensibly hold, provided Ex,
E

y ,
E

z
have not ratios exceeding f

or at most 2 among themselves. This is the ellipsoidal distribu-

tion of elasticity : see our Arts. 138 and 142.

For the case of rari-constant isotropy we have :

_3e/* ,_3/a _3de

relations admissible in general for the metals.

(9) For wood, where the ratio of Ex to E
v (the axis of x

having the sense of the fibres) can amount to 10, 20, 40 and more,
we can only take two of the above relations, namely :

3/a 3de
!>=-*-, c = -r W,

J
which give :

E =a-& E =^ 8o^- 4e/ E = e*r (ii)

=
le

= If

For a modification of the statements in (8) and (9) with r<

to wood: see our Arts. 308, 312 and 313.

[283.] Saint-Venant now proceeds to indicate experimental
methods of arriving at the values of the following moduli and

coefficients.

(1) To find the three direct slide-coefficients, or the slide-

moduli d, e, /.

Case (a). If there be isotropy in the plane perpendicular to ; \ x i s

of x (e=f). We experiment on the torsion of a right circular

cylinder.

Case (6). If e be not equal to/, we use the formula of Art. 29

(modified by Art. 47 and Table I) for the torsion of a prism on

rectangular base. Let the base be 26' x 2c and let b' be much > c',

,, ,= f '
senslblv-
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If c be much > V :

,, 16a 6V .,,

Jf^
= =- e

;3- , sensibly,
6 o

where a is the Ma angrfe of torsion (= IT). These give the values

of e,f, and similar experiments with prisms whose axes are parallel

to y and z give d, f, and d, e, so controlling the former results.

(2) To find the three direct stretch-coefficients a, b, c,

(i) They are given in cases (4), (7) and (8) Eqn. (ii) of the

previous article, so soon as we know, d, e, f.

(ii)
In case (9) we know b and c, while a will be given from

ef
equation (ii),

or a = Ex +^ ,
so soon as we have by pure tractional,

or better, flexural experiments, obtained the value ofEx \
the values

of E and E will then be known.
y

[284.] We may cite the following from Saint-Venant's

concluding remarks (p. 785) :

Au reste, si 1'experimentateur possede des moyens d'observation

assez delicats pour mesurer aussi
r)xy, rjxz ,

et par des extensions ou des

flexions de petits prismes tallies transversalement, pour mesurer meme

Ey) EZI Vye, Vyx, Vzx, Vzy,

les expressions en a, 6, c, d, . . .f qu'on peut tirer de ces diverses quaiitites
en resolvant les equations (i.e. those with nine coefficients : see our
Art. 307) a second membre trinome, en annulant deux a deux leurs

premiers membres, donneront des moyens de controle des mesurages
operes, et meme des suppositions (4), (8), (9) (of Art. 282), qui ne soiit

pas admises par tout le monde. C'est un contr61e de ce dernier genre

qu'opere la principal experience de 1869 de M. Cornu....... (See our
discussion of his memoir infra.)

On n'a pas besoin d'ajouter qu'aux mesurages statiques des dilata-

tions, flexions et torsions, on pourra substituer au besoin, comme ont
fait MM. Wertheim et Chevandier, des observations des sons rendus par
des vibrations longitudinales, transversales et tournantes.

Saint-Venant has forgotten to add that the kinetic values of

the elastic coefficients thus obtained will probably differ from the

statical values : see our Arts. 1301* (3) and 1404*.

[285.] Sur la torsion des prismes d base mixtiligne, et sur une

singularity que peuvent offrir certains emplois de la coordonnee

logarithmique du systeme cylindrique isotherme de Lame. Comptes
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rendus, T. LXXXVII. 1878, pp. 849 54 and 8939. There are

additions in the off-print. This memoir was read on the 2nd and

9th of December.

Its object is explained in 2 (pp. 850 1), after the solutions

given in the memoir on Torsion (see our Art. 36, Nos. 4 and 5)

have been cited :

Clebsch a remarque, en 1862, qu'on obtient une varie"te de contours

plus grande encore en se servant des coordonnees curvilignes isothermes

orthogonales de Lam6 (i.e. conjugate functions) ;
et MM. Thomson et

Tait dans leur beau livre A Treatise on Natural Philosophy, 1867, ont

indique, sans le developper, leur emploi pour etendre les solutions telles

que (3) {= (1) of our Art. 36}, relatives aux rectangles rectilignes, a des

contours rectangulaires mixtilignes se composant d'un arc de cercle ou
de deux arcs concentriques et des deux rayons qui les limitent,

u ce qui
est" disent-ils,

" tres-interessant en theorie et d'une reelle utilite* en

Mecanique pratique."
II ra'a paru que la solution relative a ces sortes de sections pouvait

etre obtenue d'une maniere simple et directe, sans substituer prealable-
ment une certaine inconnue auxiliaire a 1'inconnue geometrique u, et en
s'en tenant aux coordonnees polaires ordinaires r, <J>.

[286.] In 3, Saint-Venant obtains the required solution in

cylindrical coordinates. The fundamental equations (see our Art. 17,

Eqn. vi.) become

r + uHlr*
= Q\

- rur d<f> /
'

rrdr + u^dr/r

If y be the angle of the annular sector, r and rj(>r )
its radii,

then the second or surface equation reduces to the following conditions

when the median line is taken as initial line :

{rP=-
u$ for values of r>r <r

1 ,
when

<f>
=

y/2, }

ur= when r = r or r
l

,
for all values of

<j>
between y/2j

"

These conditions are found to be satisfied by the following value of u

2 cos y TT 2n + 1 o r?
m - rf*

sin 7n<f>

,

where m =
y

This result is practically obtained by assuming u to be of the form

Cr3 sin 2< + 2 (Ar
m + A'r~m

)
sin ra<,

and determining the constants by the surface conditions (ii).
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[287.] In the following section of the memoir, 4, Saint-

Venant treats precisely the same problem by the aid of the

conjugate functions,

He obtains two solutions in terms of a, ft for a function F,

related to u by the equations Vz
= u

y ,
V

y
=- u

z
.

The first contains two infinite summations and is similar in

character to those given by Lame' in the Onzieme Le$on of his

work on Curvilinear Coordinates (see his p. 184). The second is

that of Thomson and Tait, (see 707, p. 252, Part II. of the second

edition of their treatise).

He remarks, however, (5) that although the value of the

function u, obtained from F, is quite determinate when r = 0, yet
that of F becomes indeterminate. In fact the series for F cease to

be convergent, and at least for the case of r = 0, we have reached

the value of u by means of an expression for F, which has ceased

to have any meaning. We are thus thrown back in this case on the

value of u determined by the process indicated in our Art. 286.

See on this point the footnote on p. 143 of the memoir of January,

1879, considered in our Art. 291.

[288.] In 6 Saint-Venant expresses analytically the value of

the torsional moment M and the slides, and in the following sec-

tions gives the results of numerical calculations made with these

formulae.

We may cite the following for the torsional moment M:

(1) Full Sectors :

7=
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sector on the old Coulomb theory. As is well known (see our

Art. 181, (d)) Saint-Venant's theory makes both torsional moments

equal. It will be seen at once that for bodies of this kind the

results of the old theory are most erroneous and very dangerous in

practice. The reduction of the torsional resistance for a split sec-

tion is well brought out by the result M/ffll = '5589 for 7 = 360.

(2) Annular sectors when r = 2r :

7 =
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which we can apply the equations of mathematical elasticity. It

suggests, however, the advisibility in practice of rounding off

re-entering angles.

[291.] Sur une formule donnant approximativement le moment
de torsion. Comptes rendus, T. LXXXVIII. pp. 142 7, 1879. This

note was read on January 27, 1879.

This memoir has considerable practical value
;

it gives an

empirical formula which embraces within narrow limits all Saint-

Venant's torsional results
;

full sectors with re-entering angles
alone excluded.

Starting with the formula for an elliptic section (see our

Art, 18)

we may write it

M = K
-j fJiT,

^o

where / is the moment of inertia of the cross-section about an

axis perpendicular to the section through the centroid and a is the

area. The quantity

K = ~ = -025330 =
39-48'

Now Saint-Venant finds that for the chief sections he has

treated in his various memoirs K varies only from '0228 to '026,

while its mean value is very nearly '025 =
-fa.

Hence we have very approximately for all sections the formula:

^r

=41

oy-^J
o

It will be noted that the torsional moment varies inversely as

the moment of inertia and not directly as in the old theory.
Saint-Venant adds :

En y reflechissant, on comprend qu'il en doit etre generalement
ainsi, car les sections allongees qui, a egale surface, ont le plus grand
moment d'inertie polaire, sont aussi celles auxquelles la torsion fait

prendre le plus de cette incurvation, de ce gauchissement, qui diminue
1'inclinaison prise par les fibres sur les iiormales a leurs elements, surtout

aux points les plus eloignes du centre, et par consequent, sont celles sur

lesquelles les reactions elastiques developpees ont le moment total M le

plus petit (p. 142).

132
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The final section of the memoir 3 (pp. 143 7), is occupied

with some general observations on the elasticity of rods whose

axes are curves of double curvature. Their only relation to the

preceding formula for torsion is the remark that the coefficient of

torsional resistance used by some writers, namely //-T/O ,
must be

replaced by -fo /ira
4

/7 . Saint-Venant compares the results of his

memoir of 1843 (see our Art. 1584*) with the more recent re-

searches of Bresse and Resal : see our discussion of their memoirs

below. There is nothing of importance to note
;

the footnote

p. 145 should be cancelled.

[292.] Analyse succincte des travaux de M. Boussinesq, profes-

seur d la Faculte des sciences de Lille, faite par M. de Saint- Venant,

1880. This report consists of 23 lithographed pages.
In April, 1880, Boussinesq had printed and presented to the

members of the Academy a notice of his scientific writings.

(Danel, Lille, in 4.) Saint-Venant then drew up the above

analysis, strongly recommending Boussinesq for membership of

the Academy. Pp. 12 17 ( 6 9) treat of his contributions

to the theory of elasticity (' Les travaux de M. Boussinesq sur les

corps solides et leur elasticite ne sont pas moins originaux et

importants'). Pp. 17 20 deal with his various mechanical and

philosophical papers ; pp. 20 23 with his contributions to the

undulatory theory of light. We shall have occasion to return to

Saint-Venant's essay when discussing Boussinesq's memoirs.

[293.] A second paper of Saint-Venant's dealing with the

elastical researches of a contemporary may be noted here. It is

entitled : Sur le but thdorique des principaux travaux de Henri

Tresca. Comptes rendus, T. CL, 1885, p. 11922.
The influence on theory of Tresca's researches and the origin

of the science of plasticity are sketched. The writer attributes to

Tresca a keen appreciation of theory; he was no mere empiricist,

as many have erroneously believed :

II importe de montrer, dans 1'interet de sa me"moire comme dans

celui de la ve"rite scientitique, que Tresca fut un esprit phis large, un
homme de vraie Science et par consequent de tfieorie dans la meilleure et

la plus saine acceptation de ce mot si souvent mal compris, si fre"quem-
rnent accuse", par Iegeret6 ou en haine systSmatique de la Science, de

n'exprimer que des chimeres (p. 119).
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[294.] Geome'trie cinematique : Sur celle des deformations
des corps soit elastiques, soit plastiques, soit fluides: Comptes rendus,

1880, T. xc., pp. 5356.
Saint-Yenant draws attention to the importance of pure kine-

matics and notes how far it is possible to advance in physical

problems without the aid of force or stress considerations. Saint-

Venant may be legitimately looked upon as one of the forerunners

of that reduction of all dynamics to kinematics, or the exclusion

of the idea of force from physics, which is now probably only a

matter of time. In a lithographed course of lectures given in

1851 (Principes de Mecanique fondes sur la Cinematique, delivered

at Versailles to engineer-students) he had treated of great por-
tions of mechanics on kinematic principles. In this direction he

had been preceded by Grassmann and followed by Resal (Cine-

matique pure, 1862, and Mecanique generate, 1873). The present
article points out how far we can advance in the geometry of

strain or displacement without the conception of stress. Saint-

Venant adduces the theorem of the distortion of a sphere into

an ellipsoid, and speaks as if it were only true for small strains.

That it is true for all strains was pointed out by Tissot (see a

supplementary Note, p. 209 of same volume of Comptes rendus}
who had given a demonstration of it in the Nouvelles Annales

de Mathematiques, 1878, p. 152. Saint-Venant points out in this

Note that his own proof of 1864 (L'Institut, No. 1614, p. 389) did

not really introduce this restriction. The kinematics of strain

had, moreover, been thoroughly considered in 1867 by Thomson
and Tait in their Treatise on Natural Philosophy, pp. 98 124.

[295.] Du choc longitudinal dune barre elastique libre contre

une barre elastique dautre matiere ou dautre grosseur, fixtfe au

bout non heurte ; consideration du cas extreme ou la barre heurtante

est tres raide et tres courte: Comptes rendus, T. xcv., 1882, pp. 359

365, Errata, p. 422.

This is only an abstract of the memoir. It gives a solution in

trigonometrical series for the case of one bar striking longitudinally

a second with one end fixed.

If F be the initial uniform speed of the impelling bar, a
2

its

length, ! that of the fixed bar, P2 , Pi the weights of the two bars, x

the abscissa measured along the common axis of the two bars from the
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end of the fixed bar, then the shifts u2 and MJ of either bar at any point
x during the impact are :

p _,- 2 cos {mr.2 (a! + CT2
-
x)/a2 }

sin mt
,F2

. \

U =

m cos WT., , .

sin2mT1 cos-mrj

2 sin {mTj x/a^ sin mt

m sin WT, [ ^-^ - +
)

COSJ
7?lT2/

where w is a root of the equation :

P P
cot mrj ---*

tan mr2
=

0,

and TJ = Oi/ku rz
= ajk^ ; ^ and A;2 being the velocities of sound in the two

bars.

[296.] Saint-Venant then considers the case when r
2
is very

small as compared with T
I}
and so deduces Navier and Poncelet's

expression for the vibrations of a bar struck by a weight on its free

terminal: see our Arts. 273*, and 991*. Saint-Venant does not

enter into the question of the time and manner in which the bars

separate. He goes on to remark that in the case of two free bars

we may express the result in finite terms, as also in the case of

one free bar and a weight moving with a definite velocity and

striking it longitudinally on one terminal. The case of a bar

fixed at one terminal and struck by a moving weight at the other,

he does not in this memoir attempt to solve in finite terms. This,

however, he proceeded to do in an article in the same volume of

the Comptes rendus, on pp. 423 427, entitled :

[297.] Solution, en termes finis et simples, du probllme du choc

longitudinal, par un corps quelconque, d'une barre tflastique fixde d

son extrdmitd non heurtde.

This solution is very similar to the full treatment of the

problem by Boussinesq referred to in our Art. 341. But it fails to

determine the instant of separation, and so does not completely
solve the problem. After Boussinesq had given his solution

Saint-Venant with the aid of Flamant concluded the whole

subject with a graphical investigation of the successive states

of the bar and the impelling load for the whole duration of the

impact: see our Arts. 4017.
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SECTION V.

The Annotated Clebsch.

[298.] Theorie de I'elasticite des corps solides de Clebsch.

Traduite par MM. Barre de Saint- Venant et Flamant, avec des

Notes etendues deM. de Saint-Venant. Paris, 1883, pp. 1 900 (but

by means of subscripts the number of pages is much greater than

thus appears, e.g. 480. a 480. gg).

This is Saint-Venant's last great and, we may say, most com-

plete contribution to the theory of elasticity. By means of foot-

notes, section-notes and appendices he has almost trebled the

matter given by Clebsch, and the result is a treatise on the theory

of elasticity from the mathematico-physical standpoint which will

long remain the standard work on this subject.

Au moyen de ces explications et annexes, auxquelles nous aurions

pu donner plus d'etendue en rapportant d'autres resultats in edits de nos

recherches deja anciennes, nous esperons, si Ton veut bien y donner

quelque attention, que la traduction offerte par nous aura une reelle

utilite et que la belle et interessante branche de physique mathematique

ayant, avec 1'art des constructions, des rapports si intimes, pourra etre

de mieux en mieux comprise, etudiee et appliquee (p. xxi).

With Clebsch's contributions to elasticity we shall busy our-

selves later
;
so far as the text of his work is concerned, we have

only to note here that his isotropic formulae are everywhere

replaced by those for suitable distributions of homogeneity (see

our Art. 114), and that various obscurities in his treatment are

explained or corrected in copious footnotes. We shall occupy
ourselves in the following articles with an analysis only of Saint-

Venant's contributions to the volume.

[299.] Saint-Venant's first important note occurs on pp.

39 42. It is headed : La preuve de la forme lineaire des ex-

pressions des composantes de tensions ne peut pas etre purement

mathematique. This deals with the same matter as pp. 662 5 of

the Lecons de Navier : see our Arts. 192 (a) and 928*, namely the

futility of all purely mathematical deductions of the linearity of the

stress-strain relations. Such deductions have been given by
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Green, Clebsch, Thomson and others : see our Art. 928* and

the footnote Vol. I., p. 625.

Generalement et philosophiquement aucune consideration purement
mathemcitique ne saurait reveler le mode de la dependance mutuelle des

forces agissant sur les elements des corps, et des changernents geometri-

ques qui s'y operent, tels que ceux des longueurs et des angles de leurs

cotes : la connaissance de ce mode ne peut etre derivee que des faits, on
de quelque loi physique exprimant un ensemble de faits constates (p. 39).

Saint-Venant appeals to experiment and cites Stokes' adduction

of the isochronism of sound vibrations with approval : see our Art.

928*. We have remarked elsewhere that the stress-strain relation

cannot, however, be treated as linear for the slight elastic strains

in many of the materials of practical structures: see Note D of our

Vol. L, p. 891.

[300.] But Saint-Venant is not satisfied with appeal to experi-

ment and observation
;
these give Keplerian laws, without the

backbone of Newtonian gravitation :

En ge"ne*ral, pour convaincre nos esprits, Tempirisme, qui ne rend

compte de rien, ne suffit pas : il nous faut encore une explication, une
raison scientifique, ou la preuve que les formules qu'on nous propose

dependent de quelque loi assez g6nerale, assez grandiose, c'est-a-dire

simple, pour que nous puissions en raisonnant, comme faisait Leibnitz,

quand ce ne serait que d'une inaniere instinctive, la regarder comme

pouvant etre celle & laquelle le souverain Le"gislateur a soumis les

phenomenes intimes dont les formules en question representent et

mesurent les manifestations exterieures (pp. 40-1).

Saint-Venant finds this loi assez gdndrale, assez grandiose in

the law of intermolecular central action, as a function only of the

distance, and cites its acceptance by the leading physical mathe-

maticians from Newton to Clausius. He then refers to Green

and his followers, who, as we know, appealed to Taylor's Theorem,
as a loi assez grandiose. Now behind this appeal for 21 inde-

pendent constants to Taylor's Theorem, although unrecognised

by Green, was the important conception that possibly inter-

molecular action depends not only on the individual molecules,

but on the position of each pair of them in the universe relative to

other molecules. For example, if intermolecular action arises from

molecular pulsations in a fluid ether, we find intermolecular force

is a function of molecular surface energy, which surface en<

is itself a function of position relative to the totality of other
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molecules. It is true that the law of intermolecular force thus

resulting is not simple, although with the knowledge we have of

thermal and optical phenomena, it may tend to coordinate far

better than any simpler law- the total physical universe. Saint-

Venant does not appear here to strengthen the arguments of the

Appendice V (see our Art. 192 (a)) by the introduction of a

souverain Legislateur, for whom a loi assez grandiose must neces-

sarily be assez simple. The assumption is, indeed, anthropomor-

phical in the extreme. When we regard thermal and optical

phenomena, and note the probable vibration of molecules and

the existence of an ether we may be quite certain that the law

of intermolecular action whatever be its nature is far from being

primary in the universe
;

it must be a result of the structure of

molecule and ether; grandiose it certainly may be, but the

addition c'est-d-dire simple is an anthropomorphical dogma, which

recalls to our minds the mundi fabrica est perfectissima of Euler.

[301.] We must next consider the Note finale du 16 which

occupies pp. 63 111.

1 12 of the Note (pp. 65 75) are again concerned with

the coefficient controversy, but take up a different line of argu-
ment from that of the Appendice V : see our Arts. 192 5.

Saint-Venant here enquires how far Green's appeal to the

principle of work and the impossibility of perpetual motion in

itself involves the reduction of the elastic constants to 15.

[302.] He starts from the equation

2mF2

/2 + ty (xj y, z, x', y'y
z

,
x"

, y", z" . .
.)
= some constant C. ..(a),

where V is the translational velocity of the molecule m, whose

centroidal position is #, y, z
t
and the dashed letters give the

positions of other molecules m
', m", etc. In other words he makes

the total translational energy of the system a function of molecular

position. He omits :

(1) from the kinetic energy a possible internal vibratory
motion of the molecule due to pulsations in its atoms or to change
in the relative motion of the atoms of the same molecule

;

(2) possible factors in the potential energy due to strains

in the molecule itself or to changes in its aspect with regard to

other molecules.
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Is he justified in thus making the translational energy of the

molecular centroids a function solely of their position ? He seems
to think that both the omissions (1) and (2) are legitimate provided
that there are no such changes of temperature as produce violent

atomic vibrations, and that we take the mean of large numbers

(see his 12). But is it not within the bounds of possibility
that the mean internal potential energy of the molecules may be

changed by an elastic strain, although the mean internal kinetic

energy on which the temperature may be supposed to depend
remains unchanged ? This change in the potential energy of the

molecule will be a function of the relative molecular position, but

it may be one of aspect as well as of centroidal position. If we

accept, however, with both Green 1 and Saint-Venant that the

former can only depend on the latter, we are thrown back,

supposing no sensible thermal changes, on Equation (a).

[303.] Saint-Venant in 5 proceeds to question whether the

Equation (a) can give the form of ty required by Green. He says

that we can replace it by an equation of the form :

+ V1 (r,r',r"...)=C.................. (6),

oil ^ est une nouvelle fonction dont il importe peu que les variables

r, r', r" &c. soient ou ne soient pas, en partie, dependantes les unes des

autres,...r, r, r"...etant les distances des molecules du systeme tant entre

elles qu'avec les centres d'action fixes exterieurs (p. 68).

Is this change legitimate ? The form (a) retains the possibility

of intermolecular action being a function of aspect. Is this lost in

(6) ? It does not appear to be so if some of the variables r are the

distances from fixed external points. From this equation we easily

deduce for any molecule ra, the typical equation :

ma = 2 -i-1 cos (rx) ........................ (c),

where 2 denotes a summation with regard to all values of r.

1 Both Green and Sir William Thomson make the potential energy of the

element a function only of the clutnyf in shape, i.e. of the relative position <>f

molecular centroids. I think this assumes that the internal potential energy ot

molecule can only be a function of centroidal position. It may, however, be that

the internal potential energy of (either the molecule
or)

the element is a function

of the relative motion of (the atoms or) the elements, in which case the velocities

would appear in *,, and we should obtain by the Hamiltonian process totally
different equations to those of Green for elasticity. These generalised equations of

elasticity leading to the Diaaipatirc Function etc., I propose to discuss elsewhere.
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The rest of the investigation now turns upon the question whether
dW d"fy d*P

~d/r
'

~d/7
' ^T"

1
' ' ' are s lety Unctions of r, r, r" . . . respectively. If

they are, then the 36 coefficients reduce to 15. If they are not,

then the action of one molecule on a second can depend : (1) upon
mutual aspect, (2) upon the position of other molecules. The

dependence of the mutual action of each molecular pair solely
on their centroidal distance is the hypothesis, as Saint-Venant

remarks, upon which most writers on mechanics have based their

proofs of the conservation of energy (e.g. Helmholtz). At the same

time it does not seem necessary to assume it for more than the

atoms, and for the molecules aspect may really be important.

[304.] Saint-Venant now proceeds to investigate what con-

sequences flow from rejecting this hypothesis. He remarks that

the action between two molecules will now be a function of their

distances from other molecules, and not only of their mutual

distance. It appears to me that the action does not necessarily

depend solely on their distances from other molecules, but perhaps
also on their distances from imaginary molecules or fixed centres,

which give the aspect influence. Saint-Venant tries to prove in

the first place that the work done in a complete cycle cannot

generally be zero, if the intermolecular force is a function of more

than the single intermolecular distance. It is quite true, as he

observes, that if we move two molecules from a mutual distance

r, where the action is R^ and bring them again to a mutual

distance r, the action R
2
need not be equal to R

iy
and so the

elements of work R
t
dr and R

z
dr need not be equal and opposite,

provided the other intermolecular distances are not the same in

the two positions. It is only necessary that the positive work

created by one pair of molecules, shall be exactly equal to the

negative work created by the action of the remaining pairs of

molecules. Is there anything improbable in this ? Saint-Venant

seems to think so :

Or, quelle que soit la loi imaginable a laquelle on soumette les

inten sites des actions entre deux molecules, et leur mode de dependance
de la simple presence d'autres molecules, si une juste compensation,
comme celle dont nous parlons, s'observe ainsi entre deux moities de

certains systemes parcourant certains cycles, elle cessera de s'observer en

ajoutant a ces systemes d'autres systemes pouvant etre pris infiniment
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varies, et en ajoutant aux parcours d'autres parcours quelconques
arbitrairement choisis.

La nullite" du travail total produit par un cycle ne peut done etre

generale qu'autant qu'elle a lieu pour chaque action individuelle
; ce qui

oblige admettre que la force que nous avons appelee R soit fonction

de la seule distance que nous avons appelee r (p. 71).

I do not understand the argument which follows the words :

elle cessera de s observer en ajoutant. Suppose the molecules repre-

sented by electro-magnets then the total action during any motion

of one such magnet A on another B would depend not only on the

initial and final relative positions of A and Z?, but owing to the

induced currents on the paths and positions of A and B with

regard to the other bodies in the field. It seems to me that

Saint-Venant's argument would compel us to assert that by intro-

ducing other magnets into the field or by moving them about in a

proper manner, we could obtain perpetual motion.

[305.] Saint-Venant's second argument is of the following kind

(see his 9). If the intermolecular force depends on more than

the particular centroidal distance, then the distances between astral

molecules will affect the action between terrestrial. Here to start

with, we have somewhat of an assumption ;
the action of A upon

B may depend on the distance of both from C and D but not

necessarily on the distance of C from D. For example such might
be the case when we treat of aspect influence, as given by means of

fixed centres having reference only to A and B. Saint-Venant

continues : the influence of an astral intermolecular distance on a

terrestrial must be absolutely insensible, for even when we are

dealing with a small portion of terrestrial matter, the action of its

molecules is sensibly independent of the state of other matter

even at a visible distance.

Hence the form of ^, (r, r',r"...) ought to be such that for any
small system d&Jdr depends sensibly only on the molecules in the

immediate neighbourhood of ra. This condition of exclusion can

be easily fulfilled for molecules at sensible distances by making ^
a function of the inverse powers of r, r',r".... We will now cite

Saint-Venant's actual words :

Mais cette ressource d'exclusion sensible est impuissante a l'e*gard

des distances mutuelles de molecules appartenant en particulier a chacun

de ces systemes ou elements non proches de celui dont on s'occupe.
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Les distances mutuelles insensibles entre les molecules composant m6me

chaque etoile auront une influence du meme ordre sur la grandeur de

d^^jdr, ou sur I'intensite de Faction mutuelle des deux molecules m, m'

d'un corps terrestre que les petites distances des molecules qui les avoisi-

nent dans le meme corps, tant qu'on n'aura pas impose a la forme de la

fonction ^f
l (r, r', r"...) une restriction ou particularisation plus grande

(p. 72).

The reader will indeed find it difficult to discover a form of

function in which the influence of A upon B, shall be affected by
the distance between C and D, and yet shall vanish when C and

D are both distant from A and B. Its discovery, however, does

not seem impossible, and when we regard the ether as producing

the action between A and B by its state of stress, it seems by no

means improbable that the approach of C and D may affect the

action of A on B.

If, however, we suppose that it is only the distances of A and

B from C and D which influence the action of A on B, there is

less difficulty in the matter. This case, of special importance,

seems to have escaped Saint-Venant's notice. Thus let $'(r)
be a

law of intermolecular action, which gives a zero action for sensibly

large values of r, and a strong repulsive action for all values of

r less than (3, so that r is usually > and fi/r a small quantity.

Let/(^,2-2 , 3,...)
be a function of the variables z

lt z^ z
s ,...

which

is practically independent of z
r ,

when z
r

is small. Then the

following form of M^ is suitable :

*, = 2</v, OJ K*. + / C0/v /Vv .
.)},

where in the variables of the function fpq n and s are to take all

values except p and q ; finally we must sum the expression for all

different values of p and q. Since (/3/r)
2

is negligible, /' will not

occur and thus dWJdrpq
will be independent of rns when n and s are

both different from p and q ;
so that Saint-Venant's objection falls

to the ground.
But we are not even compelled to suppose the action of A, B

independent of the position of C, D. Let us take ql} qz , g3
...as

either aspect or internal position coordinates of the molecules,

for the purposes of illustration one for each molecule will suffice.

Then it seems extremely probable that the potential energy of

the system, as a result of the stress in the ether involves the

generalized velocities qv qv q3 , etc., so that we must write for ^ a



206 SAINT-VENANT. [306

function of qlf <j2 , q3 ...r, r, r"...In this case our equation will be of

the form :

where a and 7 are certain constants. We should have to apply the

general dynamical equations to determine the F's and qs. Thus

the intermolecular force between m
1
and w

2 might be a function of

q3 ,
which in its turn might be found from the dynamical equations

as a function of r' and r", etc., distances, let us say, between my m4

etc., while r', r" would have no direct influence on the action

between m
l
and m

z
: see Arts. 931*, 1529*.

The point is of very great physical interest, as it really

concerns the direct application of the Second Law of Motion to

the ultimate particles of bodies. Can we or can we not superpose
the action of C on A to that of B on A, or does the action of C
on A, affect that of B on A ? See the footnotes to our pp. 183 and

185.

[306.] The strong points of the rari-constant argument seem

to me to lie in: (i) the probable insignificance of the indirect action

of G as compared with the direct action of A on B; (ii) the

insufficiency of most of the experiments yet brought to bear

against rari-constancy.

Be this as it may, I still feel it impossible to accept the

following statements of Saint-Venant as satisfactory :

j'affirrae hardiment, et tout le monde, j'en suis convaincu, pensera
comme moi, qu'il faudra absolument adopter la forme ou la particulari-
sation indiquee ci-dessus :

*, (r, r', r"...) =/(r) +/, (/) +/, (r") + ......

...Elle fait revenir & 1'adoption, comme voulue ainsi par I'expeYience

meme, de la loi des actions fauctions des seules distances ou elles s'exer-

cent, et non des autres distances
;

loi que le simple bon sens, aide d'une

observation gene*rale des faits, a fait accepter pendant plus d'un siecle et

demi. Et je suis convaincu que Green lui-me'me y croyait sans s'en

rendre compte. Je ne peux, en effet, interpreter d'une autre maniere cet

instinct de physicien et de geometre, ce sentiment "que les forces, dans

1'univers, sont disposers de maniere a faire, du mouvement perpetuel,
une naturelle impossibility.

"
Green, sans aucun doute, refusait ain>i.

a chaque action moleculaire mutuette en particulier, la possibilite con-

traire...(pp. 72 and 73).

I doubt whether Green had thoroughly seen the import nut
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physical consequences which flow from multi-constancy, but I do

not see why he should have objected to two molecules having
done work on their return to the same distance at a different point
of the field. In 12 (pp. 74-5) Saint-Venant recognises a dis-

tinction between atomic actions and their resultant, or molecular

action. At the same time, however, he holds that if the latter be

indeed a function of aspect, it will not produce on the principle of

averages any great inequality in the coefficients of type \xxyy\ and

\xyxy\ . Notwithstanding these rari-constant views, he wisely adopts
in the Clebsch for the equal coefficients of rari-constancy letters

distinguished by a dash.

[307.] On pp. 7584
( 1316) Saint-Venant reproduces the

results of the memoirs of 1863 and 1878, or of the Lemons de Navier, p.

808 et seq.: see our Arts. 151, and 198
(e).

The results given in 15

are precisely those obtained by Neumann in 1834: see our Art. 796*.

In the notation of our work, if a, b, c are the direct-stretch, d, e, f
the direct-slide and d', e',f the cross-stretch coefficients, for a material

with three planes of elastic symmetry, then :

(be
- d'

2

) _ (ca
- e'

2
) _ab-f

2

_ ad' - ef _ be' -f'd'

\IEX ~\IE^~ ~TfET \IFX "l/^~
_ cf _ d'e' _ _ a e' f

IIfa
\e'

b d'

f d' c

Further as a typical strain-stress equation we have :

Sx = xxjEx
- yyjFz

-
zz/Fy ,

so that \IEX , 1/Fg,
-

1./Fy etc., are Rankine's thlipsinomic coef-

ficients : see our Chapter XI.
In addition we have for the stretch-squeeze ratios equations of the

type:

[308.] In 17 Saint-Venant deals with amorphic bodies, or

those for which the following relations hold :

2d + d' = Jbc, 2e + e' = Jca, 2f+f = Jab ...... (i).

If the quantities J (Jb
-

Jc}\ % (Jc
- Ja}\ J (Ja - Jb)* are

small we may write these relations :

_, ,, b + c , c + a /,/'/ a + b ...

2d + d' =
,

2e + e =-- -
, 2/+/ =

.
..(ii).

See the memoirs of 1863 and 1868; or our Arts. 139, 1424
and 281.
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Saint-Venant holds that for a feeble degree of aeolotropy

produced by permanent compressions as, for example, in drawn
or rolled metal and in some kinds of stone the relations (i) or (ii)

suffice. For wood however some other conditions must hold. For

let us suppose :

(a) The relations (ii)
to hold with equal transverse elasticity (or

a = b) and rari-constancy then :

3/=, 6e = c + a and c = 6e-3/
We easily find from the formulae of Art. 307, that :

-? -
9)

,

whence ^ = 9/4
-
J JlS - 2 EJEm

or, in order that the stretch-squeeze ratio be real we must have EJEX < 9.

This result is contradicted by Hagen's experiments (see our Art.

1229*). Hagen found:

115

for oak,
22-5 for beech,
48 for pine,
83 for fir.

(b) The relations
(i)

to hold together with a = 6, d = e = d'=ef

.

It follows that
*!

= J //, EJEX
= e

2

//
2
,

whence ^ = 1^1EJEm EJG = f JEJEV
These expressions are never imaginary and give reasonable values

for r)^ up to EJEX = 4. After this ^ begins to take unsuitable values

till for Ez/Ex = 8Qj we have 17,^
so large as 2-236.

Clebsch (p. 8, 2) and at one time Saint-Venant (see our Art. 169 (d))

had held that
rj
must necessarily be <J. This error the latter had

recognised in the Appendice complementaire to the Lemons de Navier,
and he now adds :

Cette opinion n'est foridde sur aucun fait
;

il ne Pexprime m6me que pour
les corps isotropes, et quelques experiences de Wertheim ont montre' qu'aux

approches de la rupture d'une tige me'tallique, c'est-a-dire au moment oil sa

matiere est arrived a un dtat tres fibreux, comparable k celui des bois, une
extension de plus diminue le volume

;
en sorte que, sans pouvoir aller jusqu'k

7
= 2'236, rieii n'empecherait de porter ?; jusqu'^, 1 pour les bois tendres (p. 89).

Saint-Venant now seeks some correction of the amorphic formulae

(i)
which will give better results than this for r]^ when EJEX is large.

[309.] He first proceeds on pp. 89 95 to determine Neumann's
stretch-modulus quartic ;

he obtains it in the form :

1 ,.4 ^4 -4 /.V 2 / 2/. 2
.'/ ,2 , o CV c* . t)

ca cx ,o
-?r = -zr + -r + -57- + ^ n + * T + *
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where cx ,
c
y ,

cz are the direction-cosines of the line r, and

This agrees with Neumann's result (see our Art. 799*) if we note

that his Nm NC)
Mb) Mc ,

Pm Pb are really cross-stretches and therefore

of negative sign
1
.

By taking x = cx \/Wr , y = c
y 'JJ, z = ez$Wn

we have a surface of the fourth order, whose ray measures ljMr in the

same direction.

[310.] In 21 (pp. 95 8), Saint-Venant enters upon a lengthy
calculation of the maxima and minima values ofE for different directions.

If three relations of the type
F

3
= JE ŷ

............................... (iv)

hold, then (iii)
reduces to an ellipsoid and we have the ellipsoidal

distribution of elasticity. This gives only three maxima and minima for

Er . Saint-Venant seeks conditions under which there shall only be

three maxima for the surface
(iii)

when the relations of type (iv) are

not fulfilled; in other words, he seeks when there will be, as he expresses

it, a variation simple et graduelle des elasticites.

The conditions are

(1) that F1 lie between Ey and Ez ,
and two others of the same type ;

(2) that the three expressions whose type is

shall not all be of the same sign.

[311.] In 22 Saint-Venant shows that the three ellipsoidal condi

tions of type F3
= jExEy

are identical with the three of type 2f+f
r = Jab,

d e f
provided either

---,
= = ^ ,

or again that rari-constancy is assumed to
d 6 j

hold.

[312.] He next seeks for some non-ellipsoidal distribution which

shall satisfy the conditions for variation simple of our Art. 310. He
takes as a probable solution : (1) rari-constancy, and (2) two of the

ellipsoidal relations, i.e. he writes :

a = 3ef/d, b = 3fd/e,

and searches for a value of n, where

c = 3de/(fn),

1
Unfortunately the wrong signs are given in Art. 796* to all the quantities

M, N, P. If these are corrected, a negative sign must be inserted in the second

table of Art. 795* before the lAF's. The value of l/Er in Art. 799* is then accurate.

I regret that this slip of Neumann's escaped me.

T. E. II. 14
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which shall satisfy those conditions. After some rather complex
analysis the necessary and sufficient conditions are found to reduce to

12 + 9 EJEX
- 144 EJEX + 81 (Ez!

J

4 + 2 EJEX

where we suppose Ez > Ex > Ey.

Saint-Venant then gives a table of the limiting values of n and of

""lot
= T -> = A / TO s~ rr

2
^or various values of EJEX from 1 to 80

y A' lo ^Ti sm
and also for oc .

The values of
i\m are now found to be possible, provided a suitable

value of n be chosen. What shall this be ?

[313.] The empirical formula for n

l) ......................... (v),

is suggested on p. 104. On p. 105 Saint-Venant tabulates the values of

n and 17^ for the parameter EJEX (= 1 to 80) when y has the numerical
values 9 and 2 2 '22. These values for y are chosen because, for EJEX = 80,

they give respectively r)zx
= about 2/3 and 1. The Table also contains

the corresponding values of EJe (= EJ^L with transverse isotropy). These
values vary on the first supposition (y

=
9) from 2'5 to 78'2, and on the

second (y
= 22-22) from 2-5 to 52'67. The ratio E/p can thus be very

great, but for EJEX very great, this does not seem at all improbable, at

least we have at present no experiments to contradict it. As for the

value of y we need not confine it to 9 or 22 '22, but in general we may
take it from 7 or 8 to 30 (p. 108). Nous pensons qu'on ne courra guere

risque de se tromper enfaisant y = 16 (p. 108).
As Saint-Venant observes there is a great need of new experiments

to determine Ez and Ex (by flexure), /u, (by torsion) and
rj (= 8x/8g , by

delicate measurements of the transverse dimensions of bars under trac-

tion).

[314.] In default of experiment we may finally adopt as formului*

most probably sufficient for elastic problems concerning amorjihic

aeolotropic solids, such as stone, wood, and the metals employed in the

construction of bridges and machines :

d

Ifd
(vi),

3de
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where at each point yz, zx, xy are three rectangular planes of elastic

symmetry and z is the direction of greatest elastic resistance, generally
'

longitudinal,' that is, in the case of wood in the direction of the fibre,

or in a metal bar in the direction of the prismatic axis. In a metal

plate it will be perpendicular generally to the plane of the plate.
The quantity n is to be determined by Equation (v), where y may

be taken =16, when we have no further experimental data to suggest a

better value.

Since Ez =-j; ,
it is obvious that three torsional experiments

and one tractional experiment will give d, e,f and n, or all the constants

of the stress-strain relations (vi).

Indeed we may write the value of

(P lde\
zz = esx + asy + I Miz + ^ -=

)
sz ,

\ * //
and so get rid of n altogether.

For the case of transverse isotropy, if Ez
= E, d = e

/z, f //, we
have :

"xx = [A ($SX + Sy) + JJLSZ ^yz H*<TyZ 1

W-H(8X + S
y)+f^z

-HVzv^ ^
Here /A and E are easy to determine experimentally, but p far

more difficult.

Saint-Venant gives the following empirical formula for // which he

considers very probably exact enough in practice :

When y of (v) is taken = 9, then /2=^,or = -+ -^,
t

fJL,
O O Jit

= 22-22, then =
2, or

^=i
+
2^.

For these values of
/?,

the corresponding values of
ya'//x

and
differ by only 1/16, from those obtained from equation (v).

We have reproduced these results because they supply, although to

some extent empirically, the most probable formulae yet suggested
for technical materials. Such formulae have been much needed, and
Saint-Venant, as usual, has been the first to recognise the wants of

practice.

[315.] A note of Saint-Venant to 22 (see pp. 1425) deals

briefly with the history of the flexure and torsion of prisms. It

contributes nothing to the section on the same subject in the

Historique Abrege. We pass on to tbe longer note attached to

28 which occupies pp. 174 90. 9

142
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[316.] This note is concerned with the applicability of Saint-

Venant's torsion and flexure solutions to such cases as occur in

practice. The first four sections (pp. 174 7) reproduce arguments

already given in the memoir on Torsion or the Lemons de Navier

for the approximate elastic equivalence of statically equipollent

loads : see our Arts. 8, 9 and 170. The remaining sections

( ^ 17) seek arguments in favour of the legitimacy of the

assumptions
xx=yy =xy = (a),

taken by Saint-Venant as the basis of his solutions. In other

words, is it legitimate to assume that for all practical loadings

there is little or no mutual action parallel to the prismatic

cross-section between adjacent longitudinal fibres ?

After referring to the labours of Poisson and Cauchy on the

subject of rods (see our Arts. 466* and 618*) as involving arbitrary

assumptions only true for rods of length great as compared with

the linear dimensions of the cross-section, Saint-Venant enquires
whether the investigations of Kirchhoff give any better validity to

the assumptions (a). He points out that Kirchhoff proves only
the possibility, not the necessity of these questionable relations

(p. 181) : see my footnote, p. 266.

[317]. Saint-Venant next turns to Boussinesq's memoirs of

1871 and 1879: see later our discussion of that author's researches.

Saint-Venant applies the method of those memoirs to the simple
case of a bar of homogeneous material with three planes of elastic

symmetry.
Instead of setting out from the assumptions (a) our author

supposes the following conditions to hold, z being the direction of

the prismatic axis :

d\ _ d*su _ d\ _ tfff^ _ da-^ _ da-y _ ,

dz*~^?~Wdz*
~~~~

dz ~~dz~~~

These are described as fort approcMes, quand ettes ne sont

pas rigoureuses.

From the conditions (6) the conditions (a) are deduced by the

principle of elastic work. The proof holds only for rods, i.e. prisms
the length of which is great as compared with the linear dimen-

sions of the cross-section
;

the cross-section may, however, be

supposed to vary slightly, and the terminal load as well as the
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distribution of body force are perfectly general, provided only the

body force on any element of length of the rod does not exceed

the surface stresses or the loads on the terminal cross-sections of

the element.

[318.] We may ask: whether the conditions (b) do not assume
as much as conditions (a) ? We reproduce the arguments by which

Saint-Venant reaches (6). It does not seem to me that the

condition d2

sjdz*
= would be true when the flexure was due to

buckling, which in the case of a long rod does not seem excluded

by the load distributions referred to : see our Art. 911*.

Prenons pour axe des 2, en chaque endroit, la ligne des centres de

gravite des sections transversales, et les axes des cc, y, rectangulaires
entre eux et a cette ligne sur une des sections. Dans une quelconque
des portions dont nous parlons, que nous appelons longues parce qu'elles
sont supposees 1'etre beaucoup par rapport aux dimensions transversales,
il est facile de reconnaitre que les composantes de tension et les

dilatations ou glissements s, a-, varient d'une maniere incomparablement
moins rapide dans le sens longitudinal z que dans les sens x et y\ de
sorte que, si nous exceptons de petites portions de tige avoisinant les

extrernites, ou se trouvent les points d'application des forces locales ou

discontinues, les derivees de ces deformations s, or, par rapport a z seront,
de necessite, considerablement moindres que ce que sont ou peuvent etre

leurs derivees par rapport a x et a y. En effet, pour o^, par exemple,
d(Tzx/dz sera de 1'ordre de grandeur du quotient, par la longueur de la tige
ou de la longue portion de la tige considered, de cette deformation o-^,

ou de la difference des valeurs qu'elle a aux extremites ;
tandis que

dcr^/dx pourra etre de 1'ordre de grandeur du quotient de cr^ par la

demi-epaisseur, qui n'est, disons-nous, qu'une fort petite fraction de la

longueur. Autrement dit, si pour fixer les idees nous divisons la tige,
r la pensee, en trongons dont la longueur soit de 1'ordre de grandeur

e la dimension transversale moyenne, les s, a auront des valeurs

extr^mement peu differentes en deux points homologues des bases de

chaque trongon, tandis qu'ils pourront avoir, du centre au perinietre des

sections, des differences de valeur aussi considerables que d'une extre-

mite a 1'autre de la tige. Nous pouvons done comme approximation,
determiner la loi de variation des deformations s, a; transversalement,
ou en fonction de x et y, comme si leurs derivees par rapport a z etaient

nulles. Cette hypothese, ou ce point de depart, n'est que comme une
traduction analytique de 1'enonce de la question meme qui nous occupe,
et qui est de determiner ce qui se passe dans une tige allongee et tres

mince sollicitee de la maniere continue que nous venons de supposer

(pp. 184-5).

This reasoning does not appear to me wholly satisfactory, and
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can at best only apply to rods and not the prisms of Saint-Venant's

problems. It may, however, still be the method

la meilleure et la plus complete qui en ait ete theoriquement donnee

(p. 190).

Perhaps on the whole the appeal to experiment referred to in

our Arts. 8 10 is more satisfactory.

[319.] In a note pp. 195 7 Saint-Venant proves for the case

of flexure the results

1 7x day =
-j-\'zz

xd<a
;

I ? dco as -=- I j ydw y

where z is an axis in direction of the prismatic axis, and #, y are

any rectangular axes in the cross-section of which day is an element

of area. These formulae express analytically :

ce theoreme connu et tres utile, que Veffort tranchant, pour une
section quelconque, ou la force tangentielle totale dans une direction

transversale aussi quelconque, est egale a la de"riv6e, par rapport a la

coordonnee longitudinale, du moment de flexion autour d'une droite

tracee sur la section perpendiculairement a cette direction (p. 197).

See pp. 389 9 etc. of the Lemons de Navier.

[320.] The following Note, pp. 21020, reproduces only

portions of the great or the subsidiary memoirs on Torsion : see

our Arts. 1, 285 and 291
;
and the Note, pp. 240 2, some results

from Chapter XL of the Torsion : see our Art. 49.

The Note finale du 37 (pp. 25282) corrects Clebsch's

erroneous assumption of a stress-limit by the proper stretch-

conditions. Its contents are extracted from the memoir on Torsion

and the Lemons de Navier : see our Arts. 5, (6) (/), and 180.

[321.] We may refer to one or two points in this last Note :

(a) Saint-Venant takes two simple cases for an isotropic material

and compares the stress and stretch-conditions for safe loading. First

take the case when only the stresses 2r, xz, xy have values differing from

zero, we easily find from the equation of our Art. 53, Case
(i),

that we
must have

while Clebsch obtains from the stress condition

Zo = or>S/2
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In the second case suppose the traction xx zero, then we have :

from the stretch condition,

from the stress condition,

When the shears are zero the conditions agree. As a rule safety is

on the side of the stretch-condition.

(b) Some remarks confirmatory of Poncelet's theory of rupture

(better elastic failure) under compression by transverse stretch are

given on p. 270 and may be cited 1
. The theory leads, as we have

seen, in isotropic material to the relation TQ/TQ'^l/rj: see our Arts.

164, and 175.

1. Les petits prismes de pierre dure, lors de leur e*crasement, se se*parent
d'abord en aiguilles verticales, ce qui prouve bien une extension dans le sens

transversal.

2. Lors de 1'ecrasement des bois par compression dans le sens de leurs

fibres, celles-ci se separent d'abord, et ensuite ploient sans resistance.

3. Les petits cylindres de fonte douce ou mall^ables, e'crases, se gercent
sur les bords de maniere a former une rosette, ce qui prouve qu'il y a eu, tout

autour, rupture par dilatation transversale vers la circonference.

4. Dans beaucoup d'expe"riences de rupture de pieces de fonte par flexion,
il s'est detache* late"ralement une sorte de coin du c6t4 devenu concave ou

comprime'.

5. La puissante machine de M. Blanchard, de Boston, & courber les

pieces de bois, contenues de maniere & ne pouvoir se dilater du cote
7

convexe
ni se boursoufler lateralement du c6te concave, comprime violemment ce

dernier cot sans le desorganiser aucunement.

6. Le rapport des coefficients T et T de rupture immediate par e"crase-

ment et par traction, ou des forces capables de produire, pour une base = 1,

ces deux sortes d'effet, a e'te' trouv^ le plus souvent, pour la fonte, entre 4 : 1

et 6 : 1
;
et il devait, en effet, exceder l/rj qui est 4 pour les corps isotropes.

Car lorsqu'on opere la compression d'un prisme court, entre deux plans durs

ou ses bases s'appliquent, celles-ci sont empechees de se dilater, en sorte que
le renflement lateral n'acquiert toute sa grandeur que vers le milieu de la

hauteur du prisme.

Saint-Venant remarks that the limits T
0)
T

Q

'

must be based

directly on experiment ;
but experiment only gives such limits as

1 Professor A. B. W. Kennedy has kindly made some experiments for me on lateral

stretch in which three short cast-iron prisms placed end to end were subjected to

contractive load. The load terminals of the outer prisms were found to have

expanded somewhat, but not to the same extent as their other terminal sections or

those of the mid-prism. Eupture took place by portions of the end prisms shearing
off. The mid-prism was then cut open longitudinally and acid applied to the face,
the openings thus brought to sight were more or less lorgitudinal, but not very
definite. Indeed the condition marked rather a plastic than a ruptural change.
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the T^ and Tf of immediate rupture. A constant ratio between

T
t
and T is usually assumed :

rapport qu'on prend ge"ne"ralement d'un dixieme en France, d'apres 1'exem-

ple des colonnes tegeres d'une ancienne e'glise d'Angers, mais que des inge'nieurs

anglais portent a un sixieme (p. 271).

(c) We may note that Saint-Venant on pp. 274 5 in repeating
case 3 of Art. 122 of the Torsion: see our Art. 53, Case

(iii),
now

replaces the 8
v/sy

and sz/sz of the notation of that article by tJieir mean,
so that he appears to have been dissatisfied with the value adopted in

the memoir. He does not, however, work out the value of
T/O

of our

Art. 53, Case (ii) (= ^ of his notation).

(d) A very good example of Saint-Venant's fail-point method
is given on pp. 279 82

( 17). It brings out well the influence which
want of isotropy and slide have on the condition for safety.

Let us take the case of a beam of length I, of cross-section o>, and of

transverse elastic isotropy denoted by JS, p and
77. Suppose it built-in

at one end and loaded with P at the other, or of length 21 with a

load 2P in the centre. Then if K be the swing-radius of the section

about the neutral axis and h the distance from that axis of the farthest
*

fibre', we see that the fail-point will be at the built-in section which
remains plane. Here the maximum stretch and the uniform slide are

given by :

Whence the condition of our Art. 53, (i),
becomes with slightly

modified notation :

1 -
77
Plh //l+i,\* /P&\* /AV^oV**-? -2

+ v ( 2 ) UW +
fc) U)

Plh (l-

since S /n = 2T / by our Art. 5, (d).

In the case of the rectangular cross section b x c, with c parallel to the

load-plane, we have K2 = c
2

/12, o> = 6c, h = c/2 and the condition becomes:

or,

if the second term under the radical is, as usual, small.

Saint-Venant now introduces the following suggestive table deter-

mined by the method of our Arts. 312-4, z being the direction of
the prismatic axis :



322323]

For EzjEx=l
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We find at once :

* = -./* , =
<>, ^=,1 (U)

Substitute in the formulae of Art. 117, (a) and (6), and we have :

X X * - ^-^ f\ * -
f\

yz = zx = xy U
j zz =

',

Here the quantity 2f+f d'*/c corresponds for the case of plates to the

stretch-modulus in the simple flexure of a bar. We shall denote it by H,

where in the case of isotropy, If =
^
- r-* .

We easily see that
(iii) satisfy the body-stress equations.

The load reduces to

~ Hz
XX --

p

over the sides perpendicular to x, and we can see that this gives a

couple round the axis of y for each element 2f8y of the side =
where

M
y
= f

+

We can cut away a portion of the plate by planes perpendicular to the

axis of y if we impose a load at each point of the new sides given by

Obviously 1/p must be very small, and the plate then takes a

cylindrical curvature of radius p.

[324.] Case of two combined cylindrical flexures. In 3 Saint-

Venant first combines two solutions such as that of our Art. 323, the

value of p being the same for both. He transfers to cylindrical coordi-

nates r, <jj>,
and thus obtains with the notation of our p. 79 the results :

U =-rz/P,
= 0,

=0, ^ = 3 = -2(//-/)*/P

This is the case of spherical curvature. The proper distribution of

side load must be obtained by compounding rr and 4, the shears being
all zero. The corresponding total couples are
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Saint-Venant remarks :

Us ont un inte'ret pratique bien que 1'application, au contour, de forces

normales distributes comme 1'exigent les expressions ci-dessus rr, $$ soit

irrealisable
;
car si & leur place, il y a [see our Arts. 8 and 170] tout aupres

des bords d'une plaque mince, d'autres forces applique'es par exemple sur les

faces superieure et inferieure de maniere h n'avoir pas de resultante et k

produire des couples dont les moments fle'chissants aient par unite de longueur
la valeur (v), la plaque soit rectangle, soit circulaire, dprouvera tres approxi-
mativement la deformation spheYique indiquee, partout sauf de tres petites
zones aupres des bords, par les raisons que nous avons donndes pre'ce'demment
en traitant des tiges (p. 343).

[325.] The second case of combined flexure given by Saint-Venant
is obtained by taking for u and v two expressions like that given for

simple cylindrical flexure, with p different
\
we have at once :

= -a*/p, v = -

+ Z.

Here the curvature is elliptic or hyperbolic according as p and p
f

are

of the same or different signs. If p = -p:

le feuillet moyen devient une de ces surfaces k courbures principales e*gales

et opposees, appelees anticlastiques par MM. Thomson et Tait dans leur grand
A Treatise of Natural Philosophy, de 1867, dont un seul exemplaire existe en

France, et dont il n'a encore e'te' reeditd que le premier volume (p. 344).

As is well-known the distinguished scientists gave up in their

second edition the idea of proceeding further. How Saint-Venant
formed his conclusion as to the existence of a seul exemplaire, we
cannot say, as with few exceptions French scientists refrain when

citing from giving exact references to the sources of their information.

[326.] Plates subjected laterally to shearing load. Saint-Venant
first takes the case of a rectangular plate infinitely long in the direction

of y but bounded in the direction of x by the planes x ^a.
Let Pty be the total shearing-load parallel to z, on the strip 2e<%,

then we have for a section of the plate by a plane at distance x from the

origin :

r+
I

./ -
M zdz = P (a

-
x).

Boussinesq had found at Saint-Venant's request the following
suitable values for the shifts :

3P r / x d' sT 3P /z

3P rax* a? d' .s
U = - + -*
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Hence we find for the stresses :

= yz = xy = 0,

yy =

.(vii).

The deflection of the central plane is given by the cubical parabola

This agrees with the case of a rod of length 2a and depth 2c, terminally

supported and loaded with 2P at the centre if the plate-modulus H be

replaced by the stretch-modulus E.

[327.] We can cut out a definite portion of the plate by planes

perpendicular to y, if we impose the tractive loads given by yy of

equations (vii).

Suppose we try to combine two sets of solutions such as (vi) of the

previous Article, giving the plate now a flexure parallel to y. Then we

find, if Q corresponding to P, and b to a, from (viii) :

3 fFatf + Qby* Pi*+Qy*\
~2#VV 2 6 )'

Hence although we combine this with a solution of the form given
in Art. 325, we can make only the square not the cubic terms in x and

vanish. In other words for x= a, together with y= any value from
to b, and for y = 6, together with x = any value from a to a, we

cannot make w = 0. Thus the contour of the mid-plane of the rectangu-
lar plate cannot be treated as fixed.

Le probleme de la flexion de la plaque rectangulaire posde de niveau tout
autour ne peut probablement recevoir que des solutions approximatives....

(p. 346).

[328.] Problem of the thick circular plate. This can be solved

accurately for flexure whatever the thickness, if the plate be sym-

inetrically loaded in all directions round its axis of figure by forces

applied to its cylindrical boundary. Just as in the case of torsion or

flexure, these forces will be supposed distributed in a definite manner,
but the resultant shearing force and couple about the tangent to the

contour of the mid plane will be arbitrary. In practical applications
we must appeal to the principle of tin- clastic (juivalcnce of statically

equipollent load-systems: see our Art. 8. We shall suppose that il

is no tendency to extension in the plate and that it is bounded by two
coaxial cylinders of radii

r,
and r (r l

> r
).

We shall find that toe magnitude of the central shift can be

determined for any load whatever, not ily symmetrical.
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[329.] The general solution. Let 2c be the thickness; P the

shearing load parallel to the axis per unit of length of contour of the

plate ; Q Z-n-aP the total shearing load on the whole lateral area

%Tra x 2e of the plate ;
Mr the moment of the couple, per unit of length,

on a vertical strip of the cylindrical surface of radius r about the

tangent to the contour of the mid-plane ;
M

ri
will then denote the

corresponding load couple on the outer bounding cylinder. We shall

suppose the mid-circle of the inner cylindrical boundary fixed.

The strains are given in the footnote to our p. 79, except that on
account of the symmetry we put v = 0, and the variation with regard to

< zero for all quantities. The stresses then become on the hypothesis of

elastic isotropy in the plane of the plate [see Art. 117 (&)] :

= (2/+/) ur +fu/r + d'wz ,
^ = e(uz + wr)

$> =fur + (2/+y ) u/r

7z d' (ur + u/r) + cwz

^
Further we have M = I Jr zdz.

f+ e ^
r
= I Jr z

J -e

z zr
+ =o ......... (u).

The body stress-equations reduce to :

drr d'rz rr <f><f> ^ d rz

-J- + -T-+- T = 0j ~jdr dz r dr dz

The surface or load conditions are :

for 3 = e, "^ = ^ = for all values of r

for r = r
1 , |

+
Ve?3 = 0, !

+
*dz = P, [

......................
(iii).

J -e J -e

[330.] Saint-Venant's mode of solution is the following. He

assumes ^ to be of the form .

~^-4^(
e
2-s2

),
and also that, ^ =

throughout the plate. He thus satisfies the load conditions.

These assumptions of the semi-inverse method were undoubtedly sug-

gested by equations (vii) of our Art. 326.

The second body-stress equation at once gives us/(r) = -
;

Qp r
so that =T-<\-(^~^) -.(iv).

4e3 r v

Straight-forward substitution, remembering ITz = 0, or wz ,

c r dr
leads to the following form of the first body-stress equation (ii)

:

d /I
d_(ru)\ _ z

dr\r dr ) Ir'

rhere / =
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Integrating we find, if A be an arbitrary constant :

\d(ru)-

Integrating again we have :

z (o i / / \
Bz rz

u=j{2r log (r/r.)
-

r} + - - - +

ef
f
2s2 z2

to = - -
j-j-

log (r/rj
-
2

Here ^ is another arbitrary constant and x, < arbitrary functions of

r and z respectively.
3.P r

Now we have rz = e (uz + wr)
=

-^-

-1

(c
2 - z2

) ; substituting for u and

w from (vi) we find the following relation between x and < :

2r. r r .5 r C?Y 1 (2 rf' 277, c?<

log
-- -_ + ---j + -? = - I -= - z

2 + -=.
- U2 - z

2
)
- -

I &
T! I r A dr r (I c I e

v
c?

Saint-Yenant remarks that we can satisfy this relation in several

ways (p. 350), but the proper method seems to me to equate either side

multiplied by r to the same constant. He takes this constant to be zero.

If this constant be retained, however, it only alters the value of the

constant B in the expressions for the shifts we are about to give, and so

may be neglected. We ought to add a constant C" to the value of

X (r) ;
but this leads to a term in u -

C'/r, or in ^ = -2/C'yV
2
, which, not

containing an odd power of z, would prevent us from fulfilling the

condition

i:
rr dz = for r = r,.

Substituting the values obtained by integration for < and x in (vi),

we have :

rz 1 ( r 3d1

z? 2 H / z*Y\ Bz'

~A I \ r. c 3r r e \ 3/J r , ...

The values of ^ and J/r may then be easily deduced. Saint-Venant

gives expressions for them on pp. 351 2. By putting r = rll we
obtain :

(vm) '

where y* is given by :

and may be neglected when
e/r, is small.
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If P or 1/7=0 and we put B = 0, this value of M
ri> agrees with that

of Mr in equation (v) of our Art. 324. We shall then write for

simplification
1 3 Jfr ,

andwefind __
H-f H-fr*

Substituting this value of -. in equations (vii) we note the following
A.

final results given on p. 354 and attributed by Saint-Yenant to Bous-

sinesq (' que M. Boussinesq a cherchees et trouvees a ma priere') :

2rz

P

Bz / Brz

I 37V, 1 3 Mr 2
where j

=
erjf\ ,

- = T~3~77 ft 7 =
~K~

For the vertical shift and shift-fluxion of the mid-plane we have when

.(xii).

dr p I V" H-f
These very important results can be applied to a great number of

special examples. They include the solutions of Poisson given for thin

circular plates, and various other particular cases (as of isotropy, etc.)
treated by diverse writers : see our Arts. 494* 504* \

[331.] Special cases.

(a) Suppose the plate not to be annular, but to rest on the rim of

a disc of radius r in such a manner that its bending is not interfered

1 To obtain Saint-Venant's notation we must replace, u, w by capitals, H by a^
I by H, rx by a, and p by R.
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with
( 14). The plate may now be dealt with as consisting of an 'inner

disc' and 'outer annulus.' Then evidently dw /dr=Q when r=Q because

the tangent plane to the mid-section at z = 0, r = 0, must be horizontal
;

further round the ring r = r the shearing stress must vanish for the

inner disc which can thus only be acted upon by couples and will take

a spherical curvature (l/p )
M ^n our Art. 324. Thus for the inner disc

I 9
'

and for the conditions at r = r

dr
~

p
'

3
p,,

Three equations to determine the three constants p ,
B and C (p is

known from M
Ti )

of the problem are then obtainable by putting r = r

in the equations (xi) which hold for the outer annulus. Saint-Venant
finds:

...(xiii),

Po p I \\ff-f r

whence the values of u, and w for r > r < r
l ,

can be at once found.

The solutions obtained by Saint-Venant in this first case are,

as he himself observes, hardly satisfactory except for the case of a

very thin plate. What he does is to make the vertical shifts of

the mid-plane zero for the disc and the anuulus when r r
;
then

the slopes of the tangent planes for both are equated, and finally

tbe total couples along the same circle r = r . In the solutions he

gives for the shifts the u and w for the annulus are not equal to

the u and w for the disc when r = r
, except for the mid-plane.

In particular u when r = r is a function of z only for the disc, but

of as well for the annulus. In other words we have theoretical

separation of the material at r = r . Thus the solutions are at

best only approximate, and cannot be considered to hold at all in

the neighbourhood of the rim itself. But shall we assume they
hold accurately at points not in the neighbourhood of this rim ?

If the stresses acting at this rim were really confined to a line,

they would certainly produce permanent alterations in the

material; are we then justified in assuming that equating the

vertical shifts and the tangent plane slopes (w and dw/dr) for
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r = r will give us the best values of the constants ? I am inclined

to doubt at least the presumed equality of the tangent-plane

slopes : see our Art. 1572*, and p. 23 of the Lepons de Navier.

The results become of course exact when we may neglect e
2
.

[332.] (b) Suppose the centre of the plate to rest upon a fixed

circle of very small radius (p. 357). Then equations (xii) give the total

deflection 8 by putting r = r
j

:

r? SQr* ZH-f-H-f .

q Ttr

where Q = 2vr
l
P

9 l/p
= -

473 jyZ/-
Sub-cases are :

(i) M
ri
= 0, or l/p

=
0; this is the simple case of only shearing load

on the cylindrical sides. Such might happen if the mid-plane contour

were fixed to a ring.

(ii)
The cylindrical faces of the plate are fixed (see our footnote

p. 231) and a normal load Q applied at the centre by means of a circle

of very small radius. Here dw^dr of equation (xii)
must be zero for

r = r or:

1 Hl-f~ '
I H^'

This gives

(iii)
Elastic isotropy (p. 358, 16). We have only to put

[333.] (c) Saint-Venant now returns to the case of a complete
plate resting on a circular rim (of radius r

)
as given in our Art. 331,

(a), and determines the deflections when the contour (of radius rj is

(i) fixed, (ii) built-in (see his p. 360).

[334.] (d) In 18 we have the remark that the force exerted on
the ring r r must be equal and opposite to the force exerted on the

ring r = rn or it must equal Prjr per unit of length of the arc. Thus

T.E. II. 15



226 SAINT-VENANT. [335

the solutions of (c) are applicable to the case of a plate either fixed or

built-in at its contour and loaded with Q uniformly distributed round
the ring r = r . The deflections obtained by Saint-Venant are (p. 362) :

(i) Mid-plane contour simply supported or fixed

_ r
)

s
f

(ii) Cylindrical face built-in

3CTl
S

For the reasons given in my Art. 331, I am doubtful as to the

validity of these results except in the case when we may neglect y~.

[335.] (e)
In 19, p. 362, Saint-Venant explains how we may

treat the problem of a thick circular plate subjected to any symmetrical
load continuous or discontinuous on a plane face. We have in the

case of a continuous load to substitute < (r )
27rr

o
dr for Q in the

equations of (d) and integrate between the limits and r
,
to find the

total deflection. If we integrate from to r
,
we shall obtain the

deflection of the centre below any ring r and so the form of the surface

taken by the mid-plane. Saint-Venant seems to think this process
more rigorous than that for thin plates dependent on Lagrange's

equation and used by Poisson : see our Arts. 284*, 496* 504*. But
I cannot get over the difficulty suggested in my Art. 331. The results

are not true for the ring in consideration unless y
2
may be neglected,

but Saint-Venant practically divides his whole plate up into such

rings, when thus integrating. It appears to me possible that he may
thus be really introducing an important sum of small errors.

In 21, p. 365, he treats by this method the case of a thick plate

uniformly loaded and finds from the results in (d) :

=

where Q is the total load.

These results, first given by Boussinesq, agree in the case of uni-con-

stant isotropy and neglect of y* with those of Poisson : see our Art 502*.

[336.] (/) This case is the most general possible and is thus

stated by Saint-Venant :

Mais, lorsqu'on se propose d?avoir settlement lafleche centrale, sans chercher

la forme que prend la plaque en ses divers points, une remarque bien simple
montre que les expressions en r

t
et r suffisent au calcul de cette fldche pour

toutes les distributions possibles, menie non symdtriques, mdme discontinues

et irrdguliurcs, des charges que supporte la plaque soutenue en haut (p. 363).
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We note that if we have a single load P at any point of a rim-

supported plate, it must produce the same central deflection as if it

were at any other point at the same distance from the centre. Hence by
the principle of super-position of displacements in the case of elastic

strain, a load P at an isolated point distant r from the centre, must

produce the same central deflection as if it were uniformly distributed

round the ring of radius r. Thus the formulae of (d) hold if the load

Q be concentrated at a distance r from the centre. This result seems
first to have been stated by Levy in a memoir of 1877, although it was
involved in the results of 76 of Clebsch's treatise.

[337.] Saint-Venant concludes this Note on thick plates with

the following words :

Nous avons demontre, dans la presente Note, comme on a vu, nos
formules d'une maniere rigoureuse, ou sans annulations de termes.

Leur parfaite rigueur est subordonnee, il est vrai, comme est celle de
toutes les formules ci-dessus d'extension, flexion, torsion des tiges, a ce

que les forces ou les reactions d'appuis et d'encastrements agissent
exclusivement sur une certaine surface qui est, pour les plaques, leur

cylindre contournant, en s'y distribuant des manieres qui sont exprimees
en z par les formules du deuxieme et du troisieme degre donnant 7z et rr,

et specifiees pour r = r^ Mais, ainsi que nous avons eu bien des fois

occasion de le dire, elles donnent des resultats tres suffisamment

approches quel que soit le mode d'application et de distribution si la

plaque est peu epaisse ; et, en tous cas, notre analyse actuelle, outre

qu'elle tient compte de termes (ceux en y
2 ou e

2

/^
2

)
dont il n'est nulle

question dans 1'analyse connue, a 1'avantage de ne donner que les

resultats oii tout a ete mis en compte des le commencement ou sans

suppressions faites de prime abord, et dont on n'apergoit pas a priori la

portee et le degre d'influence sur les resultats lorsqu'on en opere de
ce genre (p. 367).

But does this paragraph explain all the assumptions? I

think not : see our Art. 331.

[338.] The second Note inserted by Saint-Venant in Clebsch's

third chapter is due to Boussinesq. It is a resume of the results

obtained by the latter in a series of memoirs during the years
1878 9, and afterwards published separately under the title :

Recherches sur I''application des potentiels d la theorie de I'equilibre

interieur des solides elastiques ; see our detailed account of this

important work below. The Note itself is entitled : Sur I'equilibre

des corps massifs sollicites en un point superficiel ou interieur. It

occupies pp. 374 405; an addition occupies pp. 405 a 407a
;

while some consideration, also due to Boussinesq, of Cerruti's

152



228 SAINT-YENANT. [339340

Memoir of 1882 on the same subject, will be found on pp.

881 8 (CompUment & la Note finale du 46). As these con-

tributions are not due to Saint-Venant we postpone the discussion

of their contents until we are dealing with the special researches

of Boussinesq and Cerruti.

[339.] The next important addition of Saint-Venant is the

Note finale du 60. It is entitled : The'orie de ^impulsion longi-

tudinale d'une barre dlastique par un corps massif qui vient heurter

une de ses deux extremitds ; et de la resistance de la mattire de la barre

a un pareil choc ; it occupies pp. 480 a 480 gg. The numerical

results of this note together with their graphical representation will

be considered in our account of the Memoir of 1883 : see our

Arts. 4017.

[340.] The first seven sections (pp. 480 a 480k) give an

account of the various tentative stages in the history of the

theory. We have first two theorems of Young, which as first

approximations may be cited. Let the bar be of weight P,

density p, section a>, length I and stretch-modulus E\ let Q be

the weight and V the velocity of the body which strikes it at the

free end, the other end being fixed.

Then if u be the total shift of the free end, g gravitational

acceleration, and we suppose the stretch uniformly distributed, we

have from the principle of work :

(i)
Ba/r horizontal :

= or if U
Q
= - be the statical shift,

2t g 2 w

(ii)
Bar vertical :

Euu? QV*
21 =-g2

Let u/l
= TJE the greatest safe stretch within the elastic limit,

then in Case (i) :

'2 \E

-^
is the work necessary to destroy the efficiency of the bar,

or its resilience. Hence the resilience of a bar varies as its volume o>/,
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T 2

multiplied by ^ ,
a quantity depending only on its elasticity. In

2iHi

this form of Young's theorem, the quantity TfjE has been termed by
Tredgold the modulus of resilience : see our Arts. 999* and 982* and
Vol. i., p. 875.

[341.] The next stage in the history of longitudinal impact
was due to Navier (see our Arts. 272* 4*). He expressed the

complete analytical solution of the problem for the case of the

horizontal bar in a Fourier's series. Poncelet added to this

solution the effect of gravity and the statical action of the weight,

supposed to strike the bar in a vertical position : see our Art. 990*.

Neither Navier nor Poncelet developed this analytical solution,

except for the special case of P/Q being very small when the

results agree with those of the preceding article. Saint-Venant

undertook this development, so far as ascertaining the shift is

concerned, in 1865 and 1868 (see our Arts. 200 and 201) for

certain common values of P/Q, i.e. J, J, 1, 2, 4. He found it

possible to determine the shift of the end struck, but the series

gave no prospect, however far the numerical calculations were

carried, of ascertaining the maximum stretch or squeeze (p. 480 g).

It became necessary then to find a solution in finite terms. The

form of these finite terms seems to have been suggested by
Saint-Venant's course of memoirs lasting from 1865 1882 on

the impact of two bars : see our Arts. 203 and 221. The next

stage was Boussinesq's solution in terms of a single exponential
for the shift at a time not greater than 2Z/a : see our Art. 403

and the account later of his paper of 1882. Later in the same

year two officers of the French marine artillery, Sebert and

Hugoniot, obtained an exponential solution in finite terms for a

vibrating bar fixed at one end and subjected at the other to a

force varying with the time. This solution really covers that of

Boussinesq, who hearing only of the method of Sebert and Hugo-
niot, sent to Saint-Venant in the summer vacation of 1882 a direct

and complete solution of the problem of longitudinal impact.

Judging from the communications of M. Hugoniot to Saint-Venant

(see pp. 480 j 480 k) the merit of the solution must be divided

between the two naval officers and the professor of Lille.

The reader will find an account of Boussinesq's solution in the

chapter devoted to that elastician.
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[342.] The next insertion of Saint-Venant is the Note finale
du 61. It occupies no less than 138 pages (pp. 490 627) and
contains the complete theory of the transverse impulse of bars,

including results of Saint-Venant's not hitherto published: see our

Arts. 104-5, 200-1, and Notice n. p. 20, 2. The Note is entitled :

De VImpulsion transversale des barres elastiques, et de leur vibration

avec le corps qui les aura mises en mouvement. Determination de

leur flexion ainsi que des conditions de leur resistance vive ou

dynamique.

[343.] The first 51 sections (pp. 490597) are devoted to

the analytical and numerical solution of various problems of bars

vibrating transversely with a load attached :

ces pieces sont supposees vibrer non pas seules comme le supposent
les solutions donnees par Clebsch, mais unies avec le corps etranger dont

1'impulsion, ou brusque, ou gradue"e, les a fait sortir de leur e"tat

d'equilibre ; car c'est pendant cette union, ne durat-elle que le temps
d'une demi-periode oscillatoire, que les deplacements relatifs des parties
de ces pieces atteignent leur maximum et qu'elles courent le plus grand
danger de rupture ou d'enervation dont les calculs de resistance out

pour objet de les sauver (p. 490).

Saint-Venant's method is simply to solve in
' normal

'

functions

or coordinates the equation :

where u is the transverse shift of the point in the axis at distance

z from one end of the bar, p/g is the mass per unit length of the

bar and of any permanent load at the same point, g the body
acceleration (usually only gravity) on the same length, and Ecotc*

with our usual notation the rigidity, which may vary from point

to point. The bar is supposed to be loaded and to receive dis-

placement in a plane which passes through a principal axis of

each cross-section. The terminal and initial conditions determine

the constants of the normal functions while the conditions at tin-

impelled point select the normal functions required and determine

the notes.

[344.] The process of solution and the calculation of the

dynamical deflection are generally long, even if we keep only one

term of the series, but :

cette expression simple de la fleche dynamique peut, comme je 1'ai

reconnu dans une multitude d'exemplus, otre identiquement obtenuc
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sans poser d'equations differentielles, en s'aidant d'une hypothese plau-
sible sur les rapports mutuels des deplacenients, et en y appliquant
d'une maniere tout elementaire, le theorenie des vitesses virtuelles ou

celui des pertes brusques de force vive
;
en sorte que rien n'empechera

d'introduire dans les cours, meme industriels, cette methode que j'appelle
de deuxieme approximation, tenant suffisamment compte de Yinertie des

systernes heurtes, et d'en substituer renseignemeiit general a celui qui y
est quelquefois donne, pour deux cas particuliers, de la methode dans

laquelle, en abstrayant tout a fait ou en supposant infiniment petite la

masse de ces systeines, on s'eloigne generalement beaucoup de la

realite et des faits (p. 491).

The hypothese plausible which Saint-Venant makes is precisely

that of Cox (see his p. 584, 46) and his results, pp. 584 597,

are those of Cox (see our Arts. 1435-7*), or those I had obtained

by Cox's method before examining Saint-Venant's work (see Vol. I.

pp. 894 6). Thus the merit of this elementary treatment of the

problem is entirely Cox's, but Saint-Venant's work, taking first

into account the vibratory terms is really the justification of the

hypothesis. I am somewhat surprised that Cox's paper escaped

Saint-Venant, as he is usually very careful in his historical notices,

and he had certainly read Stokes' papers in the volumes of the

Cambridge Transactions.

The Note terminates with a consideration of Willis's problem
and a discussion of the numerical results of the Iron Commissioners

Report: see our Arts. 1276*, 1406* and 1417*

[345.] I propose to describe in one case Saint-Venant's method

of solution, and then to record the other problems with which he

has dealt in this Note. The following conditions are easily seen

to hold :

(i)
at a free end :

Bending moment = Ew? -*-* j
shear = -

(
Evu? ~\ - 0.

dz* dz \ d )
70

(ii) at a fixed end 1
: u =

0, Eu ?=*& (We retain the Eui? in
dz

both cases as WK2

may be the vanishing factor in certain systems.)

(iii)
at a built-in end : u = 0, -=- = 0.

CiZ

1 At a fixed end the terminal direction is free
;
the word supported should also

be interpreted as equivalent to fixed, i.e. allowing only of shearing force, but this in

either sense : see footnote Vol. i., p. 52.
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(iv) At the join of two bars :

du du, d^u _ 2 cPw,
,, -r-r--, - -^ , -^-r .
l '

dz dz
'

dz2 l l 1 dz*

(v) At the join of two bars where there is a weight of mass Q/g
we must have :

Qffiu d( *tfu\ d
( z

d*u\
To r (

&M? 7 )
+ -7- ( J&iWiKj =-*

]
= 0.

g dt* dz \ dz*J dz \
] l

cfe
2
/

together with the relations (iv) : see Saint-Venant's pp. 494-5.

[346.] Let us apply these results to the simple case of a prismatic
bar supported terminally and struck by a weight Q with velocity V at

its mid-point. Let the length of the bar be 21, its weight P, and
T3 = PZ3

/(2^o)K
2

).
We shall suppose the bar so placed that the impact

is horizontal, or g may be put zero. Equation (i) of Art. 343, thus

becomes :

d*u ,. d4u
*-df+

e
*?

=0 (1) -

together with the conditions :

fl^ti

w =
; ^:=0,

when * = (ii),

d?u PI3 dau du

Take as a particular integral :

z - Zm $A'm^ sin
^-

+ JS'm cos 1 .

We find m*Zm I* -

The solution of this equation takes the well-known form first given

by Euler, (see our Art. 52*) :

~ . mz ~ mz ~ . , mz ~ . mzZm - C sin
-j-

+ C
l
cos

-y- + (72 sinh + C3 cosh -=- .66 6 6

To satisfy (ii) and the second of (iii)
we must take

r r -o r - r COBm
V/

1
== L/ a V/j \S n ~ ~ \J .

coshm

Further u - when t = 0, therefore we have finally u of the form

-'5
where ^ in (m/Q _ sinh (m./,

COS 7/1 U) ///
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and the first of conditions (iii) gives us the equation for m
(v),

which may be termed the characteristic transcendental equation for m.

Of this equation m, m, m J 1, mJ-\ are all roots if m is a

root, but they give rise to the same Zmi so that we need only take the

real and positive roots.

[347.] It remains to determine Am . When t 0, let u =
\j/ (z),

then

2AmZm = t(z) ..............................
(i).

Multiply both sides by Zm, and we have
;

^AmZmZmf
= ^(z)ZM......................... (ii).

Put z =
l, multiply by Q and add this to the integral of equation

p
(ii)

above with regard to dz from z - to 21, and we find :

= 2

As Saint-Venant remarks this is really an integration of equation

(ii)
with regard to

cftj,
where

q;
= total weight of beam and load = P + Q.

Now Saint-Venant shews by straightforward integration that

or remembering the values of Zm(l),
Zm>(l),

we have, save when m = m :

2 ^ \

l

ZmZm, dz + QZm(l)Zm,(l)
= FzmZm> dq = 0.

* Jo Jo

Thus we find :

which may be written in the form :

I

[348.] Now arises a question as to the value we ought to give to

\l/ (z).
Saint-Venant puts if/(z)

= Q except z = I, when
\j/ (I)

= V. Thus
he obtains after some obvious reductions :

QVZJft
fin, =
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On evaluating this expression we find

(sec
2m - sech2

ra) + ^

Equations (vi) of this Article with (iv) and (v) of Art. 346 give the

complete solution.

Is now this choice of initial velocities a proper one ? Saint-Venant

has defended it in the Comptes rendus, T. LXI. 1865, p. 43, against an

objection raised to it. He says that if a small portion of the bar receive

an initial velocity, Zm will be nearly constant for this portion ;
accord-

ingly equation (v) of the preceding Article gives us for the numerator of

Am% the expression Zm(l) fif/(z)dc( where
\j/(z)

is zero except over this

small portion, where it has a value slightly less than V. But he

remarks that the momentum possessed by this small portion and the

weight Q ought to be exactly
-

F, or
f\j/(z)

-5 =
9 J 9

7.
9

[349.] We will now indicate the various problems which are

dealt with analytically by Saint-Venant.

(a) In 7-14 he treats as a general problem the cases when the

bar is not prismatic (i.e. the rigidity Ew? varies), when its ends are

fixed in different fashions, when there are various bars or when one
bar with a varying load forms the complete system. He shews that

supposing the functions Z^ can be found which satisfy the equation :

then the integral jZ^Z^.d^ - 0,

where q represents the total weight of the system and the integration
extends from one end to the other of the system ; m and m' are two

unequal roots of the characteristic equation in m which arises from

the terminal and load conditions (p. 506).
The coefficients of the time function Am m~2 sin m2

^ + -5m cos m2
*

will be determined by equations similar to (v) of our Art 347 ;
Am

depending only on the initial velocities, m only on the initial dis-

placements (p. 507).
The value of the denominator of these coefficients, ie. J2T

2mc?q, can be

obtained by the differentiation with regard to m of a certain function

of Zm and its fluxions with regard to z (p. 508). Compare Lord

Rayleigh's Theory of Sound, Vol. I., pp. 209-10.

[350.] (b) The next special example given by Saint-Venant is

that of a doubly built-in beam struck at the mid-point. He finds :
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_ y ^
2 (1

- cos m cosh m) (cosm -
coshm) (sinm + sinhm) _ . mH

(1 cosm coshm)
2
4- -r (cos m - cosh m)

2

*u

.
,
mz . mz

, mz mz
sinh

7
sin -y cosh

-j
cos =-

1 __ I I i L
where Zm = r . , '.

,cosh m cosm sinh m 4- sin m
and the characteristic equation is :

m
(
1 - cos m cosh m) P

sin m cosh m 4- cos m sinh m $
'

See pp. 5113.

[351.] (c) When one end of the bar, for this particular case

supposed of length I,
is built-in and the other is struck we have :

2 (sinm cosh m - cos m sinh m) (sinm 4- sinh m) (cos m 4- cosh m)
77? P

(sin m cosh m - cos m sinh m)
2
4-

^y(sin
m + sinh m)

2

m<5! mz . , m# . m/z
cosh -= cos -=- sinh -= sin

_ II Li
where ^m = , . , .

,

cosh m 4- cos m sinh m 4- sin m '

PI3

and for this case : r'
2 = -=

a ,

and the characteristic equation is :

sin m cosh m - cos m sinh m Pm = =
7r.

1 + cos m cosh m (^

See pp. 5134.

[352.] (d) Suppose the bar of length 21 = a + b and the blow to be

given at a distance a from one end, then if r2 be as in Art. 346 :

=TT2^f" Sm^ * = 0to,m2 T

mb . mz . mb . , mz
sin -=- sin -y sinh =- sinh -y

. I I i I

where ^m = :
;

sin m cos m sinhm coshm

and, u' = VT^, - m
sin

,
from z = to 6,m T

ma . mz' , ma . , mz'
sin

-j
sin -y- sinh -y-

sinh y
i r * * II

where -^ , . . . .

sin m cosm sinh m cosh m
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In both cases

Am =
m dZjZ)

-~> (where obvi()uslv Zm(a) = Z'm(V)\

dm rrfQ

and the characteristic equation is :

9 P
a)

=
Q

See pp. 514 7 \

The results given in our Arts. 349 352 correspond with the

introduction of vibratory terms to the solutions obtained by Cox's
method in Art. 1437* and pp. 894 895, c

(i),
c

(ii) and (b) respec-

tively of our first volume. I have gone through Saint-Venant's

analysis but not worked out independently his results.

[353.] We have next several cases in which the bar would not be
immoveable if it were rigid, i.e. the bar is free or pivoted. Here the

solution will have an algebraic part as well as a transcendental. This

part can sometimes be obtained by retaining the root m = 0, which lias

been divided out of the characteristic equation ;
but as a rule it is better

to treat it separately as arising from the kinetic conditions of the

problem and determine it by general dynamical principles such as

the principle of momentum. I will briefly indicate Saint-Venant's

treatment in the following example :

(e).
A prismatic bar is struck transversely at its two terminals by

bodies of weight q and Q moving with velocities v and V respectively.
The length of the bar is I and its weight P ; the origin is taken at the

end at which q strikes the bar. As before let us take

PI3

q + P+Q =
(l, E a

=
r'\ as in Case (c) Art. 351.

We have then: r'
2^ + V^ = ............................ (i).

For the free ends, ,
2
=

0, when = or I ..................
(ii) ;

.(in);

u = 0, for t =
; dujdt = v when z = 0, =V when z = I,

and equal zero for

all other values of z at the epoch t = 0.

1 Saint-Venant has a for our I, b for our a and &j for our 6, El for our EW*

other slight differences. I have altered his notation to agree with that of our first

volume.
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Saint-Tenant assumes a solution of the form:

t+ $ZmAm - sin

By the principle of linear momentum we have :

du P

and by that of the moment of momentum about the point 2 = 0,

'
1 du P ,

as equations connecting the velocities before and after the blow. Now
Saint-Yenant so chooses and C' that the algebraic part of u, namely

(C +
C'-j)t,

shall satisfy equations (iv) and (v) independently of the

trigonometrical terms. We easily find :

We can now determine the function Zm from the equations (i)
to

(iii)
as if the algebraic portion of u had no existence, for the latter dis-

appears entirely from these equations. Saint-Venant finds :

/ fYiz mz\ f T
w&2 mz\

^m= (coshm- cosm)f sinh-^-+
sin

-^-J-(sinhm-smm)(
cosh

-j- +cos-yj

2mq / . . . mz . , . mz\ , >-\+ -^ I smm smh
-j-

+ smh m sin -,
J

...... (vu),

with the characteristic equation :

1 - cos m cosh m + m (sin m cosh m cos m sinh m)

(viii).

Initially C + C' j +

multiplying by Zm d^ we have as the coefficients of C and C' respec-

tively,

(0) + qzm 0) + r ^ ^1
I ix).
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By straightforward integration we can shew that both these
2P

expressions = - x {the function of m to the left of equation (viii)J,

and therefore both = 0.

We have thus \(c + C'
|J
Zm dq = 0, or, the algebraic part has no

influence on the determination of the value of A m ,
which accordingly

equals :

as before. Saint-Venant gives on p. 525 the lengthy expressions for

the numerator and denominator of this quantity. Equation (vii) gives

us easily the numerator and all but the expression / Zz
mdz in the

value of the denominator. The value of this integral I find to be :

P2

j
(sinmcoshm cosm sinhm) (1 cosm coshm) + (sinhw- sin

7/i)

2
1

+ 2P<7{6sinmsinhw(l-cosracoshw)+w (cosh m- cos m)(sinhm- sin m)}

+<7
2

{2ra
2

(sinh
2
/?i sin2

/7i)
+ Grasin m sinh m (sin m cosh m sinh m cos m)} .

There is one point, however, which we must notice, namely, that

equations (iv) and (v) have only been proved for the algebraic portions
of the solution, but they must hold generally. Substituting the full

value of M, we find that these equations will still be satisfied, if :

AZm dz = 0,

(I) + 2 f AZm ~dz = Q.

But these equations are satisfied for each Zm of the sum by reason of

equations (ix).

I do not think this point is explicitly brought out by Saint-

Venant, although in a long footnote pp. 521 4, he proves a more

general proposition, namely :

On peut done, dans les problemes de mouvement des barres ou tiges

dlastiques libres on pivotaiites autour de points ou d'axes fixes, dtablir se'pare'-

ment la partie algdbrique ou de solidification, et la partie transcendante ou

vitmitoire, de leur mouvement. Et m6me on peut ge"ne"ralement, ce qui cst

encore mieux, ne s'occuper que de celle-ci, qui seule inte'resse le prob!6me de
la rdsistance de la mati6re, sans craindre que la non-prise en consideration de
celle-l& toit une cause derreur (p. 524).

That is, the principles of kinetics will hold for the algebraic and
transcendental parts of the solution separately as we have seen in the

above example.
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[354.] Saint-Venant on pp. 525 6 treats two special cases of the

problem in Art. 353.

(i)
If we put q = we get the case of a free bar struck transversely

at one end. The solution given in the article referred to easily reduces

to:

(sin m cosh m-cosm sinh ra) Zm sin r

P , . .

'

(sinm coshm cosm sinhm)
2+ -~ (sinhm- sinm)

, . / mz . mz\ . . , . / mz mz\= (coshm cosm) (sinh = -fsm -
) (smhm-smm) (cosh

y-
+ cos-=-

J
;

the characteristic equation being :

pm (sin m coshm - cos m sinh m) 4-
-^ (1 cos m cosh m) = 0.

V

(ii) If we put v = 0, and q-co, we have the case of a bar fixed or

pivoted at one end and struck at the other.

We find

sin (mz/l) sinh (mz/l)

zll rr ft T,. ,_, 1 sin m sinh m-
P sm r iP , 2 u \ T

'o?j (oosecrm
- cosech2

m)

the characteristic equation being :

cot m - coth m = 2m $/P.

On pp. 526 30 are given various verifications of these results.

[355.] Saint-Venant on p. 530 ( 24) passes to the considera-

tion of Impulsions graduelles ou tranquilles. Under this term he

includes problems involving the effect of the weights of both the

striking body and the bar during the blow, or involving the

constrained movement of a portion of the bar. For example,
if a horizontal bar be struck vertically we have to solve the

equation (i) of Art. 343, with g put
=

g. I will briefly indicate

Saint-Venant's method in the following problem : A horizontal bar

terminally supported, to the mid-point of which is attached a weight

Q
f

, receives a blow at the same point from a body of weight Q
falling vertically with velocity V. To determine the transverse shift.

[356.] Let 21 be the length, P the weight of the bar, //(2#JW
2

)
- r2

,56.] Le

+Q' = <t.
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We have to solve the equation

subject to the terminal conditions :

w = 0, -7-2=0 when = 0; =Owhenz = Z ........ (ii),
U2> OLZ

PP d*u
or.

* when z = l
(iii).

Saint-Venant takes u = u
l
+ U where u^ is independent of the time

and chosen so that the gravitational terms disappear from equations (i)

and (iii)
i.e. :

Thuswehave =

and integrating having regard to equations (ii), we find

Q *
8

The equations for ?7 can now be easily solved, we deduce :

. mz . , mz
sin -=- sinn -r-

D 1. /7 ^ ^- + B cos where Z =--
,

.

coshm

and the characteristic equation is:

m (tan m - tanh m) = 2P/(Q + G') ................ (v).

In order to determine ^m and ^l ro we have, if
</> () and

\J/ (z) be

respectively the initial shift and velocity corresponding to U,

_ m _

Now, Ut= = the initial value of u - M, ,

UM = the initial value of u u
l

.

Further the initial value of u is the deflection due to the bar's

own weight P and the load Q' attached.

QP
Hence we have : UM=-

-^

Further u
l

= 0, or &M = V for the weight Q, whose abscissa is I,

but for all other points UM = 0.
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Saint-Venant then proceeds to calculate Am and Z?m ,
and ultimately

finds :

J,
mz . mz

sin -j- sinn =-
i (/

COS77i

Q + Q m3
I sec2m - sech2m + 2P/{ra

2

(Q + Q')}

(, mH gr
2 mH\

x jFrsm ^cos V (vi).
[ T ra2 T J

Equations (iv), (v) and (vi) form the complete analytical solution of

the problem. See pp. 531 5.

[357.] Saint-Venant now treats other problems of gradual

impulse, or as I should prefer to term it non-impulsive resilience.

For example :

(a) A vertical bar of weight P terminally fixed and having a

weight Q attached to its mid-point, is acted upon at that point by
a constant horizontal force q. See pp. 535 8.

(b) The same bar is acted upon at its mid-point by a horizontal

force q= some function f(t) of the time. Here Saint-Venant for

his method of treatment appeals to the memoir of Duhamel cited

in our Art. 903*. The solution contains an integral of the form

cos (t
-
e)/ (e) de. See pp. 53840.

(c) The same bar is subjected to a sudden small but after-

wards invariable horizontal displacement a. of its mid-point. See

pp. 5402.

(d) The same bar is subjected to a small horizontal displace-

ment a of its mid-point which is a function of the time : a = F (t).

See pp. 5423.
On pp. 543 7 Saint-Venant indicates another method of

treating problems in non-impulsive resilience. For this he

appeals to Phillips' memoir of 1864 : see our account of it later.

[358.] The next problem investigated is a more important
one and is thus stated : Balancier de machine d vapeur oscillant

autour dune situation horizontal*; sa flexion, sa vibration et sa

resistance quand il est soumis d faction et d ^impulsion graduelle

de forces periodiquement variables seaercant sur ses extremites par
des bielles restant sensiblement verticales.

T. E. ii. 10
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I will indicate the method adopted by Saint-Venant. He
supposes the arms of the beam each equal I, and that the forces

applied to each extremity may be represented by a periodic term

of the form 2Q cos fit which practically acts perpendicular to the

beam. He justifies this assumption in the following manner :

Quant k la forme & assigner aux expressions des efforts verticaux a et q v

exerce"s par les bielles, observons que si, du c6t gauche, Ton appelle
-

(^
1'effort opdrateur qu'exerce, tangentiellement & sa circonfdrence, une roue
monte"e sur 1'arbre du volant, et d'un rayon e"gal k la longueur r

x
de la manivelle,

effort qui est rendu sensiblement constant lorsque le volant a un moment
d'inertie de grandeur suffisante, et si Q est la vitesse angulaire de la manivelle,
on doit prendre, le temps t e"tant suppose* compte" k partir de 1'instant oil

celle-ci est horizontale,

qL
= - <

2Q1
cosQt.

En effet q devra avoir son maximum ndgatif pour 1'angle Q = 0, son
maximum positif pour Qt =TT: il devra etre mil aux points morts, oti Qt = ir/2
et 37T/2 ;

enfin comme 1'espace parcouru verticalement par le bouton de la

manivelle pendant le temps dt est fi^ eft cos Qt, le travail de la force
(j l pendant

/"-i-ff/O

le parcours d'une demi-circonference est r
x

I

"

ql
cos Qt d (Qt) ; integrate

J T/2

qui, si Ton y fait ql
= -

ZQ^ cos Qt est justement dgale k - Qi -nr^ c'est-k-dire an
travail de la force tangentielle constante - Q1 ;

en sorte que 1'expression posde
pour qv

est bien ce qu'il faut pour que cette force verticale entretienne le

mouvement du me'canisme en foumissant, k la fin de chaque periode, le tni\ ;til

opdrateur qui a 6t6 ddpensd pendant sa durde (p. 549).

If we accept these values for the forces acting on the beam we can

easily state the analytical conditions of the problem.

For the right arm : r
2

d^u/d? + l^ujdz
4 = 0,

|
with d*u/dz*

= and Eu>? d?u/dz
3 + q = Q, when z = I)

"

For the left arm : ^cPujdt
2 + PcPuJdz* =0, )

with dtujdz? = and Eu*? ffiujdz* + q,
= 0, when *

t
= |J

.....

When z = z1 =-0, we must have u = u
l =0| ...

du/dz = -dujdzl
and tfu/dz*

= d2

ujdz*f
"

The initial conditions will be of the following kind :

When t = 0, * = $(), du/dt = ifa)> tti*i(*i) dujdt = t l(z l )...(iv).

We put also: q = 2Qcostit, q l

= 2Q l
cos t)<,

fl = n2

/r where r2 =

Now Saint-Venant takes u = v + U; u
l

= v
l
+ U^ and chooses v and r.

so that q and q l
shall disappear from the equations (i) and (ii),

and shall

separately satisfy all the conditions but (iv). Substituting u and M, in

tin- equations (i)
to

(iii)
we find they remain the same with the suppres-

sion of q and
<?, ,

that is : d*U/dz? and dPUJdzf vanish for z - I and
z,
= /

respectively.
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The solutions for U and U
l
take the usual forms in Zm functions as

coefficients in a series of circular functions of m2

/r, the characteristic

equation being now
1 + cosm cosh m = Q

(v).

This is the well-known equation of Bernoulli and Euler: see our Arts.

49", 64* and the footnote Vol. i. p. 50.

It is obvious that v and v
t
will be single terms in circular functions

n?
of Q,t or t the phase of the forced vibration, while U and U^ will

m2

contain series in terms of t where m satisfies equation (v), or gives a

free vibration. We have then to determine the constants Am and Bm so as

to satisfy the relations (iv), or so that U <() v, dUjdt = \j/(z) dv/dt,
when t = 0, with similar values for the quantities with subscript unity.
The solution is thus completed, (pp. 547 553.)

[359.] The reader will remark on examining Saint-Venant's

results, that if n be nearly = m, or the fly wheel rotate with nearly
a natural period of the rod vibration, the displacement due to that

natural vibration will become excessive and the danger of the

beam breaking will be great. This will occur when

Let p = number of revolutions of the fly wheel per second,
=

n/2-TT. Then there will be great danger when :

PF <vi>

Saint-Venant in a footnote gives the following first 8 values

of m2
:

3-557, 61-70, 199-8, 417, 712'9, 1088-3, 1542-1, 20751;

hence, since slackening speed would be dangerous, if p had a value

lying between those obtained from (vi) by substituting any two

values of m2

,
we have the safe maximum number of rotations per

second of the fly wheel given by

3-557

PI3

This seems to me an important condition
1

. I am not aware

1 A similar condition ought also to be satisfied between the number of rotations

of the fly wheel and the least free period of stretch vibrations in the connecting rod

of an ordinary engine.

162
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whether it has been previously noticed, or how far the dimensions

of the beams of ordinary beam-engines ensure its fulfilment.

We can throw it into a simpler form. Let /= the deflection of

either extremity of the beam subject only to its own weight, then

' 8E<oK

[360.] Saint-Venant does not draw any numerical conclusions

from his results, which seem to me to suggest several points of

importance, but only remarks finally :

Nous n'insisterons pas sur la solution, dont nous croyons avoir pose
les bases, de ce probleme complexe et delicat, solution qui, une fois

developpee, fournira la connaissarice des plus grandes dilatations a con-

tenir dans de justes limites, en re"glant les dimensions de cet organe de

mecanisme, soumis des forces toujours variables, le faisant fle~chir et

vibrer alteniativement dans deux sens opposes (p. 553).

[361.] We now pass to that portion of Saint-Venant's work

which is peculiarly characteristic of the man, namely to the practic-

ally important numerical calculation of the results given in the

previous articles. This occupies pp. 553 576 ( 32 42). The

appalling amount of work that lies behind the numbers given can

only be appreciated by those who have attempted similar calcula-

tions. The graphical representation of the results, although the

plates have been long engraved, has not yet been published (see

footnote p. 557)
1

. The plaster model referred to in our Art. 105

will be found, however, of considerable service as offering a concise

picture of the whole motion in a particular and most important
case.

[362.] Saint-Venant treats in 325 the problem of the

doubly supported bar centrally struck : see our Arts. 104 and

1 I much regret that it has been settled that these platen shall not be published,
Saint-Venant at a date later than the footnote of 1883 having expressed an opinion
that the curves ought to be plotted out for more frequent values of tjr and z/l, as

well as for a wider range of the ratio P/Q. It is to be hoped, having regard to the

practical importance of the problem, that some one will be found willing to undertake
the labour of the requisite numerical calculations.



362] SAINT-VENANT. 245

346 8. He begins by tabulating the first seven values of m
obtained from the characteristic equation :

m (tan m tanh m) = 2P/Q,
when P/Q is very small, equals ^, J, , 1, 2, or is very great

(p. 554)
Then for the three cases P/Q = J, 1 and 2 he has calculated

up to six terms in m the value of the amplitudes in u/(Vr) for

each component harmonic at the points z/l
=

'2, '4, '6, '8, and 1.

He has thus been able to trace the curves having the several

terms of u/(Vr) for ordinate and t/r for abscissa. Corresponding
ordinates added together gave the total deflection for various

values of zjl plotted to a time base. These curves were traced

from t/r
= '05 to 2*25, except in the third case (P/Q = 2) when

they were only taken to t/r
= l'9. Unfortunately we have not

these curves to examine, but the following remarks of Saint-

Venant sufficiently characterise the physical nature of the impulse:

Ces cinq courbes partant du meme point (u 0, t = 0) ne reviennent,
au bout de ces temps, couper 1'axe des abscisses u/( FT)

=
0, qu'en des

points legerement differents les mis des autres, ce qui montre qu'a aucun
instant la barre ne retourne exactement a son etat primitif. Ces courbes,

representant la loi et la suite du mouvement de chacun des cinq points,
sont fort sinueuses

;
cela vient de ce que le raouvement resulte de la

superposition de vibrations ayant des durees et des amplitudes de moms
en moms grandes, dont chacune a son rebond bien avant celui de

1'oscillation principale provenant du premier terme du $ ou de la valeur

m de m.

Toutes ces courbes serpentantes sont, pour t - 0, ou a 1'origine,

tangentes a 1'axe des abscisses, avec lequel, meme, elles se confondent

dans de tres petites etendues, parce que 1'ebranlement ne se transmet

pas instantanement du point milieu aux points d'appui.
II y a exception, bien entendu, pour les courbes relatives a z = l.

La tangente y fait un angle demi-droit avec 1'axe : et cela devait etre,

car, a I'iustant initial, les vitesses ne sont nulles qu'en exceptant le

point milieu qui re9oit le choc, et ou dujdt = V \
ce qui donne bien 1 pour

la tangente trigonometrique, quotient d (u/ FT) par d (/T), de Tangle fait

avec 1'axe des abscisses par le premier element de la courbe representative
du mouvement du point milieu.

Ces courbes, pour des points proches des appuis, s'elevent meme
au-dessus de 1'axe u = des abscisses, c'est-a-dire que, par une sorte de

reaction ou de rebond qui suit de pres un affaissement imperceptible,
les u sont negatifs. (See pp. 557 and 889.)

The last remark should be compared with that of Stokes' in

another case of resilience : see our Art. 1282*.
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[363.] In 33 Saint-Venant describes how he has traced the

form taken by the rod at different intervals of time from t= 'lr

up to t = 2'25r. From these curves he has deduced by graphical
measurement the maximum curvatures and the times at which

they occur. I reproduce some of his results in the accompanying
table.

Resilience of a simple-supported beam, struck transversely.

When P/Q=
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dimensions of the cross-section, i.e. the same for all similar beams,

and |
= ^ ^ ,

and so takes the values '04928, '05442, and '04933
O Up JL

for the three cases respectively, so that for an approximation we

might take e= '15 for these cases. This constancy of e would give

Young's Theorem which was established by neglecting the inertia

of the bar (e
=

J), but, as Saint-Venant rightly observes, sufficient

cases have not yet been calculated to allow a safe empirical
formula to be proposed.

The reader should note, however, the contents of our Art.

371 (iv) as modifying the above results.

[364.] Some remarks of Saint-Venant on p. 627 bearing on

the results of the previous article are so suggestive for directions

of further physical research that we cite them here in the hope
that some one may ultimately be induced to undertake the needful

investigations :

Plusieurs questions, du reste, so presentent, dont 1'analyse ne peut
encore tirer, des faits actuellement connus, une solution suffisante.

1. Doit-on (corame ont fait les auteurs qui ont traite les problemes
de resistance vive par premiere approximation) regarder la limite TJE
des dilatations statiques ou permanentes non dangereuses des fibres,

comme s'appliquant aux dilatations dynamiques ne durant qu'une
fraction de seconde, et qu'un meme choc ne produit qu'une seule fois

dans toute leur grandeur ;
ou bien peut-on, sans peril, en adopter une

moins elevee.

2. Doit-on, dans le calcul (nume"rique ou graphique) de la plus

graiide courbure, ajouter, comme nous avons fait [Art. 363], a ce qui
vient de la vibration principale et visible, domiee par le premier terme,

en m
,
du S, ce que fournissent passagerement les vibrations secondaires,

tertiaires, etc., representees par les autres termes, et dont la duree

periodique est incomparablement plus petite ;
ou bien peut-on negliger,

comme sans danger, les surcroits de dilatations de fibres qu'elles pro-

duisent par instants; ce qui reviendrait a s'en tenir aux valeurs 1 de

1/p, en les affectant, tout an plus, de coefficients de securite ou de

precaution, etrangers au calcul des vibrations accessoires ?

3. Y a-t-il, de la part des vibrations elastiques de peu de duree et

d'amplitude, et vu le seul fait de leur frequente repetition, une sorte

particuliere de danger, comme serait celui de detruire le nerf du fer

forge ou lamine, en le disposant, comme le feraient de fortes vibrations

1 Saint-Venant here gives a reference to the equations he has given on p. 626,

connecting statical curvature with statical deflection.
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calorifiques ou une sorte de fusion, a revenir de 1'etat fibreux ou a

particules entrelacees, a 1'etat cristallin ou grenu ?

Des experiences, dont il est difficile de tracer le programme, mais ou

pourra jouer un r6le essentiel le mesurage de ces deformations persis-
tantes regardees comme anno^ant des commencements d'euervation et

de desagregation, seront ne"cessaires pour renseigner la-dessus la the"orie

qui devra, quels qu'en soient les resultats, se bien garder d'abdiquer son

r6le et de renoncer aux considerations et patients calculs dont nous

avons, a 1'instar de nos maitres, tache de donner quelques specimens.

The experiments on repeated load to which we shall refer later

in this volume have thrown light on some at least of Saint-Venant's

problems.

[365.] Saint-Venant passes in 35 to the problem of our Art. 355
with Q' = 0. He remarks that the maximum value of the second part
of u (Equation vi) treated as consisting only of the first term will be

reached when

tan =
T gr*

He thus deduces for the time-terms' bracket the value

1

Hence the total deflection/ produced by the blow is given by:

/= maximum of u initial deflection due to weight of beam,

.m \
Here m is the first root of the characteristic Equation (v) of

Art. 356, or since #' = 0, of the Equation of Art. 362. Saint-Venant
calculates on p. 562 the value of the coefficient of the radical and
finds it has almost exactly for values of P/Q=^ t J, 1, 2, 4 the same

value, namely Q/(3P), as when P/Q is extremely small.

Hence /=/. +

where/, is the statical deflection and

is the dynamical deflection of Art. 363 to a first approximation.
If K=0, we have non-impulsive resilience, and/=2/,, a theorem

of Young's.

[366.] In the next sections ( 367), Saint-Venant shews

that the solution obtained on the hypothesis of Cox, that the fuim
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of the beam is at each instant of the impact the same as it would

be under the same statical central deflection, gives a close approxi-
mation to the maximum dynamic deflection. Now Cox has shewn

that

(see our Vol. I. p. 894, (6) with proper change of notation).

Equating this to fD = Vr (see Art. 365, Eqn. (i)), we have

m*=

which is Saint-Venant's second approximation to the value of m .

It appears from his work that Cox's result for the central maximum

deflection is accurate when we neglect m
8

(p. 568).

On p. 570 we have the maximum deflections calculated for the

five typical cases :

PJQ=
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The case given in our Vol. I., p. 896, (iii), Saint-Venant does

not appear to have considered.

In a footnote he remarks that the second approximation will

be far from exact in cases like those of Arts. 353 and 354 where

the bar is free or pivoted at one point only.

[368.] Saint-Venant next proceeds to obtain Cox's formula

by an elementary method. In a long footnote he gives the history

and a proof of the principle of virtual shifts as applied to impulsive

forces (pp. 577 82). His method is more general and simpler
than Cox's, and as it gives a general expression for the value of

the mass-coefficient 7, we indicate it here : see his pp. 578 87 :

Let V be the initial impact-velocity of the weight Q ;
let F, he the

final impact velocity, or the velocity attained by Q when the beam

begins to bend, let v
l
be the velocity of any point of the beam

immediately after the impact, so that v
l

= Vl at the mid-point. Take
the shifts at the instant when the bending effect begins as the virtual

shifts, then:

the integral extending along the length of the beam. Dividing by

QV?-, we have

where

The determination of y thus depends entirely on the relation \\c

choose between v^ and Fr Cox's assumption is that: the relation bi-t \\vni

the statical shifts at the centre and any other point holds continuously

during the motion. Thus if u = U^(z) be the relation,

or v^

This gives 7 = {<*)}
2

........................... ()

Now the total kinetic energy of the system after impact must be

.

-2 2 g -ly \ Q ig \ Q
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This must be equal to the maximum strain-energy of the system,

which is always of the form afD x
,
a being a constant depending on

the beam and/^ the maximum deflection. Thus we arrive at

This is Cox's formula: see our Arts. 1435* 7* and Vol. I., pp.
8946.

Iffs be the statical deflection due to Q, Q = afs and

[369.] Saint-Venant adds to Cox's treatment the consideration of

the approximate periodic time.

The body moved has the 'reduced total mass'
,
and the resistance

t/

to motion is au
,
where u is the central shift at time t.

Q + yP d2u Q
Hence we have r-=* = aun

= ^UM
a df fma J 8

or UQ
= A sin (fit + ),

where ft
=

But when t = 0. u = and u = V
1

.

Thus finally

[370.] (a) On pp. 587589 the values of 7 are obtained

by Cox's method for the examples referred to in our Art. 367.

(6) On pp. 589 90 we have the case of a beam whose length
exceeds the distance between the two points of support symmetric-

ally placed. If P be the weight of beam in the span and P' of

the total projecting portions we find

(c) On pp. 590 594 Saint-Venant treats the important case

of resilience for the "solid of equal resistance," i.e. when the cross-

sections are rectangles of equal breadths and of heights given by
parabolic ordinates. He deals with this problem by two methods
and finds in both cases that 7 = ff. He remarks in a footnote

that the end sections which are of course in practice not of zero
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height, must be calculated by the methods of the memoir on

flexure : see our Art. 69. But the addition of this material only
. . . . e ,. /height of end-sectionV
introduces into 7 a term of the order ^ =

\height of mid-section/
which is negligible.

(d) On pp. 595 597 Saint-Venant deduces the result of our

Art. 365 by Cox's method.

[371.] Leaving on one side for a moment Saint-Venant's

52 55 we observe the following points in the concluding pages
of this long Note :

(i) pp. 620 623. An examination of the results of the Iron

Commissioners Report and Hodgkinson's experiments: see our

Arts. 943* and 1409 10*. This amounts to little more than

the remark that Hodgkinson's ^ is almost equal to the theoretical

value $ of 7, and the statement that the values of the modulus

obtained by applying the resilience formulae to 67 experiments

agree sufficiently well among themselves.

(ii) Saint-Venant remarks thatfD V \J 1 pj^
can be

applied to a variety of cases of impact, as those of carriage springs,

etc.
;

the value of 7 being known
j

i. e. I
( TT )

-W-
[

,
so soon as

( J\ *i' *; J

we have assumed vJVt
to have the ratio of the corresponding

statical deflections (p. 624). At the same time the method of

vibrations involving the transcendental series ought to be used to

control this result wherever it is possible (p. 625).

(iii) The values obtained by Coxs method for the maximum

curvature and so for the maximum stretch are not sufficiently exact,

and we must have recourse to the transcendental series or the

numbers given in our Art. 363. Thus in the case of a simply

supported beam centrally struck we should have by Cox's method

l/p
= 3fD/P, but the values deduced from the Table in our Art.

363 give

f
1-1

83)
3/VP x <l-252> according as P/Q

|l-486j

Saint-Venant gives an empirical formula for these three cases
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on p. 627, but a better form (error <
ments et Additions p. 895, namely :

is given in the Change-

This gives the same condition of resilience as the e = J of our

Art. 363.

It is noteworthy that in reality Young's Theorem is much
more nearly fulfilled than would appear from the application of

Cox's method : see our Vol. I., p. 895.

(iv) A second interesting point is raised in the Changements et

Additions p. 896. Saint-Venant remarks that the formulae given
are based upon the supposition that the disturbance due to the

blow has had time to be reflected several times from the points of

support before the moment of maximum flexure. They cease to

be applicable when the bar is very long, and Q a very small weight
with a very great velocity of impact :

En effet, prealablement a toute propagation, une flexion brus-

quement produite a 1'endroit du choc peut engendrer des dilatations

dangereuses, dependant de la seule vitesse V et nullement du poids
heurtant Q.

Let fl = velocity of propagation of sound along the rod, or

E

FT VWe easily deduce /T
= ^- ,

where r
2 =

L LK

The corresponding maximum values of the stretches are by
Art. 363 :

For
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Hence if we find that value for P/Q (say, ?i) for which the

h V
numerical coefficient of -

^r is sensibly unity, we may say that the
K 12

maximum stretch for that and all other larger values of P/Q is

given by the expression
- ^ , and takes place in the first instant of
K II

the impact.
See the Note in the Comptes rendus 1882, p. 1044, or

Boussinesq, Application des Potentiels cb l'&ude...du mouvement des

solides dlastiques, p. 486.

From some slight calculations I have made I believe this result

will be reached when P/Q lies between 2*5 and 3. If this be true,

it very much limits the range within which there is any necessity
to apply the transcendental series to ascertain the curvature and

so the condition of failure. We may then, I think, say that after

P/Q = 2 5, the maximum-stretch is always given by the formula

V h
- or is independent of the mass of Q.

[372.] We must now return to pp. 597 619 of Saint-

Venant's note which we have omitted above. They deal with

Willis Problem or the resilience of a horizontal beam subjected to

a travelling load: see our Arts. 1417* 1422*. We shall include

under our discussion the memoirs of Phillips
1 and Renaudot*,

because these writers have made mistakes in their analysis, which

have been rectified by Saint-Venant. With Saint-Venant's additions

and rectifications we shall thus be able to give the reader a more

complete view of the advance made by the problem since the

memoir of Stokes: see our Arts. 1276* 1291*.

[373.] We will first give the equations for the complete problem as

propounded by Phillips. Let P be the weight, 21 the length, EUK?
the rigidity of the beam, u the shift to the right and u

}

to the left of

the travelling load Q (distant x = Vt from the right-hand terminal) of

points distant z and z
l
from right and left-hand eods of the beam. We

shall suppose the beam simply supported.

1 Calcul de la resistance des poutres droites telles que les ponts, etc. sous /'</// ion

d'une charge en mouvement. Annales des mines, t. vn., pp. 467 506, 1855.

ude de V influence des charges en mouvement *ur la resistance des jxnits

metalliques a poutres droites. Annales des ponts et chaussfes, t. i. 4e
s&ie, pp.

145204, 1861.
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Then for the beam we have

,&u_l^^ Z^-_':Za^*"
dJ 21

~
2lg ~d# 21 g dx2

_ = __*"

dz* 21
~

2lg d#~ 21 g dx
'

j

u = 0, and
-^

when 2 =
1

u =
0, and -

J
= when =

and for the conditions at the load :

together with :

d3u

No general solution has yet been found for these equations. But

omitting the condition of initial zero velocities it is possible to satisfy all

the other Equations (i) to (iv) by algebraic expressions in z and x, when
we neglect in successive approximations successive powers of a certain

quantity which is small in all practical applications. Further, it is

possible to add vibratory parts to the algebraic solution which satisfy

very approximately the initial conditions (pp. 599 and 891).

[374.] Saint-Venant's method of solution differs from that of

Stokes and includes the effect of the inertia of the beam. We will

indicate its stages.

1st Approximation. Let us neglect the terms in V 2
in Equations (i)

to (iv),
or find only the statical shifts for the load Q at a point x.

We have :

2l-

2nd Approximation.

1 20 VH
Now let 75

= V ,
or is the same as Stokes' /? of our Art. 1278*

p 6gJl/(jL)K~

(where c is written for our present Z),
then in practice I/(3 is always

< 1/12 or even than 1/20 and is the small quantity of our approxima-
tions. In the above equations we shall replace

1 3P 0V2
1 3

J b? 7*A7U*>
and -V^Jn ^ 97'
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Let us assume

/1V
substitute and neglect ( ^ ) We find from Equations (i) by dividing

out by I/ft:

3P 3P

"jjr" L-(vi).

Equations (ii)
now become :

?7= 0, and , 2
= when z = 0,

U
l

= 0, and Vr = when
*,
=

-

.(vii).

Integrating (vi) we have

77-y ~

These satisfy equations (vii).

It remains to determine C, D, C
lt

But they become:

(viii).

by Equations (iii) and (iv).

(ix).

Further, (iv) may be written

Now y = u1
when z = xlt or after a short reduction

Since = 2l- x, we have : ^-
' 2

(/ re)
=

o^
-

x, and thus find
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Hence

(
x

)-

This result does not agree with Saint-Venant's on p. 606 (Equation

(t9))
but it will do with that in the Errata, p. 900, if the coefficients of

the brackets of the latter are inverted.

From the third Equation of (ix) and from (x) we easily find with

the help of (viii) the following equations to determine C, C
lt

+ C = + C^ ; x,C + xC l

= - 2to, + (W -
Sa*,) . . . (xi).

This differs in the sign of the bracket in the second equation from
Saint-Venant's Equation (aj9)

on p. 606.

Solving (xi) we have

o oJr j

[375.] We can easily test these results. The bending-moment

9 2M= - E<OK? -T-5
= - EUH? -j-

---
^ -j-jdz" dz2 dz2

Put z = l, and x x
l I, and we find

This is Saint-Yenant's result
( 9)

on p. 607.

It gives the bending moment at the centre when the train is passing
that point. If we put P or neglect the weight of the beam, we
have Stokes' result. Phillips finds by overlooking several terms and

by means of a longer analysis 3/(4/i?)
in the second bracket.

[376.] We are now in a position to find D and D
l
and so determine

the deflection at any point. From Equations (ix) I have calculated the

following value for D :

D =

Equations (xii) and (xiii) determine C, D, and so U from (viii).

T. E. II. 17
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Adding -r U to u' of (v) we obtain the complete solution to this degree

of approximation. We may write down the complete value thus

obtained, u
l being obviously given by interchanging a^'with x and z

}

with z:

)l
This embraces both Saint-Venant's forms (o>) and (o/), p. 615 #, and

I have tested them, and find they agree with this result.

If x = x = z = I we find :

Ql
3 5PP If <>!' 9 PP

+
48.EW2

+
3

QP (. 1\ 5PP=
OS? V

1 + +

If we pub ^ = 0, we obtain Stokes' result : see our Art. 1287*. It

will be observed that these expressions for the bending-moment and
the deflection have been reached without any assumption as to the value

of the ratio Q/P.

[377.] We may make some remarks on the above results.

Phillips first gave the complete equations for the problem and

included the effect of the inertia of the beam (i.e. the terms in I').

He obtained erroneous coefficients, however, for the terms in 1//3.

The correct values were first obtained by Saint-Venant, and his

process is much shorter than Phillips'. In 54 (pp. 609 (il_

Saint-Venant gives an elementary proof of the value of the

bending moment in our equation (xiii
a
). He does not make use

of the general differential equations, but calculates and sums tin-

parts of the bending moment due to statical loading, to the

/Q F2
\

'

centrifugal force' of the travelling load (

-) ,
and to the n.

accelerations
f^,

dz . 2
J
of each element dz of the beam. The

parts due to the last two influences are of the first order in I//3 and

so we use in them the statical values for l/p, the curvatmv. an<l ?/.

We may ask whether the expressions in Equations (xiii
b
) and

(xiv
b
) give the maxima values ofM and //.
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In the value of M the part affected by Q has its maximum
when z = its greatest value x

; further, the principal portion of

{Q

x (21 x))? -

j
? has its maximum when x = I. Again

P 21 z
the principal portion of the part in P, namely z

,
has its

T i

maximum for z = l. The other parts of the expression for M are

always much less and thus will give only an influence of the

second order on the maximum values of z and as, i.e. their influence

will not be sensible on the value of the maximum moment (p. 607).

It is also easy to see that the maximum deflection is the mid-point
deflection at the instant of transit of the load over the mid-

point.

Throughout his discussion of the problem Saint-Venant does

justice to Stokes' memoir
;

it will be observed that he frequently

adopts Stokes' methods, but the extension of the results to any
ratio of Q/P is in itself no small advance.

[378.] We shall now shew how the results obtained in (xiv
a
)

must be modified in order that the condition for initial zero-

velocity in the parts of the beam may be satisfied. This involves

the introduction of periodic terms. Stokes had introduced such a

periodic term on the assumption that Q/P was small (see our

Art. 1289*). Phillips had endeavoured to measure the magnitude
of the periodic terms which would enable us to dispose of the

finite initial velocities which the above solution pre-supposes ;
he

found that these terms were much smaller than the principal

algebraic terms (Saint-Venant, pp. 613 614), but this does not

prove that we may neglect them as compared with the terms in

1//3. Saint-Venant adopting Stokes' approximate method, but

without his assumption of the smallness of Q/P, introduces a

periodic term which allows approximately (to the order 1//8) for

the zero initial velocities of the beam.

[379.] It will be remembered that Stokes' method consists in

replacing each force acting on the beam by a uniformly distributed force

which produces the same mean deflection as would be produced by the

actual force taken alone (see our Art. 1288*). By this method he arrives

at the following equation :

155 F2 d*v _ Q (
1

P cP
(
VZ)

+ - \

172
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where 1 = 5

and the deflection at z is given by

PP

thus determining what is represented by v.

The equation (i)
shews that v is of the same order as Q/P, and

Stokes solves it on the supposition that Q/P is so small that quantities
of the order (Q/P) x v may be neglected, i.e. he omits the last term of

the bracket on the right-hand side. Saint-Venant, however, seeks a

value of v by approximations in which powers of 1//8 are neglected, in

other words, he makes no assumptions as to the value of the ratio Q/P except
that P/Q is not to be extremely large. In most practical cases Q and P
will not be very far from equality, and the exception is accordingly

legitimate. If we take

31 P 1 1

we have the small quantities in terms of which Saint-Venant solves the

equation (i).

It will be found that r/2l = 1/q, where q is the constant of Stokes'

investigation : see our Art. 1290*.(D73We may note that /S^ of Stokes =

andy*/ of Saint-Venant =

[380.] The solution found by Saint-Venant is given by :

QP / 9 <PX 1
-

> r .

See his p. 61 5 e.

Substituting for v in equation (ii) of Art. 379 we have u. For tin*

central-deflection as the load passes we find

125 QP /\ , IV 5PP /, .

155 1\

336 ft)

31 '^" (1V) -

The algebraic terms as might be supposed owing to the method of

approximation, are not exactly the same as in (xiv
h
).

The factor j|J
instead of 1 is not, however, important, while the factor Jf instt ad of
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|~ occurs only in terms involving 1//3. Saint-Yenant concludes that
the algebraic terms given by the first method are the correct ones, and
that we may add to them the expression

25Z3 r~A 2\ 31

96.&W2

in order to approximately account for the periodic terms. This result

and (iv) differ from those of Saint-Yenant
(a') p. 615 h and

(8') p. 615 i

but seem to me to give the correct value of M
Z .

The corresponding part to be subtracted from the bending-moment
at the centre as the load passes it is

This again differs from Saint-Yenant's results
(ft

1

) p. 61 5h and (')

p. 615
j. By a misprint which has escaped correction he has the

fraction f|- where I have fj.

[381.] The last extension of the problem which we shall consider

here is that of Renaudot, who does not deal with the case of an isolated

oad (as a locomotive) but with that of a continuous load (as a train of

trucks or carriages) crossing the bridge. Let p be the weight per
foot-run of the girder, p that of the travelling load the head of which
is distant x = Vt from the right hand terminal. In this case equations

(i)
of our Art. 373, are replaced, on the supposition that the train is

longer than bridge, by

p d\i p' d
2w

f y-f'-
................

z g g dx2

Here w is the shift of the element (p'/g) dz of the train on the bridge,
and z is to be put in w equal to Vt less the constant distance between
the given element and the head of the train. Thus while the z in

d^ujdtf is not a function of
t, that in d2

w/dt
2

is to be treated as a

function of t, or since x = Vt we may write :

d?w _ (d2u d2u d2u\

1&
=

{da?
+ *

dad** dz*)'

Thus the first equation becomes :

9 d*u pV2 d2u p'V- (d2u , d2u d2

u]J&W-r-r -(p+p') = -r- - -* J +2-J-J-+ -=-J ...(ill).
dz* g dx2

g [dx
2 dxdz dz2

)

Starting from equations (ii) and
(iii)

with the necessary terminal

conditions for each portion of the girder, we may proceed as in our Arts.

373 376 to determine first the statical and then the first dynamical
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approximation. The maximum bending-moment will be greatest when
the load just covers the whole girder. It is then given by

Similarly we may deduce the bending-moment when the train is

headed by a locomotive of weight Q followed by a train of weight p per
foot-run. In order to obtain the position of the maximum bending-

moment, it will, as in Art. 377, be sufficient to find the values of z

and x which give the maximum moment for the statical approximation.
These are

and they must be substituted in the second approximation involving tin-

terms in I/ft and I/ft' (see pp. 616618).
' d?u

Renaudot neglects the term 2 in equation (iii)
as of small

/ 2 \

importance. He arrives at a wrong value, i.e. (l +
o/j/J,

for the bracket

in the value of the bending-moment.

[382.] Saint-Venant remarks that Phillips has also treated

the case of a travelling load crossing a beam doubly built-in. His

solution is, however, erroneous, as has been pointed out both by
Bresse and Saint-Venant, nor would it be of much value to correct

his results, for built-in ends (encastrements) never produce their full

effect, and such alternating motions as occur with travelling loads

in bridges soon deprive such ends of nearly all their effect (see

p. 619 and our Arts. 733* and 188).

There is also a reference on p. 619 to Bresse's exact solution for the

case of a bridge across which a very long train is continuously moving
with velocity V, so that the bridge takes up a permanent form. In

this case equation (iii) of Art. 381 becomes

and we can find an exact solution. It gives for the maximum bending-
moment

. 2ft" {sec Jl/ft"
- 1

},
where

,

+
12 /f)

aPProximatelv -

2

This result is less than that of our Art. 381, or we see that th<-

dangerous instant is that in which tin- train just covers tin- whole
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bridge. It is then producing impulsive changes in the elastic line of

the bridge, and not a steady form of the elastic line as in the case

of a very long train imagined to be continuously crossing.

[383.] We now reach Saint-Venant's last contribution to the

annotated Clebsch, namely, the Note finale du 73, pp. 689 752.

It is entitled : Theorie de la flexion et des autres petites deforma-
tions des plaques elastiques planes minces, tiree directement des

equations differentielles generales de Vequilibre d'elasticity des

solides.

The Note consists of four essentially distinct parts: (i) a

deduction of the general elastic body-shift equations for thin plates ;

(ii) a full discussion of the contour conditions, and the controversy
with regard to them

; (iii) the solutions for statical equilibrium of

thin circular plates ;
and (iv) a reproduction with extensions of

Navier's results obtained in the memoir of 1820, and hitherto only

published in extract : see our Arts. 258* 64*. I propose to deal

somewhat at length with this Note as it forms distinctly the best

treatment hitherto given for thin plates. Saint-Tenant adopts

Boussinesq's method (see the memoirs of 1871 and 1879 in the

Chapter devoted to that elastician) but with certain important
modifications. He describes Clebsch's investigation, notwithstand-

ing that it starts with unnecessary simplifications, as
"
obscure,

indirect and very complex." I think the terms are fully warranted.

[384.] Let the mid-plane of the plate be taken as that of z = and
let its faces be z = e. We shall endeavour to deduce from the three

body-stress equations, a single equation involving only the stresses xx,

w, *y and given quantities. Let the body-stress equations be

dxx dyx dzx ,, ,.1
-r- + -j-+ -j-+Z =
ax ay dz

y _
dx dy dz

t + &+*~ +z =
dx dy dz

Adding the third of these equations to the differentials of the first

two with regard respectively to x and y, such differentials before

addition being multiplied by z, we find

Z
]
-

(dx
2

tfTy dffi} d (d , _
x

d ^\ (dX dY\2 r + -

I
+

\ -j (z . zx] + (Z. yz) + zz\ + Z
(
-=- + -=-

)

dxdy df\ dz {dx
^

rfy. J \dx dy )
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Integrating this from z + e to z= e,

where
"

+
a[K5)+.+(*)-.}]-(ft).

r+ r+ r+
and JF--I Zdz, X" =

\ zXdz, Y" = zYdz
;

J -e J -e J -e

the subscripts denote as usual that the stresses are to be given their

values at the surfaces z = e.

All the terms in the expression < (xy) are thus known quantities.

[385.] The question of what further assumptions we shall make
now arises. Those usually made are the following :

1. Tz 0. (This is made even by Boussinesq and Levy, the most

recent writers on the subject.)

2. sx = z/p, 8y
=

z/p, where p and p are the two curvatures of the

plate at its mid-plane for the point x, y. It follows that :

where w is the normal shift of the point a;, y of the mid-plane.

Using the stress-strain relations for three planes of elastic symmetry
(see our Art. 117 (a)), we easily find from 1 and 2 :

S =
(a
-
*/c) sx + (f -

d'e'/c) 8y
\ d^ _ _

n = (f- d'e'/c) sx +(b- d'*/c) sj
'

dxdy
'J

Substituting in
(ii) and integrating we have the equation :

This becomes in the case of elastic isotropy parallel to the mid

plane :

...<vi),

where 11= a e^/c, the plate-modulus of our Art. 323.

This is tin-
c(jiiuti()ii obtained by Lagrauge, Poisson ;unl ( ';uichy :

Bee our Arts. :>8i*, 484* and 640*
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[386.] On pp. 696700
( 45) Saint- Venant considers what

are the arguments in favour of the assumptions 1 and 2 of the

previous Article. He remarks that owing to the thinness of the plate,
the normal or z variations of both the stresses and the strains must be

large as compared with the longitudinal variations. Hence as a first

approximation, we have the fluxions with regard to x and y of both

stress and strain components more and more nearly zero as the plate
is taken thinner and thinner. It is sufficient however to assume that

those of xx, xy and yy are zero or small. The body stress equations
then give :

^5 + X=0, ^ + 7 = 0.
dz dz

Thus the stresses zx, 7y on integration will be of the order e, or as

Saint-Venant puts it :

Si on les integre par rapport a la petite coordonne'e z on voit que les

couiposantes zx, "zy n'ont de valeurs, h, 1'inte'rieur d'un tronon on element de

plaque, que celles qu'elles peuvent avoir sur une des deux bases, plus ce qui
vient des forces A, B, agissant sur sa masse. Ces forces locales n'ont qu'une
influence insignifiante qui n'est presque rien en comparaison de ce qui vient &

la fois de toutes les forces agissant sur le reste de la plaque ainsi que sur ses

bords par les reactions des appuis ou autrement, et dont les effets accumules
se transmettent au tronon k travers ses quatre faces late"rales, ce qui s'ap-

plique surtout aux composantes agissant horizontalement (pp. 697 8).

The third body stress equation, however, shows that zz is very small

as compared with zx, 'zy because these quantities occur with lateral

variation, hence zz is doubly small as compared with xx, xy and yy.

Thus we may take Tz = as all writers have hitherto done.

[387.] This argument is not, perhaps, quite convincing. It would
seem at first sight better to assume zz to be very approximately a

function of x, y only. The expressions then for M, ^y, yy would contain

together with the terms linear in z, terms not involving z, but functions!

of x, y only. These terms disappear when we substitute them in

equation (ii)
and integrate between z = + t and e. But here a new

difficulty arises
; suppose the surface of the plate z = + subjected to a

load Tz = x (&> y)- This will make no change in the first three terms of

equation (ii)
of Art. 384 although we cannot suppose Tz = 0, but it will

lead to a difficulty with regard to the expression <f> (xy}.

This expression contains terms of the form (*)+, and (*)_ ;
the former

X (
x

> y) and the latter is zero. Hence it follows that zz must vary with z

from + e to e. Saint-Venant (p. 699) says we must take
(zz) + e

= x (
x

> y}
and put (zz)- e

= 0, but this seems to me to destroy the basis of his

approximation. Possibly, following the hint he gives on p. 700, the

true method is to consider that, when the dimensions of a body are very
small in any sense, then a surface-load in the same sense will give
the same strains perpendicular to that sense as the integral of a body-

force also in that sense. Thus the flexure-equations for a beam are
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deduced on the assumption that there is no lateral stress, yet we do
not hesitate to use them for beams subject to continuous lateral load 1

.

I conclude then that it is best to put zz always zero (and not a definite

value as Saint-Venant does on p. 699) and assume, when plates have a
surface distribution of load, that the result of such load so far as the

shifts of the points of the mid-plane are concerned can be represented

by a body force, whose integral between the faces is equivalent per unit

area to the surface load.

[388.>.] In 5 Saint-Venant shews that from the assumptions, or

approximate values :

d ( or.,) _ d?8a _
dx, </>, da?, dxdy, dy*

~

(which are less restrictive than o^ or^
=

0, and =
0) we can deduce

results embracing those of our Art. 385, P and 2.

Writing the first set of expressions at length we easily find that :

x__ ,L= _ L __ e) _

dz rfx
2 '

dz djf dz
' "

dxdy"
Whence we see by differentiating with regard to z that :

__ z _ __ ? _ xy _~ ~ *~ *
~

dy*~ dz*
~

dxd.y~

Thus the second z fluxions of sx ,
s
y, a-^ are zero, or we may write w

for w in
(/3) ;

it follows that we must have :

where the zero affixed refers the quantity to the mid-plane.
Saint-Venant remarks of the equations (y) :

Elles montrent, comme consequence cindmatique des egalite's posdes (a),

que les dilatations de petites droites matdrielles horizontales de direction

donne'e varient linfairement le long de toutes les lignes primitivcmtMit vorti-

cales, des divers points desquelles ces petites horizontales auraient 6i6 tiroes.

II convientde remarquer en passant que cela n'entratnc null-inent, comme
consequence, que ces verticales resteront exactement droites et nonualcs au
feuillet moyen devenu courbe, car leurs petits intcrxalles horizontaux peuvent
tres bien croltre lindairement avec z quoiqu'elles soient devenues courbes, si

celles qui sont voisines affectent des inflexions pareilles, ainsi qu'il arrive pour
les sections voisines, dans les tige.s eprouvant la flexion dite indgale (p.

<

see our Art. 325).

It will be noted that this treatment brings out the real difficulties

and assumptions of the problem, better than those which start by

1 Siiico writing the above I have obtained the //// solution for a simply
it- 1 beam continuously loaded on its upper surface, I find ~ i- of

onli'i- as ^, where x is the direction of the axis of the beam, and z the direction of

the load.
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assuming the strain-energy to be a function of the curvatures ami so

deduce by Lagrange's, or other, method the fundamental equation of

the plate : see Thomson and Tait, 639, or Lord Rayleigh's Sound,
Vol. i., 214.

I may remark that the equations (ii) and (iii)
obtained in Art. 384

still hold if 2e the thickness of the plate changes gradually with a? and y.

[389.] Returning to the body-stress equations of Art. 384, let us

integrate the first two between the limits e of z. We note first,

however, since :

d?w\ d'e' ~

by equations (y) of Art. 388, that

s*-*{(~-)t.+(s-*

similarly I xydz = 2,^Q ,
and I yydz ^f.

where the affixed denotes a mid-plane value.

Hence from the integration of the body-stress equations we obtain :

2e
( dx

+
~dy)

+ (*^ +e ~~ (^)~ e + %' = 0, wnere x 1 and Y' are the

integrals of X and Y
across the plate.

Substitute the values of the mid-plane stresses in terms of the mid-

plane shifts u01 v and we have :

These equations reduce in the case of isotropy parallel to the plate
to the simpler forms (p. 702) :

C d /du dv \ d fduQ dv \\ ,^. ,^,
. Y,

ft "]2e \H I +
) +/ -

)l +(zx)+ e-(zx)- e +A =0
1 dx\dx dy J dy\dy dx/j ...

9 'irr
d

(dU(>
dv

\ f
d

(
du* dv M j. / \ (~\ a. V o i

"

Je ^// -y- -= + -y- / j- 7
= M- + (^)+ e-(^)-e+ ^ =U

t dy\dx dy)
J
dx\dy dx/j }

where H is the plate-modulus of Art. 323.

It will be noticed that these equations for the shifts uot VQ are

independent of that for wot or the transverse and longitudinal strain

exercise no influence on each other. This has already been remarked

by Cauchy and Poisson : see our Arts. 483* and 640*.
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[390.] In 8 10 Saint-Venant considers the effect of great
stresses parallel to the mid-plane on the normal shift w . Thus he
obtains what may be called the terms due to the action of the plate as

a transverse membrane. He finds that in the function < (xy) of

equations (v) and (vi) of Art. 385 we must include the expression :

From the sum of this expression and Z' + ()+ e -()- equated to

zero we deduce the equation for the transverse equilibrium of a

membrane. In its present form it has been obtained on the supposition
that 2e is constant; the alterations for 2c variable are indicated by
Saint-Venant in a footnote, p. 704.

[391.] In 13 Saint-Venant commences his treatment of the

contour conditions. Let a be the angle between the normal to

the mid-plane contour at any point and the axis of #, let P, Q, R
be the components of the applied load parallel to the axes, and ds,

dn elements of tbe arc and normal of the mid-plane contour.

We find at once :

P = xx cos a + ^x sin a, Q = xy cos a + yy sin a, R=*xz cos a + yz sin a.

Hence by equations (i)
of Art. 389, we have :

r+e
2e (^ COS a + yj.- sin a)

= I Pdz =P*,
J -

r+e
2e

( xy COS a + yy sin a)
= I Qdz = Q'.

J -e

Substitute for the mid-plane stresses in terms of the shifts and we
have :

These are the sufficient and necessary contour conditions for

tudiual strain. When there is elastic isotropy parallel to the mid-plane

they reduce to

9 /r ff(
du

a.
dv

\ 9f
dv

l
d
y~\

cos a
. f f

du
.

dv \ sin a
l _ F' ~ + +

dxjcosaf
~

Q'

[392.] Saint-Venant next turns to the more controverted conditions

involving the normal shift w . He proceeds to culculat and

/,'', the first two symbols representing the moments round tau._
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and normal respectively to the mid-plane contour for the load applied
to the strip 2e x ds, and R' being the total shearing load on the same

strip.

/+e (P cos a + Q sin a) zdz = P" cos a + Q" sin a
-e

2e3

=
~a~ {**" cos2 a + ^^p" sin a cos a + yy" sin2

a},

where, r and p being any two directions,

and as before, a single dash on the loads denotes an integration with

regard to z from -f e to -
e, and a double dash an integration after

multiplication by ,
between the same limits. Substituting from equa-

tions
(i)

of Art. 389 for the stresses we find :

Or, for elastic isotropy parallel to the mid-plane :

This first condition is not the subject of discussion but has been

generally accepted.

[393.] In a similar manner we find :

Mn = Q" cos a- P" sin a,

2e3

= -r- {sin a cos a (xx" yy") (cos
2 a sin2

a) ^y"},G

where

or, = (a f'} ( ^T~^
"~

~r~l }
with elastic isotropy parallel to the

mid-plane.

And again, 'xy" 2/ - -
.J

dxdy

f+e C+ r+ e _
Further : R Bdz = cos a Txdz + sin a yzdz

J-e J - e J -e
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reducing respectively to the differentials with regard to x and y of

// ( - +
-j-j ),

when there is elastic isotropy parallel to the mid-plane.

These results can be easily deduced by integrating and yz from

expressions of the form :

_ d(z.^xz) dxz
xz =--5

-- Z T-
dz dz

d (z.'xz) + z
axx dxy

dsr+adz \ dx dy

I have reproduced the values of J/"8 ,
Mn and R', because they are

the most complete hitherto given and will be useful for reference

hereafter.

[394.] Saint-Venant adopts Thomson and Tait's 'reconcilia-

tion
'

(see our Art. 488*) and replaces tbe couples Mn by an

additional shear =-* added to R'. In otber words he equates tbe

contour load to tbe couple M and the shear R' + ^ .

ds

He attributes tbis method of reconciling Kirchhoff and Poisson

to Boussinesq (p. 715). There are two points which arise in this

reconciliation which deserve to be noted. Tbe first objection to

the replacement of tbe couples Mn by a distributed shear is that

referred to in our Art. 488*, namely that the Kirchhoff contour

conditions could not be used for the case of a discontinuous

distribution of shearing force and normal couple. Saint-Venant

replies to this :

S'il y avait des forces exterieures isolees, applique"es en certains

points de ce cylindre et faisant couples autour de ses normales, elles

seraient capables d'y imprimer a la plaque, entre ces points, des torsions

finies. Aucun auteur n'a suppose" Texistence de pareilles forces, qui
sont capables de produire des alterations permanentes de la contexture

de la matiere de la plaque si elles agissent avec une certaine inten

sui- des portions excessivement petites de sa surface. Tous supposent

que les forces se r^partissent sur des surfaces d'etendue finie
;
et nous

ne considererons mme, ainsi <|u'ils 1'ont tous fait, que des foi

sur le cylindre contournant d'une maniere continue et graduelle

(p. 714).
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The second objection is that due to M. Levy (see our Art. 397);

he holds that when the couple Mn is due to vertical forces we can

replace it by a shear distribution perpendicular to the plate, but

that when it is due to horizontal forces this is not allowable.

This point has been discussed at length by Boussinesq (see the

Chapter we have devoted to that elastician), and Saint-Venant

sums up his arguments in the following words :

Si ces couples sont formes par des forces horizontales tangentes au

cylindre, agissant en sens opposes, les unes au-dessus, les autres au-

dessous de la peripherie moyenne, et si la plaque est supposee avoir une

epaisseur comparable aux deux autres dimensions, ces couples ponrront

conspirer pour produire certains effets d'ensemble dont nous ne nous

occupons pas, tels qu'une inflexion imprimee a toutes les aretes, et

accompagnee de cette torsion generale autour d'un axe vertical dont il a

ete traite dans les chapitres relatifs aux tiges. Mais si la plaque est

extremement mince, ces sortes de deformations sont negligeables. Les

couples de forces horizontales dont il s'agit s'exergant d'une maniere

continue sur les aretes successives, ne produiront que ces torsions locales

dont nous nous occupons ici
;

et leurs effets seront sensiblement les

memes que ceux de couples de forces verticales de meme moment, qu'on
leur substituerait en faisant tourner ceux-la de 90 degres, substitutions

qui se font, comme on sait, dans la statique elementaire des corps solides

(p. 714).

We may I think conclude that :

1. The shift-equation ((vi) of Art. 385) for thin plates is only
an approximation and depends upon the assumptions that ** =
and that sx ,

sv ,
a
xy

contain only the first power of z, as in Eqns. (7)

of our Art. 388. These assumptions are, however, probable and

the approximation is close when the thickness of the plate is

extremely small.

2. To the same degree of approximation the two boundary
conditions of Kirchhoff are true for very thin plates.

3. When the plate has a thickness small but not indefinitely

small compared with its other dimensions, the equation of Lagrange
can under certain conditions still hold, but it is not then legitimate

to replace the normal couple by a distribution of shearing-load.

This latter conclusion is opposed to Saint-Venant's opinion on

p. 720. He shews that if the following conditions hold :

__ _
dx>, dxdy, dy* dx\ dxdy, dy d.v

3

, d'xdy, d
2

ydx, dy*
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we can still deduce Lagrange's equation, but these conditions

allow of a definite but small thickness for the plate. He then

states that Kirchhoff's contour conditions remain true. Now it

seems to me that we can no longer replace normal couples by
vertical shearing-loads, for this will cause a difference in the strain

of the plate to a distance into its material of the same order as its

thickness, and this distance is no longer vanishingly small

compared with the other dimensions of the plate.

[395.] Saint-Venant now proceeds to an interesting summary
of other writers' treatment of the problem of thin plates. He
notes that Poisson and Cauchy assume that the stresses can be

expanded in powers of z giving convergent series. From this

assumption Saint-Venant deduces equations (7) of our Art. 388.

He remarks of this assumption that it has never found sup-

porters elle riest pas suffisamment fondle, et pent se trouver

souvent en defaut I must notice, however, that Saint-Venant's

own assumptions of our Art. 385 really lead to the expression of

the stresses 'xx, #P and yy as linear functions of z, (see equations

(iv
b
)
of Art. 385 and (7) of Art. 388,) while from the first two body

stress-equations we obtain by integration for Tx and ^ quadratic

functions of z together with terms I Xdz and I Ydz which
Jo Jo

will in the great majority of cases be linear in z. Thus Poisson's

and Cauchy's assumption is only a too general statement of the

results reached by Saint-Venant himself.

7 y" sfV"

[396.] Saint-Venant appears to think that the terms Z' +
"

-

which occur in the function
<f> (xy) of his result (see equation (iii)

of our

Art. 384) do not agree with the similar terms obtained by Poisson (see

equation (9) of our Art. 484*) and Cauchy (see Equation (70) of our

Art. 640*). With proper transformation of symbols these are :

Now Poisson and Cauchy assume forms such as :

.'.X" = I

'

Xtdz = (-T-) -1- terms involving fifth and higher
J _ o \ dz /o

powers of .
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Similarly :

r-tre 2e3
(d~Z\

Z' = I Zdz = 2eZ + ( \ + terras involving fifth and highor

powers of e,

+ terms involving fifth and higher powers of e, which may be neglected.

Thus their assumption does not lead to an error in this point as

Saint-Venant suggests. It seems to me also that Poisson and Cauchy's

hypothesis is more valid than that of Clebsch and other writers who
simply put zz = Zx = zy = 0.

[397.] At this point Saint-Venant notices Maurice Levy's
memoir of 1877 (see Journal de Liouville, 1877, pp. 219 306, or

our discussion of the memoir later). Levy investigates what are

the possible solutions for a prism with two free faces, when the

shifts u, v, w are supposed capable of being expressed in a series

of ascending powers of z and the forces acting on the lateral sides

of the prism have a given resultant load. It follows that the

stresses will now be given in ascending powers of z, and that there

is no limitation as to the thickness of the plate (or height of the

prism). Levy finds (1) that the powers of z in u, v, w and in xx
t

*v/ and liii cannot surpass the third, (2) that the stress ^"=0

throughout the prism, and (3) that the stresses **, ^ contain only

second powers of z, which appear through the factor (e
2

z
2

).

It will be seen that these results of Levy give the proper

limitation to Cauchy arid Poisson's hypothesis, and shew clearly

its relation to Saint-Venant's assumptions. Saint -Venant on

pp. 726 733 deals with another part of Levy's memoir
; namely,

the term he has introduced into the values of the shifts u and v in

order that the three surface conditions of Poisson may be satisfied

for thin plates. This term is periodic in z, but Saint-Venant

following Boussinesq rejects it as producing effects only of the

same order as those we are neglecting in our approximation. We
shall return to this point later when treating of Levy's memoir and

his controversy with Boussinesq.

[398.] Saint-Venant now turns to the concrete application of

the thin plate formulae. He first deals with circular plates and

obtains the following results :

T. E. II. 18
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Let there be a uniform surface load p per unit of area.

(i) When the contour simply rests on a ring of its own rail'm* a.

Shift of mid-plane at radius r :

Cnb.ia.if>

(ii) TPAen // contour is built-in.

3pa
4

<-!&{>-'*].

Further we find that :

ir/t'-// ////' />/V^e is simply supported: the lino of inflexion, given by

^o = 0, is determined by r - a
,J^jJLJL ,

Or - -931 a if //// = 8/3,

as in the case of uniconstant isotropy.

When it is built-in: the line of inflexion is determined by r = -5773 a,

and the line of zero-moment (i.e. where JfcTa
=

0) by r = a ./ '.
,
or

'6202 a in the case of uniconstant isotropy.
The maximum stretches in the two cases, given by the greatest

values of sr = z
.,- ,

are respectively :

* 117pa
9

a
.iB& >

umconstant

V*'' / 1(
/"

167/c-
=

'
f r umconstanfc

The conditions for the fail-limit are thus easily written down.

Compare with these results those of Poisson in our Arts. 497* 504*.

[399.] The last pages of Saint-Venant's Note are occupied with a

reproduction and extension of Navicr's memoir on ivrtaimular plains

(PP. 710 52).
Let us take the origin at one of the angles of the plan M,

/>, and a --!>) the sides being the :i

\Ye h;i\e here to solve tile equation (vi) of OUr Alt. 585, namely :
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subject in the case of a simply supported edge to the conditions

// =- 4- (II
-

2f) Y = 0, when x - or a, for values of y from to b,
<ly~ clx~

H + (// 2f) ^ -
0, when y= or b, for values of x from to a,

CtOC" CL U"

w
ti

= for all points of the contour.

The solution is easily found to be (p. 743) :

. nnrx .

3 ** sm s

2
6

ft

where
4 f . f

ft

. mTra . n7r/3 ,

I
a

I p sin sin -
^> (a , ^8).MU J o J o Q> b

This result is applied to the calculation of the following special

examples :

Case (a). A uniformly distributed load p per unit of surface area.

Here :

i i mn

the summations being for odd numbers m, ri only.
The maximum or central deflection f is very nearly given by the

first term of this series with x = a/2, y
-

b/2, or we find

The second term will, for a = b, be only 1/75 of this.

The maximum stretch s
o
is very nearly given by

24a63

S ~
T^H<? (a? + &Y

P

Case (b). An isolated central load = f. Here :

m'-l '-!

P 2 2 ( 1) 2 (-1)2 wVaj .w
o
=

ZlCT /
- ^ 2 *

V 7- sm ---- sin
7r

4
//aoe" i i

where m' and ri are odd numbers only.

Here, /'

182
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nearly, but not so approximately as in the like result for fo
in Case (),

and

,'
- Qab*

P
~7r2// 2

(
2 + &2

)
2

Hence fJJ and s' /a for the same total loads =
7^/4

= 2-5 nearly :

see our Art. 263*.

[400.] We have given a large amount of space to this

monumental work because it contains much that is of value to

both physicist and technologist, and we would gladly bring home
to both the important services which Saint-Venant has rendered

to the science of elasticity. His annotated Clebsch will long form

the standard book of reference on our subject, but it is possible

that the results we have here collected will reach some to whom it

may not be accessible.

[401.] Determination et Representation graphique des lois du

choc longitudinal. This memoir was presented to the Academy on

July 1C, 23, 30, and August 6, 1883. It appeared in the Comptes
rendus, T. xcvil., 1883, pp. 127, 214, 281 and 353. An off-print

of it with a note by Boussinesq (Comptes rendus, T. xcvn. INS:!,

p. 154) was afterwards put together and repaged. This off-print

was distributed also as an appendix to the annotated Clebsch.

Our references will be to the sections which are the same in the

Comptes rendus and in the off-print.

The memoir is due to Saint-Venant in conjunction with

M. Flamant the co-translator of the Clebsch and professor at the

Ecole des Fonts et Chausse'es, Paris.

[402.] After a short account as in the Clebsch (see our Art.

341) of the evolution of the problem the authors refer to the

analytical solution given by Boussinesq (see the same article and

Boussinesq's Application des' potentiels a Vdtude de I'dquilibre...

des solides Jlastiques, p. 508 et seq.) and reproduced by them <>n

pp. 480 k 480 gg of the Clebscli.

D'apres cette Note (du 60 de Clebsch), le choc longitudinal

s'accomplit suivant des lois ayant des expressions analytiqucs ditlrivnt, s.

se succedant 1'uno 1'autre a des intervalles detenu in<'s. I'.u rxmiplr,
les derivdes des dopl-icnin-nts <l<-s divers points de la burn- varirnt, d'nn

in>tant a 1'autre, tantot avcc gradation mntium', tantot j.ar bonds

idi-nd)lrs duiinant aux mou\ rinriits line empreint*- |M-rindi.|ii<' d-

]';ici|uisiti<.ii hrusijiic <!< \ilrssc
|iii

a 'fr fait- an
}>r<-ii)icr

instant du

choc par IV-lr-iiinit. hrurt'-.



Diagram I. (Shifts)

Line a?-/, or fixed terminal .

To face p. 277, Art. 404.
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\ I X^
XN
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Diagram I. (Shifts)

fixed terminal.

end of Mbw
\o.o!>P

V

4 5otD ! 5 .

7
7, Art. 404. - Blast. If
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II nous a done paru ubile de presenter ici aux regards, par une
suite d'epures on de diagrammes, une peinture de ces singulieres et

remarquables lois, afin de les eclairer et d'eii faire bien comprendre la

nature et les interessantes consequences. ( 1.)

What then our authors accomplish is the graphical represen-

tation of the results of Boussinesq's analytical solution which was

obtained in terms of discontinuous functions. It is one of the

many instances in which Saint-Venant has helped to make of

practical value the results of most intricate analysis. He was

ever conscious that till theoretical formulae are reduced to simple

numbers, the task of the mathematician is very far indeed from

completion. Only the final diagram or numerical table can fitly

crown the analytical labours of the mathematical physicist.

By means of such graphical representation we see at a glance
the chief laws of the phenomena investigated, and are able to

determine which approximate formulae we may fairly accept,

and which we must replace by others better adapted to represent

the exact facts of the case.

[403.] I reproduce the more important diagrams of the

memoir as their practical value for engineers and technologists

seems to me very considerable.

The following notation is adopted
1

:

I = length, w = cross-section, p
-

density, P = weight, E = stretch-modulus,

u shift (at distance x from impelled end) of the bar, a = jEjp, or the

velocity of sound. One end of the bar is fixed, and we may suppose it

placed horizontally and struck horizontally by a mass of weight Q with

velocity V. If the bar be vertical the effect produced by its weight
must also be taken into account.

At the instant at which the blow ends, du/dx = sx =Q for &

(see our Art. 204) and the following numerical values are obtained :

Q/P < 1 -7283 the blow ends between the times t=2l/a and 4/a,

Q/P> 1-7283 < 4-1511 =4Z/aand 6J/o,

Q/P> 4-1511 < 7-35 =6J/oand8J/o.

[404.] The first diagram which I reproduce gives the shifts u

for zero, quarter, half and three-quarter span for times at/I
= to

a.t/1
= 7'5. Along the horizontal axis at/I is measured, along the

1 In the memoir the authors use a for our I, a for our w, and w for our a.
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vertical axis u = au/(Vl). Three curves are drawn for r = P/Q= 1,

\ and \ respectively, and having for scale 20 mm. for the unit of

both at11 and u.

The shifts for the duration of the impulse are denoted by a

heavy line ending in a small circle which marks the end of the

impulse ;
the shifts after the impulse are marked by dotted lines,

till they begin to repeat themselves when the lines become again

heavy.
Whenever at x or at + x 21 is a multiple of 21 we note

sudden changes in the slope (or the shift-velocity) of these curves
;

the points where these changes occur are termed by the authors

points de brisures.

Les pieds des ordonnees de ces points de brisures sur les lignes
horizontales d'abcisses marquees x = 1/4, x = 1/2, x = 3//4 se trouvent, ainsi,

aux rencontres de ces trois horizontals avec les obliques joignant en

deux sens opposes les points at/ 1 = 0, 2, 4...de 1'horizontale x = du bas,
avec ceux at/ 1 = 1, 3, 5 . . .d'une horizontale x = I tracee au haut. Celles de

ces obliques qui montent de gauche a droite ont, en effet, pour equations
at - x = 0, 21, &.. .et celles qui descendent ont at + x - 21= 0, 21, 41. . . .Ces

lignes obliques figurent, en x et t,
la marcJie de Vonde d'ebranlement,

tant directe que refiechie aux extremites de la barre, ou ce que parcour-
rait la tete de cette onde, si la barre vibrante etait emporte"e perpendicu-
lairement a sa longueur avec une vitesse a/I. Cela montre bien que les

bonds et les brisures sont determines par le passage de cette onde; et

cela donne une raison sensible du binome et du trinome at-xetat + x-2l

que M. Boussinesq a fait figurer dans ses formules de deplacements, etc.

(8).

We see that in all cases the maximum shift is at the end which

receives the impulse.

[405.] The second diagram (Fig. 4 of the memoir)
-

graphically the law of squeeze at the terminals and at J, J and j

span for the same values of P/Q. Here the abscissae arc at/I, ami

the ordinates d =
(

sx) a/V, or the squeezes reduced in the ratio

of a to V. The scale of the abscissae is 20 mm. for at/I
= 1 and of

the ordinates 10 mm. for d 1.

We note that in all cases the maximum squeeze is at the fixe <!

end.

[406.] The third and fourth diagrams (figures 5 and 6 of tin

in. moir) give:



Diagram II . C Squeezes )

To face p. 27%Arts. 405, and 406.



V,V
Ny 0/&37

Diagram III. (Ma

Diagram IV.(Ma>



>*

am Shifts)

13(8
16 i

m Squee3es)

.
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(1) The maximum shifts at the end struck (um ).

Here the abscissa gives QjP from to 6, and the ordinate u.ma/( VI), the

scale of the unit of both being equal to 20 mm. The heavy line is given

by the true theory ;
the broken line is the parabola given by the first

approximation ~-~= I
;
the pointed line is the curve given by

the second approximation -^
- "l = --

: compare our Arts. 943*,

,

V 1 +
-aS.

368, and the Ilistorique Abrege, Lemons de Navier, footnote p. ccxxiii.

We see at once that the Hodgkinson-Saint-Venant approximation
gives the terminal shifts with very considerable accuracy, and may be

adopted with safety for all values of Q/P >
|.

In the course of the calculations the following numerical results not
indicated on the diagram are obtained :

The maximum shift um is reached if

Q/P < 5-686 between t = 2/a and 4Z/a,

Q/P> 5-686 < 13-816 t = 4l/a and 6l/a,

Q/P> 13-816 < 25-16 t = Ql/a and 8l/a.

(2) The maximum squeezes (8M) at thefixed end.

The three curves have for abscissae the values of Q/P from to

25'10; the upper heavy curve has for ordinates the exact values of

(-8x)a/V where sx is given its maximum value, i.e. at the fixed end.
The lower heavy curve is the parabola obtained by taking for ordinates

d'= \ (-)= V pi

and the dotted curve by taking for ordinates

For the abscissa-scale 5 mm. is taken for Q/P=l, and for the

ordinate scale 20 mm. for d=l.
It will be seen that the true values differ immensely from the values

given by the old formula d= JQJP. Thus that formula never suffices

for finding the maximum squeeze
1

.

1 It may be obtained as follows: Suppose the shift uniformly distributed

fu. \ 2 10 V 2

and its maximum mean value = wm . Then work done ^Ewl [-] = 5
\ L J A g 2

when the maximum is reached. Hence
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If, however, we take

we get the dotted curve of our fourth diagram, which from Q/P>5
approaches closely to the true curve. Saint-Venant gives the following
practical rules :

(a) For values of Q/P > 24 take d = * + 1,

(b) For values of Q/P > 5 and < 24 take d = ^/l + MO,

(c) For values of Q/P between and 5 take d = 2 (1 + e-

this latter being the exact formula.

[407.] There are one or two other points in 12 which we may
note :

(1) The authors refer to the condition for cohesion permanente
which is to be obtained from the maximum squeeze given by the results

of Art. 406 (2).

Si les chocs out eu pour tendance de raccourir, ets'il ne devait en r&ulkr yc
des compressions, ces memes quantites numeriques - (du/dx)m seraient a- dgalcr
a- un nonibre plus grand T'^E, T' etant la limite, toujours tres au-dessus de
T

,
des forces comprimantes non dangereuses. Mais, comnie nous avons vu

quo, dans la premiere periode de la de'tente libre qui suit le choc, il se produit
des dilatations egales aux compressions ayant precede, le danger de desegrega-
tion de la matiere survit & la jonction, et la prudence conseille de traitor les

compressions sur le menie pied que les dilatations, ou d'dgaler leurs valours

numeriques (see our Art. 175) k la meme limite T^E que si c'dtaient des dila-

tations.

To obtain the true condition for the safety of the structure we
must remember that the bar is subjected to a succession of strains ap-

proaching the maximum in value. The real limit of T
, then, ought

probably to be tJiat for a repeated alternately positive and negative st/'n

and if we are to give credence to Wohler's experiments this is not the

T for a fail-point in pure fractional experiments. According to Wohler
the former is much less than the latter: see our account of his re-

searches later.

(2) In a footnote
( 12) the authors remark that the negative

traction must be such that it does not cause the bar to buckle. Tln-y

add that no bar will buckle unless the load is >irE<aK*/F t
so that tln-y

treat the bar as a doubly pivoted strut (see Con -i;/'
/,,/>/ to our Vol. i.,

Art. 959*). it seems just as piol.al.lr that the bar would have one cud

built-in, in which case we may take double of the above load. The

footnote then continues :

Lon pent admettre analogiqurinrnt, rt memc, ce M-ml-U', onmm- un

a fortiori, que cette barre d'un i><>ids /', .s>llidu-e par le choc coiiipriinant d un
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corps Q tendant a y developper en un seul endroit, et coinme maximum, ime

pression longitudinale egale a jEu (
sm ),

sm etant la valeur ci-apres (see Art.

406 (a)), ne flechira pas si Ton a

F
a

This result 1

may be thought a little doubtful, in particular when we
take into account the want of accord between the Eulerian theory of

struts and experience: see our Arts. 957* 961*, 1255* 1262*. The
authors remark of the above condition that it is presque toujours

remplie, but I should be uneasy with regard to any structure where
the above quantities had any approach to equality.

(3) At the end of 12 it is shewn by a process involving the

determination of mean values that the expression given in our Art. 406

(a) is really a close approximation to the true result. This is also

proved in Boussinesq's note attached to the memoir : see also p. 544 of

the work of his referred to in our Art. 402.

[408.] Eemarques relatives d la Note de M. Berthot sur les

actions entre les molecules des corps: Comptes rend as, 1884, T.

xcix., pp. 5 7.

Berthot in a memoir of 1884 (Comptes rendus, T. xcvm.,

p. 1570) had suggested the following law of intermolecular force

F (r)
= Kmm g-

2
,

where m, m are the masses of two molecules at distance r and

K, r are constants. It is obvious that the force changes from

attraction to repulsion at r = r .

Saint-Venant remarks that in 1878 in a footnote to a memoir,

Sur la constitution des atomes (p. 37 : see our Art. 275), he had

referred to a law of somewhat like form.

In both cases the force tends to follow the gravitational law

when r is much greater than r . Saint-Venant refers to the

forms given by Poisson and Poncelet for representing inter-

molecular force (see our Arts. 439* and 977*), but he holds that

although such laws are suggestive, it is very unlikely that in the

present state of science we shall hit upon the correct one. He

1 The memoir has --- for /v/ . I may note also the following errata :

In equations (11), (12) and (13) the exponentials following the curled brackets

should be placed inside them.
In equation (46) for first PjQ read Q/P.
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observes that the discovery of its absolute form indeed is unneces-

sary for the establishment of the formulae of elasticity, hydraulics
and electricity.

[409.] Sur la flexion des prismes. Comptes rendus, T. < MI..

1886, pp. 658664 and pp. 719722. This memoir by Resal

professes to point out an error in Saint-Ven ant's memoir on the

flexion of prisms of 1856 : see our Art. 69. The writer notes

that Saint-Venant fixes the direction of a rectilinear element of

the first face and not the direction of the first element of the

prismatic axis. He then proceeds to assert that Saint-Venant
has not taken account of the relation fTzdco + P=Q: see our

Art. 81. He endeavours to shew that this has led Saint-Venant

to erroneous results in the case of the elliptic cross-section, but

he himself falls into an error in his algebra, and so gives the colour

of an error to Saint-Venant's work.

Boussinesq in a note in the same volume of the Comptes reu<l*\

pp. 797 8, entitled : Observations relatives a, une Note recente de

M. Resal sur la flexion des prismes, points out Resal's algebraic

error, and remarks that the difference between the terminal

conditions of Saint-Venant and those proposed by Resal only

produces a small rotation of the coordinate axes, and introduces

no change into the expressions for the strains or stresses.

Resal in a few words (p. 799) acknowledges his error.

[410.J Courbes representatives des lois du choc longitudinal et

du choc transversal d'une barre prismatique, dressees par feu de

Saint-Venant, publiees par M. Flamant. Journal de VEcole Poly-

tecluiique, Lixe

Cahier, pp. 97128, 1889.

In the case of transverse impulse these curves are i]\-

referred to in our Arts. 105 and 361, while results drawn from

those for longitudinal impact arc mentioned in our Arts. 107

and 341: see also the passages in the Notices referred to in

our Art. 108. The footnote on p. 244 of the present vohiim-

stating that it had been decided that the plates should not be

published was printed nearly two years ago, and wa- ma<l<> on

the authority of M. Flamant. I can only hope that this foot-

note, however confusing to the reader, may, perhaps, have helped
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to bring about a reconsideration of the question of publication
1

.

The plates were engraved as far back as 1873.

[411.] In the case of longitudinal impact the exact results

calculated from Boussinesq's solution in finite terms are known

and have been discussed by Saint-Venant and Flamant : see our

Arts. 401 7. These enable us to compare for this case the

approximate graphical and the actual results. While the ac-

cordance is fairly good for the maximum shifts, it is not very

close for the stretches. In the case of transverse impact we

are not yet able to test the accuracy of the graphical values of

the curvature, which have been obtained from the shift-curves

based on the first few terms of the transcendental series, but

the fact that the shift-curves shew no abrupt changes of slope,

as in the case of longitudinal impact, leads me to believe that

far greater accuracy is obtainable by graphical processes for the

case of transverse than for that of longitudinal impact. Compare
Plates IV. VI. of the memoir or Diagram I. of our p. 277 with

Plates X. and XL of the memoir.

Flamant himself writes :

Quoi qu'il en soit, le travail de Saint-Venant a im interet suffisant

pour justifier sa publication : il petit servir d'exemple en montrant

comment, grace a uii labeur considerable par 1'etendue duquel cet

infatigable travailleur ne s'est pas laisse rebuter, les valeurs de ces

series a termes periodiques de periodes decroissantes peuvent etre

representees graphiquement ;
et il donne, tout au moins, sur les

grandeurs de ces quantites, tine premiere indication perniettant de

deduire des consequences pratiques qui, si elles ne sont pas absolument

exactes, n'en sont pas moins precieuses, puisqu'elles constituent tout

ce que Ton sait sur ce sujet si important au point de vue de la stabilite

des constructions (pp. 98 9).

The text which accompanies the plates is principally extracted

from the Annotated Clebsch ( 60 and 61, see our Arts. 339, 342

et seq.), so that the whole may be looked upon as really a work of

Saint-Venant which has been carefully edited by Flamant.

[412.] Pages 99 110 deal with longitudinal impact. The Plates

I. III. shew the graphical stages preparatory to drawing the shift-

curves for five points of the bar in the case of PjQ-\ (the notation

1 The footnote appeared in The Elastical Researches of Barre de Saint-Venant,

Cambridge, 1889, an off-print of our Chapter x.
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being that of our Art. 403). Plate IV. gives these curves, while PI.

V. and VI. contain like curves for the cases PjQ = \, 1, 2, and 4.

These curves serve in general the same purposes as those of Diagram
I. of our p. 277, but they do not give the same abrupt changes of

slope. The slope of these curves measures the stretch (or squec/r)
and it is easy to see that its maximum occurs at the fixed end

;

unfortunately the slope of a tangent to an approximate cur\.

unlikely to give very good results. Thus for P/Q =
] ,

Saint-Venaiit

finds the maximum slope to be 2 '825 F/a and to occur at a time

at/I -3-25. The accurate values are 3'213 F/a and al/l
= 3 (see our

Diagram II. p. 278). The errors are even larger than this in tin-

ratios of the maximum to the mean squeezes (pp. 109 110). J>ut

Saint-Veuant's graphical values shew at least that one errs greatly
in taking, as is usually done in the text-books, the mean for the

maximum squeeze.

[413.] The curves for transverse impact we have already discussed

in our Arts. 362 3 and 371. It is unfortunate that we have so

little means of testing their accuracy. For the reasons given above,

however, I am inclined to think the results more accurate than in

the previous case. Saint-Venant assumes the form of a small arc

at the lowest point of one of the instantaneous positions of the

central axis to be a parabola with its axis vertical and so takes the

curvature 8 times the subtense divided by the square of the chord

(p. 119). I wish it had been possible to reproduce Plates X. and XL,
but their scale precluding this, I must content myself by referring the

reader to the original memoir.

Flamant makes (pp. 122 4) some interesting comparisons between

longitudinal and transverse impact, and shews that if the same body
falls with the same velocity first longitudinally and then transversely
on a bar, the strain is considerably greater in the latter than in the forn in-

case, although the ratio of the strains diminishes as P/Q increases.

[414.] In conclusion Flamant remarks that in both cases the

cross-sections are supposed to remain plane and that this is far

removed from reality in the case of transverse impact, for the

strain will really propagate itself in spherical or ellipsoidal surfaces

from the point of impact, and these are not approximately coinci-

dent with the plane transverse cross-sections except at distances

which are a considerable number of times greater than the depth
of the bar. Flamant also refers to Boussinesq's solution (see tin

Chapter we have devoted to that scientist) but remarks that it

leads to formulae so complicated that it does not seem possible

to deduce any practical results from them (p. 124). Thus Saint-

Venant's graphical calculation of the strain for these special cases
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is all the theory we can at present use in practical structures

subjected to transverse impact.

[415.] Saint-Tenant died on January 6, 1886. The President

of the Academy on announcing his death at the meeting held

on January 11, used the following words:

La vieillesse de notre eminent confrere a ete une vieillesse benie. II

est mort plein de jours, sans infirmites, occupe jusqu'a sa clerniere heure
des problemes qui lui etaient chers, appuye pour le grand passage sur

les esperances qui avaient soutenu Pascal et Newton (Coinptes renrfus,
T. GIL, 1886, p. 73).

Short notices of his life appeared in the Comptes rendus, T. en.,

pp. 1417, 1886 by Phillips, and in Nature, February 4, 1886 by
the Editor of the present volume. A full and excellent account

by Boussinesq and Flamant of his life and work, together with a

complete bibliography of his contributions to science, was published
in the Annales des Fonts et Chaussees for November, 1886. In

presenting this paper to the Academy, Boussinesq said :

Nous avons tache d'y rappeler, avec tous les details que comportait
1'etendne materielle de texte dont nous pouvions disposer, 1'existence

si bien remplie et les travaux les plus marquants du profond ingenieur-

geometre, notre maitre a tous deux, qui a ete une des gloires de 1'Academic
a notre epoque et un modele pour les travailleurs de tous les temps.
(Comptes rendus, T. civ., 1887, p. 215.)

A more popular account of Saint-Venant's life based chiefly on

the notices in the Annales and Nature will be found in the

Tablettes biographiques ; Dixieme Annee, 1888.

[416.] Summary. In estimating the value of Saint-Venant's

contributions to our subject, we have first of all to note that he is

essentially the originator on the theoretical side of modern tech-

nical elasticity. In his whole treatment of the flexure, torsion and

impact of beams he kept steadily in view the needs of practical

engineers, and by means of numerical calculations and graphical

representations he presented his results in a form, wherein they
could be grasped by minds less accustomed to mathematical

analysis. At the same time he was no small master of analytical
methods himself, and he undertook in addition purely numerical

calculations before which the majority would stand aghast. His

memoirs on the distributions of elasticity round a point and of
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homogeneity in a body opened up new directions for physical in-

vestigation, while his numerous discussions on the nature of

molecular action have greatly assisted towards clearer conceptions
of the points at issue. The hypotheses of modified molecular

action and of polar molecular action may either or both be true,

or false
;
but we see now clearly that it is to the investigation of

these hypotheses and not to the experiments of Oersted, Regnault
etc. nor to the viscous fluid and ether jelly arguments of the first

supporters of multi-constancy to which we must turn if we want

to investigate the question of rari-constancy
1

. Saint-Yenant's

foundation, on the basis of Tresca's investigations, of the new

branch of theoretical science, which he has termed plastico-

dynamics, has not only direct value, but shews clearly the fallacy

of those who would identify plastic solids and viscous fluids. The

fundamental equations in the two cases differ in character: a

difference which may be expressed in the words the plastic solid

requires a certain magnitude of stress (shear), the viscous fluid a

certain magnitude of time for any stress whatever, to permanently

displace their parts.

Not the least merit of Saint-Tenant's work is the able band of

disciples he collected around him. His influence we shall find

strongly felt when investigating the work of Boussinesq, Levy,

Mathieu, Sarrau, Resal and Flamant. He formed the connecting
link between the founders of elasticity and its modern school in

France.

The vigorous spirit, the striking mental freshness, the perfect

fairness of his thought enabled him to penetrate to the basis of

things; the depth of his affection, his kindly foresight and

consideration, his rare personal devotion attached to him all who

came in his way and stimulated them to renewed investigation

(Flamant and Boussinesq: Notice sur la vie et les travaux dc I!.

de tit. V., p. 27).

1 This is well brought out by the comparison of Voigt's recent memoir ('

Al>Jnin<llniifien, 1887) with those of the early supporters of multi-constancy.



CHAPTER XI.

MISCELLANEOUS RESEARCHES. 1850-60.

SECTION I.

Mathematical Memoirs*, including those of W. J. M. Rankine.

[417.] W. J. M. Rankine: On the Centrifugal Theory of

Elasticity, and its connection with the Theory of Heat. Edinburgh

Royal Society Proceedings, Vol. in. pp. 86 91, 1851. This paper
deals only with the elasticity of fluids and gases.

[418.] W. J. M. Rankine : Laws of the Elasticity of Solid

Bodies. This paper was read before the British Association at

Edinburgh, 1850. It is briefly noticed in the Report for that year :

see our Art. 1452*. It is published at length in the Cambridge
and Dublin Mathematical Journal, Vol. VI. 1851, pp. 47 80, with

additions, pp. 178 181 and pp. 185 6. It is reprinted on

pp. 67 101 of Rankine's Miscellaneous Scientific Papers edited

by W. J. Millar. The pages of the latter will be briefly referred

to as 8. P. while we are dealing with Rankine's memoirs.

1 The titles of the separate sections of this chapter refer rather to the method
than to the substance of the memoirs. Thus this section discusses researches of

Bresse, Phillips, Winkler etc., which are of the first importance to engineers, while
the physical and technical sections will be found to contain many papers of great
interest to mathematicians. The overwhelming number of memoirs demanded
some classification, and the grouping of them broadly into mathematical, physical
and technical sections seemed the least objectionable arrangement. In certain cases
memoirs have been taken out of their proper section or their chronological order
with a view to grouping kindred researches or bringing together the complete work
of an individual scientist,
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[419.] Section I. of the memoir (pp. 4854, 8. P. pp. 6873)
contains reproductions of formulae already given by Cauchy, Lame
and others for expressing the stresses or strains in any three

rectangular directions in terms of those in any three other

rectangular directions. I may note that Rankine uses pressures
where I use positive tractions and that he uses symbols Tv Tv T^
for the halves of what I have termed the slides, a notation which

I am inclined to think would be of value if it had been generally

adopted : see our Vol. I. p. 881.

On p. 49 (8. P. p. 68) he writes :

Tt is desirable that some single word should be assigned to denote

the state of the particles of a body when displaced from their natural

relative positions. Although the word strain is used in ordinary

language indiscriminately to denote relative molecular displacement,
and the force by which it is produced, yet it appears to me that it

is well calculated to supply this want. I shall therefore use it,

throughout this paper, in the restricted sense of relative displacement

of particles, whether consisting in dilatation, condensation or distortion.

It is thus to Rankine that we owe the scientific appropriation
of the word strain.

[420.] In Section II. (pp. 5463, 8. P. pp. 7381) of the

paper Rankine restricts his enquiries to

homogenous bodies possessing a certain degree of symmetry in their

molecular actions, which consists in this: that the actions upon any
given particle of the body of any two equal particles situated at equal
distances from it within the sphere of molecular action, in opposite

directions, shall be equal and opposite (p. 54, S. P. p. 73).

He is thus dealing with a case of what might be termed

central elastic symmetry.

By a process of rather general reasoning in what is entitled :

Th'-nrem T. (p. 55) and by the assumption of the linearity of tin-

stress- strain relations Rankine reaches expressions for the shv
which with our system of notation may be given as :

xx = asx +f'sy + e'Sg, "yz
= d<r

yz ,

f'8x + bsv + dsz ,
= evm ,

Tz = e'8x + d\ + C8Z , w=f<r
There are thus twelve apparently independent constants. Knnkine

not note that the principle of energy requires us to MIJ.|...^-

that ff' d'j f" =
p'j f'f, which reduces these formulae to those

of our Art. 117 formulae (a).
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[421.] Rankine now proceeds to Theorem II. (p. 61, S. P. p.

79) which he states as follows : The coefficient of rigidity is the

same for all directions of distortion in a given plane, or in analyti-
cal language he would say that yz = yz' if <ryz

= oy2
- whatever

rectangular directions lying in the same plane y y
z and y', z may

be. This Theorem II. does not appear to be correct and Rankine's

error seems to have arisen from his supposing that a pure shearing
force alone can change the angles of a rhombic prism. He has

neglected to take into account the tractions which would have to

be distributed over the faces to produce the sort of distortion he is

considering, and although the work required to produce the dis-

tortion might be the same, however it was produced, yet this

equality does not involve the equality of the shears, except when
the rhombic angles are right. In the latter case his theorem

reduces to the well-known results ^ = ^ and ayz
= azy.

[422.] By means of the erroneous Theorem II., Rankine in

Theorem I'll. (p. 61, S. P. p. 80) deduces relations of the type

d=b + c-d'-d"
(i),

or remembering the real equality of d' and d",

2d + d'=(b + c) (ii).

But this is the well-known second type of relation for bodies with an

ellipsoidal distribution of elasticity, or for what Saint-Venaiit has termed

amorphic bodies : see our Arts. 230 1, 308. Rankine's results, if true,

ought to hold for crystals with three rectangular planes of elastic

symmetry, but such bodies do not satisfy the above conditions. Hence :

all the further conclusions of Rankine's paper which depend upon the

truth of (i)
or (ii) can be considered to hold only for the limited range

of amorphic or other bodies for which the ellipsoidal relations of the second

type hold.

[423.] Section III. (pp. 6366, S. P. pp. 814) is entitled:

Results of the Hypothesis of Atomic Centres. In this by rather vague

reasoning Rankine deduces that when molecular force is central and a

function only of the distance

d = d' = d", e = e' = e", f=f=f",
which are the usual conditions of rari-constancy. He bases his results

on what he terms the hypothesis of Boscovich, which he considers not to

be true for all solid bodies; he holds, however, that it may be corrected

by combining it with an hypothesis of his own, to which we shall

return later. We have several times had occasion to point out that

the hypothesis of Boscovich does not really involve the conditions

T. E. II. 19
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of rari-constancy (see our Art. 276), and that Boscovichian systems

may be chosen which do not lead to rari-constancy has been recently
demonstrated by Sir William Thomson : see Proceedings of the Royal

Society of Edinburgh, July, 1889, or Mathematical Papers, Vol. in. pp.
395 427. Further Rankine's reasoning has been questioned by Sir

William Thomson in a note attached to the memoir : see p. 80 (8, 1\

p. 98). The reply of Rankine to this criticism is given on pp. 178 81

(S. P. pp. 98100).
Of course equations (7) and (8) of this section will be erroneous

unless the body possesses ellipsoidal elasticity of the second type, and
thus we are obliged to reject Rankine's fascinating statement on p. 6G

(S. P. p. 84) that :

in a body whose elasticity arises wholly from the mutual actions of

atomic centres, all the coefficients of elasticity are functions of the three

coefficients of rigidity [i.e.
the three slide-coefficients, d, e, f]. Ki^idity

being the distinctive property of solids, a body so constituted is properly
termed a perfect solid.

[424.] In Section IV. of the memoir (pp. 6G 9, S. P. pp.

84 6) Rankine applies his Hypothesis of Molecular Vortices

to tbe elasticity of solids. He had previously written several

papers on this hypothesis dealing with the elasticity of gases and

vapours and generally with the mechanical theory of heat. For

our present purposes it is sufficient to cite the description Rankii it-

gives of his hypothesis in this memoir (pp. 66 7):

Supposing a body to consist of a continuous fluid, diffused through

space with perfect uniformity as to density and all other properties,
such a body must be totally destitute of rigidity or elasticity of figure,

its parts having no tendency to assume one position as to direction

rather than another. It may, indeed, possess elasticity of volume to

any extent, and display the phenomena of cohesion at its surface and
between its parts. Its longitudinal and lateral elasticities will In-

equal in every direction
;
and they must be equal to each other 1 >y

equation (5).

[Here Rankine gives conditions which amount to putting d = e f- 0,

a = o-c = d' = ef=f' = d" e"=f" in the stress-strain relations of our

Art. 420. He afterwards writes the latter series of quantities = J,

which he terms the coefficient of fluid elastic
////.]

If we now suppose this fluid to be partially condensed round M

system of centres, there will be forces acting between th-
greater than those between other points of the body. The body will

now possess a certain amount of rigidity; but less, in proportiot
its longitudinal and lateral elasticities, than the amount proper to the

condition of perfect solidity. Its elasticity will, in fart. ronM'.-t <>f t\\<.

parts, one of \\hieh, arising from the mutual artions of the OQDtri
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condensation, will follow the laws of perfect solidity; while the other

will be a mere elasticity of volume, resisting change of bulk equally in

all directions.

There is indeed much that is suggestive in Rankine's hypo-
thesis of molecular vortices, as well as in his attempt to separate

elasticity into the two factors of perfect solidity and of perfect

fluidity, which involve the conceptions of rigidity and bulk elas-

ticity. But from what we have seen above these factors of

elasticity do not correspond exactly to fluid and Boscovichian

methods of action, and Rankine's imperfect solid cannot in general
be obtained by superposing on a fluid elasticity the rigidity of a

perfect solid, i.e. the elasticity of a rari-constant substance.

The expressions given in Rankine's Equation (9) for the direct-

stretch and cross-stretch coefficients in terms of the slide modulus

and J would only be true for a particular type of amorphic body.
In the case of isotropy relations such as (ii) of our Art. 422

certainly do hold and then we have

a = b= c =

Thus in the ordinary isotropic notation of our History the

coefficient of fluidity, or J, = X //, and it vanishes on the Bosco-

vichian or rather uni-constant hypothesis.

Rankine's special error would thus seem to lie in the extension

of his results from isotropy to aeolotropy other than that of certain

amorphic bodies.

To this Section a Note is added (pp. 6971, S. P. pp. 879) con-

taining a reference to the researches of Green, MacCullagh, Stokes,

Poisson, Navier, Cauchy, Lame and Wertheim, with a comparison of

their notations for the elastic constants with that of Rankine himself.

The latter remarks of Wertheim's hypothesis (X=2/x) that it must
he regarded as doubtful. "If the effect of heat is to diminish p
and increase J, there may be some temperature for each substance

at which M. Wertheim's equation is verified."

[425.] Section V. (pp. 7180, 8. P. pp. 8998) is entitled :

Coefficients of Pliability, and of Extensibility and Compressibility,

Longitudinal, Lateral, and Cubic. Examples of their Experimental
Determination. These are the coefficients which Rankine after-

wards termed Thlipsinomic (see our Art. 448), or those which

express strain in terms of stress. For the stress-strain relations

192
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of our Art. 420, the coefficients of pliability are the reciprocals

of the coefficients of rigidity, i.e. of the slide-coefficients d, e, f.

For the stretches Rankine has in our notation :

8X = &
l
xx b3 "yy

Z
= ).2xx

j
y/y

and he classifies the coefficients as follows :

a
j> ^ as are coefficients of longitudinal extensibility and compressi-

bility. We may perhaps better term them direct traction coefficients,

they are coefficients of c stretchability.' b,, b2 ,
b3 are coefficients of

lateral extensibility and compressibility. We may perhaps better term

them cross traction coefficients. Our terminology would thus be in

accordance with that which we have adopted for the usual elastic

or tasinomic coefficients : see the footnote on our page 77.

Rankine then proceeds to express these six thlipsinomic coefficients

in terms of the four constants, d, e, f and J, of which he imagines
in the case of central elastic symmetry all the other elastic constants

to be functions. His results are rather lengthy and appear to have
no application except to the case of a certain type of amorphic body

(see our Art. 422). For the special case of isotropy we have

<*

3 1
= or

Here d is what Rankine terms the coefficient of cubic compressibility,
or 1/d what we have termed the dilatation-modulus and represented by
F: see Vol. i. p. 885. Further I/a is obviously E, the stretch-modulus,
and b = vj/E, where

rj
is the stretch-squeeze ratio. There is thus little

of importance here beyond the terminology.
Rankine then proceeds to show how the rigidity (/A), fluid elasticity

(J), longitudinal elasticity (A. + 2/x),
lateral elasticity (A), as well as the

thlipsinomic coefficients a, b and d may be experimentally ascertained.

He determines them for brass and crystal glass from Wort In -im's

experiments, and indicates how they might be found for aeolotropic
bodies (pp. 7580).

[426.] We have already referred to Sir W. Thomson's criticism

with which the memoir concludes and to Rankine's rejoinder

(pp. 17881, S. P. pp. 97100). An additional Note (pp.

lsr> 6, 8. P. p. 100 1) merely gives the relations between th<>

symbols of the present memoir and those of Clerk-Maxwell's

memoir of 1S.">(): see our Art. 1536*.
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[427.] W. J. M. Rankine : On the Laws of Elasticity : Cam-

bridge and Dublin Mathematical Journal, Vol. vn. 1852, pp.

21734 (S. P. pp. 101118). This is a sequel to the memoir
referred to in our Arts. 418 26, the sections being numbered
in continuation. The object of this portion of the memoir is to

compare the results and symbols of Haughton and Green with

those adopted by the author. Rankine here follows Lagrange's
method of investigation and sums up his assumptions in the

following postulates :

(i)
That the variations of molecular force concerned in producing

elasticity are sufficiently small to be represented by functions of the

first order of the quantities on which they depend : and,

(ii)
That the integral calculus and the calculus of variations are

applicable to the theory of molecular action. It is thus apparent that

the science of elasticity is, to a great extent, one of deduction a priori

(p. 230, S. P. p. 114).

These do not seem to me the only assumptions of the paper,
for Rankine again reduces in the case of rari-constancy the stress-

strain relations of our Art. 420 to relations having only three

independent constants. He obtains the relations of the second

ellipsoidal type (see our Art. 422, (ii)) but by a hypothesis very
different from that of the earlier part of his paper.

[428.] Section VI. entitled : On the Application of the Method

of Virtual Velocities to the Theory of Elasticity (pp. 217 24)
follows closely the methods of Haughton's memoirs of 1846 9,

and contains nothing of special note
1
. We may remark that

Rankine endorses Haughton's view of the relation xy = yx cited

in our Art. 1517*.

Mr Haughton correctly remarks that this often quoted Theorem of

Cauchy is not true for all conceivable media. It is not true, for

instance, for a medium such as that which Mr MacCullagh assumed
to be the means of transmitting light. It is true, nevertheless, for

all molecular pressures which properly fall under the definition of

elasticity, if that term be confined to the forces which preserve the

figure and volume of bodies (p. 221, S. P. p. 105).

Here as in the earlier part of the memoir Rankine insists upon
the distinction between the resistances to change of bulk and

to change of form, and in the following section he again builds up
1 See our Arts. 1505* 18*.
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an elastic solid of the ordinary type by superposing a fluid elasticity

upon a homogeneous body consisting of centres of force only and

so having rari-constant equations.

[429.] Section VII. is entitled : On the Proof of the Laws

of Elasticity by the Method of Virtual Velocities (pp. 22430,
S. P. pp. 108 114). The following words exactly reproduce
Rankine's position :

The fluid elasticity considered in the last article cannot arise from
the mutual actions of centres of force; for such actions would necessarily
tend to preserve a certain arrangement amongst those centres, and
would therefore resist a change of figure. Fluid elasticity must arise

either from the mutual actions of the parts of continuous matter, or

from the centrifugal force of molecular motions, or from both those

causes combined.

On the other hand it is only by the mutual action of centres of

force that resistance to change of figure and molecular arrangement
can be explained, that property being inconceivable of a continuous

body. The elasticity peculiar to solid bodies is, therefore, due to the

mutual action of centres of force. Solid bodies may nevertheless

possess, in addition, a portion of that species of elasticity which

belongs to fluids.

The investigation is simplified by considering in the first place the

elasticity of a solid body as arising from the mutual action of centres

of force only, and afterwards adding the proper portion of fluid

elasticity (p. 224, S. P. p. 108).
Kankine deduces by a process, some steps of which I do not grasp

1

,

the usual rari-constant equations of elasticity. These it will be re-

membered have 15 independent constants (see our Art. 116 and

footnote). To get the most general system of coefficients he adds ;i

constant J to the rari-constant direct-stretch and cross- stretch co-

efficients, i.e. takes

\xxxx\ + J, \xxyy\ + Jt
etc.

but he does not add this constant to the coefficients like \xyxy\ which in

the rari-constant theory are equal to those of type \xxyy\. Thus he

really supposes the multi-constant coefficients to satisfy relations of the

type
\xxyy\ - \xv*v\ = \yyz*\

-
\v*v*\ = \****\ - l*r*r| {= Rankine's J}. . .1 .(i),

together with the three purely rari-constant conditions :

\xxyz\ = \xyxz\ \

\vyxx\ = \yzyx\ \ (ii).

\zxy\ = \*xzy\ )

1 For example, how the expression on p. 226 (S. P. p. 110) for the total action

of an indefinitely slender pyramid is obtained, supposing (r) to be the law of

intermolecular force.
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Hence he puts the six rari-coustant relations on different footings,
the latter three always hold, the former three (obtained by putting

J=0) do not generally hold and are replaced by the two of type (i)

above.

The most general aeolotropy has thus for Rankine only sixteen

constants. It would be interesting to know how far experimentally
Rankine's views are justified. Are any of the inter-constant relations

of rari-constancy more generally satisfied than others? Rankine's

defective theory can hardly in itself be considered an argument in favour

of the reduction of the constants to sixteen. Unfortunately the results

(ii)
are identically satisfied for all bodies possessing three rectangular

planes of elastic symmetry, and thus experiments would have to be made
on very complex aeolotropic systems.

[430.] Rankine now proceeds to reduce his sixteen elastic coeffi-

cients to four, three rari-constarit coefficients supplemented by the

coefficient of fluidity J. He first reduces the sixteen to seven by

putting the coefficients of asymmetrical elasticity (see our foot-

note p. 77) zero. The exact reasoning by which he. reaches this

result (p. 228, 8. P. 112) is far from clear to me, but I presume it

does not amount to more than his previous supposition of the

central symmetry of the elastic distribution. He apparently sup-

poses tbat his reasoning is perfectly general.

The next stage is to reduce the six remaining rari-constant co-

efficients to three by means of the ellipsoidal conditions of the second

type : see our Art. 422, (ii).
Rankine deduces these conditions by a

method totally different from that of the first part of his memoir, and
he asserts that they hold for "all known homogeneous substances"

(p. 229, S. P. p. 112). He proceeds as follows:

Let
<f> (r) be the law of central intermolecular force and 2, denote a

molecular summation over a cone of elementary solid angle, then he

assumes that R = *2fl
s$ (r) is a function F

(i)
of i "the mean interval

between centres of force in a given direction." If the direction-cosines

of this direction be I, m, n, and f, g, k, k, be constants, he assumes that

referred to the axes of elasticity i will be of the form

i = exponential (f+ gl
2 + hm? + kri1

).

He then continues :

Let us assume as a Fifth Postulate, what experience shews to be sensibly
true of all known homogeneous substances viz. that their elasticity varies

very little in different directions. Those substances, such as timber whose

elasticity in different directions varies much, are not homogeneous, but

composed of fibres, layers, and tubes of different substances (p. 229, S. P.

p. 112).
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Thus he deduces that gl
2 + km? + knz must be very small as compared

withyj or that we may take :

substituting this value of R in the summation expressions
1 for the

elastic constants he easily deduces relations of the type

%{\yyyy\ + \****\]
= 3 \*y*y\

or those of the second ellipsoidal type.

[431.] Rankine concludes this section of his memoir by the

two postulates I have cited at the beginning of my criticism in

Art. 427. Those postulates do not seem to me to involve the

reduction of the twenty-one elastic constants to three. The
memoir suggestive in parts, seems full of very doubtful reasoning.
The results of this memoir are indeed rejected in the one On Axes

of Elasticity..., discussed in our Arts. 443 52 where Rankine

states that
"
there is now no doubt that the elastic forces in

solid bodies are not such as can be analysed into fluid elasticity

and mutual attractions between centres simply." But my present

point is that, even if they could be, there would be no necessary

reduction of the constants below sixteen, so that Rankine's reason-

ing as well as his hypotheses are at fault.

[432.] In a Note to Sections VI. and VII. appended to the

memoir and entitled : On the Transformation of the Coefficients

of Elasticity by the aid of a Surface of the Fourth Order (pp.

231 4, 8. P. pp. 114 8), Rankine gives expressions for the

transformation of the coefficients of elasticity from one set of

rectangular axes to a second. I believe this to be the first

occasion (1852) on which expressions were given for the trans-

formation of the elastic coefficients. The same results, however,

were obtained by Saint-Venant in a much simpler symbolic form

some years later (1863) and have already been cited in this

work : see our Art. 133. Hence I do not propose to reproduce
the earlier discussion, merely noting Rankine's undoubted priority,

which was fully admitted by Saint-Venant : see our footnote p. 89,

and Art. 135, etc.

1 I am not certain of the accuracy of these summation expressions if (r) be

the law of intermolecular force. But I think Rankinc's results would follow if

F(r) of our equation (xxx.) Art. 143 were made a function of '.
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[433.] W. J. M. Rankine : On the Velocity of Sound in Liquid
and Solid Bodies of limited Dimensions, especially along Prismatic

Masses of Liquid : Cambridge and Dublin Mathematical Journal,
Vol. vi. 1851, pp. 23867 (8. P. pp. 168199).

Rankine remarks that if we could ascertain the velocities of

transmission of vibratory movements along the axes of elasticity of

an indefinitely extended mass of any substance we should at once

be able to calculate its coefficients of elasticity. As we cannot

experiment on such a mass of solid elastic material, the best

results, which can be obtained in practice are those based on the

transmission of nearly longitudinal vibrations along prismatic or

cylindrical bodies. If the vibrations were solely longitudinal, we
should be able to find the "true longitudinal elasticity," i.e. the

direct stretch-coefficient. It is however "impossible to prevent a

certain amount of lateral vibration of the particles, the effect of

which is to diminish the velocity of transmission in a ratio

depending on circumstances in the molecular condition of the

superficial particles, which are yet almost entirely unknown."

Rankine holds that the supposition that the stretch-modulus is

obtained from experiments upon the longitudinal vibrations of a

rod or bar is

inconsistent with the mechanics of vibratory movement; and accord-

ingly, experiment has shown that the elasticity corresponding to the

velocity of sound in a rod agrees neither with the modulus of elasticity,
nor with the true longitudinal elasticity ; although it is in some cases

nearly equal to the former of those quantities, and in others to the

latter (p. 239, S. P. p. 169).

We will briefly indicate the course of Rankine's investigations
in the following six articles.

[434.] Pp. 2406 (8. P. pp. 1706) are entitled: General

Equations of Vibratory Motion in Homogeneous Bodies. In this

paper Rankine integrates the general equations of vibratory motion

for a solid having central elastic symmetry, i.e. with nine indepen-
dent elastic coefficients: see our Art. 117, (a).

Rankine adopts as types of solution shifts with factors of the form

2- {ax + b'y + c'z V^i (^e.t-ax-by- cz)\
6 *

where e has three different values given by the roots of a particular
cubic equation. Certain rather complex relations must hold among
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the constants. Taking a series of such terms Rankine finds for the

shifts :

r-
^(ax+b'y+cz)

, 27T
w = 2 \e U cos r~(j.t-(ix-by-cz)

+ I' sin~
( ^/e . t - ax - by- cz) \

v = 2 (terms in m, 711' instead of I, I')

w = 2< (terms in n, ri instead of /, I')

Thus there are fourteen constants X, ^/e, a, b, c, a', &', c', I, I', m, m,
n, n' for each set of terms, and these are connected by the equation
a8 + 6

2 + c
2 = 1 and six other equations of condition, or we have seven

independent constants.

Such expressions Rankine says
" contain the complete representation

of the laws of small molecular oscillations in a homogeneous body of

any dimensions and figure" (p. 245, S. P. p. 175).
The special case of an indefinitely extended medium lias been

treated by Poisson, Cauchy, Green, MacCullagh, Haughton, Blanchet,
and Stokes; see our Arts. 523*, 1166* 78*, 917* 21*, 1519* 22*,
and 1268* 75*. Rankine gives the principal results which depend
upon the fact that in this case for small oscillations we must have

a' = b' = c' = 0.

See his pp. 2468 (S. P. pp. 1768).

[435.] Pp. 24850 (S. P. pp. 17880) deal with the G>',,> ,/
Cane of a Body of limited Dimensions. Here the velocity is no longer
a function only of the direction- cosines a, 6, c of the wave front, but

also of a'
y b', c. Rankine in these pages gives the shift-speeds, tin-

stretches, the slides and the six stresses as deduced from equations (i).

Taking the special case of an isotropic medium (pp. 250 6, S. P. pp.

180 184) and the axis of x as direction of propagation, Rankine puts

a=l, b = Q, c = 0, a' = 0,

and finds for the velocities of propagation in our notation,

l-b't-c'* (pp. 2501, S. P. p. 181).

Hence these velocities of propagation are less than in an unlimited

mass in the ratio ^/l
- b'

2
c'

2
: 1.

[436.] Rankine now remarks tli

It may be shown that the vibrations corresponding to the velocity
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-J\ b'* c''
2 cannot take place in a body of wliicli the surface is

free unless b' = 0, c' = 0, in which case they are reduced to ordinary trans-

verse vibrations (p. 251, S. P. p. 182).

This is shown in an Appendix II. (pp. 265 7, 8. P. pp. 197

9) entitled : General Equations of nearly-transverse Vibrations.

Herein Rankine calculates out the surface traction in his prism
and shows that if it is to be zero we must have b' = c = 0, and the

nearly transverse vibrations become accurately transverse.

[437.] The vibrations which have the velocity

are termed by Rankine nearly-longitudinal, for the longitudinal com-

ponent predominates, and are dealt with by him on pp. 251 4 (S. P.

pp. 182 4). He finds expressions for the surface stresses and remarks
that if we knew "the laws which determine the superficial pressures
in vibrating bodies" these expressions would enable us to find b'

and c and so determine the velocity of propagation. "Those laws,

however, are as yet a matter of conjecture only." It seems to me that

a reasonable hypothesis is that the surface-stress or load vanishes,
but even then except in very special cases Rankine's expressions would

probably be too complex to afford any manageable solution of the

problem (see two memoirs by Chree, Quarterly Journal of Mathematics,
Vol. xxiii. pp. 31742 and Vol. xxiv. pp. 34058).

For a musical note " the velocity of propagation must be the same
for all the elementary vibrations into which the motion may be

resolved," that is to say 6'
2 + c'

2 must have the same value in all the

terms of the expressions for the shifts. This leads Rankine to con-

siderably simplify his equations for the stresses, strains and surface

loads in this particular case: see his pp. 254 6 (S. P. pp. 184 7).

Rankine does not, however, draw any special conclusions from these

simplified results.

[438.] Rankine next turns (pp. 256 60) to the relation

between the velocities of sound in a rectangular horizontal prism
of liquid and in an infinite mass of the same liquid, and he shows

that on a certain hypothesis as to the surface conditions, based

upon his own theory of molecular vortices, these velocities would

be in the ratio of \/2 : \/3 as indeed Wertheim found them by ex-

periment: see our Arts. 1349* 51*. Returning to the vibrations

of solid rods Rankine, adopting a hypothesis like that for liquids,

gives results for the cases of rectangular and circular prismatic
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rods. Not only are the hypotheses here rather vague but the

results do not seem very satisfactory. In the case of the rect-

angular prism Rankine supposes the lateral vibrations of the

particles to take place parallel to one pair of faces of the prism

only, and he finds that the same relation holds between the veloci-

ties of sound in a solid prism and in an infinite mass as for a liquid
The case of the rod of circular cross-section is investigated in an

Appendix I. (pp. 262 5, S. P. pp. 193 6), and Rankine con-

cludes that the ratio of ^1 &'* c'
2

: 1 lies between VI 'V2 and

v/2 : \/3, approaching the less value as the diameter of the rod

diminishes. Comparison with some experiments of Wertheim and

Savart does not give very satisfactory results, and Rankine sup-

poses that the freedom of the lateral vibrations is really limited

by the means used to fix the rods so that the ratio of the two

velocities generally exceeds \/2 : \/3 and sometimes approaches

equality. See Chree, Quarterly Journal of Mathematics, Vol.

XXL p. 205, and Vol. xxm. pp. 335, 341.

[439.] Rankine concludes generally that :

(i)
In liquid and solid bodies of limited dimensions, the freedom of

lateral motion possessed by the particles causes vibrations to be propa-

gated less rapidly than in an unlimited mass.

(ii) The symbolical expressions for vibrations in limited bodies

are distinguished by containing exponential functions of the coordinates

as factors; and the retardation referred to depends on the coefficients

of the coordinates in the exponents of those functions, which coefficients

depend on the molecular condition of the body's surface a condition

yet imperfectly understood (p. 261, S. P. p. 192).

It seems to me that the proper condition at the body's surface

is the vanishing of the stress, but that in most cases of longi-

tudinal vibrations this leads to very complex conditions for the

determination of the coefficients of the coordinates in the ex-

ponentials. Otherwise I think we may safely agree with these

conclusions of Rankine's, and he certainly put the matter in

a clearer light than it was left by Wertheim : see our Arts.

1349* 51* and the last memoir of Chree's cited, pp. 3245.

[440.] W. J. M. Rankine : On the Vibrations of Plane Polar-

ised Light. Philosophical Magazine, Vol. I. 1851, pp. 441 6 (S. J'.

pp. 150 5). This is an attempt to explain by some rather general

reasoning based on Rankine's theory of
' molecular vortices' (or
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atomic nuclei surrounded by elastic atmospheres : see our Art. 424)
the phenomena of polarised light. We only refer to it here to cite

the following remarks :

For if there is any proposition more certain than others respecting
the laws of elasticity, it is this : that the transverse elasticity of a

medium, or the elasticity which resists distortion of the particles,

depends upon the position of the plane, of distortion, being the same
for all directions of distortion in a given plane. This law is implicitly
involved in the researches of Poisson, of M. Cauchy, of Mr Green and
others on elasticity (p. 441, S. P. p. 150).

This can only refer to Theorem II. of the memoir of 1850 : see

our Arts. 421 2. As Rankine is here talking of crystalline bodies

his statement is erroneous.

The keynote to Rankine's researches is to be found in the

hypothesis :

That the medium which transmits light and radiant heat consists of

the nuclei of the atoms vibrating independently, or almost indepen-
dently, of their atmospheres; absorption being the transference of

motion from the nuclei to the atmospheres, and emission its transference

from the atmospheres to the nuclei (p. 443, S. P. p. 152).

The difficulty is then to understand how the ether of space,
which must consist of atomic nuclei in order to transmit, is still

incapable of absorbing.

[441.] W. J. M. Rankine : General View of an Oscillatory

Theory of Light Philosophical Magazine, Vol. vi. 1853, pp.
40314 (S. P. pp. 15667). This paper contains no reference

to the theory of elasticity, and is rather difficult to follow owing
to the suppression of the "strict mathematical analysis

"

by which

its conclusions were deduced.

[442.] W. J. M. Rankine : On the General Integrals of the

Equations of the Internal Equilibrium of an Elastic Solid. This

is published in the Proceedings of the Royal Society, Vol. vn.

1856, pages 196 202. It is an abstract of a memoir which
was received December 7, 1854. Judging from the abstract the

memoir must have been of a very elaborate character; but it

does not seem to have been ever published : see our Arts. 454
and 455.

After some definitions and general statements apparently
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reproducing results of the ordinary theory of elasticity, we are

told that the "Second Section of the paper relates to the problem
of the general integration of the equations of the internal equili-

brium of an Elastic Solid, especially when it is not isotropic." The
solution seems to have been in Cartesian coordinates and obtained

in some way by expanding the stresses in trigonometrical series of

the three coordinates, but it is extremely difficult to follow the

account given.

The Third Section appears to have dealt with Lamp's problem
of the rectangular prismatic solid (see our Arts. 1079* 80*).

Apparently the method consisted only in a long series of what,

I should imagine, would be very troublesome approximations

(p. 201).

The Fourth Section dealt with the general integrals of the

equations of elasticity for an isotropic solid.

Finally Rankine insists upon the importance for practical

purposes of the distinction between the cone of shear and the cone

of slide. By this I judge that he had in the memoir drawn

attention to the facts that the directions of maximum stress

and strain do not necessarily coincide, and that rupture does not

always take place across the direction of maximum stress: see our

Arts. 1367* 8*

[443.] W. J. M. Rankine : On Axes of Elasticity and Crystal-

line Forms: Phil. Trans. 1856, pp. 261285 (8. P. pp. 119149).
This paper was read on June 21, 1855. It is remarkable for

the number of new, and not improbably physically important
results relating to the twenty-one elastic constants which it

states, as well as for the novel nomenclature which it prop
to introduce.

Unfortunately the writer obtains his results by the application

of "that branch of the Calculus of Forms which relates to lint ar

transformations, and which has recently been so greatly advam, <1

by the researches of Mr Sylvester, Mr Cayley, and Mr Boole." I

say, unfortunately, as it will rarely happen that the elastician will

have made a sufficiently wide study of invariants, cor<in'tint.\;

contragredients et hoc genus to understand the processes of this

memoir, while terms such as umbral matrices and contra-ordinates

tend at the best to obscure the simple physical principles which
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often lie behind the equations. The biquadratics which give the

distributions of stretch-modulus and direct-stretch coefficient are

no doubt tasimetric covariants, but it may well be questioned
whether this is the clearest method of approaching their discus-

sion. Luckily Saint-Venant in his memoir of 1863 has given
short and direct proofs of most of Rankine's results bringing
out in each case their physical bearing : see our Arts. 132 7

which should be compared with Arts. 445 7.

[444.] Rankine commences with the statement that :

As originally understood, the term " axes of elasticity
" was applied

to the intersections of three orthogonal planes at a given point of an

elastic medium, with respect to each of which planes the molecular

actions causing elasticity were conceived to be symmetrical.

The next two paragraphs (p. 261, S. P. p. 119) refer to the

peculiar hypothesis of the earlier memoirs : see our Arts. 424, 429,

etc. The writer states that if the elasticity of solids arose from the

action of centres obeying the rari-constant hypothesis or partly
from such action and '

partly from an elasticity like that of a fluid,

resisting change of volume only,' then it is easy to prove that

three such planes of symmetry exist in every homogeneous solid.

It is not obvious that three such planes would exist in a homo-

geneous aeolotropic solid with 15 constants, unless we could reduce

those fifteen constants in the method of the earlier memoirs, a

method which we have seen to be erroneous. Rankine further

remarks that there is now no doubt that elastic stress is not such

as can be accounted for by fluid elasticity and central inter-

molecular action as a function of the distance. This of course is

merely a declaration of his own multi-constant views, which is

somewhat obscured by the reference to "fluid-elasticity."

Assuming multi-constancy Rankine conveniently defines an axis

of elasticity as any direction with respect to which certain kinds of

elastic stresses are symmetrical, or

speaking algebraically, directions for which certain functions of the

coefficients of elasticity are null or infinite (p. 261, S. P. p. 119).

The former seems a clearer statement than the latter.

[445.] We now give a Table of Rankine's nomenclature premising
that lie adopts OXtyis to denote strain and TCUTIS to denote stress.
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Table of Tasinomic Coefficients or Constants.

Our notation
for constant
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For the heterotatic axes we have three relations of the type

\zxxy\ \xxyz\ = 0,

and the physical property which we may thus state :

At each point of an elastic solid, there is one position in which
a cubical element may be cut out, such that if there be a distortion

of that element round (i.e. a slide perpendicular to) x, and an equal
distortion round y, the traction on the faces normal to x arising from
the distortion round x shall be equal to the shear round z arising from
the distortion round y (p. 267, S. P. p. 126).

The coefficients of the heterotatic ellipsoid are termed heterotatic

differences; they vanish on the rari-constant hypothesis. Rankine
terms fluid elasticity that elasticity for which the heterotatic ellipsoid
becomes a sphere ;

the body is then heterotatically isotropic.
A body is orthotatically isotropic when the orthotatic ellipsoid

becomes a sphere.
A body which is both heterotatically and orthotatically isotropic is

not completely isotropic as it has still 1 1 independent constants.

[446.] The next surface dealt with by Rankine is what he terms
the biquadratic tasinomic surface, or

It is the biquadratic which gives the distribution of the direct-stretch

coefficient.

He terms its coefficients the homotatic coefficients. Diameters of
this surface which are normal to the tangent planes at their extremities
are termed euthytatic axes (p. 268, 8. P. p. 127). Rankine returns
later to the consideration of these axes in Sections 22 29.

He now proceeds to the dissection of this surface by rectangular
linear transformation. By this means it is always possible to make
three of the terms with odd exponents or three functions of such terms
vanish. Thus Rankine shows we may find three mutually rectangular
axes for which three equations of the type

\yyyz\ = \zzyz\

hold. These axes he terms the principal metatatic axes. They possess
the following property (supposing them to be the axes of x, y, z) :

If there be a stretch along y and an equal squeeze along z (or vice

versa), no shear will result round x on planes normal to y and z

(p. 268, S. P. p. 128).

Suppose the axes of coordinates to be any whatever, and let y', z
f

be any other pair of rectangular axes in the plane of y, z, then it is

easy to show (by the method of our Art. 133) that :

. sin 4(o
\jfjfl/3f\ \z'z?y'z'\ = {2 \yyzz\ + 4 \yzyz\ \yyyy\ \zzzz\\

h \\yyyz\ \*aey*\]
COS 4w

where o> = / yOy'.

T. E. II. 20
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Hence, in each plane in an elastic solid, there is a system of two

pairs of axes metatatic for that plane and forming with each other

eight equal angles of 45.
If x, y, z be the principal metatatic axes, then \yyyz\ = \zzyz\ and we

see that l/y/y^l = vtif^ when to = any multiple of 45.

Or, in each of the three metatatic planes, there is a pair of diagonal
metatatic axes, bisecting the right angles formed by the principal
metatatic axes (p. 269, S. P. p. 128). These six metatatic axes and
their productions are perpendicular to the faces of a rhombic dodeca-

hedron.

A solid is metatatically isotropic when for a cubical element cut

out in any position, a stretch in the direction of one axis and an equal

squeeze along another produce no shear on the faces.

Metatatical isotropy involves three relations of the type

2 \yyzz\ + 4 \yzyz\
-

\yyyy\
-

\zzzz\ =

for all sets of axes. These expressions are termed metatatic differences.

[447.] Orthotatic Symmetry. When one and the same set of

orthogonal axes are at once orthotatic, heterotatic, metatatic and

euthytatic, or the twelve plagiotatic coefficients vanish, the solid is said

to possess orthotatic symmetry. This reduces the elastic constants to

the nine orthotatic coefficients.

Cybotatic Symmetry. In addition to orthotatic symmetry let tho

three direct-stretch coefficients be equal to each other, the three direct-

slide coefficients and the three cross-stretch coefficients. In this case

the coefficients reduce to three and the symmetry is cybotatic (p. 270,
8. P. p. 130).

The metatatic difference will in this case be equal to

2 \yyzz\ + 4 \yzyz\ 2 \xxxx\

and unless this vanishes the body will not be metatatically isotropic.
Green's proposed structure for the ether endowed it with cybotatic

symmetry: see our Art. 146.

If the metatatic difference vanishes then cybotatic symmetry
reduces to bi-constant isotropy, or what Rankine terms pantatic

isotropy (p. 271, S. P. p. 131).

[448.] Rankine next passes to TJdipsinomic Coefficients or those

which express strain as a linear function of stress. We may e\j
these coefficients as follows, a, b, c denoting the directions of the

x, y, z :

8X = (aaaa) xx -f- (aaM>) yy + (aacc)
7z -f (aabc) yz + (aat-a)

zx + (aaaft) xy.

() j', (
iW ',,

Jind

he form useful for syi

v M* + nl, '

If symbolically we put (aaaa)
= vavuvava and </z = 2y 2 ,

we
may throw flu- si rain into the form useful for symbolic operations :
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E/ankine gives the following nomenclature :

307

Our notation
for constant.
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of this kind of symmetry having regard to the existence of other

euthytatic axes.

(iii) If a solid has one euthytatic axis (z) normal to the other two

(xy) still oblique, these two having equal sets of homotatic coefficients,
it is said to possess orthorhombic symmetry, its principal euthytatic
axes being normals to the faces of a right rhombic prism. A sub-case

of orthorhombic symmetry is the existence of further pairs of euthytatic
axes in the planes zx, zy. When such exist they are normals to the faces

of an octoJiedron with a rhombic base.

(iv) The three principal euthytatic axes being orthogonal, we have

orthogonal symmetry, This subdivides itself according to the exist* -m <

of other euthytatic axes in none, all or two of the principal euthytatic

planes into a distribution of euthytatic symmetry marked l>y a rect-

angular prism, by an irregular rhombic dodecahedron, or by an octohe-

dron with rectangular base.

(v) Orthogonal symmetry with equal sets of homotatic coefficients

for each axis is called cybo'id symmetry. The three cases corresponding
to those of (iv) are marked by a cube, a regular rhombic dodecahedron

and a regular octohedron.

(vi) Monaxal symmetry. The homotatic coefficients are completely

isotropic round one axis. The principal euthytatic axes are the axis of

symmetry and all lines perpendicular to it. If other euthytatic a

exist they are normal to the surface of a cone (p. 280, S'. /'. p. 14,'J).

(vii) Complete isotrojnj of the homotatic coefficients is the cas. in

which every direction is an euthytatic axis.

[451.] On pp. 2801 (S. P. pp. 1434) Rankine classifies the

several primitive forms known in crystallography on the basis of these

various distributions of the euthytatic axes. He makes the following
statement:

It is probable that the normals to Planes of Cleavage are euthytatic axes

of minimum elasticity.

He brings no evidence on this point, and it seems to me somewhat

doubtful for the following reasons :

(i) Any biquadratic surface would give a similar system of

symmetrical forms, which might be classified in the same manner.

Why should the biquadratic which determines the distribution of

the direct-stretch coefficient be chosen? Rankine's euthytatic a

correspond to directions in which this coetlicient has a maximum
or minimum value, and therefore the planes of eleava^e would be

perpendicular to directions in whirh the direct-stretch coeHicient has

a maximum or minimum value.

(ii) It would seem quite as reasonable, if not more reasonable, i..

choose as our fundamental l.i.|uadratic that which ;ivrs the distribution

of tin .stivteh modulus (sec our Art. 309). l''"i the direction^ of the
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maximum or minimum rays of this figure are those for which a given
traction produces a minimum or maximum stretch. But even then it

is not yet proven that in an aeolotropic body rupture will tirst occur

across the directions of greatest stretch.

(iii)
If we put all the stresses zero except 2r, we have

Sx = (aooa) .77-, s
y
=

(bbaa) xx, sz (eoaa) xx,

(T
yz
=

(l>caa) w, (T^ = (caaa) xx, cr^
=

(abaa) xx.

The maximum stretch sx for a given traction xx will thus occur for

that direction in which (<HM) (really \JE) is a maximum, but how far

will rupture (supposing elasticity to last up to rupture !)
be affected

by the existence and magnitude of the other components of strain ? The

magnitude of these depends in each case on the value round the given
direction of the platythliptic and plagiothliptic coefficients.

(iv) Thus it would seem to me that if we assume the direction of

the greatest stretch for a given traction to determine that of ultimate

rupture, then it would be better to form the biquadratic giving the eu-

thythliptic coefficient (aaaa) in any direction, and deduce euthythliptic
instead of euthytatic axes as giving the planes of cleavage. The ultimate

planes of cleavage thus obtained may coincide with Rankine's, but the

conditions would appear in a different form, and the whole process have
a more direct physical meaning.

(v) It must be remarked that some geological writers hold that

the planes of cleavage are perpendicular to the directions of maximum
or minimum traction. These are not necessarily those in which either

the stretch-modulus or the direct-stretch coefficient is a maximum or a

minimum. Their view would lead to a third method of treating the

problem : see our Art. 1367*.

[452.] On pp. 282 3 (8. P. pp. 145 7) of the memoir are some

general remarks. Thus Rankine notes that the 15 homotatic coefficients

on which the euthytatic axes depend, may be considered as independent
of the six heterotatic differences on which the heterotatic axes depend.
In other words, granting an euthytatic classification of crystals, bodies

may have the same crystalline form and yet differ materially in the laws

of their elasticity. This would not be possible in the case of rari-con-

stant elasticity.

It may be noted that Rankine rejects the hypothesis of the

luminiferous ether being a simple elastic medium, as no such medium
could give a rotation of the plane of polarisation. He notes also

that the refractive action of a crystal on light requires far fewer

constants than are supplied by the crystal's elasticity.

The memoir concludes with a note on Sylvestrian Umbrae (pp.

2845, S. P. pp. 1479).

[453.] W. J. M. Rankine : On the Stability of Loose Earth.

This is published in the Philosophical Transactions for 1857, pp.
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9 27
;

it was received June 10 and read June 19, 1856 : an

abstract of it is given in the Proceedings of the Royal Society,

Vol. VIIL, 1857, pp. 1857.
The memoir employs some of the elementary formulae of stress

in the problem of earthwork. Suppose that the axes of coordi-

nates at a certain point coincide with the principal axes of stress.

Let Tv
r

l\ y
T

3
be in descending order of magnitude, and let them

denote the principal tractions. Take the plane which contains

the directions of T
l
and T

9 ;
and in that plane suppose a straight

line making an angle i/r
with the direction of 1\ : consider the

stress on the plane at the point which is normal to the straight

line. Denote this stress by R
;

let P be the tractive, Q the

shearing component of R-, and let denote the angle between

the directions of P and R. Then put

and it will be found that the following results are easily deduced

from the elementary formulae of stress :

P = S + D cos 2i|r, Q = D sin 2i/r,

D sin 2ir

the maximum value of 6 is sin"
1

D/S, and it occurs winn

[454.] In the Comptes rendus, Vol. L., 1800, p. 235, then- is a

note of the Grand Prix de mathdmatiques. This had been oti<

for the second time in 1857, for a solution of the following

problem :

Trouver les int6grales des equations de 1'equilibre intdrieur d'mi

corps solido
(.'-lastique et homogene dout toutcs les dimensions sont linirs,

par exemple d'un parallelepipede ou d'un cyliuclre droit, en su]ijm>;int
connues les pressions ou tractions inegales exercees aux difit rents points
de sa surface.

The commissioners were Liouville, Lame, Dnhann-1 and Ber-

trand. The problem for the right six-face was first proposed by
Lamd: see our Arts. 1079* 80*.

Two memoirs were sent in, but as neither of them contaiin-<l

the solution of the question proposed, the prize was not awarded
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but proposed again for 1861. One of these memoirs was, I

believe, due to Kankine. "In 1857 he also sent to the

French Academy of Sciences a memoir, De UEquilibre interieur

d'un corps solide, elastique, et homogene." See the Memoir of

Rankine by P. G. Tait prefixed to the Miscellaneous Scientific

Papers, p. xxiii.

This is probably closely connected with the paper of which an

abstract is given in the Proceedings of the Royal Society : see our

Art. 442. Its non-publication and the failure at Paris suggest that

the analysis was probably defective as well as lengthy. A portion

only of the Paris paper was afterwards in 1872 communicated to the

Royal Society of Edinburgh and is published in the Transactions

Vol. xxvi. : see our Arts. 455 62.

[455]. W. J. M. Rankine : On the Decomposition of Forces

externally applied to an Elastic Solid. Transactions of the Royal

Society of Edinburgh, Vol. xxvi., 1872, pp. 715 27.

The author writes :

The principles set forth in this paper, though now (with the

exception of the first theorem) published for the first time, were
communicated to the French Academy of Sciences fifteen years ago,
in a memoir entitled : De VEquilibre interieur dun corps solide, elasti-

que, et homogene, and marked with the motto,
" Obvia conspicinius,

imbem pellente Mathesi," the receipt of which is acknowledged in the

Con^tes rendus of the 6th April, 1857.

See our Arts. 442 and 454.

The memoir is like nearly all Rankine's papers, extremely

suggestive, and rich in terminology, amounting in this case to

very unnecessary verbosity.

[456.] The memoir opens with the statement of the following
theorem (which had been given in the Philosophical Magazine, Vol. x.,

p. 400, 1855) :

Every self-balanced system of forces applied to a connected system of

points is capable of resolution into three rectangular systems of parallel
self-balanced forces applied to the same points (p. 715).

The three rectangular axes to which the three systems of self-

balanced forces are parallel are termed isorrhopic axes. Rankine

proves the proposition by appeal to the theory of covariants. But it is

easily proved ab initio. Let X, Y, Z be the components of force acting
on the point x, y, z. Then for equilibrium we must have :
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Consider the line drawn through the origin with direction cosines

I, m, n, then the force at x, y, z parallel to this line is IX + m Y + nZ = P
say. Let r be the distance between the origin and x, y, z\ let < br

the angle between r and
(I, m, n). Then the quantity rPcos<J> is

independent of the directions of the coordinate axes and consequently

2rP cos <

is (a covariant or) the same in form for all systems of rectangular axes

through the origin. But it equals

2 (Ix + my + nz) (lX+mY + nZ] = P^Xx + ??i
22 Yy + ri^Zz

+ mn2 (
Yz + Zy) + nl$ (Zx + Xz) + Ini2 (Xy + Yx).

Putting with Rankine :

we have this equal to

AP + Bm* + Cn~ + 2Dmn + '2Enl + 2Flm.

But there are three rectangular directions, namely those of the

principal axes of the quadratic surface :

Ax2 + J5y* + Cz2 + 2Dyz+2Ezx + 2Fxy=l ...........
(i),

for which D = E = F=Q, in this expression.

Hence there are three directions for which :

which proves the theorem.

Rankine terms (i)
the Rhopimetric Surface; its coeflficients the

lihopimetric Coefficients ; its principal axes are the Isorrkopic Axes ;ui<l

the corresponding values of A, B, C the Principal Rhopwietric Coeffi-

cients. An ArrJiopic System of forces is defined as one for which all the

rhopimetric coefficients are zero. Rankine adds that in this case every
axis is an isorrhopic axis, but the proper and sufficient conditions for this

are that A = JB = C, while D = E = F=Q.

[457.] Rankine next applies his theory of isorrbopic axes

to reduce any load system applied to an elastic solid to tli

separate self-balanced systems of parallel loads and thus tin-

problem of elastic equilibrium to the solution of tin., separate
cases of parallel loading. He justifies this reduction by remarking
tli.it although we may not in the treatment of an elastic solid

transfer the point of application of a force to any point in the line
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of action of the force, we may still resolve each force at its point
of action into components in different directions, or:

When the straining forces to which an elastic solid is subjected are

restricted within certain limits, the straining effect of any number of

self-balanced systems of forces combined is sensibly equal to the sum
of the effects which those systems respectively produce when acting

separately (p. 716).

If X, Y, Z be the body-forces at a?, y, z, A"', Tf

,
Z' the components

of load at x, y, z on the element dS of surface, then the rhopimetric
coefficients for an elastic solid will be given by formulae of the type :

A = jjjxXpdxdydz + Jfx'X'dS \

D = JJfzYpdxdydz + ffz'Y'dSy (ii),

= HJyZpdxdydz + tty'Z'dS)

whence the isorrhopic axes can be found (p. 717).

[458.] After reproducing the body- and surface-stress equations
in Lame's notation, Rankine proceeds to remove the terms involving
terrestrial gravitation from the body stress-equations. Such gravitation
is usually the only body-force which occurs in elastic problems. Take
the plane of yz horizontal through the centroid of the body and the

axis of x vertically downwards, then by assuming

= ^x -
gpx,

we cause the body-forces to disappear from the differential equations.
The first surface-stress equation now becomes

X' = I (xx' gpx") + inixy + rixz.

Hence a system of surface tractions given by

X' = -gplx', r =
0, ^ = 0,

would just balance the weight of the body. We may thus withdraw the

weight of the body from our consideration of the problem, if we take

away from the internal stress xx found after removal of the gravita-
tion terms the quantity gpx, and further suppose the surface-load

increased by the component gplx parallel to the axis of x.

This system of surface- and body-load is according to Rankine

arrhopic, for from
(ii) :

= C = D = H = F=0.

Further : A = fffxgpdxdydz + ffx (- gpx I)
dS

- 9P {Hfxdxdydz
-
Jfx'WS}.

Now the first integral vanishes since the plane of yz passes through the

centroid and the second term also, Rankine says, if we remember the

changes in sign of L But this seems to me only true if the surface is

symmetrical about the plane of yz.
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The system of surface-loads which forms with the gravitation of a

body an arrhopic system, llankine terms an antibarytic load-system

(' antibarytic pressures ')
and the corresponding body-stresses are anti-

bar t/tic stresses.

The system of stresses left after taking away the antibarytic stresses

from the actual stresses at the several elements of a body's surface are

termed abarytic stresses ('abarytic pressures') (p. 719).
The internal stresses corresponding to an abarytic system of surface

loading satisfy equations of the type :

dxx dry dxz
-j- + -T^ + -J-

= 0.
ax ay az

[459.] The memoir next proceeds to an analysis of abarytic load-

systems. Kankine gives the following definition : An abarytic surface-

load which produces uniform stress throughout an elastic solid is termed
homalotatic. An abarytic system may be broken up into a homalotatic

system and an arrhopic system in the following manner. Calculate the

six rhopimetric coefficients and assume the internal stresses to be equal
to these coefficients divided by the volume of the solid, i.e. take

These satisfy the body-stress equations and give for the surface load

Z' = (IE + mD + nC),

or, a homalotatic system of surface-load.

The rhopimetric coefficients for this surface-load are of the tyi>e

-. {AffxldS+ FffxmdS + EjjxndS}

for, jjxindS= ffxndS = 0.

Thus tht! rhopimetric coefficients of the homalotatic system ;u.

c(|ii;il
to those for the complete abaryti.- .system, or if the liom:ilot;ttir

system In- subtracted from the abarytic system we must be left with a

purr arrhopic system, (pp. 720 1).

Rankiue remarks that the above homalotatic system of six uniform

stresses really denotes the mean state of stress of the whole body. It
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may be remarked that the axes of principal traction of the homalotatic

system are the isorrhopic axes of the complete abarytic system.

[460.] By following out the operations indicated in the above
articles we reduce any system of load applied to an elastic body to the

solution of a problem in arrhopic loading. Thus the reduction of the

load-system into three rectangular systems of parallel load can be made
for any three rectangular axes

;
for example, for axes parallel to the

axes of figure of a body, which will as a rule considerably simplify
the problem, (p. 722).

[461.] The next section of the memoir investigates those cases in

which internal stress is independent of the coefficients of elasticity of

the solid. Rankine concludes that when the shifts can be expressed by
algebraic functions ol the coordinates not exceeding the second degree,
and consequently the stresses by constants and linear functions of the

coordinates, this result will follow. The stresses will then be of the

type:

Rankine gives no general name to stresses of this type
1

,
but

classifies them as follows :

The constant terms c
lf

... c4 ... etc. correspond to a homalotatic load-

system.
The coefficients e^ f.2 , g3 are equivalent to an antibarytic load-system.
The coefficients fa g r ,

e.
2j </2 ,

e3 , f3, correspond to a homalocamptic

load-system, or to stresses due to uniform bending.
The coefficients e4,f5 , g6 correspond to a liomdlostrephic load-system

or to stresses due to uniform twisting (pp. 723 4).

Rankine shows that both homalocamptic and homalostrephic load-

systems are arrhopic (pp. 724 5). He does not discuss or give a name
to the stresses arising t'rom/4 , g4) e5) g5) e6 andy^.

[462.] In conclusion Rankine takes (pp. 725 7) two simple

examples of homalocamptic and homalostrephic stresses. The first

embraces practically the Euler-Bernoulli theory of flexure, and the

second the torsion of an elliptic cylinder allowing for the distortion of

the cross-sections.

The latter investigation starts from the assumption that

ZZ = by, w =
cz,

where b and c are undetermined constants. Rankine determines them

erroneously, for in line 19 of p. 727 he puts y'
2

/p'
2 + z

z

/q
2 =

1, which

1
Catching for a moment Kanldne's mania for nomenclature we might term all

the cases in which the stresses are linear functions of the coordinates, cases of

wthygranvnic stress.
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does not hold as his point y, z is not on the perimeter of the

elliptic cross-section. Had he noted this he would have found just
double the values he gives for 7z and xy in equation (22), and these

would then have been in agreement with the results of Saint-Venant
as cited in our Art. 18. I do not understand the remark as to Cauchy
with which the memoir closes. These two examples are, however, of

little importance.

[463.] W. J. M. Rankine : On the Stability of Factory

Chimneys. Proceedings of the Philosophical Society of Glasgow,
Vol. IV, pp. 1418, Glasgow, 1860. This paper treats only of the

effects of the wind and of the weight of the chimney, and does not

discuss its elastic strength even in the matter of crushing due to

the weight of the chimney itself. It is a simple problem in statics

which is here dealt with, and can be easily solved by an appeal
to the theory of the core : see our Art. 815* and Vol. I., p. 879.

[464.] W. J. M. Rankine : A Manual of Applied Mechanics.

London, 8vo. 1858 1888. The first edition of this work was

published in ]858 and the twelfth in 1888 edited by W. J. Millar.

The first edition contains xvi + 640 pages and the twelfth xiv +
667 pages. The chief additions made by the Editor are contained

in the Appendix. My references will be to the pages of the more

readily accessible twelfth edition. The work itself is important in

the history of elasticity, for it was among the first to bring the

theory of elasticity in a scientific form before engineering students.

Rankine himself writes in his preface :

A branch of Mechanics not usually found in elementary treatises is

explained in this work, viz., that whicli relates to the equilibrium of

stress, or internal pressure, at a point in a solid mass, and to the

general theory of the elasticity of solids. It is the basis of a sound

knowledge of the principles of the stability of earth, and of the strength
and stiffness of materials

;
but so far as I know, the only elementary

treatise on it that has hitherto been published is that of M. Lame
<P. Hi).

We will briefly note the several parts of this work which treat

of our subject, commenting on anything which seems to have

been novel at the date of its publication.

[465.] Pp. 68 127 deal with stresses in solids and deduce

those in liquids as a special case.
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(a) Rankine, as in his memoir of 1855, reserves the term stress for

the dynamic aspect of elasticity, strain for its geometrical aspect. A
further progress in differentiation of terms is made by denning shear as

tangential stress, i.e. ceasing to treat it as a name for strain: see our

Vol. i., p. 882.

(b) Rankine deals with such problems as 'centres of stress' (load

points),
' neutral axis,'

'

conjugate stresses
' and the relation of these

quantities to moments of inertia (pp. 71 85). He gives general

expressions for the traction and shear across any plane (pp. 92 3) and
for the discovery of the principal tractions. He deals with the special
case so important in practice of uniplanar stress (pp. 95 112) and with

the 'ellipse of stress'. His treatment of this subject is the fullest which,
I think, had been given at the time of publication of his work, and his

discussion of stress-centres although a little later than that of Bresse (see
our Arts. 815* and 516) was probably worked out quite independently.

Thus, if the system of stress in a plane be given by xx, yy t xy referred to

rectangular axes in the plane, and n denote the normal to any plane

perpendicular to this plane and t the trace of these two planes, Rankine
shows that

w = xx cos2

(xn) + 'yy sin
2

(xn) + 271) cos (xn) sin (xn),

/ = ^(xx
-
yy) sin 2 (xn)

-
"xg cos 2 (xn) ;

whence he easily deduces the properties of the principal uniplanar
tractions and of the ellipse of stress, and applies them to a variety
of special problems. Most of his results have found their way into

other text-books and papers sometimes with scanty acknowledgement ;

I may cite in this matter a dissertation by Kopytowski : Ueber die

inneren Spannungen in einem freiaufliegenden Balken, pp. 1 17.

(c) I may draw special attention to the Problem on pp. 110 12

entitled : Combined stresses in one plane : Given the normal intensities

and directions of any number of simple stresses whose directions are

in the same plane ; required the directions and intensities of the pair
ofprincipal stresses [tractions] resultingfrom their combination.

Let the principal tractions be T
l
and T2t and let the first make an

angle < with the axis of x, x and y being two arbitrary rectangular
axes taken in the plane of the stresses.

Let p^ p denote the normal intensities of any two of the given

stresses, then Rankine shows that

Thus the intensities of the principal tractions can be found without

assuming planes of reduction, but to find their directions requires us

to do this.
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(d) On pp. 112 127 we have the body-stress equations deduced
and a few special applications to fluids etc.

(e) The theory of uniplanar stresses developed in the previous
sections is applied on pp. 129 269 to framework, arches, buttresses,

earth-pressure, domes, masonry and brick-work of all kinds. This

involves a considerable discussion of the properties of the core (see
our Art. 815*) which is not however referred to directly by name.
The topics discussed fall outside the limits of our present subject.

[466.] Chapter III. entitled : Strength and Stiffness, occupies

pp. 270 377 and forms for its date an excellent practical treatise

on the technical side of elasticity. We can only note a few

points :

(a) As usual Rankine strives to give scientific definiteness

to certain terms which are in wide but rather vague use. Thus for

example he proposes the following nomenclature for the fracture

associated with characteristic kinds of strain (p. 272):

Strain. Fracture.

., ,. , (Extension [Stretch] Tearing
Longitudinal 4~ . ^ ~

i

(Compression [oqueezej... Crushing and Cleaving.

Distortion [Slide] Shearing
Transverse Torsion Wrenching [Twisting]

Bending Breaking across [Snapping].

This analysis of the more usual forms of strains is convenient,

but objection might well be taken to some of the words for fracture
;

thus a wrenching fracture is associated in our minds rather with a

combination of torsion and pull than with pure torsion
1
. Perhaps

the term 'twisting fracture' would be less liable to misinterpreta-
tion. 'Breaking across fracture' is also rather cumbersome and

might be more briefly termed snapping.

(b) Rankine's discussion and definitions of perfect and

imperfect elasticity and of set (pp. 272 3) are perhaps not wholly

satisfactory in the light of more recent knowledge, but his furtln-r

definitions require notice :

(i) The Ultimate Strength of a solid is the stress required to produce
fracture in some specified way. [This is now usually termed a&.v

strength.]

1 I should prefer to retain the name wrench for the stress side of the

combined of a stretch and a torsion (which ini^ht ]> ili,-i]>- !< railed a ?/;/;///). \\V

mi"ht tlion scion tific;i 11 v appropriate xjinu'H for the set-strain produced by a wrench.
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(ii)
The Proof Strength is the stress required to produce the

greatest strain of a specific kind consistent with safety ;
that is with

the retention of the strength of the material unimpaired. A stress

exceeding the proof strength of the material, although it may not

produce instant fracture, produces fracture eventually by long-continued

application and frequent repetition (p. 273).

This definition of proof strength is not scientifically very

accurate, for it neither suggests the method nor shows the

possibility of its determination. In many cases we may have set

without any reduction of absolute strength, and thus proof strength
is not by any means measured by the elastic limit. Rankine notes

this and remarks (p. 274) :

(iii)
The determination of proof strength by experiment is now,

therefore, a matter of some obscurity ;
but it may be considered that

the best test known is the not producing an increasing set by repeated

application.

Obviously this is merely a negative test and could only be

successful in ascertaining the proof strength of a given piece of

material, after the material had been rendered unfit for further

use. E/ankine defines strength whether ultimate or proof, as the

product of two quantities, Toughness and Stiffness.

(iv) Toughness, ultimate or proof, is here used to denote the greatest
strain which the body will bear without fracture or without injury as

the case may be.

(v) Stiffness, which might also be called hardness, is used to denote

the ratio borne to that strain [toughness] by the stress required to

produce it.

Thus while toughness is measured as a strain, stiffness is

measured by a tasinomic (or elastic) coefficient of some particular
kind. It does not seem correct, however, to identify hardness

with this conception of stiffness.

(vi) Malleable and ductile solids have ultimate toughness greatly

exceeding their proof toughness.

(vii) Brittle solids have their ultimate and proof toughness nearly

equal.

(viii) Resilience or Spring is the quantity of mechanical work

required to produce the proof strain, and is equal to the product of

that strain by the mean stress in its own direction which takes place

during the production of that strain, such stress being either exactly
or nearly equal to one-half of the stress corresponding to the proof-
strain p. 273.
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It would be better to distinguish between absolute, proof
and elastic resilience, and then perhaps to reserve the word spring
for the latter only : see our Vol. L, p. 875, and Art. 340.

(ix) Pliability (Extensibility, Compressibility, Flexibility, to which
we might add Shearability and Twistability) is a general term used

to denote the inverse of stiffness. It is accurately measured by a

thlipsinomic coefficient (p. 273)7

(x) Working Stress on the material of a structure is made less than

the proof strength in a certain ratio to be determined by practical

experience, in order to provide for unforeseen contingencies (p. 274).

Such a ratio is termed a factor of safety. The ratios of the

ultimate strength to the proof strength and to the working stress

are also termed factors of safety. There is a table of such factors

on p. 274.

[467.] Rankine now turns to the mathematical theory of elasticity,

especially to the discussion of strains, strain-energy, and the usual

problems of technical elasticity. He considers that the generalised
Hooke's Law is "fulfilled in nearly all the cases in which the str<

are within the limits of proof strength the exceptions being a few

substances very pliable, and at the same time very tough, such as

caoutchouc" (p. 275). This statement seems practically to identify the

proof strength with the limit of linear elasticity an identity which
itself seems to be the exception rather than the rule: see our Arts.

850* 5*, 857*, 1217*, 1296*, and Vol. i., p. 891, Note D.
We may remark that the Manual uses isotropic and amorphous as

synonymous terms (p. 278). This is not in accordance with the

terminology of the present work: see our Arts. 4
(r/), 115, and 142, 230.

[468.] Rankine (pp. 280 3) discusses at some length uniplanar
strain and the ellipse of strain. He works out problems of hollow,

cylindrical and spherical shells and obtains results corresponding to those

of Lame" but he uses only elementary processes. He adopts, however,

(pp. 293 and 296) stress limits of strength: see our Arts. 1013*, 1016*,
and footnotes. He gives the variation of the cross-section for a douMy
built-in heavy beam of * uniform strength

'

: see his p. 336 and our
Art. 5 (e), and then passes to shearing-stress and strength (as in rivetted

joints of all kinds), to compression and crushing (splitting, shearing,

bulging, buckling, cross-breaking), to flexure (bending moment, shear and

transverse strength, i.e. snapping), to beams of equal and greatest strength

(solids of equal resistance, etc.) and to Lines of Principal Stress in Beams.
These are treated on the supposition that the stress-system of a beam
under flexure is uniplanar, but the researches of Saint-Venant have shown
this to be incorrect: see our Arts. 99 100. Such lines of stress a,s are

figured l>y Rankino on
p. 342 and are to be found in many practical
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text-books, are therefore even in the most favourable cases, e.g. the
thin web of a girder, only rough approximations. Similarly Rankine's
treatment of the influence of slide when combined with flexure in

producing deflection is erroneous : see our Art. 556 and our discussion

below of Winkler's memoir of 1860. Then follow a number of problems
on the elastic line for various beams which do not call for special
notice. This section of the chapter concludes with a reference to the
1

Hydrostatic Arch' first fully discussed by Yvon-Villarceaux. Its

equation may be written

where p is the radius of curvature at any point of the elastic line, _W2

is the flexural rigidity, P a constant and y the depth of a point on the

elastic line below a fixed horizontal. Its full investigation obviously

requires elliptic functions: see Rankine's p. 353 and compare his

pp. 190 5 for the treatment by elliptic functions.

[469.] Rankine next passes to Torsion and Combined Torsion and

Bending with little to be noted
; then to Crushing by Bending. Here

a formula of the type

p-

is given for the strength P of a pillar or column of length I and
least diameter A, cross-section w and tensile strength T c being an

empirical constant depending on the material. Rankine apparently

gives T absolute, proof, or working-stress values and considers that

corresponding values will thus be obtained for P. He states that this

formula was first proposed by Tredgold and afterwards revived by
Gordon, who determined the values of c from Hodgkinson's experi-
ments. For pillars with both ends rounded instead of built-in we must
take 4c for c (pp. 3613).

This part of Rankine's book concludes with a discussion of various

kinds of girders and some miscellaneous remarks on strength and

stiffness. A considerable number of useful practical tables of elasticity

and of strength of various materials will be found in the pages of the

work as well as in the Appendix
1
.

[470.] The last portion of the Applied Mechanics which refers

to our subject is the fourth chapter of Part V. entitled : Motions

of Pliable Bodies, pp. 552 65. It treats briefly of bodies attached

to light springs the inertia of which is neglected and to a few cases

of elastic vibrations. There appears to be no novelty in it.

On the whole Rankine's Applied Mechanics may be taken as

a book which was a very distinct advance on any work previously

1 The latter contains also in the later editions a sufficient discussion of the

analytical treatment of continuous beams and of Clapeyron's theorem.

T. E. II. 21
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published professing to deal with the problems of technical

elasticity. Such works as these of Rankine and Weisbach

separate very distinctly the first decade of our half-century from

the previous thirty years. The step to them from books of the

type of Tredgold's is very great and marks the beginning of the

era of '

technical education/

[471.] In Vol. i. of the Abhandlungen der math.-phys. Classe

der Koniglich sdchsischen Gesellschaft der Wissenschaften, Leipzig,

1852, pp. 133 168, is a memoir by Seebeck entitled : Ueber die

Querschwingungen gespannter und nicht gespannter elastischer

Stale. The memoir itself is due to the year 1849, and belongs

essentially to the theory of sound. Let m be the mass per unit

length of the bar, Eco/c* its rigidity and P the longitudinal stress,

then the equation for the transverse displacement y at distance x

from a terminal is :

Seebeck thus omits the effect of the angular rotation of the

sections of the rod. His equation may be compared with the

fuller equation given by Donkin: Acoustics, p. 168. Seebeck first

assumes P =
0, and finds in this case from the resulting equation

the loops, the nodes etc., for the six possible variations among
clamped, free and supported terminals. His numerical results are

of very considerable value, and have been largely used by later

writers on sound.

[472.] The second part of the memoir deals with the vibrations of

stretched rods, and the particular point of interest is the modification

in tone produced by the stiffness of musical strings. There are two
cases which Seebeck deals with, and which have formed the subject of

experiments : (i) both ends pivoted, (ii)
both ends clamped. (The

third case, one end pivoted and one clamped, can of course be deduced
from the latter of these by doubling the length of the rod.) In the

former case Seebeck shows that

where n/2ir is the frequency of vibrations of the stretched rod, nj'2-rr
tin-

frequency without the stretch, nJ2ir the frequency for the rod treated as

a flexible string under tension P, I the length of the rod and i any
integer. This result is the law stated by N. Savart and
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theoretically by Duhamel, but which only holds for pivoted terminals.

Savart's experiments were, however, made with rods with clamped
terminals : see our Art. 1228*.

Obviously the stiffness of a doubly -fixed string destroys the harmonic
character of its tones.

Passing to the case of a doubly-clamped rod Seebeck shows that
(iii)

does not hold and that the determination of the notes is much more

complex. For the case, however, of the not too high sub-tone i of a
stiff string or flexible rod, he finds

where the notation is the same as in the previous case (p. 162). Thus
in this case we have two different effects, the purity of the harmonics is

destroyed by the stiffness and all the notes are raised in pitch.
Both Donkin and Lord Rayleigh refer to See beck's memoir, but it is

somewhat singular that Donkin misstates the result (iv), and Lord

Rayleigh while questioning Donkin's conclusion does not note that

Seebeck has really settled the point. Lord Rayleigh possibly had not
been able to see Seebeck's memoir and perhaps Donkin, whom he

follows, had read it somewhat carelessly. The following are the

passages in question :

Donkin gives (iv) without the last term of the curled bracket and
after comparing it thus mutilated with (ii) remarks :

We see that they differ essentially, especially in this respect, that, in the

case (iv) of fixed faces the pitch of all the component tones is raised, by the

rigidity, through the same interval, so that they do not cease to form a
harmonic series

;
whereas in the other case (ii) each tone is raised through

a greater interval than the next lower one, and the series is therefore no

longer strictly harmonic (Acoustics, p. 182).

Lord Rayleigh on the other hand, after giving equation (iv) in

Donkin's form, remarks :

According to this equation the component tones are all raised in pitch by
the same small interval, and therefore the harmonic relation is not disturbed

by the rigidity. It would probcably be otherwise if terms involving <2/l
2 were

retained
;

it does not therefore follow that the harmonic relation is better

preserved in spite of rigidity when the ends are clamped than when they are

free, but only that there is no additional disturbance in the former case

though the absolute alteration of pitch is much greater (Theory of Sound,
Vol. I. p. 245).

It is to be hoped that this oversight will not lead any one to repeat

needlessly Seebeck's investigation.

[473.] Seebeck shows that the correction for stiffness is ex-

tremely small in most practical cases (p. 163). For example, on his

own lecture room mono-chord, the 27th tone was the first that

differed from harmonic purity by as much as a comma (f).

There is an appendix to the memoir giving an account of some

212
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experiments of Seebeck's on the tones of doubly-clamped stiff cords.

He considers that experiment and theory (as represented by (iv))

are in close agreement (pp. 164 168).

[474.] A passage in Seebeck's memoir (p. 136 ftn.) refers to the

changes in amplitude of vibration produced by causes which are

neglected in Equation (i) of our Art. 471. He remarks that one of

these causes is elastic after-strain, and refers for a further discussion

on this point to the Programm der technischen Bildungsanstalt zu

Dresden, 1846. This latter contains an excellent little paper by
Seebeck on the various methods which have been used for deter-

mining the stretch-modulus and the character of the errors to

which they are liable. It is entitled : Ueber Schwingungen, mit

besonderer Anwendung auf die Untersuchung der JElasticitdt fester

Korper (pp. 1 40). Therein will be found lists very complete at

that date of the stretch-moduli of various materials obtained by
both statical and vibrational methods, as well as a fairly com-

prehensive list of experimental investigations on this point. One
or two statements deserve special notice ; see my foot-note Vol. I.

p. 756.

(a) Seebeck discusses (pp. 9 13) the effect of a constant frictional

force and of an air-resistance proportional to the velocity in reducing
the amplitude of oscillation of an elastic body.

(b) He carefully distinguishes between the 'imperfect elasticity'
which arises from set and that which arises from elastic after-strain.

He points out that Wertheim's statement that all bodies, even under
the feeblest stress, receive set (see our Arts. 1296* and 1301*, 7

and 8) does not prove anything more than the fact that Wertheim's
material had not been reduced to a state of ease (p. 29) ;

and he
remarks how absurdly confusing is the term '

perfectly elastic
'

as used
in the text-book theory of the impact of spherical and other bodies

(pp. 28 and 31).

(c) He attributes the reduction in amplitude of vibration, even in

metals, in a great extent to elastic after-strain, at the same time ex-

panding and developing Weber's arguments : see our Art. 712*.

(d) He considers that the effect of elastic after-strain must be to

render the value of the stretch-iiux lulus aa determined by statical

measurement smaller than the value obtained from vibrations :

Denn wahrend der kurzen Dauer einer Schwingung kann nur der k!

Theil der Nachwirkung in Th.atigkeit treten, dagegen sie bei der Ian:

Dauer des statischen Versuchs die gemessene Dehnung merklich vergro-
un<l dahcr riiK'ii kleineivii Modulus gek'ii muss (p. 34).
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(e) He holds that the effect of after-strain was mingled with the

temperature effect in the experiments of Weber and Wertheim referred

to in our Arts. 705* and 1297*. Hence those results must give too

great a difference between the specific heats at constant pressure and
constant volume. The objection applies perhaps more strongly to

Wertheim's than to Weber's mode of experimenting. See the remarks
of Clausius referred to in our Art. 1 398* 1405*.

(f) Finally I may note a little scrap of historical information bear-

ing on the problem of impact which Seebeck gives on p. 32. He points
out that Daniel Bernoulli had attempted to calculate the loss of kinetic

energy in the form of elastic vibrations which occurs when a body
strikes centrally and transversely a free rod. Bernoulli came to the

conclusion that
-J

of the total energy before impact would be taken

up as elastic vibrations in the rod. His investigation is based upon
the assumption that the rod will be bent into the form corresponding
to its deepest tone. Bernoulli's memoir is published in the Novi Com-
mentarii Acad. Petropol. Tom. xv. p. 361, 1770. It may be taken as

the first attempt to treat impact elastically, arid the primary step in

investigations which have been so ably followed up by Poisson, Cauchy,
Saint-Venant, F. Neumann, Boussinesq and Hertz : see our Arts. 203

20, 401 7, 410 14 and subsequent articles in this History.

[475.] Seebeck also contributed papers treating of the theory
of the vibrations of elastic bodies to Dove's Repertorium der Physik,
Bd. VI. pp. 3100, Berlin, 1842, and Bd. vni. pp. 1108 (Akwtik,

separate pagination), Berlin, 1849. These papers deal principally
with the theory of sound, and may even yet be read with interest.

I would call attention especially to pp. 52 4 of the latter paper
wherein Seebeck draws attention to Savart's etwas kunstlichen und
nicht einwurffreien Vorstellung of the mode in which combined

longitudinal and transverse vibrations displace the sand on a

vibrating rod: see our Art. 327*. These pages are entitled : Ueber

die Sandanhdufungen auf longitudinal-scliwingenden Korpern.
Seebeck's theory causes the sand to accumulate at the nodes

and not like Savart's at the loops. Although only descriptive,

Seebeck's statements are much clearer than Savart's, and they
have been reproduced with considerable experimental detail by

Terquem : see Section II. of this Chapter.
Seebeck died in 1849.

[476.] Clausen: Ueber die Form architektonischer Sdulen ;

Bulletin physico-mathematique de VAcademie, T. ix. pp. 368 79, St

Petersburg 1851. Also Melanges Mathematiques et Astronomiques,
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Tome i. (184953) pp. 27994, St Petersburg, 1853. Clausen

seeks to find the form of a column which for a given buckling load

shall have the least volume. This problem as we have remarked

is of no very great practical importance, for in the comparatively
short columns of architecture, the longitudinal stress produces set

long before the buckling load is reached: see our Arts. 1258 9*.

Lagrange as we have seen (Art. 113*) obtained the differential

equation required for the solution of the problem and showed

that the right circular cylinder is one, and under certain con-

ditions, the only solution. Clausen has succeeded in solving the

general differential equation, and comes to a different result. In

the following lines he somewhat misstates Lagrange's conclusions

as to the best form of column :

Als Eigenschaft der zweckmassigsten Form wurde angenommen,
dass sie bei gleicher Hohe und Tragkraft das kleinste Volumen enthalte.

Lagrange wandte zur Auflosung dieser viel schwierigern Aufgabe den
von ihm erfundenen Variationscalcul an, und gelangte zuletzt zu dem
sehr auffallenden Resultate, dass die Saule von gleicher Dicke die

starkste bei gleichem Volumen sei. Seit dieser Zeit ist diese Aufgabe
meines Wissens nicht beriihrt worden. Indem ich die Auflosung auf

eine andere Art versuchte, gelang es wider Erwarten, die Differential-

gleichung, deren allgemeine Integration Lagrange nicht versucht -hatte,

auf elliptisclie Transcendenten zu reduciren, wodurch es sich zeigt, dass

die zweckmassigste Form vom Cylinder abweicht, und dass das Volumen
dieses bei gleicher Hohe und Tragkraft sich zum Volumen jener Form

verhalt wie 1 : J^/l (p. 368).

[477.] Let o> be the area of the cross-section. Then we have if ds

be an element of the axis of the column, volume = V = I wcfe, and
Jo

this is to be a minimum. Further if P be the load and y the dehYc-

tion, we have upon the Eulerian theory

Arfg J*

Now K2 varies as <o, if all the cross-sections are similar figures with

their centroids in the axis, or K* = /?a>, say. Hence

''// jP y_

gp<*'

We have thus to make I

(y/ -r?)
k a minimum.
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By direct application of the Calculus of Variations I deduce the

equation :

This agrees with Clausen's result stated as Equation (3) p. 372 if we
introduce a minus sign under both roots. He seems to me to employ an

unnecessarily complex process to reach this simple conclusion. Let us

write z = co . EP then we have to solve

where

Multiply these equations by -=- and ~ respectively, add and inte-
rs ds

grate, and we find :

4* C.S^-fl-*ds ds

= 3(*,-*) ................................. (3),

if z = z for the point at which

*-a
ds

Multiply (1) by u, (2) by ?/, and add their sum to the double of

(3) then we have :

or integrating = c
4 + 12^3 - 12s4

.................... (4),
\ ds J

c
4

being an arbitrary constant.

Whence we deduce

Mb
..(5).

Thus z, and so the section, is given in terms of the arc s of the axis by
means of elliptic functions.

[478.] We have now to determine the value of the constant c
4

.

According to Lagrange (Art. 112*) we may measure the efficiency of a
column of given height by the ratio P/ F

a
,
and P varies as F2

/
4

. Hence
if two columns carry the same load we must have F2

/7
4 = F 2

/7
4
>
or the
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volume of a column which is of unit length and carries the same load is

given by
F.=F/H

Clausen takes as his condition for determining c4 that F must be a
minimum. After some rather troublesome analysis he finds c

4 = 0.

Equation (5) now becomes :

(6).

N*0-3
Further,

dV=<*ds= /Z*ds = fL /* j*L, ...(7).V JSft V Eft V 4 J^z
Let us put 3 = ZQ cos

2
0,

5 cos2 0<*0 = *o [20 + sin 20],

To obtain the total length and volume we must take these expressions
between the limits JTT of supposing the strut doubly pivoted.

JSirZt 371-^/3 /T"Hence 1= <-*, -j-
z* <J

- .............. (8),

[479.] Now suppose we take a column the cross-section of which
is uniform

(u>
= <o

)
but of the same shape as before, then we have

tfy_ P_y_

and 2/
= C'1 s

Cl and C2 being constants.

yT)
T

^--TT,
or

Further since the columns are to be of the same height we must
have this equal to the I of Equation (8), and it follows that,

P

We deduce for F', the volume of this uniform column,

whence from (8) F : V :: ^3 : 2,
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that is, for the same buckling-load and height the volume of the column
of variable section is less than that of the column of uniform section in

the ratio of J3 : 2.

[480.] Clausen devotes pp. 770 80 to the consideration of the

problem of the column built-in at one end and loaded at the other,
instead of the doubly pivoted strut of the previous investigation. He
arrives at the conclusion, which he might have foreseen, that the former

agrees in shape with either half of the latter. He figures this column
and remarks :

' dass die Form, wie inir scheint, eine dem Augen nicht

ungefallige ist' an opinion, I think, which will not be accepted by
many.

In the present memoir the form of the cross-sections is left un-

determined, they are merely assumed to be similar and similarly placed.
Clausen remarks, however, that the circle is not the form which offers

the greatest resistance to buckling ;
he gives no analysis of the point.

Since, however, the load carried by the best column is always the same

as that of a column of uniform section of 2/^/3 times its volume, we
have only to compare the loads carried by the latter for various forms
of cross-section to arrive at a variety of comparative results. These

loads, if the length and the area of the cross-section of the column
remain the same, vary as /c

2
. Thus take a rectangular section 2a x 2b

and b<a and compare it with a circular section of radius c, the

relative efficiencies are as c
2

/4 : 6
2
/3 where ire

2 =
4c&6, or they are as

a/Tr : b/3, therefore the rectangular section will be better than the

circular if b > 3a/7r i.e. if the side b lies between (3/7r) a and a.

Thus certain rectangular sections, almost square, are better than
circular sections in the matter of buckling. The practical value of the

whole of this investigation must, however, be questioned : see our

Arts. 146*, 911*, 958* and 1258*.

[481.] E. Segnitz : Ueber Torsionswiderstand und Torsions-

festigkeit. Journal filr die reine und angewandte Mathematik,

Bd. 43, 1852, pp. 340364.
The author seems quite ignorant of the existence of the

slide-modulus and of the shearing resistance of a material
;
he

endeavours to explain torsion by the longitudinal extension of

the rod or prism treated as a bundle of fibres. Young (Natural

Philosophy, Vol. i. p. 139) had already pointed out the insufficiency

of this hypothesis. It had also been considered as a corrective

factor by Maxwell, Wertheim and Saint-Venant : see our Arts.

1549*, 51, and Wertheim's memoir on Torsion in Section II. of

this Chapter.
The memoir ought scarcely to have been printed in Crelle's

Journal in 1852.
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[482.] E. Phillips : Rapport sur un Mdmoire de M. Phillips,

concernant les ressorts en acier employes dans la construction

des vdhicules qui circulent sur les chemins defer. Comptes rendus,

T. 34, 1852, pp. 22635. This report by Poncelet, Seguier and

Combes speaks very fully and favourably of Phillips' results. It

will be found useful to those to whom the original memoir in the

Annales des Mines is not accessible : see our Art. 483. The

commissioners remark that :

Le travail de M. Phillips sera fort utile aux ingenieurs et aux

constructeurs, qui y trouveront des regies rationnelles et d'une appli-
cation facile, pour 1'etablissement des ressorts capables de satisfaire,

avec la moindre depense de matie~re, a des conditions donnees de

flexibilite et de resistance (p. 235).

They recommend the publication of the memoir in the collection

of the Savants Strangers.

A portion of the report is printed as a foot-note on the first

page of the memoir in the Annales, where there is an additional

remark by M. Combes that the formulae for springs given some-

what earlier by Blacher (see Section III. of this Chapter) were

really due to Clapeyron.

[483.] E. Phillips : Memoire sur les ressorts en acier employes
dans le materiel des chemins de fer. Annales des Mines, Tome i.

1852, pp. 195 336. We have already referred to previous notes

and memoirs by Phillips on this subject (see our Art. 1504 *), but

this memoir is the principal one, indeed it is one of the most

important that has ever been published on the theory of laminated

springs. It consists of three chapters and a long Note. We shall

consider these at some length.

[484.] The first chapter is entitled; Thdorie mathematique des

ressorts. It occupies pp. 195 227, and should be taken in con-

junction with the Note entitled: Demonstration desformules de la

fleche et de la flexion d'un ressort quelconque sous charge, which is

appended to the memoir (pp. 319 36). The theory here developed
is very complete and has been carefully verified experimentally by

Phillips, the details of his experiments being given in other parts

of the memoir.

Les resultats qu'elle donne ont e"te verities dans les cas les plus

divers, par des experiences directes, avec un degr6 de precision extreme,
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auquel j'etais loin de m'attendre moi-meme, et qui parait indiquer,
de la part de 1'acier, im etat d'elasticite bien plus parfait que dans le

fer oti dans la fonte (p. 196).

[485.] Let a spring be supposed built up of a number of separate
laminae eL, e-Jj^, e.2L.2 , etc. projecting one beyond the other as in

Fig. (i).
and let eL be the ' matrix-lamina.

' Let the distances of the

terminals of these laminae from the mid-plane FFof the spring, where

Fig

Fig (Hi)

symmetry enables us to treat the spring as built-in, be given respec-

tively by L, L^ L2 ,
etc.

;
let the curvatures of the different laminae at

their respective central axes after manufacture be given at a section

distant z from FT by l/r, l/rlt l/r2 ,
etc. ; let a load Q be applied to

the terminal L, and l/p then be the curvature at z of the matrix-lamina
;

let e, j, .2 ,
etc. be the distances between the central axis of the matrix-

lamina and the central axes of the laminae e-Jj-^ e2L2 ,
etc.

;
let M, M^

J/2, etc. be the flexural rigidities of the successive laminae.

Phillips supposes that the laminae are throughout in contact with
each other, and afterwards investigates the conditions for this. Let
then p, p^ p.2 ,

etc. be the pressures per unit length between the first

and second, the second and third, laminae etc. at the section distant I

from FF. Now Phillips practically assumes that the distance between

any cross-section and FF is the same whether measured perpendicular
to FF or along the central axis of the lamina. This is probably almost
true in practice, but such an equation as that at the middle of his p. 201

requires some comment of this kind : see however p. 282 of the memoir
and our Art. 488.
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Applying the Bernonlli-Eulerian theory of flexure and neglecting
the weight of the spring, we easily deduce :

or

where B= -QL.

For LJj* as part of the matrix-lamina,

and as part of the second lamina,

j

whence :

i p~

When is so small compared with p that it may be neglected, as is

usually the case, we have :

1 B^+Qz M Ml- = -- 5_
5

where B
l
= + - - QL.

Continuing this process we easily find for the curvature at a point
on the matrix-lamina lying between Lt and Li+ly

1_
p~ M+ M!

M M, 2 {
_

where B* = + H--: -f . . . + - QL
r

'

Calling this l/p f ,
let us find the difference of l/p^ + i and l/p t where

z = Li+lt we have

where 2 F(Mq ,
r
q) denotes, if F be any function of the J/'s and r's,

, r) + ^(3/1} r,) + ^(Jf2 ,
ra)

+ ... + F(Jft ,
r

t).

Now L is >L
i + l ,

and as a rule r
f + 1 , ?*,, r^j.-.r,, r must either

be equal or in ascending order of magnitude from ri + l to r, if the

laminae are to touch, hence l/pi + 1
-

l/pt
is a finite quantity and tlinv

is an abrupt change of curvature at the point where the (i + I )th sheet

laps the ith. This abrupt change could be got rid of by making
Jlf1 + 1

= at that point, or by trimming and pointing off the end of

the lamina as suggested either in our Fig. (ii) or in our Fig. (iii).
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Le m6me raisonnement se continue pour toute l'e"tendue de la maitresse

feuille, et on verifie ainsi 1'utilite de ce fait pratique que tous les bons ressorts

out les extremites de leurs feuilles aiguise'es et amincies (p. 204).

[486.] The stretch sz at distance v from the central axis of the

matrix-lamina, or at distances vlt v.2 ,
etc. from the central axes of the

second, third laminae, etc. will be given by formulae of the type :

)
......... (iv).

- p + ^i-J

Whence if e, ely e2 ,
etc. be the successive thicknesses of the laminae we

have formulae for the maximum stretches of which the type for the

matrix-lamina between L{
and Li + l

is:

e
S*
=
2 W-

Suppose all the laminae to be of the same curvature before being
built-up into the spring, or the r's to be all equal at the same cross-

section of the spring, then

or, when there is no original difference of curvature in the laminae, the

nature of the curve in which the laminae are shaped and their initial

curvature have no influence on the stretches in the spring or upon its

resistance (pp. 207 8).

[487.] Phillips remarks that the formula (ii) of the previous
article enables us to calculate out the value of p for a succession

of positions on the matrix-lamina for any given spring, and thus to

draw a curve of its form under a given load. He gives (p. 206)
details of five experiments in which the deflections thus obtained

were compared with their experimental values. There is an ex-

tremely close accordance between the experimental and theoretical

results.

[488.] We next pass to the analytical determination of the de-

flection, the investigation of which occupies pp. 319 et seq. of the Note.

We have generally from
(ii)

1
= a + oz

(vn),
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where a=--:
--

,
b= . .

SJf *M
o o

Phillips has X where we have z, X being the distance from VV of a

given section measured along the central axis of the matrix-lamina, but
as we have already pointed out equation (ii)

is accurately true only
when we use z and not X. Phillips by neglecting the difference between

dKfdz and unity writes (vii) in the form :

where p = dyl<lzt
or is the slope of the tangent at the central axis to

the horizontal, i.e. to the direction perpendicular to that of the load Q.
This equation (viii) he integrates on the assumption that a and b are

constants along the central axis between the laps, and finds :

,
2

but the left-hand side = dyjdK^ hence integrating again

x3
..................... (ix).

It seems to me that (ix) is only true so far as we may legitimately

interchange X and z. Phillips does not seem to have remarked that

he has already supposed this interchange allowable when he puts X
instead of z on the right-hand side of (vii). Thus the true limitation to

Phillips' investigations appears to be that any curvatures, however

considerable, may be given to the laminae in manufacture, but that

when the spring is made up and in the unloaded state it ought to

be very approximately flat. This condition is probably satisfied in most

springs in practical use.

In our investigations we shall replace Phillips' X by z, since we use

X in a special technical sense in this work, but we shall suppose z

measured indifferently either along the horizontal or along the central

axis of the matrix-lamina.

[489.] C and C", a and b will have different values for each

separate lap of the spring. Let the spring have n + I laminae and let

A n,
Bn be the values of a and b for the portion of the matrix-lamina

which covers all the other n laminae, A H_ t ,
Bn-l the values of <> uml (>

for that portion which covers only nl laminae, and so on, and l<-t

Cm C'n> Cn-i> C'n-\ ^e *ue corresponding values of C and C'. As
before Ln , -_,, etc., L will be the semi-lengths of the successive laminae
from the lowest upwards. The conditions to be satisfied at the lap of

two laminae are that the deflection and slope shall be continuous;
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while if deflections be measured from the lowest point of the central

axis of the matrix-lamina we must obviously have Cn = C'n = 0.

An easy application of an ordinary method of solving finite differ-

ence equations leads to the results :

Cn-k = n-k+l
1

k

the summation being for k; while between Ln_k+l and Ln_k
2 ?3

fa r*r _L r1 v _i_ * . z?y=o n_ fc
+ i/_fe + .(xi).

We have thus the deflection at any point of the matrix-lamina. To
find the deflection due to the load Q, we must find the value of y when
Q = Q. Let yQ

be its value and let A n_k+lt ^n-ft+i> e*c - ^e *ne correspond-

ing values of A n_k+1 and Bn _j.+l . then we easily see from formulae for a
and b that Bn_k+1 etc. are all zero, and further that

Thus = yQ y we have the expression :

f 7l-fc +l^ Ti-fc+ 1

M i-fc

o

i
w

-|
+1

e^_^
O 7i Jc

n-k+l

M
-* 2 j

w-ft+i n-k
MX % M

o

(xii).

[490.] Phillips considers various special cases of the formula (xii) of

the preceding article. Thus the total deflection f of the spring due to

the load Q will be obtained by putting s = L and k = n
;
we then find

-
.

-
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A special case of this is when all the flexural rigidities are equal ;

we then have :

Qlf QL, Lf \ QL, L.f

Phillips still further simplifies this by taking

or supposing the laminae equally spaced out ;
he then proves that after

certain reductions we have :

QU QP /n(n-l) 111 1

+
2

+
2
+

3
+

4
+ "' ^"

These results show us that when the flexural rigidity and curvature

of each lamina are constant throughout its length and the rigidities the

same for all laminae, then the deflection (i)
is proportional to the charge,

(ii) is independent of the primitive curvature and form of the laminae

(pp. 319329).

[491.] Phillips now proceeds to extend the results just stated

by an ingenious process of general analysis to the case in which

the primitive curvatures vary in any arbitrary manner. He shows

that the deflection is still proportional to the charge and indepen-
dent of the original form and curvatures of the laminae (pp. 329

33). This independence of the deflection on the primitive form of

the laminae seems a result likely to be important in the practical

construction of springs.

It is further shown that the change in the sine of the angle
which the tangent at any point to the central axis of the matrix-

lamina makes with the horizontal is also proportional to the load

and independent of the primitive form and curvature of the

laminae.

[492.] On pp. 215 19 Phillips calculates the pressures between
the various laminae at any section given by z. Suppose the section

taken between Lk and Lk+1 (see fig. (i) in our Art. 485); let or = the

pressure per unit length between the matrix-lamina and the first sub-

lamina, &! between the first and second sub-laminae,...wk_i befrvvi n

the A; -1th and kth laminae, then Phillips easily deduces after the

manner of our Art. 485, that :
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k

Thus since
/o

is given by (ii)
we can find these pressures ; they must

all be positive if the laminae are to have no tendency to separate.

[493.] The memoir then passes to the effect of vibrations on

springs and to their resilience.

(a) The case of a weight Q placed upon the centre of a spring is

very easily dealt with, if we assume with Phillips that the inertia of

the spring may be neglected. The motion is then simple-harmonic
and of period l-TrJ^fjg, where /is the statical deflection which Q would

produce in the spring.

(b) If /? be the ratio of load to deflection, so that Q = j3f,
the

resilience is well known to be j3f'
2

/2 or Q^/(2/3). Now let w be the

amount of work due to a blow which will just flatten the spring,
and let the statical force required to flatten it be P, then we have

;2/s),

Phillips gives the result in the form

p _ /2w x oP-V7 xQ

on p. 223, which is obviously a misprint.

(c) The resilience may also be given another form suggestive of

Young's theorem (see our Vol. i. p. 875).
The work required to bend an element dz of a lamina from curvature

I /p' to 1/p, the sheet having an initial curvature l/r is well known to be

H(HHB)>
Thus the work required to flatten the element from its curvature of

manufacture or l/r
1 M

Hence if the length of the lamina be I, and its cross section to

T. E. II. 22
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be rectangular and of height e, the work required to flatten the whole

lamina, supposing its stretch-modulus E,

Now the stretch in the lamina has for maximum value s =
l.r/r, and

if U be the volume of the lamina, the work done

Hence the work done in flattening the spring

Supposing all the laminae to have the same final stretch on flattening,
then we have, if F be the total volume of the spring :

EVs2

Total resilience
^ (xvi).

Cases may arise in which the blow begins to act upon the spring
when it is already in a state of strain, i.e. its primitive condition is

one of strain. In this case p ,
the initial radius of curvature, is not

1 1 2s
equal to r, but -

,
where s

l}
is the initial stretch. Hence the

r p e
'

work required to flatten the element dz of a lamina is equal to

2
J

or, for the total work on a lamina we have the expression

}(OTT
rf*

Hence the total resilience of the spring

(xvii).

Of this result Phillips writes:

Le tmvail s<> trouve done diminud toutos IPS fois quo IP ressort HP p.

de sa position dp f.iln-i cation. Or c'est ce qui arrive pour tons IPS ivs^n-t* <!,-

choc et de traction qui wmt, p<is.
:> aveo tine cpi-taine l..-inde ; m.-iis on voit ipie

la difference sera ton jours asse/ iail.le
(ju.-iml

xn ne >cra p

que n'cntre |uc par son <pi.mv. Ainsi, dans IPS rcssorK ordlliairea, "ii \,,

ost environ 1,3 de x, on penl environ I ^ dc la puissance i!i; poin-

ter an (^hoc. On voit, en ni.'ine temps, |ii'il
\ a .-ivant.-eje a Hiii-

sortc|uel.i li;inde le pose .In re^,,rt. rpii rdpond h un etli-rt d'eiivimn 1000
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kilogrammes, produise un allougemeut s le plus faible possible ; par conse-

quent, sous ce point de vue, il y a avantage, toutes choses egales d'ailleurs, a

employer des ressorts un pen roides plutOt que tres-flexibles (p. 226).

[494.] Chapitre Deuxieme entitled : Des formes les plus

convenables d donner aux ressorts et des regies pour les calculer,

occupies pp. 227 301 and contains many points of great interest.

Phillips first draws attention to the fact, referred to in our

Art. 491, that the primitive form of the laminae is practically of

little importance :

II y a done avantage, sous le rapport de la simplicity, a choisir des

arcs de cercle, et c'est cette forme que je suppose adoptee (p. 227).

In the second place it is evident that the best sort of spring
will be built-up in such a manner that all its parts are equally
strained under any load or at least the maximum load (or maximum
strain due to any oscillations) which it is designed to bear. As a

rule this maximum strain will occur when the spring is completely

flattened, and in such state the maximum stretches in all the laminae

ought to be equal. The maximum stretch of the matrix-lamina on

flattening
=

e/(2r) and this will be the same for every section of it.

If the laminae have initially the same curvature then they will have

the same maximum stretch in every cross-section when flattened

out. But supposing the laminae have before being formed into

the spring initially different curvatures, we have then to ask how

they can be spaced out so that the spring can be reduced to

approximate flatness, and what conditions must be satisfied in order

that the maximum stretches shall be the same for all the laminae.

Let 2P be the load which applied to the middle of the spring
reduces it to approximate flatness. Then Phillips takes as his condition

of flatness that the curvature of the matrix-lamina shall be zero at each

lap of a sub-lamina. This gives us from equation (ii)
of our Art. 485.

<_! + PL, = 0, S
i + PLi+l

=
0, etc.,

or generally, P (Lt
- Li+1 )

=M^
which leads us to Lt Li+l

=
J4j/(/Vf) (xviii).

(xviii) is the formula which determines the spacing of the laps. If

the laminae are all of equal rigidity and initially of equal curvature we
have

L-L
1
= L

1
-Lz

= ... = Li -Li+1
=
...^j^ (xix),

which determines the spacing for this special case.

222
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If any lamina say the &th has a considerable initial strain, then
we have rk <r, and therefore if the stretch on flattening is to be
the same for the &th lamina and for the matrix-lamina we must have

8 =~ =
,

or we must have ek < e. If lk
= Lk -Lk+l ,

we have

= Ebek*/(l2Prk], similarly 1= Ebe?/(l2Pr), where b is the

breadth of the laminae; hence it follows that ek /lk >e/l, and therefore

4 < *
I and lk ek < ^ le, but ek < e so that ct fortiori we have

6 6

4 < I and lkek < e.

If we flatten the spring out so as easily to calculate its volume, we
see that if there is no initial strain and therefore all the depths of the

laminae and the spacings equal, the volume, omitting that of the matrix-

lamina, will be measured by an isosceles triangle of area Le/l less the

sum of the little triangles of bases I and height e, or eL. Now if there

be initial strain since ek/lk > e/l,
we see that the perimeter of the figure

formed by joining the corners of successive laminae falls outside the

above isosceles triangle and has therefore a greater area, call it F\ \v<-

have to subtract from this figure the sum of the little triangles of bases

4 and heights ek ,
or the volume of the spring will be measured by

F~2,lkek ,
but by what precedes F>l?e\l and lkek <le. Hence the

vo\ume of the spring having a considerable initial strain and the

same flexibility and absolute resistance which requires a given load to

flatten it, is greater than that of a spring with equal heights and

spacings for its laminae, and having the same matrix-lamina (pp. 231

3). On the other hand if the thicknesses of the laminae increase from
the matrix downwards it may be shewn that the volume of the spring is

less than in the case when all the thicknesses are equal (pp. 238 9).

Phillips then proceeds to shew that as a general rule the non-

equality of the heights and curvatures of the sub-laminae with th

of the matrix-lamina has very little influence upon the deflection of the

matrix-lamina. For if ek/rk e/r and ek < e, it follows that ek*/rk
< e

3
//*

or

Mkfrk <Mjr, or the resistance to initial strain is greater in the matrix

lamina than in any sub-lamina (pp. 233 4).

In the case of a spring with laminae equally curved initially it is

easy to prove that the maximum stretches at all the cross-sections

in all the laminae will be equal, even if the load be not the maximum
or flattening load.

[495.] Hitherto Phillips has only made the curvature for th<>

maximum load P zero at the laps. IFe now proposes to deduce tin-

proper shaping off of the ends of the laminae in <>nler thai the

nirvature may !>< xero at all points.
For the matrix lamina itself from L to L^ we must have
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or, if y be the variable thickness of the lap and L z = x, since M. varies

as y
3 we have

y*/x
= constant = e?/(L Z

x),

which determines the value of y for each x.

For the first sub-lamina we have :

or Z+-?(*- itf-ir(-4-0,

whence, since the matrix lamina has uniformly M/r - /' (L
-
Lj) after

*-A
*) ............................ (xx),

or, if Lj^ z = x
lt yil%\

= constant = e1
3

/(Z'1
- Ls).

Thus the thickness at the ends of the first sub-lamina follows the

same law as in. the case of the matrix lamina, and the like may be

shown of the other successive laminae. Instead of tapering off the

thickness we might have reduced the breadth, or terminated our

laminae in poignard or triangle form (see fig. (iii)
of our Art. 485).

Phillips states that this latter method is the more wasteful (pp. 237 8).

[496.] A formula is obtained by Phillips on pp. 332 6, which
seems of considerable interest and practical value. He finds namely
the deflection of a f

complete
'

or '

incomplete
'

spring when all the

laminae are of the same section except at the laps, where account is

taken of their proper shaping. He supposes also equal curvatures of

manufacture.

Calling m the flexural rigidity of the &th lamina at the shaped lap,

we have by equations of the type (xx),

and by the law of spacings (xix), since the spaces are equal,

Further (k-l)l + L^ = L.

Whence since

we easily find :

1 P-Ql .

.,r p -r

...........................
<
xxi

>-

Thus the curvature for the complete portion of the spring or the
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part which is staged is constant, and thus the matrix lamina takes the
form of a circular arc whatever be the load.

Suppose the staging to cease with the nth lamina so that the length
2Ln of the spring is neither tapered nor covered by any sub-laminae,
then we have

But - = PIIM = P (L
- Ln)/(nM).

Thus we have

- = a + bz
(xxii),

where a={P (L- Ln)
-
QL}j(nM\ b = Q/(nJf),

2LH being the portion of the nth lamina not thinned down.

For the portion of the spring which is complete we have

- = a/
(xxiii),

PQ 1
where a' = ^ - by (xxi).P r

If (xxii) and (xxiii) be twice integrated and the four constants of

integration determined by the vanishing of the deflection and slope \\licn

z = 0, and by the equality of the deflections and slopes when z - LH as
obtained from the tsvo expressions for the curvature of the complete and

incomplete portions, then the following expression for f, the droop due
to the load Q, is reached after some algebraical reductions :

If the spring is complete, nl = L and

or 3/2 of the value of the droop of a spring of n equal flat laminae of

the same rigidity M and of the same length 2//.

Phillips gives details (on pp. 214 5 of the memoir) of experiments
on the deflection of springs actually in use on various railway wa-
:ind locomotives, and compares the experimental values with those

calculated from the formula (xxiv). There is a very remarkable accord-

ance between theory and experiment.

[497.] To calculate the depths and spacings of the laminae of t In-

most general type of spring we must use the formulae :

J. _ e
J _ ^ _~~~ "
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where
6\,

is the maximum stretch in each lamina when the spring is

flattened, and

T T
M T T M

l T T
M

L ~Li
=
pi>

^~ - ]V 2 3 "2^' '

P being half the central load required to flatten the spring.
Of these results Phillips writes :

S'il arrive que les epaisseurs augrnentent de quantites trop petites pour
qu'on puisse donner a toutes les feuilles les epaisseurs calculees d'apres leurs

rayons, on donnera a plusieurs feuilles, en partant du haut, une epaisseur
commune cgalc h la nioyenne entre leurs epaisseurs, et un etagement commun
egal j\ la moyenne de leurs etagements ;

on fera de menie pour plusieurs des

feuilles suivantcs, et ainsi de suite jusqu'a ce que le ressort soit termine.

Quant aux amincissements, ils se calculeront par la regie generale (pp. 240 1).

[498.] There are two special methods of easily designing a

laminated spring to which Phillips refers on pp. 238 9 :

(a) We may suppose all the laminae cut as it were from one and
the same hoop of metal, so that all have the same primitive curvature

and thickness. When the spring is manufactured there will then be a

very slight initial strain in the laminae before the spring is loaded.

Such a spring possesses the advantages referred to in our Art. 494.

(b) We may suppose the laminae to have no initial strain by
describing the laminae from the same centre and with bounding radii

increasing by the mean of the thicknesses of adjacent laminae, while the

thicknesses themselves increase proportionately to the radii of the central

axes, or obey the relation :

_1 _ _?L _ _^_ _ =.?.=
2r 2ri 2r2 2r

This sort of spring besides having no initial strain has also the

advantage of a slightly but sensibly less volume than that described in

(a). This is really the converse of the proposition in our Art. 494, p.

340, because by Art. 497 the ratios of the successive thicknesses to the

corresponding spacings vary inversely as the thicknesses and so now
decrease.

[499.] On pp. 240 2 of the memoir are given a number of

interesting properties of springs, the laminae of which have the same
or sensibly the same thickness (Case (a) of the previous Article).

If H be the total thickness at the mid-section of such a spring sup-

posed complete, I the equal spacing of the laps, L the half-length and b

the breadth of the matrix-lamina, 2P the flattening load and V the

volume, then we have in the notation of the previous articles :

e r M ,T T7T1= -, nearly; ^^= ; ' nearly.

Further, if f be the droop of the spring when unloaded, then since
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there is little or no initial strain : r = L2

/'2f= = by the first equationwS

of our Art. 498, (6). Whence we deduce

Now let v equal the flexibility of the spring, or, the droop produced
when a unit load is put at each extremity, then we must have, supposing
stress and strain proportional :

SP-v 6PV
and hence:

^=^,j , and V =
^_

.

Thus we find for a given material that :

(a) The total thickness of a spring is proportional directly to :

(i) the square of the flattening load,

(ii) the flexibility,

inversely to :

(i)
the breadth of the spring,

(ii) its length.

(6) The volume of a spring is proportional to :

(i) the square of the flattening load,

(ii) its flexibility,

and further :

(c) Springs having the same Oexibility and ultimate resistance, _'/',

have also sensibly the same volume.

Since l/L= e/II= rszg- >
and we must have l< L, it follows that the

length L of the spring ought to be such that :

a condition generally satisfied in practice.

[500.] Phillips next proceeds to apply his theoretical results to the

practical calculation of (lie dimensions of springs, chiefly those of railway

wagons. He determines numerically the lengths of the various laminae

suitable for springs of various classes. The springs thus calculated

were constructed and the experimental deflections :e_
fivcl vry closely

with those obtained by theory (pp. iM'J
">:>).

The data assumed are

(i) the flexibility of the spring (v); (ii)
its absolute resistance d'/'):

(iii)
the chord of manufacture (*-V) of tin- >prini,'; (iv) the normal load

'i
; (v) the breadth of the laminae (b). Phillips suppoM-.-, in addition
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that the limit of resistance of the spring is reached under the load 2P
corresponding to flattening. He shows, however, how the details may
be calculated when the flattening load corresponds to neither 2P nor

to 2Q, and also when the data are otherwise varied. Since the flexi-

bility is known, the droop produced by 2P the flattening load, that

is the subtense f of manufacture, is known. Phillips then puts without

further comment L = \/c
2 +/2

,
or he equates the length of the spring to

the chord of half its arc thus tacitly neglecting quantities of the order

{(L c)/Ly. This is, however, in accordance with his previous approxi-
mations : see our Arts. 484 and 488. He further supposes the laminae

to be of equal initial curvature and thickness and neglects any initial

strain. Thus he easily deduces that the values e, I of the thickness

and the spacing are given respectively by

_c
2 +/2 EbeAf
f

S
5

~6P(c
2 +/2

)'

while the number of laminae will be the whole number in the quotient

L/L
For steel Phillips takes E = 20,000 kilogrammes per sq. mm. and

s = -0025, as a thoroughly safe stretch below the fail-limit for good steel.

On pp. 247 8 he shows that, when the laminae are described about
the same centre, the thickness of the kth lamina, its radius of curvature

and the corresponding spacing will be found from those of the (k l)th
lamina by the formulae

_ fc-i fc-i + e
fc_! _e]L __^

2^!-**.!
'

r
*-v *~^V

The first formula might for practical purposes be replaced by

[501.] On pp. 252 5 after discussing the effect of bolting the

matrix lamina and under certain conditions several of the sub-laminae

of the spring to a rigid frame on which the load is placed, Phillips next

turns to the very important practical point of whether adjacent laminae

do or do not tend to gape. His consideration of this matter occupies

pp. 255 68, and is of great interest. There are three fundamental

types of laminated springs to be considered : (a) the first type when the

curvature of manufacture and the thickness of the laminae are equal
for all, (6) the second type when the thicknesses decrease from the

matrix to the sub-laminae, and (c) the third type when they increase. In

both (b) and (c) it is supposed that the thicknesses, radii of curvature

and the spacings are calculated by the formulae of our Art. 497, i.e.

that they are determined so that the stretch on flattening is the same
for all the laminae.

Phillips shows that for the first type of spring each lamina

experiences only pressure at its terminals and that each such pressure
is half the load, the laminae remain exactly fitted to one another
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without sensible pressure, but without gaping
' ce qui est conforme a

Pexperience' (p. 256). When a spring is of the second type the laminae

tend before, but not after flattening to separate. Finally if a spring is

of the third type its laminae tend to separate after but not before

flattening. In both cases (b) and (c) there is complete contact right along
all the laminae for the load corresponding to flattening. These effects

may be somewhat, but only slightly modified at the sections of the spring

corresponding to the ends of the laminae. This modification will be

very small if the spring under its normal load does its work in a flat

condition.

On voit ainsi, en outre, qu'il convient de faire en sorte qu'un ressort

travaille habituellcnieut aplati sous la charge qu'il supportc; imk'pendam-
ment de cc qu'alors les glissciiients des feuilles, et par suite le travail du au
frottement sont moindres (p. 268).

Phillips deduces the important conclusions we have referred to

above from the expressions for the pressure between successive laminae

which we have reproduced in our Art. 492.

[502.] Pages 268 93 of the memoir are devoted to what the

author terms a ressort a auxiliaire or a reserve spring. He describes

it in the following words :

En principe, on a fait rernplir par dcs appareils difterents deux conditions

essentiellement distinctes : la flexibilite et la resistance qui n'ont nullement
lirsoin d'etre remplies par le inerne instrument. Le ressort se compose alors

des deux parties: 1'une, forrnee de feuilles toutes de meme epaisseur, wnstitue
le ressort proprement dit: ellc travaille seule ordiiiaireincnt sous la charge
uormale; 1'autre, placee au-dessous, est plus epaisse et divergente, et ne vinit

en contact avec elle que sous un exces de charge et successivement. Cette

derniere partie qui sort d'auxiliaire est calculee d'apres 1'exces dc resistance

propre qu'on desire attribuer au ressort, quelle que soit d'aillcurs cette r<

tance (p. 269).

The part of a reserve spring which is called into play by the normal

load may be termed the main spriny, the part which is only called into

play when the normal load is surpassed the secondary spring. In order

that a reserve spring may offer a progressive resistance to oscillations

beyond the normal load, the secondary spring must be constructed in

such a manner as to establish only a gradual contact with the main

spring.
If the extreme resistance 2P of the spring be reached when both

its parts are flattened and 2Q be the normal load, then the contact of

main spring and secondary spring ought to begin when the load is 2Q and

go on up to complete coincidence under 2/ >
. The main spring will

generally be formed of a number of laminae of equal thickness spaced in

the usual manner and calculated so as to have a given droop i under

the normal load 2Q. The calculation of the main spring under these

conditions, especially when the form sought is to involve the least

ex penditure of material, is a matter of rather troublesome approximation
but is discussed very fully by Phillips (pp. 270 5 etc.).
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The secondary spring may be made in one of several forms
;
for

example it may be (i) circular, in this case its radius of manufacture
r ought to be equal to the radius at the centre of the last lamina of

the main spring when under load 2Q, i.e. if there be n laminae of equal

rigidity and curvature of manufacture in that part of the spring we
must have :

or (ii),
the shape of the secondary spring may be the elastic line of

the last lamina when under the normal load, or better a form a little

more curved than this so that the oscillations of the main spring may
be carried gradually and not abruptly to the secondary. This case is

discussed by Phillips on pp. 286 92.

[503.] He remarks that in most cases it is sufficient to make the

secondary spring consist of a single lamina. Its semi-length L' will be
that of the last lamina of the main spring diminished by the spacing
M/(Pr), and we should then have in case

(i) to determine its rigidity
M' from the equation

M' = Pr'L'.

A more complex condition comes in, however, if we take a single
lamina for the secondary spring in case

(ii),
for in this case its rigiditym (and so the thickness of the lamina) must vary throughout and the

maximum stretch must not exceed s when the lamina is flattened.

We have then in the notation of our previous articles :

while m' =^ JEbe'
3
,
and if there be n laminae in the main spring we

have

nM
Further, s must be > e'/(2r').

Whence we easily deduce

r ') 3P

The left-hand side will be found to be a true maximum for

*

and since L - L' = nMf(Pr),

the inequality may be easily reduced to :

K) s^Eb 3M"'
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if we remember the value of M and that e = 2rs for the main spring.
Hence finally we must have :

For example if P = 2Q we must have n < 27. This sets a limit to the

number of laminae in the main spring when the secondary spring
consists of a single lamina shaped like the form of the main spring
under the load 2Q (pp. 28990).

Phillips on p. 282 draws attention for the first time to the

source of error which may rise to importance, especially in the case of

reserve springs, from the chord and arc of the matrix lamina having
been treated as interchangeable in the equations : see our Arts. 485, 488,
and 500. He measures the amount of error thus introduced and shows
how it may be allowed for. He remarks that the flexure due to a

given load is obtained as the difference of two formulae, one of which

gives the subtense without load and the other with load. The latter

formula he holds to be sufficiently exact in practice when the chord
and arc are interchanged, since the normal load approximately flattens

the spring ;
the former must be modified if the difference between the

arc and chord gives a sensible difference in the value of the subtense

when the two are interchanged. If L and S be semi-chord and semi-arc

the quantities L
2

/(2r) and S2

/(2r) must be practically equal (pp. 282 4).

[505.] A remark of Phillips on p. 295 is worth citing. It refers to

the springs we have classed in our Art. 501 as of the third type :

Je ferai remarquer, en passant, quo le type dejk de"crit des ressorte a
fcuilles d'epaisseurs croissantes, qui travaillent aplatis sous la charge normale,
et dont toutes les feuilles dprouvent dans 1'aplatissement un meme allonge-

nient, rentre reellemeiit dans la classe des ressorts & auxiliaire, car les ra\

etaiit croissants, les feuilles ne viennent en contact quo successivemcnt,

fait est d'autant plus saillant, que souvent ces ressorts se terminent par unc
ou deux grosses feuilles. Settlement le propre de ces ressorts est que twites

les feuilles sont jointives sous la charge normale, et qu'alors toutes cprouvcut
les incines allongements.

[506.] The few remaining points in the second chapter of the

memoir may be veiy briefly indicated

On pp. 295 8 Phillips deals more particularly with the calculation

of springs intended to resist impact, and gives details of various springs

actually constructed for the Chemin de Fer de VQuest. Phillips d<

a novel kind suitable for resisting both impact and steady j-n-ssun- and

offering special advantages for passenger coaches on railways. Ti

springs have secondary springs attached to them consisting of one or

more large laminae so arranged that the flexibility is much less after

the load has passed a certain limit (e.g. 3000 kilogs.), and thus
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heavy loads or impacts do not tend to vary very greatly the relative

heights of the buffers of the carriages.
On pp. 299301 we have a short resume of the results of the

chapter and an indication of how the theory therein developed may be

used for the investigation of new forms of springs. It is followed by a

table of numerical details of all the springs which had been constructed

according to Phillips' theory before 1851.

[507.] Chapitre troisieme is entitled : Experiences sur Telasticite de

Racier and occupies pp. 302 18. A description of the apparatus em-

ployed is given and long details of experiments on various kinds of steel,

tempered, annealed, hammered etc. Phillips concludes that for practi-
cal purposes we may take the stretch-modulus at 20,000 kilogs. per sq.

mm. and the fail-limit, or that limit which it is not advisable to exceed

even for an occasional and exceptional load, as a stretch of from *004 to

005 according to the quality of the steel, while for the normal load the

stretch should not exceed '002 to -003.

Dans les meilleurs ressorts faits jusqu'k present, 1'acier travaille habi-

tuellement \ environ '0022 sous la charge normale (p. 317).

In the course of his investigations Phillips notes that to stretch

steel for once up to '005 or '006 saves it from any sensible set when

again subjected to the same strain (p. 316), and further he briefly refers

(p. 318) to a result associated with the 'paradox in the theory of beams'

as a subject for future study. Thus he states that a stretch of -0095

(instead of '005) corresponding to a load of 190 kilogs. per sq. mm. can

be reached in flexure experiments without danger.
The appended Note then follows, the details of which have been

given in the course of our analysis of the memoir.

[508.] The memoir just considered is a striking example of

bow a very simple elastic theory sufficiently accurate for the

range of facts to which it is applied can be made to yield most

valuable results. Phillips' theory of springs such as are employed
in the ordinary rolling stock of railways is one of those excellent

bits of work which can only be produced by tbe practical man with

a strong theoretical grasp. I have devoted considerable space to

its discussion as the Journal in which it appears is not among the

most accessible, and so far as I know tbe only text-book in which

extracts have yet found a place is M. Flamant's Stabilite des con-

structions, Resistance des materiaux, Paris, 1886 pp. 574 88.

[509.] Giuseppe Fagnoli: Riflessioni intorno la teorica delle

pressioni che un corpo o sistema di forma invariabile esercita contro

appoggi rigidi ed irremovibili dai quali e sostenuto in equilibrio.

Mem. dell' Accad. delle Scienze di Bologna, T. vi., 1852, pp. 109 38.
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This memoir, as long-winded as its title, was probably the last

attempt to solve without the aid of the theory of elasticity the

problem of the reactions upon a body of more than three points
of support. It seems to me utterly obscure and involves the

strange metaphysical conception of internal reactions in '

perfectly

rigid bodies.'

[510.] A. Popoff : Sur Vintegration des Equations relatives aux

petites vibrations d'un milieu 4lastique. Bulletin de la societe' im-

pe'riale des naturalistes de Moscou. T. xxvi., Premiere Partie, pp.

.34256, Moscow, 1853.

This paper deduces by a slightly different method the solutions

of the uniconstant elastic equations for small vibrations first

obtained by Ostrogradsky and Poisson: see our Arts. 739* 41*

and 564*

There does not seem any particular advantage in the method

of Popoff and he draws no new conclusions from his solutions.

[511.] A. Popoff: Integration des equations qui se rapportv///

d Vequilibre des corps elastiques et au mouvement des liquides :

Bulletin physico-mathe'matique de VAcademie...de St Pe'tersboirrg,

T. xiii., 1855, pp. 145 9. This is reprinted (with the title only

in Russian) in the Melanges mathematiques et astronomiques, T. II.,

pp. 2849.
The paper was received in October 1852.

Adopting the notation of our footnote p. 79, and supposing the

elastic body to be under the influence of no body-forces and in equili-
brium then we can easily show that the- equations of elasticity in

cylindrical coordinates are :

V-0 = 0,

u 2 dv

X + /A dO nV-w+ , =0.
H dz

d'- 1 d 1 rf
2 d?

where V* = -
.,
+ -

-j- + + .

<//- r fir r- d<}>- da?

or is flu- L;i].l:ici;ni in cylindrical coordinates.
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du u 1 dv dw
Further, 6 = -y- + - + - _ . + -

T
- ..................... (11).dr r r d<j> dz

We can obtain by our Art. 884* the thermo-elastic equations of

equilibrium, if we write for 6 in
(i)

6' and instead of
(ii)

write

du u 1 dv dw 3
=

-j- +
- + -y- + -,-

-
q ............... (m),dr T r d<f> dz ^

where for thermal equilibrium, V 2

g = .............................. (iv),

q being the temperature at r, $, s.

It is these thermo-elastic body-shift-equations, which Popoff has

solved. He has not considered the surface conditions nor the stresses,

and he limits his investigation to cases in which
</, 0', u, v and w do not

become infinite for r = O
1

.

[512.] The solution is really in terms of Bessel's functions, although
he expresses them by integrals of the form given in equation (4),

Art. 371, of Todhunter's Functions of Laplace, Lame and JJessel.

The solution is fairly straight-forward although only the outline of the

integrations is given. The results are somewhat too lengthy to be

reproduced here, but should be consulted by any one endeavouring to

solve the general problem of the strain in a right-circular elastic

cylinder subjected to any system of surface-stress. To show the type
of solution I cite the value of w :

=2 ([(Ae
az - A'e~az

)
cos n<j> + (Be

az - sn

where e = cos (ar cos x) sin2

Jo

=
I si

Jo

and n is an integer to be given all values from to oo . A, A', />, B ',
a

are constants to be determined by the surface conditions.

The constant a is in practice the most difficult to determine, it

appears in each Bessel's function and in each exponential, and even for

the simple cases of axial symmetry, we obtain an appalling equation to

ascertain its relation to n. The analogy of struts leads us to see that

there are many cases in which it must be imaginary.
The values of u and v are still more complex, and it seems to me

that really practical progress will hardly be made by attempting to

carry this solution in Bessel's functions further. Possibly more might
be achieved by solving Laplace's equation in cylindrical coordinates

by a definite integral and then attempting to deduce definite integral
solutions for the shifts.

1 In his notation 0' = w,
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[513.] J. B. Phear: Note on the Internal Pressure at any
point within a body at rest. Cambridge and Dublin Mathematical

Journal, Vol. IX., 1854, pp. 1 6. A proof of the existence of

Lame's stress-ellipsoid of no peculiar interest : see our Art. 1059*.

The author remarks that this representation of stress is "so

elegant that it seems to deserve a place in our University mathe-

matics."

[514.] M. Bresse: Recherches analytiques sur la flexion et la

resistance des pieces courbes, Paris, 1854, 269 pp. and three plates.

This treatise consists of five chapters and treats analytically on

the Bernoulli-Eulerian hypothesis the flexure of curved ribs, in

particular, circular arches. It contains a very complete discussion

of the problem, and Bresse's tables are of considerable value in

testing any proposed circular arch. At the same time the graphical
methods of Eddy are of more general application and would

probably be now-a-days adopted, at least as a method of verifi-

cation and comparison. I proceed to give some account of the

contents of this treatise.

[515.] Chapter I., is entitled : fitude hypothe'tique de la re-

partition d'une force sur la section droite d'un prisme. Pp. 1 43

are occupied with a very full, clear and interesting discussion of

the properties of the neutral axis and the load-point (stress-centre)

and of their relations to the ellipse of inertia, and applications to

the core, the centre of percussion and centre of pressure of a given
area or cross-section. After comparing this chapter with the Coitrs

lithographie referred to in our Art. 813*, I have no doubt that

the Cours was due to Bresse, or that we owe to him the important

conception of the core and all that flows from it I regret that I

was not able to associate his name with this conception in Vol. I.

It is to be noticed that Bresse proves these properties on the

assumption that the stretch-modulus varies over the cross-section.

He treats it as if it were a variable distribution of surface density

over that section.

[5 1C.] Pp. 44 56 of this chapter are entitled: Repartition d'une

charge totale sur la base d'un prisme n'ayant pas d'adherence avec son

appui.

Suppose a loadod prism to rest on a 1iori/ont:il l>aso. Tliis l>;is

give pressure Imt not tension. Suppose farther the resultant vertical
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load P on the prism to meet this base in the point //. If // lies within

the core, the base will be required to give pressure only and the distri-

bution of that pressure will follow the law laid down in our Art. 815*.

On the other hand, if H falls outside the core, we cannot make use of

the formula in our Art. 815* as it gives in part tensions. The problem
considered by Bresse is then : How must the pressures be distributed over

the portion of the prism's base remaining in contact with the plane in

order that the resultant of these pressures may be equal and opposite to P?

Obviously the boundary between the parts of the section remaining
and not remaining in contact must be the neutral axis for the part

remaining in contact. Otherwise a portion of the section on both sides

would give pressure or be in contact. The problem then reduces to the

following : To cut a portion off a given area by a straight line, such

that the load-point or stress-centre of the area cut off when it has the

straight-line as neutral axis may be a given point.
For the general case Bresse only suggests a method of tentative

solution. Namely to take : (i)
a series of parallel neutral axes and find

the load-points of the portions they cut off; the series of points so

obtained gives a curve, which we may term the 'load-point curve'; and,

(ii)
to draw such load-point curves for a variety of directions of the

series of parallel neutral axes. Obviously the load-point curve which

goes through the given load-point H solves the problem.
On pp. 46 48 Bresse proves an interesting property of the load-

point curve, namely that the tangent to this curve at any load-point

passes through the centroid of the area cut off by the corresponding
neutral axis.

In the particular case when the given load-point lies upon an axis

of symmetry of the section of the prism, we have only to draw neutral

axes perpendicular to this symmetrical axis, and the required one can

often be fairly easily found. Bresse works out the required dividing
line in the case of the rectangle, circle, ellipse, etc., in which cases the

analysis is not difficult. In particular in the case of a rectangle '2a x 2b,

when the load-point is at a distance na from the centre (n > J) on the

axis of symmetry parallel to the sides 2a, the neutral axis lies on the

opposite side to the load-point at a distance from the centre equal to

a (2 3n), and the maximum stress is in the side of the rectangle

parallel to the neutral axis and

P 4
~
\ab 3 (l-n)'

It is shown on p. 52 that the maximum stress in the case of a circular

cross-section increases much more rapidly as the load-point is removed
further from the centre than in the case of a rectangular one the side

of which is equal to the diameter of the circle.

[517.] Bresse's second chapter is entitled : Generalites sur la

flexion et la resistance des pieces courbes (pp. 60 67). This chapter

gives a very clear account of what the author understands by an

T. E. n. 23
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arched rib (piece courbe) and the limits he has set to his discus-

sion of the general problem. Thus he neglects slide, he supposes
torsion to produce no effect so great that the rib-axis cannot still

be dealt with as a plane curve, and he calculates the stress across

any section on the assumption that the section is in the unstrained

position ;
he allows, however, for a gradual change of cross-section

and for a variation of the stretch-modulus in the cross-section.

The '

mean-fibre
'

of the rib is defined as the locus of the centmids

of the cross-sections, when those cross-sections are supposed to

have a superficial density at each point equal to the stretch-

modulus. He sums up the problems he proposes to deal wit I

follows :

(i) To find the stress over each cross-section of the rib

supposing the loads and reactions given.

(ii) To find the effects of a change of temperature in pro-

ducing stress and shift.

(iii) To calculate the reactions when the unstrained form and

the load are given.

[518.] Chapter III. is entitled : Flexion et resistance des pieces

courbes, lorsque la piece, dans Fetat primitif et dans Vetat de flexion,

se trouve dans un plan contenant aussi les forces exte'rieures (pp.

68156).

The first section (pp. 68 76) of this chapter deals with problem (i)

of the previous article. It shows how to find the stress-centre (load-

point) of each cross-section when the reactions and the external foi

on the rib are known. Suppose the rib divided up into elements and
the corresponding distributed or concentrated loads represented by a

single resultant for each element. Now form a vector-polygon of these

elementary loads and the two terminal reactions. Choose the meet of

the two reactions as ray-pole of this vector-polygon, and draw a coi -re-

sponding link-polygon
1

for the rib, its first link being the reaction at

one of the terminals of the arch. This is the 'line of pressure' of tin-

arch
y
and it meets each cross-section of the rib in the corresponding

stress-centre. The total stress at this stress-centre is measured by tin-

corresponding ray of the vector-polygon. This stress may be resolved

in and perpendicular to the cross-section. The component in the piano
of the cross-section gives the total shearing stress across the section

;

the component P perpendicular to the plane, if substituted in tin-

formula of our Art. 815* or of p. 879 of Vol. i. irivr-; tin- distri-

1 Vector- and link-polygons are the convenient terms by which ClitTonl

generalised the names force- and funiculnr-polypons.
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bution of traction over the cross-section. Bresse is dealing with cases

where the plane of flexure is the plane of loading, i.e. the load-plane

passes through a principal axis of each cross-section (note our Art. 14),
so that the formula takes the simple form

Here, if E the stretch-modulus vary, we must put

K will also change if the cross-section be supposed to vary slightly.
As a rule it will be sufficient to tabulate (or exhibit graphically) T
for the extrados and intrados. The quantity b may sometimes be

obtained with sufficient accuracy by scaling its value from a carefully
drawn line of pressure. It can of course be ascertained for any cross-

section by an analytical determination of the resultant of the forces

acting on the rib to one side of the cross-section.

In the following section of the chapter (pp. 76 83) Bresse gives
two most interesting examples of the calculation of the tractive stress

over the cross-sections of arched ribs in the cases of a simple arch due
to Tritschler (Pont' de Brest) and of a combination of ribs forming an
arch due to Vergniais. I do not think 'a more instructive study can
be found for an engineering student than to work out for himself

with Bresse's data, both analytically and graphically, the stresses in

one or both of these two cases.

[519.] III. (pp. 8495) is entitled : Recherche des defor-

mations de la fibre moyenne sous I'action de forces exterieures

supposees toutes connues. Its object is to find expressions for the

shifts at each point of the central axis (la fibre moyenne) of the

arched rib, and for the change in inclination of the cross-section

at any point of the central axis. We may obtain Bresse's

equations as follows :

Let a be the angle the cross-section at any point of the central axis

makes with a given cross-section, measured so that a increases with s the

length of arc from the given cross-section, let e be the 'moment of

inertia' and e the 'mass' of the cross-section supposing it loaded with a

superficial density equal to the stretch-modulus E. Then the change in

the angle So, due to the strain may be represented by ASa, and that in the

arc Bs by ASs
;
let p be the strained, p the unstrained curvature at any

point s of the central axis, and N the corresponding total normal stress.

Then we easily deduce for the stretch in a*
' fibre

'

distant z from the

line through the centroid of the cross-section perpendicular to the load-

plane :

/I 1\ / n z\ ASs
stretch = z(- -

)
+

(
1 + -

)
_

,

\p pJ \ p/ os

232
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supposing (z/p)- to be negligible; therefore the bending moment M,
taken to increase a, is given by

M =

/I 1\ e AS*
=

(

- -
)
+ -

j .

\p DO/ p d*>P Po/ P

Putting in for p and p their values in terms of a and *, we have

M ASa da AS* 1 AS*_
ds 8n )

ASa
(1-1^;
\p po/ Ss

.P Po>

Now the second term on the right-hand side may generally be

neglected in arches because it is the product of small diflereii.

hence integrating, it follows that :

'Jf,Aa - Aa = 2, o*
(l).

This agrees with Bresse's equation (8 bis), p. 87. On p. 85 he does

not give the second term of the expression above for ASa, because

he appeals to a result on his p. 35, where, however, he has treated the

central axis as straight.
We may obtain Bresse's equations (9 bis) and (10 bis), p. 88, as follows:

9* cos a = dx, 9* sin a = 9y.

Hence, if u and v be the shifts, and (3 a coefficient of stretch

produced by any cause other than the loads, as for example temperature:

SM = A9* cos a - 9* sin aAa

Summing this (the second term on the left by parts), we have

u-u = 2- fo + p(x-x ) + &a (y-y{)) + y2 & - 2 y
'

t e as
*o o

Or rearranging :

-y,)
' + -

<i ei

where the summation is 'to apply only to quantities marked with the

subscript ,.

Similarly we find :
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We have retained the sign of summation as it indicates clearly the

method of procedure by quadratures, when, as is most frequently the

case, the loads and bending moments are not continuous, and so inte-

gration cannot be applied.

[520.] On pp. 90 94 Bresse indicates how the constants

Aa
,
u

,
V can be determined practically. Thus one or more cross-

sections will have their directions unchanged, or one or both

terminals will be pivoted, or there will be a line of symmetry for

the rib
;
three conditions will always be given which enable us to

determine these constants. On pp. 95 105 we have the formulae

(i) to (iii) applied to several special examples. Thus Bresse

deals with :

(a) The case of a uniformly loaded rib of circular form and

given span with uniform cross-section. The integration of the

equations is easy, though the results are long (see our Arts.

5256). He considers this case with a uniform load first along
the arc and secondly along the chord

;
the load being in both

instances vertical and the chord horizontal.

(6) The case of a cast-iron circular rib of the railway viaduct

at Tarascon over the Rhone (see our Art. 527). The deflection as

obtained by calculation is '0642 metres, as obtained from the mean
of experiments on the rib before and after erection = *0650 metres.

This is an excellent example of the application of theory to

practice, and the nearness of the theoretical and experimental
results is remarkable, when one remembers the irregularity of

the stretch-modulus across the cross-section and even the doubt

as to its mean value.

The theoretical result for the deflection due to a change of

temperature of 1 centigrade is worked out on the supposition
that j3 the linear dilatation = '00111. It is '00159 metres. Ex-

periment gave in the mean '00135 metres or a difference of

about 1/6.

[521.] The following section of the chapter under discussion is

entitled : Recherche des forces inconnues, and it occupies pp. 105

126. In the examples hitherto considered Bresse has supposed the

terminal reactions to be known
;
this is not generally the case, and

we now turn to the problem of discovering the unknown reactions

when the primitive form, the nature of the terminal fixings and
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the superincumbent load are given. We will briefly cite the

conditions to be applied to equations (i) (iii) in order to obtain

the unknown reactions :

(a) At a fixed or jnvoted terminal we have u = v = to determine
the two components of the unknown reaction at that terminal.

(6) At a built-in terminal we have u = v = 0, and Aa = to determine
the two components of the reaction and the bending moment at that

terminal.

(c) When two ribs are fixed or joined together, we have u and v

the same for both at that point, which gives two equations to find tin-

components of the mutual reaction.

(d) When two ribs are built into each other, we have three

equations arising from the equality of the values of u, v and Aa for

both ribs at that point; these equations suffice to determine the

reaction and the bending moment at the point.

(e) If a terminal be constrained to move along a smooth curve, we
have a relation between u and v for that terminal, which suffices to

determine the normal reaction of the curve.

In all these cases there will be three equations of statical equilibrium
for each rib, which suffice with the above to determine the constant >

Aa
,
u

,
and V

Q ;
thus in each case there will be sufficient equations to

determine all the unknowns.
Bresse treats a number of general cases of fixed or built-in terminals

etc., or of combinations of ribs, by the principles we have laid down
above. His method is, however, sufficiently indicated by our state-

ment
;
the analysis varies in quantity according to the nature of the

structure 1
. Two of the more interesting cases investigated are those of

an arched rib with a horizontal tie-bar parallel to but not coincident with

the chord, and a system of three mutually built-in pieces such as form

the bridge system of Vergniais (pp. 112 122). On pp. 123 5 Bresse

shows the sufficiency of the elastic and statical equilibrium equations to

determine all the unknown quantities. On p. 125 is a paragraph
entitled : Du calage des arcs. I do not understand clearly in what
this process of calage or wedging, used apparently in buihlin^-up an

arched rib out of its component parts, may consist. According to

Bresse it lias the effect of increasing the planned length of the central

axis, and produces a uniform stretch in the rib and so a pressure upon
the buttresses although the lib be not loaded. He proposes to allow

for it by adding to the coefficient /? a term having a value independent of

the sum of the breadths of tin- wedges
the temperature and equal to . . . ., Al

'

the planned length of the central a

1 Bresse speaks of a doubly built-in arched rib as having peu d'ini]>

;,,.///./</< ip. 11U). Tliis is. li.iwi-ver, the type of the remarkable bridge a
1

Louis, Mass. U. S., which is 518 feet spau and formed of doubly built-in -
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[522.] In VI. of this chapter (pp. 126 147) we have a very

interesting but laborious bit of algebraical work, namely, the

application of the results of the previous section to find the mutual

actions between the several ribs and the reactions upon the

buttresses in the case of a bridge on the Vergniais principle, of

which the numerical dimensions are given. It is an excellent

application, whose practical suggestiveness is much increased by
variations in the treatment according as the ribs are supposed to

be either pivoted or built-in to each other and to the buttresses.

[523.] The final section of the chapter is entitled : Remarques
et theoremes concernant la maniere dont les forces exterieures entrent

dans lesformules de la flexion. Consequences (pp. 147 156). The
author shows that the shifts as well as the terminal reactions are

linear functions of the loads and of the thermal stretch coefficient

/3. This of course is a result of the general principle of '

perfect

elasticity '. It gives us a means, however, of calculating the parts

of the shifts or of the reactions due to each individual load and

then by adding the parts of ascertaining the totals, a method

which will often be found very convenient. These results depend
of course on /3 being independent of the loads. They would fail :

Par exemple, si la chaleur ne dilatait pas egalement une barre

tendue et une barre comprimee, ce que, a notre comiaissance, les phy-
siciens n'ont pas verifie (p. 149).

The point is of interest. I have only come across Pictet's

remark on this subject: see our Art. 876* (3).

[524.] Pp. 153 156 deal with a property of symmetrical
arched ribs asymmetrically loaded, and with a special application

of it. This property is thus stated by Bresse it being assumed

that the axis of v is that of symmetry and that of u perpendicular
to v.

If symmetry be given to the load system :

1 En ajoutant pour chaque force manquant de sa symetrique une
force egale et situee symetriquement; 2 en supprimant les forces dont les

symetriques manqueraient ; que dans ces deux hypotheses on determine

soit Tune des variations u, v, Aa qui caracterisent la flexion en un

point, soit Tune des composantes, paralleleraent aiix axes, d'une reaction

inconnue, soit son moment, la somme des deux quautites ainsi determi-

nees sera egale a la somme ou a la difference des quantites analogues
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qui, sous Faction du systeme primitif des forces, se produiseut an point
considere et en son symetrique ;...on doit, de plus, prendre la ditim:no-

des quantites analogues pour deux points symetriques, lorsque, tout en

etant symetriques, elles ont des directions contraires (p. 155).

For example, let an arch have a vertical axis of symmetry and let

the load be parallel to this axis. Let Q, Q' be the horizontal thrusts

on the terminals, then for any load :

Suppose the load to be made symmetrical, so that Q, Q' become Q lt
-

(^
when we add to make symmetry, and become (J.,, Q.. when we subtract

to make symmetry. Then according to the above principle

or

Thus if we can obtain results for symmetrical loading, we ran

deduce results for asymmetrical loading.

[525.] Chapter IV. (pp. 157217) deals with the thrust

of arched ribs of uniform cross-section, for which tbe central B

originally circular, remains after flexure in one and the same plane.

Bresse's method is direct and simple.

He supposes ( 81) a single isolated load 11 at any point acting

perpendicular to the span 2a of an arched rib. The vertical reac-

tions at the terminals are given by the equations of Statics, the thrust

Q is obtained by an application of the principle referred to in our Art.

524, to the equation deduced from constant length of the span : see

our Art. 521. Thus Bresse finds :

Q =
G*

\ (sin
2
< sin-0) + cos< (cos0 +0sin0 cos< -</>sin<) J si

"

<f>
+ 2

<f>
cos-

<f>
3 sin < cos

<f>
+ - sin2

<f>(<f>
+ sin < cos

<f>)

......... w-
where

2<f>
= the central angle of arched rib,

= the angle the radius to the loaded point makes with tin-

radius to mid-point of rib, and

(? = the swing-radius of the cross-section superficially loaded with

the stretch-modulus. See our Arts. 1458* and 1573*.

Similarly ( 82) if there be an isolated load .\ at a point determined

by 0, acting parallel to the chord of the arch, the terminal thrusts

=
i','

"<i iVi-i$



525] BRESSE. 361

where
6r

2

10 10 sin cos # sin cos0+0 cos 6 cos <j>+l> sin2

(0 + sin0cos 0)

i,=a--^
""'-

+ 20 cos2 - 3 sin cos + -^ sin- (0 + sin cos 0)

Next
( 83) if a couple L with its axis perpendicular to the plane of

the central-axis be applied to an element of the rib at the point

n L_sin (sin 6 - cos 0)_ .....

^ = ~ -
(92

- ......W
+ 20 cos2 3 sin cos +

-TJ
sin2

(0 + sin cos 0)
tt"'

Lastly ( 84), if there be a change in the length of the central axis

due to temperature or any other cause and having a stretch-coefficient (3

(p. 163),

< + 2< cos2
< 3 sin

<^>
cos

<j>
+ sin

2
<

(</>
+ sin ^> cos 0)

C&
w

where e = mass of area of cross-section loaded with the stretch-modulus E.

By applying the principle of superposition of stress we are able from

Equations (i)
to (iv) to ascertain the thrust due to any conceivable system

of isolated loads. Any continuous load may be concentrated over small

elements and treated as a system of isolated loads. Or, 011 the other

hand we may replace II or -6" by/*(0) dB and integrate along the central

axis. This is done by Bresse in the following three cases
1

:

(i)
Thrust due to 2/;p^> being the weight of the arch (radius p)

or a load distributed uniformly along its length ( 87),

Q = '2pp<j)X

f-- ^cos^-i i
sin2<(sm

2

<-| +
-|- ^cosc/))

<p
"

cu <p

'2<j)
cos2

<
- 3 sin

<J>
cos

<j>
+ -g sin

2
<

(<
+ sin < cos

<f>)

(ii) Thrust produced by a load Ip'a distributed uniformly along
the chord of the arc

( 88),

i ri%

-
\ + -T3- si"

3
<j>
+ i ^ ,

cos
</>
-

J^> sin
<^>
cos

<^>

-
J -^ sin4^

r\> n i
Sin O) U"

Q' = 2p'a 2 _ .

...(vi).

</>
+ 20 cos2 0-3 sin cos + sin

2

(0 + sin cos 0)
tt"

1 He also gives results for
(i) and (ii) when the uniformly distributed loads do

not cover the whole of the arch.
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(iii) Thrust produced by a fluid pressure along the extrados of the

arch
( 89). The result is too complex to be cited here.

[526.] The most important case is that represented by Equation (i).

Bresse throws it into the form

Q

where, it

A =
(sin

2
<
- sin

2

6) + cos
<f> (cos + sin - cos <

-
< sin

and B = <j>+2<f> cos2
<
- 3 sin < cos <,

. sin
2

<f> (sin- <
- sin2 6) sin2 4>(<j> + sin < cos <)and K = $

-
,

IV - -
.

The quantities &,, K, K' are expanded in powers of 2</?r and r = #/</

on pp. 173 191, and their values tabulated in Tables I. to IV. at the

end of the volume. The entries give the values of
&, for values of 2</7r

from -12 to 1 rising by -01 at first, then by '02 and ultimately by 1)4
;

and for values of r rising by -05 from to -95 (Table I.). The mean
values of K and K' are given (i.e.

the mean for all values of for any
angle < since they vary little with 6) for values of 2^/ir from -12 to 1

(Table III.), and finally the values of
(l

- K
^)/(l + K'

*)
for the

same range of values of 2</7r and five values of G^/a
2
, namely -0005

to '0025 inclusive rising by -0005 (Table IV.).
Bresse points out on p. 172 that the value of G*/a? varies for seven

French bridges between '000106 and -000795, and that its maximum
value '0025 in Table IV. is probably seldom approached in practice.
As most of the bridges have a value of Gz

/a? lying between -0003 and

0004, the value of Table IV. would have been increased had additional

entries been made for values of Gz

/a~ less than -0005.

[527.] Bresse shows that if a load p be put upon the arched rib prr
unit length of the central axis :

win -re p is the radius of the central axis.

It a load // be put upon the arched rib per unit length of the c/wrd:

If there be a coefficient of thermal or otli< i stivt. -li /?:

where e = 2A'<xo as before.
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The values of mlt % and q1 are tabulated for values of 2</7r from

12 to 1 in Table II. Unfortunately q1 by a printer's error appears
as T! in that Table aud the error is nowhere pointed out.

Bresse's first four tables thus give us a means of ascertaining the

thrust in many practically important cases of circular ribs of uniform

cross-section. The method of using the Tables is exemplified on pp.

212 217 by their application to the bridges at Brest and Tarascon.

The discussion on the former bridge brings out clearly the smallness of

the error introduced by concentrating into a series of isolated loads the

parts of a continuous load which act upon even considerable portions of

the arch.

[528.] We may note one or two other points brought out in the

course of this chapter.

(i)
On pp. 193 196 it is shown that Equation (vii) may be re-

placed with sufficient approximation in practice by taking the formula

fte &
Vl '& + &/*

where yj the rise of the arch, is measured for the central axis.

(ii) If the same load ('2pp<f>
-

2ap') be distributed uniformly along
the central axis or uniformly along the chord, then the ratio of Q : Q'

as determined by Equations (v) and (vi) may for most practical purposes
be taken as unity. Bresse gives the following values (p. 203) :

20/7T=
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an arched rib due to a uniform loading of the rib of p' Ibs. per foot

run of the horizontal chord. This is practically the loading which

would occur, if the bridge were tested by a train of locomotives

or a uniform pile of iron rails
(I'arc sous Vaction de la charge

d'epreuve, pp. 218 9).

Let E be the stretch-modulus of any fibre, N the normal force on a

cross-section making an angle a with the central cross-section
;

e the

mass of the cross-section of superficial density E, and e the moment of

inertia of the mass of this cross-section about an axis through the

central axis perpendicular to the load-plane. Then the traction in a film-

at distance y from that axis is given (pp. 220 2) by :

(?*?) ..............................

It is easy to show, p being the radius of the arch, that :

N= Q cos a ~2/p sin2 a .................. (ii),

M Qp (cos a cos <) J p'pr (sin- <
- sin2

a) ............ (iii) ;

or, if Q = nx 2j/a }
n being a certain function of

<f>
and Cf-jdr (compare

our Art 527),

N=-p'p(2 cos a sin < + sin2

a) ............... (ii)',

cos a ~ cos n 8U1 <
~ cos a ~~ cos

We thus know the traction at any point by substituting (ii)'
and (iii)'

in (i).

Now Bresse assumes that in an arched rib it is the pressure or

negative traction, which first reaches the elastic limit, he therefore seeks

for the greatest negative value of the expression E (N/e + My/). I do

not think that this is justifiable. What we really want is the greatest

positive stretch of the material, and accordingly the proper condition

seems to be to find the greatest positive and negative values of

jy/e + My/f, then to choose the maximum numerical value from either

the positive values, or the negative multiplied by 77
the stretch-si

|ii>

ratio, and equate that maximum to the safe elastic stretch. Br

really assumes that the elastic limit is reached in compression and

tension with the same numerical strain, and therefore as the squeezes
are always greater than the stretches, we have only to deal with t In-

former. But we ought I think to investigate whether 17
x the maxi-

mum squeeze is greater than the maximum stretch. If
rj be, say,

1

i>r
],

then it Uy no means follows that Bresse's condition is con

For example in the results given by him for the l*ont de Brest and

represented graphically in Fig. 23 of Plate II, tin- maximum p.iti\v
traction is in the extrados of tin- an-h and very ><'ii>il>ly ^reater than

one-third of the maximum negative traction, \vhieh here occurs at tin-

same cross-section in the intrados. Similarly in tin; stresses for the

Xyxteme Vergniais given in Fig. 26 (B) Plate III, the maximum

positive traction in the cxtrados of tin IUT than tin
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maximum negative traction in the same rib, and is about as great
as the maximum negative traction in the main arch. Thus in these

actually existing bridges, it is obvious that Bresse's method of seeking
for the maximum negative traction would be deceptive. The true

criterion must in each case be deduced from the situation of the load-

point (or stress-centre), i.e. whether it lies inside or outside the whorl

of the cross-section. Bresse's method only applies if all the load-points
lie inside the whorls : see Vol. i. p. 879.

[530.] Pp. 221 230 are occupied with a discussion of the possible

magnitudes and positions of the maximum negative traction. These

depend largely on the sign of M as given by Equation (iii)',
and Bresse

shows that if n > J cot <, then M vanishes at either four points or two

points besides the 'pivoted' terminals : see our Art. 1460*. I will not

enter into the details of this investigation, since for the reasons given
in the previous article it does not seem to me entirely satisfactory ;

the

graphical construction of curves of thrust and beading-moment, of

the line of pressure and of the whorl of the cross-section is the

better treatment of the problem, some allowance being made if necessary
for the effect of shearing force. Suffice it to add that if E

l
be the

stretch-modulus of the 'mean fibre' Bresse reduces the maximum nega-
tive traction to the form

where is a coefficient depending on ^ ,
and -

,
where h is the dis-

a* w
tance of the central axis from 'the extreme fibre.' The values of are

tabulated on pp. 260 269 for a considerable range of values of these

arguments, and a horizontal line drawn across Bresse's columns marks
whether the maximum negative traction occurs in the extrados or

intrados (Table V.).

[531.] After some numerical examples of this Table on pp.
237 8, Bresse concludes his work with a section entitled : Des
circonstances qui peuvent influer sur la resistance d'un arc a section

constante, charge uniformement suivant Vhorizontale (pp. 238 249).
This section deals with general theorems (deduced from the numerical

results of Table Y. and therefore open to the objections of our Art. 529)
as to the elastic strength of an arch when we vary : (i) <, or what is

the same thing, vary the ratio of rise to span, (ii)
the cross-section as

determined by the ratios of G and h to 2a the span.
If G/a be constant, and we take the mean value of hja (which does

not vary much since G/a is constant) we can find a value of the ratio

of rise to span, which gives a minimum of
,
or a maximum elastic

resistance. Thus we find approximately for :

G2
/a

2= -0001 -0002 '0003 -0004 -0005 -0006 -0008 '0010 -0012 -0015

//2a= 1242 1495 1581 1668 1756 1889 1980 2117 2164 2210
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In 122 Bresse considers a special case of an arched rib of hollow

elliptic cross-section and investigates for what values of the ratio of rise

to span it is more advantageous to place the cross-section with its

major axis horizontal than with it vertical or vice versd.

In 123 he deals with the problem of the best ratio of the height to

the breadth in the cross-section (supposed to be rectangular and of con-

stant area) of an arched rib having a given load, height and span. The
laws of ribs with circular central axes differ in respect of relative

strength very considerably from those of straight beams.

Although for the reasons stated above, Bresse's results in this

section must not be considered as final, still they indicate the existence
of numerous very interesting properties varying with the form of the

rib. They conclude what is the most thorough investigation hitherto

published of the elastic strength of circular arches subjected to uni-

planar flexure.

[532.] M. Bresse : Cours de mecanique appliqude. The
Premiere Partie of this book was published in Paris in 1859 in

parts. A second edition of the Premiere Partie appeared in lsi;i|.

with, however, few modifications, and a third in 1880. The

Troisieme Partie (Calcul des moments de flexion dans une poutre cl

plusieurs travtes solidaires) appeared in 1865. Only the first and

third parts deal with topics related to our present subject. The
former is entitled : Resistance des Materiaux et Stabilite des Con-

structions, and the chief difference between the first and second

editions is that n. of the third chapter on continuous beams

disappears in the later edition, reappearing in a much fuller form

in 1865 as the Troisieme Partie of the work. The Prem
Partie in the second edition from which I cite contains pp.
i xxviii and 1 536. I shall discuss the Troisieme Partie under

the year 1865.

[533.] Chapter I. entitled: Generalites ; Principes fv,

mentanx. Recherche des tensions dans les divwses parties </

corps prismatique, pp. 5 89, is occupied with a discussion of the

moment of inertia, the neutral axis, the load-point, the core and

the distribution of traction over a cross-section when the line of

pressure is known. This follows with some amplifications tin-

treatment of the lithographic course and of the work on archil

ribs: see our Arts. 813* 5* and 514 6.

[534.] Chapter II. (pp. 90149) deals with the general

equations for the strain of a rod. win-,, <.ntr.il azifl is not

necessarily a straight line. It is ;m :iinplifi<-:iti>n
<!' the treat-
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ment in the work on arched ribs and the major portion does

not call for special remark. The only part which need be noticed

is entitled : Des mouvements vibratoires dans les pieces elastiques

and occupies pp. 143 9. Bresse deals with the case of the

vibrations of a rod, the central axis of which is a plane curve.

He supposes this rod to vibrate only in the plane of its own

central axis, so that that plane must pass through a principal

axis of each cross-section
;
the cross -section itself is considered

to be uniform.

Let u, v be the shifts of the centroid G of any cross-section (distant
s along the central axis from any fixed point of the rod) measured along
the tangent and normal (outwards) to the central axis at G. Let ^ be

the variation in the angle which the tangent at G makes with any fixed

line, positive when taken clockwise. Let m be the mass of the rod per
unit length and T, JV the external forces per unit of length of the rod at

u +du

G, M the clockwise couple round G per unit element (this is introduced

by Bresse, but it seems to me that in most conceivable cases M would
be zero). Let 1/p be the curvature, K the swing-radius of the cross-

section to at G round an axis through G perpendicular to the plane of

flexure, E the stretch- and
/x the slide-modulus, both being supposed

uniform for the cross-section. Then Bresse obtains the following

equations :

d*u . d fdu v\ IL fdv
m-j-=T + Eti>-r (-T-+-}+^d& ds\ds pj p

m --
:

=
dt

v d fdv u\ Eu fdu v\
5:

=N + /xw (
+ v - -

1
--

(
- + -

) ,z
ds\ds pj p \ds PJ

'
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Here E& ( + -
) is the total traction and /xo> (

~ + y ) the
\ds pj \ds pj

total shear over the cross-section at G.

These three equations suffice theoretically to determine it, v and %.
Bresse makes the following remarks on them :

Pour le moment, nous ne pousserons pas plus loin 1'e'tude cle la question ;

duns les cas pratiques les plus simples, la solution prdsentera ge*ndralernent de

grandes difficultds, comme on le verra ultdrieurement par les exemples que
nous indiquerons. Nous n'avons voulu, en donnant les calculs pre'ce'dents, que
computer la thdorie gdnerale de la deformation des pieces dlastiqm-s, par
Texposd de la mdthode k suivre pour mettre en equation le proUeme des
mouvements vibratoires (pp. 148 9).

[535.] The practical part of the Cours begins with Chapter
III. which is entitled ProbUmes divers concernant les poutres
droites (pp. 150 224). A good deal of this chapter is not novel,

but the methods are very clearly and concisely put, and some

interesting problems of continuous beams with large numbers of

supports are dealt with on pp. 176 188
;
these should certainly

be studied by any one practically interested in this subject. Slide

is considered after the manner of Jouravski (see Section III. of

our present Chapter) on pp. 206 9, but there is no reference to

the work of Saint-Venant. The chapter concludes with an

essentially theoretical treatment of the problem of struts (pp.

210224).

[530.] Chapter IV. deals with the problem of arched ribs

(pp. 225 263) after the manner of the work we have alre

analysed : see our Arts. 514 to 531. Chapter V. is also a con-

tinuation of this subject (pp. 264 338) \ It contains, however,

a section on the strength of cylindrical vessels (pp. 323 3:^ i

which requires some notice on our part. The first problem dealt

with is that of a boiler or flue of right-circular cross-section, and

the method adopted is the old hydrostatic process, involving no

elastic principle: see our Art. 1012*.

[537.] The second case dealt with is novel. It is entitled :

Resistance d*u i //////////// 11 projU fa/SbfaoMni *////// /</// (i. .'VJIJ), and.

if we could trust tin- investigation, tliis msr mi-lit In- useful in cal-

culating the dimensions of slightly elliptic flues. Bresse however

practically treats his elliptic cylinder as if the portion letwei-n two

1 Matter not in the book of 1854 is elm-fly rvmfim-d to some account of tin-

experimentR of 1 Gollet-Meygret, and Jnlei I
- S.-cti-.u III. nf our

'

<

'llHJ'tl I .



537] BRESSE. 369

parallel cross-sections at unit-distance could be dealt with as if it were
a rod. Thus he takes the product of the flexural rigidity and the change
in the curvature as equal to the bending-moment. Let c be the thick-

ness, supposed uniform, of the flue, I its length, M the moment tending
to bend the wall of the flue round any longitudinal section, Ai/f the

change due to the strain in the angle between two tangents to the

central line of the flue's cross-section at the ends of an arc Ss, then

Bresse puts :

Now, if it is legitimate to use any formula of this kind at all, it

would seem necessary to at least replace the stretch-modulus by the

plate-modulus {i.e. by Ej(\
-

??

2

)},
but I must confess to having grave

doubts as to the entire method of treatment. To assume the existence

of a neutral axis passing through the centroid of a transverse section

in the case of a bent plate subjected to strain seems in itself a very
risky proceeding.

If we may adopt Bresse's assumption we arrive at the following
results in which

p = the internal pressure in the flue
;

e = the eccentricity of the

elliptic cross-section
;
2a its internal major axis ; x the abscissa of any

point measured along this major axis from the centre
;

c the thickness

of the flue, supposed small and uniform
;

I = the length of the flue :

(a) The bending-moment of the wall of the flue at points given
by x is equal to p&*(2x

2

or) per unit length of the flue.

(b) The maximum traction, which occurs at the ends of the major
axis, is given by

c
'

2c2

The first term in the traction is due to the internal pressure

supposing the flue to be exactly circular, the second term is due to the
flexure produced by the slight ellipticity.

The result (b) gives a quadratic to find the proper thickness c for

a given value of T and p; the positive root must be taken.
.
Bresse

turns this formula into numbers and shows that a very slight value of

e
2

(-02) will require the value of c to be increased in the ratio of 5 : 3.

Thus the existence of slight ellipticity in a flue is very unfavourable
to its strength.

(c) There is a decrease in the semi-major axis given by

EC*
'

and an increase in the semi-minor axis of about the same amount (p. 332).

T. E. n. 24
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Further the eccentricity e after strain is given in terms of the eccentri-

city before strain by

These results would be, perhaps, slightly improved if E were replaced

(d) Bresse next supposes p negative, that is to say that there is an

external pressure p. In this case e' will be real or equilibrium possible

only if

or c> a -rr

This result is independent of the absolute strength T of the material.

It is discussed at considerable length by Bresse on pp. 334 7. But
the manner in which it has been deduced does not leave an impression
of conclusiveness on my mind. Were c even to approach this value, e'

would become very great, or the strain exceed the elastic limit.

(e) Brese points out that the thickness of the elliptic flue will

have to be greater for the case of external pressure than for the cas'

an equal internal pressure, supposing tliat the resistances to compre*
and extension are equal, (p. 338.)

[538.] The same problem is considered by J. H. Macalpine in the

third of Three Original Papers (Glasgow, James Maclehose and Sons)

printed in 1889. It is entitled : On t/te strength and stiffness oj

elliptic cylinder submitted to hydrostatic pressure (pp. 26 31), and may
be referred to here. Macalpine obtains practically the same results as

Bresse for the change in the axes, but for the maximum bending moment

he finds (instead of \pe*a?) \p#a* jl
+

(-) f
per unit length. Tin-

4'W /o\^
term

-rr(-)
arises from the second approximation and it can obvious] v

in certain cases sensil.ly modify Bresse's result. To tin- first appi

mation, however, I think the two agree. For on p. 30, 1. 10 from the

bottom, Macalpine finds ///, his own notat<

6= sin <f> cos <f>.

\(n-

But 3/"his Lending moment = c --
,

'' our notation mid remenilerinu that. <J
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ing e
4
,
we may put b =

,

-- = curvature = I/a, and a cos = x\ we
cfs

have :

which agrees with Bresse's result (). In other respects Macalpine's
treatment is neither so full nor so clear as Bresse's. He falls into the

same error of treating a bent plate as a rod 1
.

[539.] The sixth chapter of Bresse's book is entitled: Problemes

particuliers sur les poutres vibrantes and occupies pp. 339387.
This chapter is perhaps the most interesting in the book. It gives

a good resume of all the work which had been done in and since

the time of Navier and Poncelet on the subject of vibrational stress

in bridges.

It opens with a discussion after the manner of Poncelet of the

longitudinal vibrations of bars variously loaded (cf. our Arts.

988* 993*), and does not here add much to Poncelet's results.

The great defecl of Poncelet's work is that it leaves us with

complex analytical expressions, which require the patience of a

Saint-Venant to reduce them to numerical results of practical

value : see our Arts. 401 and 411.

Bresse next passes to the transverse vibrations of a uniform

beam simply supported at both terminals and uniformly loaded

(pp. 361 374). I think his work here is original, at any rate I

have not come across the same results before. It bears of course

considerable resemblance to the ordinary theory given in treatises

on Sound of the transverse vibrations of a rod.

Bresse obtains an equation of the following type (which may easily
be deduced as a special case from those of our Art. 534) for the trans-

verse shift y of the centroid of a section distant x from one terminal of

a beam of length I :

-n o <Vy d2u
, , d*yEuK2

-=- = mg-m-^ + m *2

7^V9 >dx4 dtz dxW '

where jEW2 = the flexural rigidity of the beam,

m combined mass of beam and load per foot-run,

w' = mass of beam only per foot-run,

Z = the time from any epoch.

1 My objections to this method of treatment have been more fully given in

Art. 1547*.

242
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Bresse obtains a general solution for any initial shifts and any
initial velocities : see his p. 309

;
he also deals with one or two special

cases. Thus on pp. 370 1 he shows how the constants may be easily
calculated when the shifts and velocities are initially given by integer

algebraic functions of x. A further interesting case on p. 372 may be

cited here. It practically amounts to an expression for the deflection

at any point of a bridge or beam, when a continuous load is suddenly

placed upon it.

Bresse finds :

24W-
mff

1J
~

the summation being for all odd integer values of i.

Now 1/i
5 = successively 1, -, ] ,-,-, ^yV-, so that for all practical pin |

it is unnecessary to go beyond the first or second term of the summation.
Here a4 = AW2

/??i,
6
2 = mK2

/m, - tc if the weight of the load be

negligible as compared with that of the bridge.

For x = l/2, and t = even multiple of iJir'W + F/(7ra?) the summation

is very nearly equal to
y^

.

q fi
,
and the maximum central deflection is

given by *

5 mgl*

96Z4 <= /I . iirx tVa8
/ \Six3 + l?x 2 -

K sin -7- x cos 7= ,

** i=1 Vt
5

i zVSwTjy'

Thus the maximum deflection is almost*twice the statical deflection under
the same load, an instance of Poncelet's Theorem : see our Art. 988*.

[540.] The following and last section of this chapter is entitled :

Effet produit sur une poutre par une clwzrge roulante (pp. 375 87).
Bresse begins by analysing Phillips' memoir of 1855 (see our Arts.

82 and 552 4) and quoting his results. For the case of a doubly-

supported beam, he has not, however, noted Phillips' error: see our Art.

375. For the case of the doubly built-in beam he was, as we have
noticed in Art. 382, the first to correct Phillips and he gives this

correction on p. 376. With the notation of our Arts. 373 4, where
it must be remembered 21 is the length of the beam, Bresse finds for

the max iin u in bending moment of a doubly built-in beam subjected to

a travelling load :

At the centre :

and at the terminals :

Tin- <-ninp:ir:ifivfly small practical value of these results has been

I

mint I'd out in our Art. 382.
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[541.] Bresse then passes on pp. 377 387 to the discussion of his

own particular problem in live-load, of which we have already given the

statement and chief results in our Art. 382. To the results given there

we may add the expression for the central deflection f\ in the notation

of that article :

pn
f=&&?{-&'+?*(**Mr-W' (p - 381)

Bresse discusses, with numerical values for the limiting speeds,

cases of plate-iron railway girders and shows that the speeds obtained

are considerably greater than the usual train speeds. The practical

value of the investigation is, however, not very great, as the maximum
moment is reached (as is pointed out in our Art. 382) just as the train

covers the whole bridge, and not after a steady deflection is set up by a

very long train.

[542.] The next chapter of the work (Chapitre septieme) is

entitled : Resultats d'experiences sur I'elasticite des materiaux and

occupies pp. 388 422. This portion of the work was at the time

of publication a useful resume of the experiments of Hodgkinson
and his contemporaries. It is now somewhat out of date. The

remarks, however, on p. 393 as to the ill-founded character of the

reproaches against the theory of elasticity, based on the fact that

formulae depending on the proportionality of stress and strain

will not explain rupture, are still to the point. Were they
studied we should hear less of the "paradox in the theory of

beams" : see our Arts. 178 and 507.

The work concludes with chapters dealing analytically with

framework and with the pressure of masses of earth
;
both topics

lie outside the scope of our history.

[543.] M. Painvin : These de Mecanique. Etudes sur les etats

vibratoires d'une couche solide, homogene et d'elasticite constante,

comprise entre deux ellipso'ides homofocaux, Paris, 1854. Tbis is

a thesis presented to the Faculty of Sciences of Paris for the

degree of 'docteur es sciences mathematiques.' The examining
commission were Chasles, Lame, and Delaunay. The memoir

contains 46 quarto pages and is, I believe, the first attempt to

use the equations of elasticity in curvilinear coordinates for the

solution of any problem.

[544.] Lame in 1841 had published in the Journal de

Liouville (see our Art. 1037*) the uniconstant equations of
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elasticity in curvilinear coordinates. It was not till five years
after the date of Painvin's memoir that he published the more

complete treatment of the subject which is to be found in his Lemons
sur les coordonnees curvilignes (see our Art. 1149*). Painvin

adopts two elastic constants, and puts his body shift-equations

into the forms used in Lame"s Legons, but he possibly owes these

to Lame' himself. There are also a number of purely analytical

propositions proved in the memoir with regard to what would

now be called
'

ellipsoidal harmonics ', which I do not remember
to have seen discussed by Lame' and which may possibly be origi-

nal. At the same time I am not sufficiently acquainted with

Lame's earlier papers on isothermal surfaces to know what is

the history of the subject before the publication of Lame"s Lemons
titir les fonctions inverses in 1857. At any rate Painviu's paper
contains some very elegant analysis, although but little which is

of value from the standpoint of physical elasticity.

[545.] The memoir consists of the following two distinct parts:

(i) A proof that the equations of elasticity in curvilinear

coordinates can be solved for the two cases of longitudinal and

transverse vibrations, so soon as solutions can be found of the

differential equation : a?V*F = d?Fjdt* t
where V 2

is the Laplacian

expressed in curvilinear coordinates
1

,
and a8 a constant.

(ii) An investigation of the vibrations of a shell of isotropic

and homogeneous material bounded by two confocal ellipsoids.

The shell is surrounded by air and the forces which produce the

initial disturbance are applied normally to the surface. Further

only the longitudinal vibrations are considered.

I propose to make a few remarks on both these points.

1 Let pj, p.,, p3 be the three curvilinear coordinates, and let p,, v3 ,
vs bo tin-

three shifts as in our Art. 1153*. Then, if

we have

,/-/' ,/-/' ,/-/'
(]_

1\,IF
/_!_ JiV 7

''-/
1 1

\'"''W +
*,*

" W +
3) *i W'

+
rt") d*2 W" +

r>" ) * '

in the notation of our Art. 1150*. This easily follows from the consideration that

-'=!, and 1/'
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[546.] The first theorem is, as Painviii remarks, really obvious, for

Lame has shown that the waves of longitudinal and transverse vibration

(dilatational and twist waves) both depend on the solution of an

equation of the form :

<PF d-F

where, as is well known, the quantity V2
is an invariant for all types of

coordinates. See our Arts. 526* and 1078*, and compare also Lame's

Lemons sur la theorie...de Velasticite..., pp. 143 6.

The novelty of Painvin's work consists in the types of solution it

suggests for the vibrations of bodies when we use curvilinear coordi-

nates. We may indicate his process as follows. Let

2 aSZ

and TO and r3 be like quantities obtained by cyclical interchange, then

T
, T.,, T3 correspond closely to the doubles of the twists in Cartesian

coordinates. The body shift-equations are of the type :

d2v , dO . , /dr2 drs\ ...

di? dp1 \dps dp.2J

where O2 = (X + 2ft)/A, co
2 =

ft/A, A = the density and = the dilatation,

which is given by
A , , , ( d / v, \ d / v9 \ d
v

This value is easily seen to be identical with that of our Art. 1153*.

If we suppose the body forces /Si, S.2} S3 zero, we find that two types
of solution for Equation (ii)

can be reached. In the first place consider

the curvilinear twists TI} r.2) TS zero. This will arise when

vj^ = dF/dPl , vjh* = dF/dp.2 ,
v3//h = dF/dp3 ............ (iv).

Equations of type (ii)
now become of type

1 d d6

But
(iii), remembering the value of V2

given in the footnote to

p. 374, shows us that = V2
F, whence we find that F must satisfy the

equation

Vibrations of the type (v) are those termed longitudinal by Lame
and Painvin. I think them best spoken of as dilatational vibrations.

[547.] The second type of vibrations depending only on w are

obtained by putting
-

0, and are pure twist vibrations.
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Painvin obtains a solution of the following type

L̂ = dXdx_dXdx dYdy_dYdy dZ_dz__dZ dz

hji3 dp.2 dp3 dpt dps dp2 dp3 dp3 dp2 dp2 dp3 dp3 dp^
'

where X, Y, Z are all solutions of the equation

The twists are shown (pp. 9 17) to be of the type

Tl
_

dpl dpl dpl dp! \dx dy dz

This investigation seems to me unsatisfactory, because the solution

is not entirely freed of x, y, z the old Cartesian coordinates.

[548.] In the second portion of his memoir (pp. 17 46)
Painvin determines a solution of the equation fl

2V 2^ = d?F/df,

subject to the following conditions. Let p l
= a and p l

= a' be the

parametric values for the confocal ellipsoids, then he supposes :

(i) the shears 72 and ^73 to be zero for p 1
= a and for p l

= a,
these he terms the surface conditions

;

(ii) the values of F and dF/dt for t = to be given functions

of pv py pa except as far as the addition of an arbitrary constant is

concerned. This is really equivalent to assuming the initial shifts

and initial speeds. These are the initial conditions.

The supposition (ii) is perfectly straightforward but it is

difficult to grasp the physical meaning of
(i).

The surface traction

7i is not put zero for p l
= a and a', hence there must be a traction

varying with the time exerted over the surfaces of the shell, if it

is to vibrate solely longitudinally. Painvin does not distinctly

say so, but I think he supposes the air, which he refers to as

surrounding his shell, capable of giving the necessary traction.

This is, of course, impossible (see our Art. 1084*); the traction

sometimes will be positive, and the air could not even provide

anything like as great negative traction (pressure) as would be

required for many sound vibrations. Physically the only result

of the memoir, assuming its analysis complete, is to show that

the vibrations of a free shell bounded by confocal ellipsoids nm-t

be partly twist-vibrations, for Painvin's solution is evidently inn

sible. At the same time it involves such very pretty analytical

Mgations, that we wish it had some real physical value.
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[549.] J. Dienger : Studien zur mathematischen Tkeorie der

elastischen Korper : Grunerts Archiv der Mathematik und Physik,

Theil 23, 1854, pp. 293359.
This is a treatise on the general theory of elasticity, with

applications to the theory of vibrations. The writer proceeds on

rari-constant lines, basing his work on that of Navier, Poisson and

Lame. He prefers rari- constancy to Lame's method as it in-

dicates :

was die jeweils eingefiihrten Grossen zu bedeuten haben, wie sie

folglich zu berechnen und zu behandeln sind ein Vortheil, der gewiss
niclit zu niedrig anzuschlagen ist. (p. 358.)

He proceeds on the supposition of an initial state of stress,

like Cauchy (see our Arts. 615* 6*), but he retains shift-fluxions

up to the fourth order; for this he claims originality. The

coefficients of the shift-fluxions of the fourth order are given in

terms of molecular summations (pp. 300 301). He deals with

the relations between these summations on pp. 323 6, and

obtains for isotropy body shift-equations of the type :

(Q + P) V 2w + 2P + (A + K) V
2

(VV)

where,
G = ytmf(r) r cos

2 a

P = %2mF (r) r
2
cos

2

j3 cos
2

7

A = -^^mf(r) r3
cos

4
a

K = &S,mF (r) r
4
cos

2

j3 cos
4

7 = $,mF (r) r
4
cos

2 X cos
4

0,

where F(r) = r-r-(
-

), f(r) being the law of inter-molecular
OjT \ r /

central action, and a, /3, 7 the direction angles of the molecule m at

distance r. If the body be not subjected to initial stresses, G and

A are both zero. In this case the equation above agrees with

that which may be deduced from Saint-Venant's values of the

stresses : see our Art. 234.

The rest of the discussion notwithstanding the author's claim

on p. 358 does not seem to me to offer any novelty. Dienger
concludes with a remark as to Cauchy's explanation of dispersion,

which he considers a failure as it would apply to
'

empty space '.

The promise to explain dispersion in a perfectly natural manner

in a later memoir does not seem to have been fulfilled.
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[550.] L. F. Menabrea. fitudes sur la theorie des Vibrations.

Memorie delta Reale Accademia delle Scienze, T. xv., 1855, pp.

205329. Turin, 1855. The memoir was read June 12, 1853

and published as an offprint in 1854. It commences with a

general discussion of the stability and small oscillations of a

slightly disturbed group of particles. This occupies pp. 205

225 and the author draws particular attention to the best mode of

integrating the equations which arise. The general discussion

is followed by special problems, which introduce elastic bodies as

limiting cases. Thus a heavy flexible string is treated as the

limiting case of a number of particles united by weightless in-

extensible strings, or again a rod as the limiting case of a number
of heavy particles united by rigid links which resist being displaced
about their extremities by forces proportional to the angles tin

adjacent links make with one another. In this method the limits

of finite difference equations become the differential equations for

the vibrations of elastic strings, rods, membranes etc. The method

is due to Lagrange and is used freely in the Mecanique Anahj-

tique. Examples of it will be found in Lord Rayleigh's Theory

of Sound Vol. I. 120, or in Routh's Rigid Dynamics 3rd Edition,

486. It cannot be considered entirely satisfactory as it often

involves somewhat arbitrary hypotheses: as for example, in tliu

case of the transverse vibrations of the rod referred to above.

[551.] The following are the contents of the memoir as far as

it relates to special cases :

(a) Pp. .226 232: Oscillations of a particle attracted by several

fixed centres of force; (b) pp. 232 7 : Vibratory motion of a flexible

string carrying two heavy particles, the string being fixed at one

end only ; (c) pp. 238 73 : Vibratory motion of a string fixed at one

end and carrying several heavy particles; this is subdivided into several

parts dealing with strings whose parts are not homogeneous, etc.
;

pp. 273 284 : Longitudinal vibrations of an elastic rod 01

loaded with particles at different points; (c) pp. 285 291: Vibrati

of a flexible and inext'-nsiblr string fixed at its terminals and forming
a curve under the action of forces distributed alon^ its length ; .M

arrives at formulae agre< iu^ with those given by Navier on p. 1G3 of

the work referred to in our .Art. 272*; (/) pp. i : Vibrati

of a funicular polygon formed of flexible and extensible elements ; (y)

pp. 297 306: Tranarerae vibrations of rod composed of diverse

heterogeneous parts, or having various heavy particles attached to it
;
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Menabrea besides obtaining the general equation of the vibrations of

a rod with a longitudinal tension T, namely :

^ = y^_ m <^ rArt.471),dx4 dx* dt2

(where F is here a constant depending on the material of the rod,

which remains undefined owing to the vagueness of the hypothesis

adopted), also indicates the solution of the following problem :

A rod is clamped at its upper end
;
a particle, the weight of which

is great relative to that of the rod, is attached to its lower end
;

to find

the motion of the system when set vibrating (pp. 301 2).

The solution is not carried far enough to be of service in dealing
with Kupffer's empirical formula for the like case : see Section II. of

the present Chapter.

(A) Pp. 307 311 : Vibrations of a plane rectangular flexible

membrane uniformly stretched and composed of two parts of different

material; (i) pp. 312 22 : Radial vibrations of a homogeneous elastic

sphere. The results in this case agree with those given by Poisson in

his memoir of 1828 : see our Art. 449* et seq. (j) pp. 3237 : Note
on the theory of light ;

Menabrea deduces Fresnel's equations from his

general theory of a particle oscillating under the action of several fixed

centres of force.

The memoir as a whole contains no new results, but there are some

interesting and suggestive analytical processes.

[552.] E. Phillips : Galcul de la resistance des poutres droites,

idles que les ponts, les rails, etc.. sous I'action d'une charge en

mouvement. Annales des Mines, Tome vii, 1855, pp. 467 506.

This is the important memoir to which we have referred in our

Arts. 37282.
The memoir is divided into three chapters. Chapitre I. (pp.

468 87) is entitled : Des poutres encastrees par lews deux ex-

treinites, and it deals with the case of a load crossing with any

given velocity a straight beam of uniform cross-section doubly
built-in. This problem is not of very much importance, for it is

difficult to really build-in the terminals of a girder, and when done

there arise several practical disadvantages. Phillips' analysis is

only approximate, the deflection being expanded in powers of the

distance from a terminal, and the coefficients of these powers being

given by rather lengthy series in powers of the time. These series

are simplified by the assumption that m/(.EW
2

)
is a small quantity,

where m is the mass of the beam per foot-run and EWK* its
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flexural rigidity; only first powers of this expression are then

retained.

I have not verified Phillips' analysis and his results as given on

pp. 480 6 are too lengthy for citation.

[553.] Chapitre II. entitled : Des poutres reposant libremeiit

sur deux appuis, deals with the like problem for simply-supported
terminals (pp. 487 500). The analysis has for practical purposes
been much simplified by Saint-Venant, and as the latter has

corrected an error of Phillips we merely refer the reader to our

discussion of the problem in Art. 372 6.

In both the cases dealt with in these chapters Phillips does not

satisfy the initial condition that the velocity of all parts of the

girder shall be zero, before the load comes upon it. In the case

of the doubly built-in girder, however, the initial velocity given

by the approximate solution is of the order I/ff
=
m/Ea>K* and

is therefore very small. For the doubly-supported girder the

terms neglected are of the order V7/(3), where I is the length of

the girder and V the velocity of the travelling load.

In order to ascertain the real effect of this. initial velocity Phillips

supposes the bridge to remain without load and to start from a position
of rest with an initial velocity exactly equal to that which must be

neglected in his problem. He finds that this initial system of velocities

would produce a maximum deflection occurring almost at the centre of

the bridge and given with sufficient approximation by
2 l\* QV

where Q is the weight of the travelling load.

The ratio of this deflection to the maximum deflection at the centre

is very nearly
n
3/r

while the corresponding curvatures ((Pyfdx*) have very nearly the ratio

VI

4/T

Phillips then shows that for four actual bridges with a load nn>\ in^

Hjs kilometres per hour the former of these quantities does not

exceed 1/20, and they are thus in practice negligible.

|")")4.] Chairitre III. (pp. 500 6) is entitled: Consequences

ju-'it illicit de la thtorie prfaedente et son extension d dautres j
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blemes. It deals first with the case of the doubly-supported girder.

The conclusions drawn with regard to the curvature and stretch

are involved in the results of our Arts. 372 -7, where following

Saint-Venant we have corrected Phillips' numerical error.

In the latter part of this chapter (pp. 503 6) Phillips deals with

the case of the doubly built-in girder. He shows that except just when
the load is coming on to or leaving the bridge the maximum curvature

at the instant is immediately under the load, and that the maximum
maximorum takes place when the load reaches the centre of the beam

;

we have then 1
:

i /
& (^ 4 Q\ 4.

Pl
(^ 4

/p
~
8JW2

\ 8^

QVH
Evidently then the magnitude of the fraction -=-= determines the

influence of the speed of the travelling load on the deflection. Phillips
takes the case of a rail one metre long and for which the rigidity is

197,600 (sq. metre kilogrammes'!) and Q is 6000 (kilogrammes'? he
has kilometres). The value of the fraction is then about '35 for a

velocity of 108 kilometres per hour, and about -16 for one of 72.

He remarks in conclusion :

Dans tous les cas de la pratique, ce qu'il y aura de plus simple a faire est

ceci. Comme il faut toujours que la poutre puisse supporter la charge au

repos, on commencera par calculer les dimensions de cette poutre en conse-

quence, d'apres les regies ordinaires. Puis, Ton verifiera si la quantite
QV*l/(3Ea)K

2
g} dans le cas de la poutre appuyee librement par ses deux

extremites, on QV 2
l/ (8Ea>K.

2
gr} dans le cas de la poutre encastree par ses deux

bouts, est assez petite. Dans ce dernier cas, et si la charge permanente n'etait

pas negligeable, il faudrait en outre que Q VHK^EaKPg} fut une petite fraction.

Dans le cas ou ces diverses fractions ne seraient pas assez petites, on dimi-
nuerait 1'ecartement des points extremes ou 1'on augmenterait le moment
d'elasticite de la poutre jusqu'k ce que la fraction dont il s'agit devienne

negligeable (p. 505).

[555.] Kopytowski : Ueber die inneren Spannungen in einem

freiaufliegenden Balken unter Einwirkung beweglicher Belastung.
4tov Gottingen, 1865. This is an inaugural dissertation for the

doctor's degree and contains 88 pages with a plate of figures.

Although falling somewhat outside the period we are considering
this memoir is so closely related to that of Phillips dealt with in

the three previous articles that we may briefly touch upon it here.

The author deals with the case of a uniform beam terminally

supported which is crossed by a continuous travelling load. He
refers in his preface to the labours in this field of Navier, Willis,

1 I have not verified the analysis by which Phillips reaches this result but have
slightly modified the numerical results which follow.
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Stokes, Phillips arid Renaudot : see our Arts. 1276*, 1417*, and

372 82, 540, 552 4
;
but he does not note the errors of the

last two writers and falls into similar ones himself. He proposes
in his preface to extend the results of the last writer, especially

by considering the stresses acting at all parts of the beam. He
assumes that both the flexure and the resulting system of

stresses are uniplanar (pp. 5 7).

[556.] The memoir may be divided into two parts. The first

occupies pp. 7 43 and considers the bending moment, total shear

on a cross-section and principal tractions at any point of the beam,
when its weight is taken into account and the continuous load is

supposed merely to act sfniirdUi/ as it crones the beam. Thus

pp. 7 ---H> give the usual Bernoulli- Eli h-rian theory with such results

as that the total shear is the slope of the beading-moment curve. Pp.
10 17 give a theory of uniplanar stress which is practically a re

production of Rankine's treatment of the like problem in his memoir
On ///' Sttil.Hifi/ of Loose Earth or in his Applied Mechanics: see our
Arts. 453 and 465, (6). There are several misprints in the results on

p. 17. Pp. 17 23 investigate the principal tractions on the assump-
tion that the stress system in a beam under flexure is uniplanar. Let
x he the direction of the axis of the beam, y that of the hori/ontal

neutral axis, and z the vertical in the plane of the cross-section. Then

Kopytowski assumes that only the stresses r and 7z have finite

values and that these stresses are the same for all points on the

cross-section at the same distance from the neutral axis. Thus tin-

whole of his reasoning on p. 19 is fallacious unless 7z is uniform

along a horizontal parallel to the neutral axis. But Saint-Veuant
has shown that this is certainly not true for an isolated load, for in

that case 7z varies right across the section; further the stress yx is

not gom-rally negligible as compared with Tz but may be of the same
order. Like results have been shown by the Editor of the present
work to hold for a heavy beam continuously loaded, which is Kopy-
towski's own case 1

. Thus his application of uniplanar stress to

iinine the principal tractions in a beam under flexure a method
which is practically identical with Jouravski's is fallacious both on
the Around of the supposed uniformity of xz and also in the neglect
of jtf. The results on p. 21 possess therefore no more exactitude

than they would have, if we put o^ (or, Kopytowski's 2)
=

0, or reduced

the system to a single principal traction, i.e. the longitudinal traction.

The only exception to this seems to be the case of the extremely thin

ireb of a girder of T or I cross-section.

On pp. 23 30 expressions are deduced on Kopytowski's assump-
tions for the principal tractions in a heavy beam partially covered

with a continuous load. I have not investigated the.se results with

1
Quarterly Journal o/Mtitlii-mntn'*, vol. xxiv., 1889, pp. 63110.
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the view of recording possible misprints or errors of calculation, as

they seem to me for the reasons stated above valueless. The same
remark applies to the numerical tables III. V. on pp. 38 40.

Besides the principal tractions Kopytowski investigates the

values of the bending moment and total shear at any cross-section when
a given arbitrary length of the beam is covered by a uniform continuous

load. For the maximum bending moment he finds that the beam must
be totally covered by the continuous load, and for the maximum shear

that the load must cover only the longer portion of the beam from the

cross-section to a terminal, both results previously well known. Kopy-
towski calculates, however, the magnitude and situation of the greatest

bending moment, and the value of the total shear at various cross-

sections when any given portion of the beam is covered by the

continuous load. His results on this point may possess some novelty :

see his pp. 23 7 and Tables I II., pp. 35 6. I have neither tested

their accuracy, nor that of Table VI. (p. 41) containing the deflections

at the several points of the beam for various positions of the continuous

load, because these results seem to me neither of real practical value

nor of any special theoretical interest.

[558.] The second part of the memoir pp. 43 88 deals with

Renaudot's problem of the influence of a rapidly travelling continuous

load on the deflection and stresses in a beam terminally supported.

Kopytowski generalises the equations by introducing terms depending
on the angular motion of the cross-sections. These terms would in

most practical cases be negligible. But our author while introducing
these terms drops out another really important term in his Equation (34)

2PV d~y
on p. 45 \ namely in his notation the term -r--- 4- on the right-

P+p dxdt
hand side. Thus multiplying up by P +p, his equation ought to be :

That the term in question does not appear in Kopytowski's equation
is due to the singular process by which he deduces it, i.e. he apparently

equates the vertical acceleration of a point on the axis of the beam
to that of the point of the continuous load instantaneously above it.

Kenaudot introduces this term only to drop it as '

small.' As a matter
of fact it is of the same order as the terms retained. Kopytowski
solves his equations in the approximate manner suggested by Phillips :

see our Art. 552, and follows Phillips very closely in his method of

showing that the fact that the initial conditions are not exactly
satisfied does not for practical purposes invalidate the solution (pp.
46 63 and pp. 69 72). The whole of his discussion, however, in

order to be made of value would require to be modified by the intro-

duction of additional terms depending on the term noted above as

1 This page abounds with misprints.
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omitted in the differential equation. Pp. 63 68 are a reproduction
of Bresse's problem (see our Arts. 382 and 540) without, however, any
acknowledgment of the source from which the material is drawn.

[559.] Pp. 7278 return to Renaudot's problem and calculate the

bending moment at any point for any position of the load, and also the

maximum bending moment. The latter value agrees with Renaudot's,
but is wrong. The coefficient of the term PV*F/(fg) in Equation (65)
of p. 78 should be 5/32 and not 1/6.

The expressions for the total shear (pp. 78 80), the terminal

reactions, as well as the maximum total shear at the middle of the

beam will also be wrong, so far as the numerical coefficients of the

t< -i-ms in PVz

PI(ty) are concerned. I have not, however, recalculated

these coefficients. The values of the principal tractions given in

Ki {nation (69) of p. 80 are again erroneous for the reasons given in

Art. 556, and that for the deflection (pp. 81 2) has also a wrong
coefficient. The same remarks apply to the numerical results on pp.
835 and p. 88.

[560.] On pp. 857, Table VIII., we have the values of 4//?,
where ft' is the constant of our Art. 381, calculated for a certain number
of actual bridges. This discussion and table might have been of

considerable value had not Kopytowski introduced what seems a very
doubtful hypothesis into his calculations

;
he assumes, namely, that in

each case the moment of inertia of the cross-section has been designed
so as just to carry without failure the weight of the beam and the

continuous load considered as acting statically. Thus, suppose 21 the

length of the beam, p the weight per unit-run of the beam and p' that

of the load. Then the maximum statical bending moment at the centre

when the beam is fully loaded is :

Let h be the vertical diameter of the beam and Eta*? its flexural

rigidity, then Kopytowski also equates this to

7',l>ein the traction which corresponds to the fail-limit of the material.

1 1 cuff lie finds to determine <o*-:

or, substituting in I//? of our Art. 381 :

*TO P'v*

~Eg (p+p')h'

See the memoir pp. 74 and 85.

From this formula Kopytowski calculates \
'ft'

for the liritanni;

Conway bridges and for bridges near r.onlc.-uix. Knu, St Call.-n

But the usefulness of his results seems to me vitiated because there
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is no sufficient reason for supposing that the moment of the cross-

section of any of these bridges really has the value which is found by
this process.

On p. 87 some remarks occur on the experiments of the Iron Com-
missioners and on Stokes' value for the deflection in the case of an
isolated load : see our Arts. 1417* and 1287*. The memoir is a rather
more ambitious than satisfactory piece of work.

[561.] H. Resal : These de Mecanique. Sur les equations

polaires de I'elasticite et leur application a I'equilibre dune crotite

planetaire, Paris, 1855.

This is an academical dissertation occupying 40 quarto pages
and dealing with a special case of Lame's memoir of 1854 : see our

Art. 1111*. It is reproduced on pp. 395 440 of the first edition

of Resal's Traite elementaire de mecanique celeste (Paris, 1865)
with some of the misprints corrected. As the latter work is more

readily accessible than the These, our references are to its pages.

Pp. 395 411 are occupied with an investigation of the

equati-ons of elasticity in spherical coordinates. Resal adopts
uni-constant isotropy, noticing, however, that Wertheim's experi-
ments do not seem to be in complete accordance with the relation

\jjjb
= 1. He rather weakly remarks :

Dans 1'incertitude ou nous nous trouvons sur la valeur de ce rapport,
dont la connaissance est indispensable pour pouvoir calculer X et /A

en
fonctions du coefficient d'elasticite, la seule constante que Ton a 1'habitude
de faire entrer dans les questions de resistance des materiaux, nous
avons cru devoir continuer a admettre la relation theorique A

/x,

trouvee par MM. Navier, Poissoii et Cauchy (footnote, p. 404).

There is no novelty in this part of Resal's investigation

except, I think, his application in a footnote (pp. 402 4) of

Cauchy's fonctions isotropes to determine a relation between the

elastic constants in the expressions for the stresses. The method
does not seem to present any advantages.

[562.] On p. 411 we have Resal's problem stated: "To
determine the elastic equilibrium of the spherical crust of a

planet, rotating round a diameter, under the action of the mutual

gravitation of its parts and subjected to uniform internal and
external normal pressures."

This problem may be termed Resal's Problem although as we
have seen a portion of it had already been considered by Lame.

T. E. II. 25



386 RESAL AND LAM& [563

Symmetry shows us at once that the shifts lie entirely in

the meridian-plane, or reduce to -u and v in the notation of

our footnote on p. 79. Now these shifts may be divided into two

parts u' + u" and v 4- v" where u' and v are due to the radial

surface-forces and body-forces (i.e. pure gravity), while u" and v"

are due to the so-called
'

centrifugal force.' Now it is easily seen

that we must have v' = 0. The value of u' was determined by
Lame' for bi-constont isotropy in his Lemons : see our Arts. 1094*

5* and compare Arts. 1114* 8*, where it is shown that Lame*

made some progress towards the solution of Resal's Problem.

[563.] The following are the values at distance r from the centre

ohtained by Lamp's method for u', for the radial traction *r', and for

^'(=4^' in the notation of our p. 79) the* meridian traction corre-

sponding to the shift u' :

) Hy
*

-
ri
_

ro
*

2r(r1

3 -r 3

)

(^ + 4/x)y 13 /a y a\ r 3 r 3 TTJ /:::\

ZsTTs ITIvlTvl ro) ro r
i "{ ..........

V
ul

/>~
V
ri

~ r
o /

where : II = r5

(rj
3 - r 3

)
- r3 (r^

- r 5
) + r 3

r,
3

(r^
- r 2

)
and is divisible

by (ri-r^Xr-nXr-r,),

/> and />!
= the internal and external pressures at the surfaces of the

shell of radii r and rj respectively,

7 = J P ^^ the densit>r
'
and

^ = gravitational acceleration at the outer surface.

The value of }' given above does not agree with Lamp's F (p. J 1

'

of the Lemons). The coefficient of II in his expression should be
- 2 (X + |ft) and not 2 (X + 2/x) as he has it. The form we have obtained

for
'

i also more convenient for further calculations than Lame's.

Resal obtains a value for rr agreeing with ours when A =
/z,

li- < !<* not
write down the general value of

'

or u'.
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[564.] Both Lam6 and Resal proceed to approximations in the

special case of a thin crust. We shall examine .the true approximations
somewhat closely, as it appears that both Lame and Resal have fallen

into error.

Let- us put **i
= ?o(l +e)>

r = ro(l + )

and suppose the squares and products of e and e to be small.

We find: # = -
Po + -

(Po
-

Pl ) {1 + 2 (e- e)} .............. (iv).

The lowest term containing g as a factor is of the second order and
its value is

5X+6/A

Further :

ce 2

3X + 2^/ eV>

X + 2,* V 2/J"2

The value of u' to the same degree of approximation is :

f
X + 2ft 1 X+2/* X + 2/x

U,* (3X + 2/x) ? 2/x (3X + 2,*) G/M (3A + 2,*)

2fji (3X + 2ft) e 4/A e

X

3X

[565.] If we neglect the products of p or p with e or
,
as both

Resal and Lame appear to do, we have on rearranging :

9n

2/x, (3X +. 2/t)

e_
X \ pQ

r

V /A(3X+ 2/t)7 3X + 2/*"'2

Putting successively e = and 6 = e we find :

(X+2/i)r /j

.
4
/A (3X + 2/x)V

252
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(X + 2jt)r P.- Pi

3X + 2/ 3X+2jt

and <=<-L__ ,

(Po-ftW
2ft(3X+.2fi)

2fi (3 + 2ft)

......................,..

The results (vii) (ix) differ widely from those given by Lame*

and Resal. The equation (x) agrees with one given by the latter

author (p. 417) if we put X = /JL.
The values given by them for the

shifts seem to be erroneous.

[566.] Turning to the tractions, our formula (v) gives :

*/ = {( Po
~

Pi)
~

2

and : JA/ = <w>/ +

Lame (Leqons, p. 217) has in our notation the results

It is not obvious without further discussion why in the case of a

planetary crust %(PO
+ PI) should be neglected as compared with ?gpr .

The second equation is wrong unless we suppose ej/ necessarily

negligible.
Resal (Mecanique Celeste, p. 417) gives the same value as Lame" for

/, but for
'

he has

Thus he agrees with the third term on the right of our equation

(xii) in the coefficient of gpr r, ince he puts X =
/x,

but he disagrees
with Lame". Like Lam6 he appears to have dropped entirely the term

\ (Po
~

Pi) and I 8ee no reason f r this.

Resal (p. 416) gives for rr the value

This neglects the term 2 (e
-

)
-
(p

-
Pi) of equation (iv). If t. ims
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involving e, like gprQe,
are retained in $$' this does not seem legitimate.

If Lame and Resal suppose pQ p and gpr e to be of the same order

then this would be allowable, but this would still compel them to retain

the term ^ (p p^ they have cast out of (xii).

[567.] Both Lame and Resal apply these results to the

structure of the earth
; they thus initiated those investigations

in terrestrial physics, which have been still further advanced by
Sir William Thomson, G. Darwin, Chree and others. Resal closely

follows Lame without, however, so much explanatory statement.

Their whole investigation of rupture at the earth's surface is based

upon the assumption that rupture takes place where the shear

or traction is a maximum. They thus endeavour to explain

geological faults. We may note the general drift of their

reasoning, modifying it slightly to suit our formulae, as it will be

useful for comparison with later work.

(a) Lame remarks (p. 218) that geologists (i.e. those of his day)
considered that the thickness of the crust could not be more than

of the radius, or e = Ti^. Hence to a first approximation from (xi),

If therefore p pl were not very nearly equal to gpr e, there would
be a very sensible horizontal traction at the surface of the earth. There
is nothing to show the existence of such stress and accordingly Lame

supposes p 2h 9Proe verv nearly. This obviously means that the

difference of the surface pressures just supports the weight of the crust.

If it were exactly true we should have to a first approximation u '

u^
or the earth would retain the original thickness of its crust

1

. If

this relation holds we have also from (xii) :

or the meridian stress at the inner surface of the crust is a pressure.
If Jfo' is negative, which it must become in the course of time as

diminishes and e increases, then ^ '

is a still greater pressure.

(b) Both Lame and Resal use the stress-quadric
/r2 j/

2 _L y2x y T x* -

'~-.fe, H" ^^7n LJ
rr'

2 W*
x2

y* + z?
and the shear- cone

to determine the direction of shearing rupture and the magnitude of

the shearing force. They suggest how the magnitude of this force and
its direction may be found by experiment and observation of faults.

1 Lame (p. 220) puts in this case
' = %'= (), which arises from the error in his

equation corresponding to our (vii).
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Their reasoning seems very doubtful
;

it is not consistent with the
more probable hypothesis that the surfaces of rupture are perpendicular
to the directions of greatest stretch. It is easy to see that the principal
term in the radial stretch (du'jdr) is negative so long as p pl

-
gpr e

is positive, and that the meridian stretch (u'/r) is under the same con-
ditions positive. Thus till pQ gets so small that p -pi-gpi' e becomes

negative, rupture will most probably occur in planes vertical to the
earth's surface, but afterwards rupture may occur by the crust breaking
up into spherical shells. Geological faults possibly arise owing to some
inequality of radial pressure after such rupture.

(c) Lame assumes the value of u' to a first approximation, namely

u ( Po
-
Pl *~ "

where r = r e= absolute thickness of crust (see equation vii), to be
still true for a spheroidal earth, when we put for r

Q
the distance of any

point on the crust from the centre of the spheroid. Thus he supposes
w/ and w2

'

to be the values of u corresponding to the values of r
, r,

and r
a say, in Brittany and Sweden. He puts g equal to. its values y^

and g.2 in those two places and neglecting the effect of rotation of the
earth on g, he has g^g^ = r2

2
/r1

2 and consequently :

Now r^ is >r2 ;
hence as p decreases (p pi being positive) and r

increases, u^
- u.l must diminish, or we should expect the surface of the

earth in Brittany to be falling as compared with that in Sweden. This
is certainly the case in parts, but whether the method by which the

conclusion is reached is valid is another matter. In Brittany there are

submarine forests, while recent shells are found in Sweden much above
the Baltic level (see Lame, Lemons, p. 22 1)

1
.

[568.] While Lams' in his work merely supposes the effect of

centrifugal force to make a slight variation in the value of the

gravitational term, Resal has independently investigated this

effect. He considers (pp. 419 440) a spherical shell without

internal or external pressures rotating about a diameter. By
adding the results to those of the preceding articles we can obtain

the solution of the most general case. The problem is of con

only a special case of Lamp's Problem (see our Art. 1111*) but it

ne possessing considerable interest for both physicist and

geologist.

1

Captain A. P. Madsen holds that in parts of Jutland the land has risen

20 feet since the Stone Age : see Nature, vol. 40, 1889, p. 108. Other northern

districts are supposed however to have recently sunk : see Geikie's Text-book of
//. pp. 280, 2834.
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Let u" as above be the radial shift,.and let v" be the meridional shift

towards the pole in latitude
<j> ;

let o> be the spin about the polar axis,

p the density of the rotating shell or crust, r
,
r

t its internal and
external radii, and let r

l
= r + e. Then the equations of OUT Art. 1112*

readily give us :

,. , d6
fj. d(Qcos<j>)

(X + 2u) r -r- + - = - parr- cos- d>.

dr r cos <
(/>

.
N
dO dQ

(X + 2/x) fji parr
2 sin 9 cos

(/>,

rhere
dr

+and = -

r2
c?r

Particular solutions of these are given by :

where

d (v cos

d<f>

v
o

" = ^ar3 sin < cos

pto"

7 (X + 2yut)

For the general solution assume :

u"= a r + k r~ 2 + (sin
2

< |

In order to satisfy (i) we easily find ;

.(u).

cos

and

-)
/

Now at the surfaces of the shell we must have &" and rr" zero, i.e.

they vanish for all values of ^> when r = r and r = r .

But ^r'
'

2fjL cos <f>
sin

<j>
-I
~

8X + 7a 3X +^x-^^-
:/

' = (3X

/ n . i \ /

(sin <f) -|)

'

,-s_7(5X
15

-^ - ar2 + a,

9X + 10/X

...(vi).
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In order that these may vanish for all values of < when r r and

r = r we must have :

5X+6/.

together with the following four relations to determine Oj, 6,, a2 ,
b.2 :

I> '1 L f>o~
5
) 8X + 7u fr

2
)

3X + 2u, fr'
3
)

::a
s

+
a,
+ fi, .s

H- -
,

+ 6, .3
= 0,

a fr ) , fr-)a
2

+ a,
-

46, .5
- l

[569.] These equations completely solve the problem, but lead

to rather lengthy expressions for the constants. Resal confines

himself to uni-constant results. Our (vii) corresponds to his (A)

p. 434, and our (viii) to the first and third equations in the set

at the bottom of his p. 435, except that he has 2J/
2
in the first,

where he ought to have 4>A'f He does not, however, obtain the

values of the constants even for uni-constancy, but assumes the

shell extremely thin and then obtains their values when e/r is

negligible. To calculate the constants at least to the first power
of the thickness is only laborious not difficult, and would I think

be necessary before any conclusions as to the points of maximum
strain could be fairly drawn. If we put \ =

/LI
and neglect e/7* , we

have to find a,, 6
t , a2 ,

6
2
from the first of each set of equations in

(viii) and the differentials of those equations with regard to rv

Solving the equations so obtained I find :

t n i o 0*7 >

lol par of par
ai= -225-r

r
> 0>=

_ _^_p^
0|

~
25 p

while (vii) gives :

11

135
r

()-

270 p.

These results agree with those of Resal's p. 436, if proper changes of

notation be made, notwithstanding the error I have noted in lii>

equations corresponding to (viii).
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Returning to the values of the shifts in
(iii)

and (iv) we see that r

may now be written r
,
so that to Resal's degree of approximation the

shifts are constant for each latitude right through the crust and no
conclusion can be drawn as to whether points inside or outside the crust

are those of maximum strain. We find for the complete values of the

shifts to this degree of approximation :

(4
- 9 sin2

<), v'' = -sin<cosc ......... (x).
2p,

From
(iii)

we easily fintl for the mean radial stretch of the crust in

the most general case :

a2 (r? + r a + r,r )
- b2

and therefore, when we neglect (e/r )

2
,
we have after some reductions :

M/'-MO" 1 PV
-7- "15-7

COB * ................

;

........
(
X1>

This agrees with Resal's result p. 437. He appears to deduce it

from equation (23) of his p. 436, but he has not proved that the value

he there gives for his W is correct even to the terms involving e.

[570.] Resal draws various conclusions from the results (x)

and (xi) of the previous article on his pages 437 40. Thus he

remarks that :

(i) The flattening at the poles is 5/4 of the bulge at the

equator.

(ii) The radius is not changed for the latitude

</>
= sin"

1

2/3 or = 41 48' 37".

(iii) The thickness of the crust remains unchanged at the

poles and decreases gradually towards the equator.

(iv) The meridional displacements are towards the equator
and are maxima in the latitude 45.

(v) The meridional curve is approximately an ellipse with

the semi-axes :

10/4

(vi) Some geologists consider the flattening at the poles of

the earth to have arisen from the rotation after solidification. In
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this case, we find that the stretch-modulus for the material of the

crust supposed thin, homogeneous and uni-constant would have to

be about two and half times that of wrought iron; the mean

modulus of the predominant kinds of rock of which the terrestrial

crust is built-up probably differs very widely from this value.

(vii) The dilatation

ft

Thus it is zero at the poles and a maximum at the equator.

Resal deals with the principal tractions and the stress-condition

of rupture, but for oft cited reasons (see our Arts. 5 (c), 321, etc.)

we do not consider this treatment satisfactory.

It is clear that Resal advanced considerably the problem first

dealt with by Lame, and both really laid the foundation of work

afterwards done de novo by Sir W. Thomson, G. Darwin, Chree

and others in applying the theory of elasticity to solve problems
connected with the earth's crust.

[571.] E. Lamarle : Note sur un moyen ires-simple d'augmen-

ter, dans une proportion notable, la resistance d'une piece prismati-

(jue chargee uniformement. Bulletin de I'Acade'mie Royale...de

Belgique, Tom. xxil. l
re

Partie, pp. 232 52, 503 25. Bruxelles,

1855.

L'objet de cette note est de signaler a 1'attention des constructeurs

une disposition tres- simple qui permet, en certains cos, d'augnienter,
dans une proportion considerable, la resistance des pieces soumises a la

flexion. Cette disposition, que je n'ai vue indiquee nulle part et que je
crois nouvelle, consiste essentiellement, soit a reinplacer par des encas-

trements obliques les encastrements horizontaux, soit, plus generalement
encore, a e"tablir certaines inegalite"s de hauteur entre les divers supports
d'une meme piece, au lieu de placer tous ces supports a un meme niveau,
comme on le fait habituellement (p. 232).

[572.] The first part of the memoir deals with the Cos general de
deux supports, i.e. with simple beams. Lamarle supposes the beam of

length I to be uniformly loaded with p Ihs. per unit- run and to bend
in the plane of loading. It is supported at two points A and

,
of

which II is not necessarily on the same level as A. Suppose tin-

horizontal through A taken as axis of x and the axis of y taken

vertically downwards, then Lamarle shows that :

i /x\ 4 a/x\ 3 6/
w .w ^(t



573] LAMARLE. 395

where, m and m' being the values of dyjdx at A and E and f the value

of y at B,
12.EW2

. .
,.

\
ct=1 + ~~^~~ {2/-(w + m)J},

......
(ii).

2.EW2 '

Let 7t be the distance of the 'extreme fibre' from the neutral axis and
s the stretch in it, then s/h

= d^yfdx
2 and we find

Lamarle shows that s will take maximum values when

x = 0,
=

^al, and = I.

These give, if R = ^pPKEuK*) for the corresponding values of s :

R m-m' 3 ,

R m-m y tn .
, ,X7I9 ,. x

iM/i - H 1- jjr,{4/ (Wl +W ) ^/> > \
1V

/-
1 2 I Hi

ij _ R tn m' 3 .-,. ,

'\ 71

6 I I
2

/

If the terminals of the rod had been simply built-in horizontally on
the same level, we should have had m =m f- 0. and therefore the

maximum stretch = Rh if the terminals' had been simply supported
we should have had s = s.2

=
0, and therefore

whence the maximum stretch would = \Rh.

[573.] Lamarle discusses the values of sot sn s.2 given by (iv) at

considerable length and shows that their maximum will be least if:

We have then so to choose (m w')/ that the greater of s
Q (=s.2) and

$! may be as small as possible. This gives us

and s = sa = s2
= Eh/ 8.

We are thus able to reduce the stretching effect of the load from
Rh (or \Rh as the case may be) to Rh.
Various special cases are considered in which one or both terminals

have given slopes, or in which there is a given difference of height.
Lamarle shows that as a rule it is possible to reduce the greatest strain

due to the load from 50 to 100 per cent, by properly building-in the
ends (pp. 2419).
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He remarks :

II y a lieu de faire observer que les quantitds ra, m' et/ sont toujoiirs

tn.'s-petites relativement k I, et que souvent mme elles sont de 1'ordre des

grandeurs dont on ndglige de tenir compte dans la pratique. Sous ce rapport,
1'influence considerable que peut exercer sur la resistance d'une piece soumise
a la flexion un changement tres-minime apporte* dans la disposition des

sup}x>rt8 mdrite de fixer toute 1'attention des constructeurs, II est visible,
en effet, qu'alors mfinie qu'on voudrait s'en tenir aux conditions gdneralement
adoptees, Ton devrait ndanmoins proce"der avec une extreme precision, et

mettre le plus grand soin & eViter tout defaut de pose dans le sens ou 1'eflfet

produit serait une diminution rapide de resistance (pp. 248 9).

Lamarle concludes this first part of his Note with an extension to

the case of a beam passing over three points of support. He shows that

if the middle support be lower than the terminal supports by

the resistance of the beam will be increased by almost 50 per cent By
giving the terminals slopes determined by

F

and sinking the middle support by

we increase the resistance of the beam by 100 per cent.

At the same time I must observe that it would be almost impossible
in practice to insure that these slopes and deflections were accurately

adjusted, and any slight sinking of the supports, due even to their

elasticity, would upset the results entirely.

[574.] The Deuxieme Partie of Lamarle's memoir is entitled :

Extension generate des resultats precedemment obtenus pour les .cos

de deux ou trois supports. We have seen that the strength of the beam
for a single span will be a maximum, if

2J = (m + m)l, and (m-m')/l= 7?/24,

or from equations (ii)
a = 1, b = |.

Hencewefind: = R
'

- + ..................... (vi).

This is true whatever be the value of m, provided we properly select

m' and f\ or, the above equations give m and f as functions of m,
and thus enable us to make the resistance of any particular span a

maximum. We easily find that the points of inflexion, or those of zero

moment, are given by
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while the deflection

Further

The equations (ix) must hold for each individual span, whence if mn

denotes the slope of the tangent at the end of the nth span and m the

given slope at the first terminal we have

Rl

-4 --
(viii).

and, / - m l - (2- 1) -jg

Lamarle supposes all the spans equal and equally loaded, but the

results may be easily extended to unequal spans. The total depression
in the former case of the (n + 1 )th support below the first is

[575.] Lamarle deals with two special cases on his pp. 509 13.

In Case
(i)

he supposes everything to be symmetrical about the middle

of the beam and the terminals to be built-in at the proper slope.
This is given by

Rl= - mn = n^ ,

if there be n spans each of length I. Further we have

JPr= r (n_T)_ f

so that the proper depression of the rth support is determined.
In Case (ii) the terminals are not supposed to be built-in, but

simply supported. We may then suppose the last spans in Case (i) to

terminate at their points of inflexion. These are given by (vii), or

2 + /2
the last spans will have lengths I' = -r~l> whence, if the total

length of the beam be 2L, we have

(n-2)l + 2l' = 2L..., (xi),

and
I',

I and the corresponding differences in height of the points of

support are easy to find.
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[576.] On pp. 513 7, Lamarle works out the case of a uniformly

loaded continuous beam of length 2L resting on n + I points of support

placed jit
}iuil distances, and finds for the maximum stretch s:

f i
1-1/3-2)^

\ J3 I + (J3
-
2)J

*

The maximum stretch s obtained for Case (ii) of the preceding article

is (using Equation (xi)) :

pl*

Lamarle has the following results :

n=

/,'=
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serves rather as a warning to constructors of the difficulties

associated with the realisation of the theoretical stresses in

structures of this kind than as a practical means of largely

increasing their resistance.

[578.] L. F. Me'nabrea : Sopra una teoria analitica dalla

quote si deducono le leggi generali di varii ordini di fenomeni die

dipendono da equazioni differenzioli lineali, fra i quail quelli delle

vibrazioni e della propagazione del colore ne corpi solidi. Annoli

di Scienze mathematiche e fisiche (Tortolini), T. vi. Rome, 1855, pp.

363370. This memoir is translated into French, pp. 170180
of Crelles Journal fur Mathematik, Bd. 54, Berlin, 1857. It

contains nothing on the vibrations of elastic solids that is of real

importance.

[579.] 0. Schlb'milch : Die gleichgesponnte Ketteribruckenlinie.

Zeitschrift fur Mathematik und Physik, Bd. i. Leipzig, 1856, pp.

51 55. This is an investigation of the proper area of the cross-

section of the chains of a suspension bridge in order that the stress

may be equal at each point. The paper contains references to

earlier literature on the subject. At the conclusion of the paper
the author remarks that an approach to such a suspension-chain
exists in Hungerford Bridge, London

;

doch ist nichts iiber die ihr zu Grunde liegende Theorie bekannt

geworden ; wah.rscheinlich haben auch die in der Praxis gewandten und

kiihnen, mit der Theorie aber meistens wenig vertrauten englischen

Ingenieure iiberhaupt nach gar keinen Formeln construirt, sondern sich

hier wie bei unzahligeii anderen Gelegenheiten auf empirische Versuche
und graphische Methoden verlassen.

[580.] G. Mainardi : Note die risguardano alcuni argomenti
della Mecconico rozionale ed applicata. Memorie deW I. R:

Istituto Lombordo di Scienze, T. 6, pp. 515 39. Milano, 1856.

Pp. 519 21 of this memoir are entitled : Equilibria di un filo

elastico, but the discussion seems to me obscure and does not

appear to involve the proper number of elastic constants. It

certainly adds nothing to the treatment of the problem by Saint-

Venant and Kirchhoff : see our Arts. 1597* 1608*, 198 (/), and

Chapter xn.

[581.] Von Autenheimer: Zur Theorie der Torsion cylin-

drischer Wellen. Zeitschrift fur Mathematik und Physik, Bd. T.

Leipzig, 1856, pp. 212216.
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A circular cylinder built in at one end is subjected to torsion by a

couple at the other having for axis the axis of the cylinder. The author

endeavours to measure the effect on the resistance of the longitudinal
stretch of a fibre owing to the torsion. Let

<f>
be the angle of torsion,

I the length of the cylinder and a its radius, M the moment of the applied

couple. He finds:

If s be the longitudinal squeeze of the cylinder :

and if E

Behave M-E^
So long as * lies within the elastic limit it will hardly exceed 1/1000,
hence the effect on. the couple of the stretch produced by torsion is

negligible in practice. Even if we were to proceed up to 8= 1/50 before

rupture, the effect would only just become measurable experimentally.
The same matter has been dealt with by Wertheim, (Section II. of

this Chapter), Saint-Venant (Art 51), and Clerk-Maxwell (Art 1549*).

[582.] Carl Holtzmann : Ueber die Veriheilung des Dr?/r/-.y

im Innern eines Korpers. Einladungs-Schrift der k. polytechnischen

Schule in Stuttgart zu der Feier des Geburtsfestes seiner Maje^^t
des Konigs Wilhelm von Wurttemberg auf den 27. September, 1856.

The earlier part of this paper reproduces the analysis of stress

due to Cauchy and Lam^, leading up to their stress-ellipsoids and

the shear-cone (see our Arts. 610* and 1059*). This occupies

pp. 1 9. I do not think there is anything of novelty or

importance in the treatment. The latter part of the paper applies
the results so obtained to the discussion of stress in three special

cases, namely those of:

(a) A perfect fluid. The fundamental equation of hydrostatics is

deduced and a remark added that the disappearance of the shearing
ss is not true for portions of the fluid where capillary action is

called into play.

(b) T)w stability of earth. The earth is supposed to be bounded ly
two horizontal planes and a third vertical one, and tin- minimum and
maximum pressures on the vertical plane are calculated, corresponding
to tin- limits at which the earth will overcome tin- n-.sistaner i.t' tin-

plane, or the pressure on the plane overcome the resistance of tin*
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earth. A more general investigation has been undertaken by Levy
and Boussinesq : see our Art. 242. Rankine published important
results in 1856 7 (see our Art. 453), but most probably Holtzmann
had not seen them, and the special case worked out by him is simply
dealt with and is of considerable interest.

(c) A simple beam centrally loaded and subjected at the same time to

continuous load on its upper surface. Holtzmann supposes the beam of

rectangular section and deals with the stress as uniplanar, in the manner
of Jouravski, Bresse, Rankine, Kopytowski, Scheffler and Winkler : see

our Arts. 183 (a), 468, 535, 556, 652 and 665. It is needless to repeat
that the method is illegitimate and the results erroneous, except for the

case of a section whose breadth is infinitely small as compared with the

height (i.e. in practice the thin webs of girders).

[583.] H. Resal : Memoire sur le mouvement vibratoire des

bielles. Annales des Mines, Tome ix., pp. 233-79, Paris, 1856.

This paper contains an important application of the usual

theory of the vibrations of bars (due to Bernoulli) to ascertain

what influence the vibrations of a connecting rod have upon the

forces which it exerts on the crank-pin and piston-head. The
treatment is only approximate, terms of the third order in the

ratio of the length of crank to that of connecting rod being

neglected. But the results obtained are of very considerable

interest, especially the analysis of the origin of the various types
of longitudinal and transverse vibrations which occur. The

danger of isochronism between a free period of vibration of the

rod and the time of a complete revolution of the crank is brought
out (p. 248) : see our Art. 359 and ftn. p. 243. Resal considers at

some length the effect on the magnitude of the vibrations of the

connecting rod produced by putting a counterbalance upon it at

or beyond the crank-pin. He shows that its influence is to pro-

duce a constant dilatation in the connecting rod and also to

increase under ordinary conditions the amplitude of the transverse

vibrations of the rod by one-third (p. 275). His analytic results

are, however, too lengthy for citation here, even if their discussion

did not carry us beyond the proper limits of our subject. They

ought certainly to be consulted by those having to deal practically

with the stresses in connecting rods.

[584.] H. Resal : Recherches sur les tensions elastiques develop-

pees par le serrage des bandages des roues du materiel des chemins

de fer. Annales des Mines, Tome XVL, pp. 271-86, Paris, 1859.

T. E. II. 26
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This is an interesting paper although it involves several rather

doubtful assumptions. It is well known that the true tire of a

wheel is made slightly less in inner circumference than the outer

circumference of the false tire {faux bandage) upon which it is

placed when expanded by heat. On cooling the whole material

of the wheel spokes, false tire and true tire is in a state of

elastic strain, and Resal endeavours to ascertain on the Bernoulli-

Eulerian theory of flexure the stresses in these various members.

One assumption which his theory requires is that the linear di-

mensions of the cross-section of the tire must be small as compared
with the length of tire between two spokes, and I do not think

he has fully regarded this point, when he applies his theory to

special cases of very close spokes. He also disregards the sliding

effect produced by flexure and neglects the square of the ratio of

the linear dimensions of the tire to the radius of the wheel.

[585.] Resal begins with a lemma of the following kind. Suppose
a circular arc of radius p to receive at the point defined by the radial

angle the very small displacement towards the centre defined by p e,

then the change in curvature l/p
-

l/p at that point is measured by

Let p be the initial radius of the external circumference of the false

tire, p (l
-

c) the initial internal radius of the true tire, p (l-e) the

radius vector corresponding to the polar angle 6 (measured from a spoke)
of a point on the common circumference after strain, let ft be the

squeeze of this circumference at the same point, then coj and o l>ein^

the cross-sections of the false and true tires, the squeeze in a 'fibre'

distant y from this circumference in the false tire is easily found to be

Hence there is a total negative traction across the section of the
false tire given by

and a total moment given by

w<Mj|

Po

where ?/,
is the distance of the centroid of o>i from the common cir-

cumference and KJ, the swiii^-radius of
f,>,

;tl<>ut a line through (liat

circumference.
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For the true tire we easily deduce the expressions:

403

d

for the total positive traction and the moment with a similar notation.

We suppose with Resal that the stretch-modulus for the material of

both tires is the same. Hence subtracting (iii) from (v) and adding

(iv) and (vi) we have :

For the total traction in the cross-section :

For the total moment :

(vii).

(viii),

where fi = c^ + to, Y is the distance of the centroid of O from the

common circumference, and K the swing-radius of O about an axis

through the common circumference perpendicular to the plane of the

wheel.

[586.] Now if we take the cross-section cc midway between two

spokes which make an angle 2a with each other, the total stress over
cc must consist of a couple, Em say, and a thrust at the common cir-

cumference perpendicular to the cross-section given by Up, say. Hence
for the cross-section aa we find at once from (vii) and (viii), since no
forces act on the element aacc except at the cross-sections cc and aa :

_Q +_
(e+ jj^=pcoa(a-e)-eu (ix),

Po
(a- cos

or, r-,
)
= pp ()

cos (a 0) + mf

(x),

262
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when we neglect the products of small quantities (e.g. pe) and write

m for the terms on the right which do not involve 6. Eliminating

successively ft and e we find:

...... (xi),

(xii),

where K is the swing-radius of Q about a line in its plane through its

centroid perpendicular to the plane of the tire.

The integral of equation (xi), remembering that defdO - for 6 = a,

in easily found to be

...... (xiii),
Po

where m" is an undetermined constant. Equations (xii) and (xiii)

contain the complete solution of the problem.

[587.] It remains to determine the constants p, ml and m". It

is easy to see that the total shear must vanish at the cross-section

midway between two spokes, but that at a spoke cross-section it will

not vanish luit be equal to p sin a. Let <r be the cross-section of the

spokes, I their length, then if their stretch-modulus be the same as for

the tires, we have for their negative traction the expression

where e is the value of e for = 0.

Now consider the element of the wheel between two midway cross-

sections, we have at once from statical considerations

2Ep sin a = J$o-p e
Q/l,

or, P^\^ ..... .. (xiv).2
I sin a

The shearing force at AE (see figure on our p. 403)

but this may l>e put /x times the slide into the cross-section, or

(xv).

Resal here assumes that the total shear is equal to the continued

product of the slide-modulus into the total area of the cross-sect imi

into the complement of the angle the strained circumference common
to the two tires makes with the radius at the spoke. Saint-Venant.

however, finds values from about 5 of this product for a rectangle to

for a circle : see our Arts. 90 and 96.

1 >itli i rnti.it ing (xiii) and applying (xv) we obtain m" in terms of e
,

thus since (xiv) gives p in terms of f
-

u
we have only to find e

v
and >//.
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But putting e = e and - in (xiii) we at once obtain in in terms

of e(r Thus it remains to find e .

We have not yet made use of the condition that the angle cOA

(see figure p. 403) retains a constant value or is equal to a. Now if

ds be an element of the common circumference of the tires before and

ds' after strain, we have obviously

i;
= pa (

XV1
)*

'0

But (ds
-

ds')/ds
=

(3 and ds' = p (1
-

e) dO,

hence ds = p (1 -f/3 e) dO,

and substituting in (xvi) we have
Ax

I (# - e) dO = (xvii).
Jo

'

Hence from (xii), (xiv) and (xvii) we can find e .

[588.] The calculations indicated in the previous article are carried

out by Resal, who gives pp. 281-2 rather lengthy values for m' and e .

He then returns to
(ii)

and to a similar expression for the squeeze in

the true tire in order to find the maximum value of the traction or

squeeze in the tire. Equating such value to the safe elastic limit, we
find a maximum value for e, or for p e the difference in the radii of the

two tires (pp. 282-3). As special problems Resal treats the case when
the spokes are so close that siiia may be replaced by a and further

investigates a minimum safe value for e in the case of a wheel turned

by a crank having regard to the necessity of the moment of the friction

between the two tires being greater than the moment of the force in the

crank about the axis of the wheel. He does not, however, lay stress on
this result (p. 286).

We have sufficiently indicated Resal's method of dealing with such

problems to suggest to the student of this subject how he may complete
or extend it.

[589.] H. Resal: De ^influence de la suspension d lames sur

le mouvement du pendide conique. Annales des Mines, T. xvin.,

pp. 1-16, Paris, 1860.

This is the application of the simple Bernoulli-Eulerian theory of

flexure to the problem of the suspension by elastic laminae of a
balancier conique due to Redier. The paper contains nothing further

bearing on the theory of elasticity.

[590]. Mahistre : Note sur les vitesses de rotation qu'on peut

faire prendre d certaines roues, sans craindre leur rupture sous

1

J

effort de la force centrifuge. Comptes rendus, Tome XLIV.,

pp. 236-9, Paris, 1857.

This is only an extract from a longer memoir and the line of
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argument is scarcely intelligible from its brevity. As the problem
has been satisfactorily dealt with (so far as that is possible on the

Bernoulli-En lerian theory) by Resal, we shall make no attempt to

unravel Mahistre's obscure statements. We merely note that if

S be the resistance to rupture of the metal in kilogs. per sq. metre,

N the number of turns of the wheel per minute, R the mean
radius of its rim, D its specific gravity, then Mahistre finds that

to avoid rupture we must have a relation of the form :

30N<
See our Art. 646.

[">)!.] The four memoirs by Poinsot on the impact of bodirs

published in Tomes 2 and 4 of the Journal de Liouville, 1857 and

1859, have nothing to do with elasticity, although their titles tune

'1 by the writer of the article Elasticitdtstheorie des yem
Stosses in the Encyklopddie der Naturwissenschaften : Handbuch
der Physik, (see S. 296, Bd. I., of that work).

[592.] J. H. Koosen: Entwickelung der Fimdamentalgesetze
"lier die Elastidtdt und das Gleicligewicht im Innem chemisch

lioniogener Korper. Annalen der Physik, Bd. ei., S. 401 - 5 '2.

Leipzig, 1857.

This is entitled: Erste Abhandlung ,
but I can find no trace of a

Zweite A bhandlung having been published ; perhaps its non-publica-
tion is hardly a loss. The author obtains the equations of elasticity

for an isotropic medium practically in the same manner as Cauchy
or Poisson, and he finds (S. 419) for the type of tractive stress :

du dv

He apparently thinks there is something novel in this result,

but the equation had been long previously obtained by Cauchy,
who showed that A measures the initial stress: see our Art. G16*

and our account of Saint-Venant, Art. 129. Koosen does introduce

novelty, however, by retaining in general the coefficient -1 and

supposing this Molecularspannung is somehow equilibrated by

temperature exchanges between the elastic body and surrounding
bodies (S. 425-6). I do not understand his reasoning on this

jH.int, nnr in tin- following pages, and believe it t- !> incorrect.

The equations involving an exponential of the time <>n S. 4:>5 and
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the consequences drawn from them on the following pages are a

mystery to me, and I should be inclined to describe the whole of

this lengthy paper as no contribution to our subject, were I not

obliged to confess that I have frequently been unable to follow its

drift.

[593.] R. Hoppe : Ueber Biegung prismatischer Stabe. Annalen

der Physik, Bd. 102, S. 227-245, Leipzig, 1857. Keprinted in the

Zeitschrift des Vereins deutscher Ingenieure, Bd. I., S. 308-13,

Berlin, 1857.

This paper opens with the words :

Auf den bekannten Erfahrungssatz, nach welchem die zur Delmung
oder Zusammendriickung eines elastischen festen Korpers nach einer

Dimension bin erforderliche Kraft den Volumincrementen proportional

ist, lasst sich die Berechnung der Biegung eines prismatischeii Stabes

nur unter der Annalnne griinden, dass sein Querschnitt weder in seinen

Dimensionen, noch in seiner normalen Stellung zu alien Langenfasern
eine Aenderung erleide. Die Bestimmung jeder ungleichmassigen

Delmung oder Compression nach mehr als einer Dimension, welche durch

jene Annahme umgangen wird, erfordert die Zuziehung neuer empiri-
scher Grundlagen oder Hypothesen; denn das unveranderte Volum
selbst der kleinsten Theile begriindet noch nicht das Gleichgewicht der

darin befmdlichen Spannungen (S. 227).

After reading this paragraph and remembering the researches

of Saint-Yenant and Kirchhoff (see our Chapters X. and XII.),

it hardly seemed needful to study closely the present memoir.

On examination, however, Hoppe's Annahme does not seem to

have made his results any more incorrect than most investigations

based on the Bernoulli-Eulerian hypothesis. His treatment,

however, is somewhat obscure and does not appear to contribute

anything of novelty or importance to the subject of flexure. It

is based on the principle of virtual velocities and indicates the

solution in elliptic integrals, but both these had been proposed
and adopted previously : see the references under Rods in the

index to our Vol. I.

[594.] J. Stefan : Allgemeine Gleichungen fur oscillatorische

Bewegwngen. Annalen der Physik, Bd. en., S. 365-87, Leipzig, 1857.

This paper deduces in the first place the general equations
for the vibrations of an elastic medium when there are three

rectangular planes of symmetry by Cauchy's method .(S. 365-7):
see our Art. 616*.
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The author then goes on to investigate the like equations by
Green's method, and afterwards considers the special cases of

uniaxial symmetry and of isotropy. He deduces the equations

which must be satisfied for the reflection and refraction of light

at the common boundary of two such media. It seems to me,

however, that in the media with biaxial and uniaxial symmetry
IK- is tacitly supposing the crystalline axes to be parallel in tin-

two media: see his equations S. 379-80 and 384. Thus he is

r. ally dealing with a very limited case of reflection and refraction

at the common boundary. Stefan makes no attempt to solve his

equations, and I do not think his paper can be considered as a

valuable contribution to either optical or elastic theories.

[595.] E. Phillips: Des parachocs et des heurtoirs de chemin

defer. Comptes rendits, Tome XLV., pp. 624-7, Paris, 1857.

The author commences by citing a formula from his memoir on

springs (see our Art. 493 (c)) for the resilience of a spring of any
form built-up of elastic laminae. The total elastic work to be

obtained from a spring is EVs*/6, where E is the stretch-modulus,

V the volume, and s the safe or limiting stretch at the surface of

all the component laminae.

Let w be the weight of a train in French tons, v its velocity

in kilometres per hour, g gravitational acceleration, we must have:

if the spring be able to bring the train to rest without the spring

being elastically damaged. Phillips takes 7*82 as the mean density
of steel, 20,000,000 kilogs. per sq. mm. for E, and '01 as the limit

of s for very good steel. Thus he finds if W be the weight of

the spring in kilogrammes :

W ='0952 xw xv8
....................... (i).

In this he neglects the friction of the laminae upon one another.

He remarks, that if U' be the work due to this friction, it may
be shown by the processes of his memoir of 1852 that:

where U=EVs*/(), <= coefficient of friction for steel on steel, n =
number of laminae, e their thickness and L the half length of the

spring, so that U' will generally be small as compared with U.
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Phillips next takes various values for w and v, for w from 90 to

600 tons and for v from 60 to 20 kilometres per hour, the values

for W vary from 21 to 31 tons. Hence he concludes that it would

be impossible to protect a train against collisions by causing it to

carry at its ends buffers or springs of this enormous weight. On
the other hand suitable buffers can be easily constructed to protect

the masonry etc. at a terminus from the impact of a train with a

small speed. In this case he takes v to measure the velocity of

the train in metres per second, he supposes that, as such springs
are repeatedly loaded, s should not be taken greater than '004 and

he finds in French measure

W= 7-7112 xwxv'2
.

For example if v = 1 metre and w = 30 tons, W is the fairly

reasonable weight of 230 kilogrammes, or about the weight of three

ordinary carriage buffer-springs (70 to 80 kilogrammes). The
memoir was referred to a commission then sitting to investigate
the causes of accidents arising from the impact of railway wagons.

[596.] Deloy: Extrait dune Note relative a I'application de

la theorie de M. Phillips a la construction d'un ressort de locomo-

tive dune nouvelle espece. Comptes rendus, Tome XLV., pp. 752-5,

Paris, 1857.

This note gives details of a special kind of spring made by
Gouin et Cie for the Lyons railway. Deloy calculated by Phillips'

formulae (see our Arts. 489 90) the deflection of this spring
under a load of 10,000 kilogs. and found it *0478 metres, ex-

periment gave it as '048 metres. The experiment was repeated
several times with the same result.

Tons les ressorts nouveaux du chemin de fer de Lyon sont constructs

d'apres la theorie de M. Phillips. J'ai commence des essais pour deter-

miner la flexibility de ces ressorts
(p. 754).

The results of these experiments show such a noted agreement
between experiment and oft abused theory that they deserve

citing here. The deflections in metres were as follows:

Series of locomotive springs, 12 laminae, 3 matrix-laminae

))
11

53
**

tender 9 4

wagon 7

Experi-
ment.

0377

067

037

155

Theory.

0357

0646

03547

15494
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It cannot be denied that this is strong evidence in favour of

the practical accuracy of Phillips' theory, more especially so when
we consider the irregularities of material and manufacture in

such tech ideal products as railway springs.

[597.] E. Phillips: Du travail des forces ilastiques dans I'in-

terieur d
n
un corps solide, et particulierement des ressorts : Comptes

T. \i. vi., pp. 333-6 and Supplement, p. 440. Paris, 1858.

Jn this memoir Phillips remarks that it is generally impossible
to apply Clapeyron's Theorem as suggested by its discoverer to

springs (see our Arts. 608-9), because the value of the principal

tractions cannot be found. He notes that he himself in an earlier

iiH-moir has applied the Bernoulli-Eulerian theory to springs ami

IP cites his chief results: see our Arts. 483-508. The last page and

tin- Xiippltiiient deal with the experimental stress which a steel bar

may be subjected to without permanent extension; according to

Phillips this stress is 40 to 50 kilogs. per sq. mm. It is difficult

to understand whether Phillips means this as the safe load for

bars liable to impact, or the real limit to a statically applied
elastic stress.

[598.] We must now turn to a series of memoirs published
in this decade and dealing with the problem of the reactions of

bodies resting on several points of support. We note first :

Francesco Bertelli : Ricerche sperimentali circa la pressione
dei carpi solidi ne

1

casi in cui la misura di essa, secondo le

analoghe teorie meccaniche si manifesta indeterminata e intormt

alia relazione fra le pressioni e la elasticita de carpi medes>

noria Postuma. Mem. deU Accad. delle Scienze di Bologna.
T. i

, pp. 433-401, Bologna, 1850.

The memoir is divided into two parts, of which the first was

read to the Accad&mia on February 16, 1843 and the second on

March 28, 1844. It relates to the problem of the statically

indeterminate reactions which arise when a body rests on more

than two colinear or more than three non-colinear point- .t

support. The problem occupied MS large
a share of attention in

Italy in tin- tii-t half ..f tin- present century, as that of solid- <>{'

equal resistance in the second half of the seventeenth century, and

the memoirs relating to it have almost as little permanent scien-

tific value. Bertelli gives a very interesting account of the history
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of the problem (pp. 436-40 and 447-61) \ and is apparently of the

opinion that its solution cannot be reached without the aid of the

theory of elasticity, a view which had not met with general

acceptance at the time when his memoir was read. He also

describes a particular kind of dynamometer for measuring the in-

determinate reactions (pp. 441-3). This he terms il piesimetro.
Some experimental results obtained by means of such dynamo-
meters are cited but no numerical details are given and they are

too vague to be of service in testing for example the theory of

continuous beams (pp. 443-6).

[599.] A. Dorna : Memoria sidle pressioni sopportate dai punti

d'appoggio di un sistema eqicilibrato ed in istato prossimo al moto.

Memorie dell' Accad. delle Scienze di Torino, Serie n., T. xviu.,

pp. 281-318, Turin, 1857.

This is the first Italian memoir which attempts to deal with

1 For the history of science the problem is of value as showing how power is

frequently wasted in the byways of paradox. I give a list, which I have formed,
of the principal authorities for those who may wish to pursue the subject further.

Euler : De pressione ponderis in plannm cui incumbit. Novi Commentarii
Academiae Petropolitanae, T. xvni., 1774, pp. 289-329.

,, Von dem Drucke eines mit einem Gewichte bescliiverten Tisches anf
eine Fldclie (see our Art. 95*), Hindenburgs Arciiiv der reinen und

angewandten Mathcmatik. Bd. i., S. 74. Leipzig, 1795.
D'Alembert : Opiiscula, T. vin. Mem. 56 n., 1780, p. 36.

Fontana, M. : Dinamica, Parte n.

Delanges : Mem. della Societa Italiana, T. v., 1790, p. 107.

Paoli : Ibid. T. vi., 1792, p. 534.

Lorgna: Ibid. T. vn., 1794, p. 178.

Delanges: Ibid. T. vin. Parte i., 1799, p. 60.

Malfatti : Ibid. T. vin. Parte ii., 1798, p. 319.

Paoli : Ibid. T. ix., 1802, p. 92.

Navier : Bulletin de la Soc.philomat., 1825, p. 35 (see our Art. 282*).

Anonym. : Annales de mathem. par Gergonne, T. xvn., 1826-7, p. 75.

Anonym. : Bulletin des Sciences mathematiques, T. vn., 1827, p. 4.

Vene : Ibid. T. ix., 1828, p. 7.

Poisson : Mecanique, Tome i., 1833, 270.

Fusinieri : Annali delle Scienze del Regno Loinbardo-Veneto, T. u., 1832,

pp. 298-304 (see our Art. 396*).
Barilari: Intorno un Problema del Dottor A. Fusinieri, Pesano, 1833.

Pagani : Memoires de VAcad. de Bruxelles, T. vin., 1834, pp. 1-14 (see
our Art. 396*).

Saint-Venant : 1837-8 : see our Art. 1572*.
1843 : see our Art. 1585*.

Bertelli : Mem. delV Accad. delle Scienze di Bologna, T. i. 1843-4, p. 433.

Fagnoli : Ibid. T. vi., 1852, p. 109.

Of these writers only Navier, Poisson and Saint-Venant apply the theory
of elasticity to the problem. Later researches of Dorna, Menabrea and Clapeyron
will be referred to in their proper places in this History as they start from
elastic principles.



412 DORXA. [600601

the problem of the body resting on more than three points of sup-

port from a rational standpoint, that is to say, which makes direct

appeal to the theory of elasticity. We have already referred to

the earlier literature of this subject (see our Art. 598 and ftn.)

and a memoir on very similar lines to this by Menabre'a will be

considered later (see our Art. 604). Dorna's paper begins so well

that we can only regret it does not end better. We say
'

it begins

well,' for it has not the flavour of mediaeval metaphysics traceable

even so late as Fagnoli (see our Art. 509).

[600.] Dorna notes that if we give a virtual displacement to

a system consisting of a rigid body resting on any number of

points of support, then the sum of the virtual moments of these

points of support must be zero independently of the virtual

moments of the applied forces of the system. Hence if Q be a

reaction and &/ its virtual displacement, we must have :

2QS? = ............................. (i).

To obtain 8q Dorna now makes the following supposition ;

suppose that each point of support is connected with the rigid

body by an elastic string of infinitely small length I and cross-

section o>, these being the same for all such strings, and of

stretch-modulus E supposed to vary from string to string and to be

ttiat of the material of the supporting body in the neighbourhood /'

the supporting point (p. 286), then we shall have

and consequently (i) will become :

Other relations between the SQ's will be given by the statical

equations of equilibrium, whence either by eliminating the depen-
dent SQ's or by the principle of indeterminate multipliers w- 1

sufficient equations to find all the unknown reactions (pp. 2:1,

300 etc.).

[601.] Dorna's method is perfectly logical if we adopt his

hypothesis namely (i) that the supports only are elastic, and Un-

supported body rigid, (ii) that we may really introduce this string-
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link with stretch-modulus equal to that of the supporting material

to explain what physically does happen at the point of support.

Now the first hypothesis is just the reverse of what is usually

assumed by practical engineers in calculating the reactions of

continuous girders, they suppose the supports rigid and the

supported girder elastic
1

. Further the second hypothesis seems

to me legitimate only in the case in which the support is a

column of uniform cross-section with a reaction in the direction of

its length, and even in this case the cross-sections of the column

ought to be retained in Equation (ii) unless they happen to be

all equal. To apply this hypothesis as Dorna does even to cases

in which the reaction is perpendicular to the axis of support is to

neglect entirely the distinction between the elastic coefficients of

stretch and slide. Thus he deduces the extraordinary result :

la pressione, riferita all' unita di superficie, che una base piana di

sostegno sopporta sotto 1' azione di una forza diretta attraverso al suo

centre di gravita, e la stessa, sia che questa operi a perpendicolo della

base, sia che operi nella stessa base (p. 306).

[602.] Of the special applications which Dorna makes of his

theory we may briefly note the following :

Problema II. A heavy rigid body rests on n colinear points of

support, (pp. 290-2). This appears correct if the n points be supposed
vertical columns of equal height and cross-section.

Problema III., (pp. 293-6) and Problema IV., (pp. 296-9). These
are the general case of distribution of normal pressure over the cross-

section of an elastic cylinder, and the special case when the cross-section

is rectangular. The investigations are correct, but present no novelty
except in the fact of their deduction from equation (ii)

of our Art. 600.

The results agree with those which flow from the theory of neutral

axis and load-point and had long before been established by Bresse :

see our Arts. 812* and 515-6, and compare Clifford's Elements of
Dynamic, Book IV., pp. 14-28.

Problema V, (pp. 299-304). This supposes the general case in

which any number of isolated points, or of continuous points com-

posing a surface are connected by elastic string links with points on
the surface of a rigid body supposed to be in contact with them. The

analysis is not without interest, but I cannot consider that this

problem corresponds to any physical reality, certainly not to a rigid

1 This point has been dealt with by the Editor in a Note on Clapeyron's Theorem;
Messenger of Mathematics, Vol. xx., pp. 129-35, Cambridge, 1890.
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surface i sting on any number of points or on an elastic surface as

Dorna supposes.

Problema VI., (pp. 304-6), Problema VII., (pp. 306-7) and
Problema VIII., (pp. 307-8) are absolutely inadmissible applications
i.f J'roblema V.

Problema IX., (pp. 308-14). This is an attempt to generalise the

theory of the neutral-axis and the load-point to pressure applied to. a

i-urvi-d MI if ice. The results obtained are all based on the hypothesis of

Problema V., and are therefore physically inadmissible. Analytically
tli y are not without interest as leading to theorems which are analogous
to those wliirh hold for the instantaneous axis of rotation of a rigid

body and which wen first discovered by Poiusot.

I'rnlih-ina X., (pp. 315-6) supposes a rigid body to rest on a portion
of a spin-rind clastic surface. The results are inadmissible.

The memoir concludes with a Nota (pp. 316-8) containing a second

demonstration of Equation (ii) of our Art 600.

[603.] E. Clapeyron: Calcul d'une poutre elastique rep<

fif'i-ement sur des appuis indgalement espaces: Comptes rend us,

Tome XLV., pp. 1076-1080, Paris, 1857.

This is only a resume of a memoir, which I think was never

published. It deals with the problem of a continuous beam
and gives the equation of the three moments usually termed
"
Clapeyron 's Theorem." Clapeyron states it only for the case of

uniformly loaded spans of uniform cross-section. Let M
l%
J/

8 ,
M

a

be three bending-moments at successive supports and
12 ,

ln the

intermediate spans, pl%t p33
their loads per foot-run, then :

It will be seen that Clapeyron only deals with a very special case

of his theorem, which has been much extended by later writers :

see Heppel in our Art. 607 or Weyraucb : Theorie dw contin nit-lichen

Trdger, S. 8-9.

Clapeyron mentions Navier as having said a few words on tin-

problem in the Bulletin de la Societe Philomathique, 1825
;

I

suppose he refers to pp. 35-7. He cites Belanger as having
studied in his course of lectures on construction at the 6cole des

Fonts et Chaussies the case of two spans, and other writers as

having propounded the general equation, but left it complicated

by tbe presence of the reactions. His own practical work on

French railway bridges led him to investigate a formula fn

from the reactions.
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He then applies his formula to the case of a bridge of seven

equal spans. A remark on p. 1078 as to a defect in the design
of the Britannia Bridge does not as a matter of fact apply as that

bridge owing to its mode of construction is not a continuous beam
in the theoretical sense : see our Art. 1489*.

[604.] L. F. Menabrea : Nouveau principe sur la distribution

des tensions dans les systemes elastiques : Comptes rendus, T. XLVL,

Paris, 1858, pp. 1056-1060.

Menabrea here states a very important elastic principle, the

application of which by Maxwell, Cotterill and others to framework

and continuous beams has been of considerable service. I do not

think the statement of the principle by Menabrea sufficiently

indicates that his proof only applies to what we now term a
' frame

'

or bit of
' framework

',
and that the links of such a frame

must be supposed subjected to traction only and to be of uniform

cross-section, which may vary, however, from link to link. A
generalisation of the principle based upon Clapeyron's Theorem

(see our Art. 608) is easily obtained and will be considered later.

Menabrea states what he terms the principe d'elasticite' in the

following words :

Lorsqu'un systeme elastique se met en equilibre sous raction de

forces exterieures, le travail developpe par I'effet des tensions ou des

compressions des liens qui unissent les divers points du systeme est

un minimum (p. 1056).

The proof given is essentially as follows : Let T be the traction

in any element of the frame of length I and section </>. Then

applying the principle of virtual work so that none of the points to

which external force is applied have virtual displacements we
must have :

SToj&i? = 0,

where &c = variation in the extension x of any link. But

if E be the stretch-modulus of the link. Hence :

and ^~T8T=0 .......................... (i),
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But luTftE is the work done by the traction T in the link I.

Thus the principle is proved that the variation of the strain energy

for the whole frame is zero. Me'nabre'a does not prove that this

energy is a minimum. He terms (i) the Equation d'elasticitd.

[605.] Let there be n points united by m links, then there

will be 3w equations of equilibrium for the n points ; suppose in

addition p equations of equilibrium between the external forces,

then we shall have 3n p equations between the m tractions,

hence m Sn+p tractions will be independent so far as the

on li nary equations of statics go and require to be ascertained

by (i). The method is indicated by Me'nabre'a in the following

words :

Puisque pendant lea variations infiniment petites des tensions qu'on
a supposes, I'Squilibre subsiste toujours, on pourra differentier, par

rapport aux diverses valeurs de 1\ les 3n-p Equations pre"ce"dentes qui
fournissent le moyen d'e*limmer, de 1'equation d'elasticite (i), un egal
nombre de variations 8T. On e"galera a ze"ro les coefficients des diverses

variations 8T restantes dans 1'equation (i).
Ces coefficients seront des

functions des forces exte"rieures et des tensions elles-mSmes; ainsi ces

nouvelles Equations unies a celles d'e"quilibre seront en nombre e"gal a

crlui des tensions a determiner.

En gnral ces Equations sont du premier degre. Dans bien des cas,

1'emploi des coefficients inde'terminis peut faciliter la solution du

problfcme (p. 1058).

[606.] Menabre"a indicates how the following case should be dealt

with, but I do not feel quite confident as to the exact form of elastic

system he is dealing with, or as to the correctness of an assumption he
inaken. Suppose the system to be resting on a number of fixed points
and P

y Q, R to be the components of the reaction at such a point
a, 6, c parallel to the axes. Let JT, F, Z be types of components
of applied force at x, y, z. The equations of statics give :

^V+2/^0; 27 + 20 = 0; 2^+2/2 = 0;
|

- Yx) + 2(/'&-<2a) = 0; 2 (Zx - Xz) + 2 (Ra -
PC) = ; L.(iii).

Now P, Q, R are evidently components of the total traction o>7' in

tli. link to the point a, b, c, and therefore we should expect to have

luTIT _ I (P&P + QBQ + JS,

K E
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But Menabrea writes :

Pour plus de generalite o

points fixes differents

reprdsenterons par e', e", '"; ainsi 1'equation d'elasticite sera

Pour plus de generalite on peut supposer les coefficients d^lasticite" relatifs

des oints fixes differents suivant les trois directions des axes
;
nous les

(p. 1059).

I do not follow this at all. It would seem as if Menabrea thought
his theorem true for other strains than those produced by longitu-
dinal traction in bars of uniform cross-section. This it certainly is

not, in the form in which he has proved it. He appears further to

put 8T -0 for all links not going to fixed points, or, what is the same

thing, to suppose the virtual displacements to be zero for such links.

Taking the variation of
(iii) we have :

=

Multiplying (v) by the indeterminate multipliers A, , C, D, E, F
respectively we have on adding to (iv):

p=- '

[A+Db-Ec] \

Q = - "
[B + Fc -Da] \

..................... (
vi>

R = -e'"[C + Ea-Fb] J

Substitute these values of P, Q, R in
(iii), and we have six equations

from which to find the multipliers and so can determine P, Q, R.

Menabrea remarks that if we take e' = e" = e'", and choose our origin
and direction of axes so that

2 = 0, Sc6 = 0, Scc-0, 2tbc = Q, 2eac = 0, ^ab =
0,

we obtain the elegant forms for P, Q, R first given by Dorna in a

memoir of 1857
;
see our Art. 599.

Here e for any link equals the Ej(l^) of our notation.

For earlier researches in this same direction Menabrea refers to

Vene, Pagani and Mossotti besides Dorna. The memoirs of Vene and

Pagani are those probably which we have cited in the footnote to our

p. 411, while the reference to Mossotti is possibly to his Meccanica
razionale. Menabrea concludes by referring to a memoir he is about
to publish, dealing more fully with the whole subject. I do not think
he published this, or returned to the matter till a memoir of 1869.

[607.] J. M. Heppel : On a method of computing the Strains

and Deflections of Continuous Beams, under various Conditions of
Load. Proceedings of the Institution of Civil Engineers. Vol.

xix., pp. 625-643, London, 1859-60.

This paper deduces, apparently as a novelty, Clapeyron's
theorem connecting the bending-moments at three successive

T. E. II. 27
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points of support of a continuous beam, when the load system

consists for each span of a uniformly distributed load and an

isolated central load. The consideration of the latter load is the

author's addition to Clapeyron's work. Let l
l}

1
3
be the spans and

M
%

, M
9 ,
M

a , the successive support bending moments, pjl9 pj,^ the

total uniform loads and W
t ,
W

3
the isolated central loads, then:

8^ + 16
(I, +y Mt + SIM = 2M" + 2j>A

s + 3 Wtf + 3 WJ*. . . (i).

Further the reaction RM at the support between the spans l
lt

Z
2

is

given by :

2

The author also calculates the points of maximum-stress and

of contraflexure (Le. zero bending moment), and shows how the

deflections may be obtained. I do not think there is any novelty
in the methods used, but there are some interesting numerical

applications to the Britannia Bridge, to a bridge on the Madras

Railway and to a 'continuous rail of infinite length
1
.'

[608.] E. Clapeyron : Mdmoire sur le travail des farces

e'lastiques dans un corps solide elastique deformd par Vaction de

forces eMrieures: Comptes rendus, Tome XLVI, Paris, 1858, pp.

208-212.

This I presume to be only a re'sume' of the original memoir
which so far as I can ascertain was never published.

Clapeyron had been led by a study of various kinds of springs
to the conclusion that the resilience of an elastic body varies as its

volume. He does not appear, however, to have known that Young
and Tredgold had long previously reached this result. It led him

to consider how the work of an elastic body could be expressed
In a memoir of 1833 Lame? and he had noted that on the uni-

constant hypothesis if W be the work and E the stretch-modulus :

where A, B, C are the principal tractions and the integration is

1 A long scries of memoirs on continuous beams will be found discussed in

Section III. of this (
luij-t, i.
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over the volume of the elastic solid. I hold that this result of the

memoir of 1833 was due entirely to Clapeyron, for Larne in his

Lemons, of 1852, giving the formula in the form

= -L

JJT [A
C*- 27, (AB + BC+ GA)] dxdydz,

due to bi-constant isotropy (rj being the stretch-squeeze ratio),

terms it Clapeyron s Theorem, and Clapeyron here speaks of it as

he would do only if it were entirely due to himself.

[609.] Clapeyron proceeds after stating this formula in its

modified form to suppose only one principal traction T, when we

have:

He then applies this to the calculation of TFfor various simple cases

of rods under traction or flexure etc. and also for railway springs.

He remarks that if a framework be constructed in such a

manner that the cross- sections of the various members are propor-
tional to their total stresses, and these stresses are merely longi-

tudinal tractions, then

BIT-i FT,
jit

where V is the volume of the whole framework. Hence if Tbe the

safe tractional stress, and the load P be applied at one point with

a resulting deflection /:

Thus the same volume V of material distributed in different

ways will give a maximum P for a minimum /; the resilience,

however, will be quite independent of the particular distribution.

Un prisnie pose de champ sur deux appuis porte plus que pose a plat
dans le rapport de la hauteur a la largeur de la section

;
sa resistance a

un choc est la meme (pp. 210-11).

[610.] The remainder of the memoir treats of the question
of uni-constancy. Dealing with one experiment of Coulomb's and

eleven of Duleau's on torsion (see our Arts. 119*, 229*, and Vol.

I., p. 873). Clapeyron finds that for iron E =
5/i/2, or X = At, very

closely indeed. But from some experiments made in the work-

272
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shops of the Chemin de fer du Nord on the compressibility of

caoutchouc and on its stretch-modulus, Clapeyron concludes that

for this substance

Thus while uni-constancy is very nearly true for the metals usual

in construction, it appears to be quite impossible for caoutchouc.

This is the well known argument from "
squeezing india-rubber ",

but it is one the validity of which is very doubtful : see our Arts.

924*, 1322*, 192(6) and ftn. Vol. I., p. 504. We cannot accept
it as a conclusive demonstration of bi-constant isotropy, until india-

rubber has been demonstrated to satisfy all the other relations

of a bi-constant isotropic elastic body
1

;
this has not been done

either by Clapeyron or by the several distinguished scientists who
have used this argument. Other experiments on caoutchouc differ

widely from Clapeyron's. See our Art. 1322*.

[611.] Clapeyron in the course of his discussion notes that the

shear in a case of torsional stress gives rise to two principal tractions

making angles of 45 with the direction of the shear, hence he

states that the torsional resilience =T*V/E. This is only true

for the case of uni-constant isotropy. We see from our Arts.

493 (c) and 609 that in this case the resiliences of torsional,

flexural and tensile springs of the same volume and material are

as 24 : 5 : 15.

[612.] J. H. Rohrs : On the Oscillations of a Suspension Chain.

Transactions of the Cambridge Philosophical Society, Vol. IX., pp.

379-98, Cambridge, 1856. This paper was read on December

8, 1851. It does not presuppose elasticity in the chain and so

does not properly belong to our subject, but the general con-

clusions on p. 395 as to the vibrations of suspension bridges
are of considerable interest.

[613.] P. van der Burg: Ueber die Art Klangfiguren hervor-

zubrinyen und Bemerkungen ubei* die longitudinalen Schuringungen,
Annaien der Physik, Bd. cm. S. 620-4, Leipzig, 1858. This paper

mple the slide modulus of india-rnbber as determined by t

and by pare slide experiments must be shown to have the same value as if it had
been obtained by experiments on compressibility and traction. Roughly, from

Clapeyron'fl ex]>< ! im<l /* 5 kilogrammes per square centimetre.
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contains miscellaneous information with regard to vibrating bars

and plates. In particular the author recommends the following

plan as leading to very correct Chladni-figures :

Man stellt namlich einen Stab senkreclit auf eine Klangscheibe, fasst

ihn in der Mitte mit der vollen linken Hand fest an, driickt ihn ziemlich

stark auf die Scheibe, und streicht den oberen Theil von oben nach

unten mit der vollen rechten Hand mittels eines Tuches, das mit

pulverisirtem Harz bestreut ist
;

sobald ein reiner Ton entsteht, tritt

sogleich die Figur sehr correct hervor (S. 621).

[614.] V. von Lang : Zur Ermittelung der Constanten der

transversalen Schwingungen elastischer Stdbe. Annalen der Physik,
Bd. cm. S. 624-8, Leipzig, 1858. This does not seem any real

contribution to the theory of elastic vibrations of rods. It proves
an equation of the well-known form :

where Xr
and X

t
are two solutions of Poisson's equation of the

type:

by the lengthy process of substituting their values and actually

integrating through the length I of the rod : see our Art. 468*.

[615.] Edward Sang : Theory of the Free Vibrations of a

Linear Series of Elastic Bodies. Edinburgh Royal Society Pro-

ceedings, Vol. IIL, Part I., p. 358, Part VI., (Alligated Vibrations)

pp. 507-8, Edinburgh, 1856-7. The first part is only referred

to by title, the sixth part is accompanied by a short resume of

results, but this is not sufficient to indicate whether the original
memoir is of real importance.

[616.] J. Stefan : Ueber die Transversalschwingungen eines

elastischen Stabes. Sitzungsberichte, Bd. xxxn., S. 207-41, Wien,
1858. This paper proves

'

by brute force
'

that the integral along
the length of a rod of the product of two of the functions Xr and

X, which occur in Poisson's solution of the equation
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is zero if r and 8 be different, and evaluates the integral when r and

s are equal. The method adopted is longer than Poisson's original

method, and I do not see that Stefan has really contributed

anything to the previous discussion of the problem by Euler,

Poisson, Seebeck and others.

He states that the method of integration by parts will not give

the value of fX*dx as it leads in this case to an indeterminate

form 0/0. This form, however, can be evaluated by the processes

of the differential calculus and we can thus more briefly than by
Stefan's laborious integrations deduce the value of fX*dx. This

was pointed out by V. von Lang in a paper entitled: Einige

Bemerkunyen zu Herrn Dr T. Stefans Abhandlung : Ueber die

Tnuisversalschwingungen eines elastischen Stabes, which appeared
also in the Sitzungsberichte, Bd. XXXIV., S. 63-9, Wien, 1859.

[017.] J. Petzval : Ueber die Schwingungen gespannter Saiten.

/.srltriften der mathem. naturwiss. Classe der k. Akademie,
Bd. xvii., S. 91-136, Wien, 1859. An abstract of this memoir
is given in the Sitzungsberichte, Bd. xxix., S. 160-72, Wien, 1858.

This memoir commences by deducing the differential equa-
tions for the vibrations of an elastic string, when its mass per
unit length is variable, its weight taken into account, and other

variations not dealt with in ordinary treatments of the subject
are considered (S. 91-6). The remainder of the memoir is

devoted to the case in which two pieces of uniform string of

different mass per unit length are united together to form a

single piece. The author instead of considering the equality of

the displacements and tensions at the joint treats this as a special

case of varying mass. He obtains a solution involving a discon-

tinuous function, and investigates at great length of analysis ;i

problem which is easily dealt with by the ordinary equations for a

vibrating string. I have not tested the results given for the

notes, nodes etc., but these might be useful for purposes of

comparison with the same quantities obtained by other processes.
The author speaks of his problem as a bisher nie in Betracht gezo-

genen Fall, but this seems to me hardly probable although I am
unable to give any reference to its earlier discussion. Possibly
Duhamel has treated this case : see our Art. 897*.

[

il 1 Y
!

K. \Vinkler : Fvrmanderun<t jkeit gekrij Hinder
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Korper, insbesondere der Hinge. Der Civilingenieur, Bd. IV., S.

232-46, Freiberg, 1858.

This is an important memoir, both from the theoretical and

practical standpoint, although many of its results require correction

and modification. Some of these corrections have been made in

Kapitel XL. (Ringformige Korper) of the author's well-known

treatise : Die Lehre von der Elasticitdt und Festigkeit, Prag, 1867,

but this treatise does not cover anything like the same area as the

memoir. I propose therefore to indicate the correct analysis and

compare its results with those of Winkler.

The importance of the subject will be sufficiently grasped
when I remind the reader that it is the only existing theory of

the strength of the links of chains. To investigate the strength of

such links by the complete theory of elasticity would involve even

for the case of anchor rings an appalling investigation in toroidal

and allied functions, while for the oval chain links with studs

in ordinary use any successful attempt at a general investigation

seems inconceivable. We shall have the less hesitation, however,
in applying the Bernoulli-Eulerian theory, if we remember how
close an approximation Saint-Venant's researches on flexure have

shown it to be in the case of straight bars. At the same time, we
are certainly going to put it to the very limit of its application,

namely to curved bars in which the dimensions of the cross-

section are not very small as compared with either the length or

the radius of curvature of the central axis. It is non-fulfilment

of the latter condition which renders Bresse's investigations for

curved rods (see our Arts. 514 and 519) inapplicable without

modification, and the former introduces, failing further experi-
mental confirmation, an element of uncertainty into the results

of an undoubtedly important theory.

[619.] Remembering that we need not assume adjacent
cross-sections of our link to remain undistorted, if we only

suppose them to be approximately equally distorted (see our

Art. 84), we can easily investigate an expression for the stretch

at any point by a method akin to that which results from the

Bernoulli-Eulerian theory. We assume the central line of the

link to lie in one plane and this plane to be that of the system
of applied force and further to cut each cross-section of the link
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iii a principal axis. These cross-sections will be supposed uniform,

each of area ay and swing radius K about a line (central axis)

through the centroid perpendicular to the plane of the central line.

(Central and neutral axes are straight lines lying in the plane of

the cross-section; central and neutral lines the loci of points in

which those axes meet the '

plane of the link
'.)

We shall use the following notation :

8V = stretch in a direction perpendicular to the cross-section at distance v

from the central axis.

8Q stretch at points on the central axis.

V = distance of the neutral axis from the central axis.

E stretch-modulus of the material (not necessarily isotropic) in the

direction of the central line.

Etah* = flexural rigidity of the link (no longer EUK*).

p = radius of curvature of unstrained central line at any point.

XQ, yQ
= coordinates of a point on central line referred to the axes of

symmetry of the link before strain.

x, y = the coordinates of the same point after strain.

Aa, Ay = x - xot y - yQ respectively.

d<T
,
d<r= elements of arc a- of central line before and after strain.

</> ,
< = angles the tangent to the central line at any point makes with

axis of x before and after strain, taken to increase with <T
O ;

A< = <
-

< .

Afthe bending moment at any cross-section, being the couple which

must be applied (taken positive when it increases <) for equili-

brating the stresses if the material beyond the length a of central

line be cut away.

/' the total traction
(i.e. negative thrust) at the same cross-section.

c, , c2 = the distances from the central axis to the ' extreme fibres ',
or

what with an extension of terms we shall venture to call intrados

and extrados. When we do not wish to particularise one or other

of these, we shall simply use c for either.

Q = the total longitudinal pull on the link
;
this we shall suppose to be

ji|i|lied iii the direction of the axis of y, which axis is taken to

coincide with the greater axis of symmetry of the link, if there

be one.

Ab, Aa = increments of length of half the major and minor axes b aud a

(i.e.
axes in directions of y and x respectively) <>f the link.

R = unknown reaction of the stud of the link supposed to coincide with

the axis of
,
if the link liavc one. Clearly
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where n is a quantity depending on the dimensions and materials

of the stud and link. Winkler's result (39) S. 236 is really the

same as this, although he puts it in a form apparently allowing
for variation of the cross-section in the stud.

da = an element of the area of the cross-section.

Po + v

Thus remembering the symmetry of the cross-section we have :

C

1 Po + V (ii),

/,

. o>7i
2

.....

aw =
(in).

PQ + V

Approximately :

<oA
2 = o>K

2 + i (Wo + -. (vdu +
Po J PoV

In some cases (e.g.
Bresse's ftieory of arches) it is sufficiently

approximate to put h K, retaining only the first term in (iv).

For a rectangle, I find if 2c be its height :

./I l^ ]_

A * '

' (V) '

H3 +
5 p

2
+
7

which allows of easy calculation.

For a circle, if c be its radius :

73-^/1 If! 3.5 c
4 3.5.7 c

6

|
OF> /& T" "i

A +
^
+ Q 4

+ ^ Q T~?v ~g + I"

TC ^ a PQ O . O PQ O . O , 1 V PQ J /

The values of 7t
2 for some other sections may be easily found 1

.

[620.] Let BOB1

,
AOA be the two principal axes of the curve

formed by the central line ABA'B', L a point on this central line, LT

1 Its value for a trapezoidal section, symmetrical about the line joining the mid-

points of the parallel sides is, if dlt d2 be the lengths of those sides :

Cf. Bach : Elasticitdt u. Festigkeit, S. 308-9. This is useful in the case of certain

types of hooks.
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the tangent there, LTX=<j> ,
AL = <r

,
then we readily find on the

Bemoulli-Eulerian hypothesis :

.(vii

Po

But

M=fEsv vd<*>.

Whence by (ii)
and (iii)

/- tf\ Eu>
P = Es^ 1 + -

)
--

\ PoV Po

Po

(vm),

.(ix).

From (viii) and (ix) we find to determine a and
-35T'

Po
W.

.(xi

We shall represent the right-hand sides of (x) and (xi) by p and ///

respectively. The usual formulae for arched ribs replace p and /// by
th ir first terms P and Jtf^: see our Art 519.

Winkler in his memoir adds the term 7V/p
2 to (x) which I think is

incorrect. He has the form (x) on S. 270 of his treatise.
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Substituting in (vii) we find :

M M p^v . .=P + + j-s
- .................. (xii).

Po

Whence if T be the maximum traction in any section (T^ the safe

negative, T2 the safe positive traction) :

Po PoC
and P and M must be given their values at the section of maximum
stress while T is put equal to T

l
or T to obtain the condition of safe

loading.
Further from (xii)

we find for the position of the neutral axis :

^-
.(xiv).

For approximate values, if we neglect terms of the order (v/p )

3
,
we

have :

Mv A v K2 \ P
s.. = -

[
i -- + ) + - ................. (XV),

\ p vpj Eu

Winkler in his memoir does not give (xii) to (xiv). He has (xv),
but his approximation to sv to the order (v/p )

4 seems to me wrong,
while in his formula corresponding to (xvi) he has 1, where I have 2 in

the second bracket. See his pages 234-6. Thus I think his final

results cannot be depended upon.

[621.] From the consideration that cos<p
=

dx/d(r, and therefore

x = j cos
<j> (1 + s

)
d<r

,
we easily deduce :

Similarly from sin <p
-

dy/dcr, we find :

1

These equations agree with Winkler's (S. 234), except that he has
the wrong values for m and p, which ought to have the values given
in our (x) and (xi). They further agree with Bresse's approximate
equations (see our Art. 519) if we put J/and P for our m and JP.

The above theory is so far perfectly general and not confined to the
case of links. We now proceed to the case of a link symmetrical about
two axes and with a stud.
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[622.] Let 4v be the unstrained length of the perimeter of the
central line. Then we find if ^ be the angle the normal makes with the
axis of x :

(xix).

Further, A< = at A and B, whence

1 ""

........... (XX1V) '

We also tind from (xvii), (xviii) and (xxii)

1

These values agree with those of Winkler's treatise but not with

those of his memoir (S. 236).

[623.] Let us first apply these results to the case of a circular link

of radius a. Here /t
2

is constant and given, if the cross-section be as

usual circular and of radius c, by (vi) with p put equal to a.
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Finding in from (xi), (xix) and (xx), and substituting in (xxii) we
have :

Qa
'

Case (i). Suppose there to be no stud (e.g. an anchor ring). Then
= 0, and we find from (xix) and (xx),

(xxvi),

while
(a? + 7r)

'

Further from (xxiii) and (xxiv) we have :

Qa*

Qa*

(H)
7; I +

(r + *)L (xxvii).

a2 + h2

)'

Putting 7i
2 -K2 and neglecting the second terms as compared with

the first, the results in (xxvii) agree with Saint-Venant's of 1837 (see
our Art. 1575*). They differ by a factor J in the second terms from
those of Wmkler's memoir even when A2

is put equal to K2 in the first

and neglected in the second terms. They agree except in the sign of

the first term in the value of Ab with those of Wmkler's treatise,

S. 373. Winkler's results in the memoir for P and M agree to a first

approximation with our (xxvi). See his S. 237-40.

For the position of the neutral axis we have from (xiv) :

1

(xxvm).

This agrees with the result in the memoir, if h2 be neglected in the

denominator.

Lastly we find from (xiii) for the traction :

Qa? ca Qa / a?
_

1

the upper sign referring to the extrados and the lower to the intrados.

The result given in the memoir does not agree with this even to a first

approximation.

[624.] Winkler traces in his Fig. 5, Tafel 33, for a = 6c the form
of the neutral line, and in Fig. 6 the tractions in extrados and intrados.
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The latter are certainly incorrect. I have retraced both figures in the

accompanying plate, where the stress is measured from the central axis

along the radii in the scale: TujQ = ^ inch. The dotted lines are the

curves obtained from the usual formula

T Mc
n> =*_.

It will be seen to give results often very divergent from those calculated

from (xxix). The following are the numerical results for this case :

c -636,620- cos x
'

= c,forx=5027'35";

^ =-x 9-383,44;a /.">

= -J^x 10-878,80;
(i fad)

T<a
For extrados : = 6727,75 -

10-142,35 cos v
;

V

For intrados :
~ = - 8-660,27 + H'199,29 cos x ;

*c

Tt\
Old formula :

-^
=

(7 -586,75
- 1 2 cos x).

For extrados T= for x - 48 27' (old formula 50 47') ;

Maximum positive traction (x~ 90) = - x 6727,75,

Maximum negative traction (x= 0)= - - x 3-414,60.

The old formula gives - x 7-586,75 and - - x 4-413,25 respectively.

For intrados T= for x = 52 25' (old formula 50 47') ;

QMaximum positive traction (x = 0)
= - x 5-539,02 ;

Q
Maximum negative traction

(x = 90) = -
- x 8-660,27.

The old formula gives the same values of the traction for intrados as for

extrados with the signs reversed.

[625.] It may be shown that the absolutely greatest traction is a

negative one and occurs in tin- intrados at R and JS". For wrought

iron, of which the links of chains are usually made, it would be

sufficient to consider this traction 1

,
but there would have to be an

investigation of the positive tractions in the case of cast iron.

1 The 'fibrous' character of wrought-iron causes bars of this material t<

a safe limit higher in tensile than in compressive stress, although for practical

iin-iitly taken rqual.
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The maximum negative traction in the intrados occurs at ^ = 90,
Qar C ca

and equals 7-5 r^-. {-.

o)7r(a
2 + A2

) \(a-

,- I

c) n

The maximum positive traction in the intrados occurs at x = 0, and

Qa? /
1

car \ Qarc
equals 7-^ r-.- 1 -. r^ + -

; r-rz.
COTT (or + A2

) \ (a
-

c) tfj 2u(a-c) A2

The maximum positive traction in the extrados occurs at x - 90,
Qar f

car
}and equals T~z 7^ -|1.+ ; r-y-J .

WTT (or + h2

) { (a + c) /i?)

The latter will be greater than the former if

4a3 > TT (a
2 + A2

) (a + c),

which will generally be the case, e.g. if a = 6c.

In wrought iron our condition for safety is thus :

Qar (
car

or, to a first approximation, the diameter

3 /32a
\/

This value of 2c may then be substituted in the small terms of (xxx),
and a new approximation found. The result (xxxi) agrees with that

given on S. 372 of the treatise, but the other results of this article

are not given in it, and are erroneously given in the memoir. More

exactly, neglecting only terms of the order (-
) ,

I find that the cubic

to determine the limiting value of c/a is :

X 5\/c\ 3
1 /cV 3 /c\

^
--- 75) (-) - 71-) ~

7 (-)- 1=0 ...... (xxxii).
16/ \aj 4 \aj 4 \aj

This differs entirely from the cubic given in the memoir, and in the

treatise (S. 372) Winkler has $ instead of T
5
^ for the second term of

the first bracket.

[626.] Case
(ii). Suppose the circular link has a stud.

Then we have from (xix), (xx) and (xxv),

P = J (R sin x + Q cos x) .................. (xxxiii),

,, 1 a (Q + fi) a
N / \M = --i-n-t - - (R sm v + Q cos x) ........ (xxxiv) ;

whence m = -
(Q + R)

- - (R sin x + Q cos x) ........ (xxxv),

+ R a?

(XXXVI).
TT or + /ir
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From (i) and (xxiii) we find :

ii _ ^ _ _*
A1

V 4/ a2 + .(xxxvii).
here

This value is not given in the treatise
;

it differs, even when we take

only the first approximation, from the \alue given by Winkler in the

memoir.
From (xxiv) we have :

aQ (a? / IT + l\ + 1 cr
}

.

Ab =
rr- (/;>( 7

+ o
~

j^'f (XXXVlll),

while, Aa= n (xxxix).

Let = tan
,
then we easily find for the position of the neutral line

from (xiv) :

sin (45 + e) A2

a 2 N/2sin(45 + )

''

A- _cos(x -)

Finally for the tractions in extrados and intrados from (xiii) we
have :

a2
( a?c

)
a2

c cos
(x -

e) ...*
/r (a

*
c) I

T
2A2 a^ cose

*" * ^

where the upper sign refers to the extrados.

[627.] Now | is positive, hence e will be found to be an angle in

the first quadrant ;
cos (^ e) cannot thus be negative and we shall get

the maximum positive traction in the extrados by making cos (\
-

e) as

small, or x as large as possible, irrespective of sign. Thus we must

put x = 7T/2 or according as e is < or > 45, or < or > 1
; the former

generally holds. Hence the maximum positive traction in the extrados

_Q (+1 a? (" ~ " *~
The maximum negative traction in the extrados will be at ^ = c and

so equals :

For the inti-ados the maximum positive traction will be obtain. d by

putting x = >
an^ so equals :

Q ft \ rf _c__1_|
-c)) 2A'o-cco tJif(a-c)
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For the maximum negative traction in the intrados we must have x
~ e

as great as possible, or as a rule we put x~ 7r/2. Thus it equals :

<**
\

|

"2 c
*

] (3)a-eJ 2h*a-c*f-h*(a-e)

These values (a) (8) must be calculated for any given link of

definite material. (8) has in general, regardless of sign, the greatest
value. Hence, if the links be made of wrought iron for which the safe

tensile and compressive stresses may be taken as equal (see our Art.

625), we have, if T2 be the safe maximum compressive stress :

This equation also gives us the proper ratio of c to a when the value

of Q is given.
Results (xxxviii) to (xlii) differ very considerably from Winkler's.

He makes the maximum stress to be tensile and not compressive.

J628.]
Let us suppose the link of our Art. 624 to have a cast iron

placed in it, and let us take its modulus to be one-half that

of the wrought iron link and its mean cross-section to be two-thirds

that of the link J

,
then :

and we find: ='676,098.

For a special elliptic link I find in Art. 640, = -359,813. Winkler
finds in his treatise

( 372) for an oval link = -5612, but I have not

verified his arithmetic. Thus it appears that in the stud of a circular

link there may be nearly double the stress that there is in that of an

elliptic link.

For the stretches in the two axes we have from (xxxviii) and

(xxxiv),

= - x 4-534,677.a Jbu>

The first is less than a fourth, the second less than a half of the

values for the same link without stud. The total extension of a chain

made of links having studs would only be about ~ of the extension

of a chain of the same length under the same load having the same
links without studs. We may note that in general :

Aa E<*
/

/ Ab Eu\ Ab Ab Aa
5= ----77- / (

n + - -
-75- I ,

and - + -

,a Q / \ a Q J a a a

1 These agree pretty closely with the numbers chosen by Winkler in his treatise,

372, for an oval ring with stud.

T. E. II. 28
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where and are the stretches in the semi-axes of an equal link
a a

without stud. These simplify the calculations for a link with stud.

For the neutral line from (xl) :

v -037,091

^:;,902-cos(x -e)

and it passes to infinity when

X = 6156' 20" and 6 11' 14".

I have traced the neutral line in the lower figure of the plate, p. 430.

Finally for the tractions in extrados and intrados (T and 7" say) we
have :

T=Q {11-276,31 -12-242,90 cos (x-e)},

T={- 14-515,44 + 17-140,06 cos (x-e)}.

The maximum value of T is positive and occurs at x = 90, its value

being x 4-419,13. The maximum numerical value of T is negative,

and occurs also when x = 90, its value being
- - x 4-915,34. In the

case of wrought iron the latter gives the limit to strength. Thus we
see that the circular link with a stud of the above character in it is

about 1-76 times as strong as the link without stud. Witikler in his

memoir makes it 2-5 times as strong, but his analysis leading to a
tensile limit is, I think, incorrect. In the treatise the only case of a

link with a stud which he works out is an oval link. Here he finds

his maximum stress compressive and the ratio of strengths with and

without stud = 2-088. I have not verified his arithmetic, but the

results of the treatise seem more probable than those of the memoir.
The traction in the extrados vanishes for

x =ll8'33" and 56 58' 57",

that in the intrados for

x =l56'8"and 66 11' 22".

The curves of stress in extrados and intrados will be found traced

on the right-hand side of the lower figure of the plate, p. 430. Tl

curves are very interesting especially when compared with the curves

in the upper figure, as they show the influence of the stud. The dott-.l

curves give the values of the tractions calculated from the formula,
Tu> = * Ifc/K

3
,
where M is given its value from (xxxiv) after A2 has been

put equal to x8. We find :

T= * ? {12-716,77 - 14-485,38 cos (x - )},
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which vanishes for

x = 5 27' 10" and 62 40' 20".

We see that the old formula gives results diverging considerably
from the true ones.

[629.] The diagrams on the plate, p. 430, referred to in

Arts. 624 and 628, indicate a useful rule for welding anchor rings
and others of circular form. The weld ought to be subjected to

the least positive traction
;
hence the proper place to weld them

does not seem to be at the section to which load is applied, but

in the case of a ring without a stud about 40 from this section,

in the case of a ring with a stud about 30 from the same section.

As in the former case the ring can generally slip round so that

the load may be applied at every section, we ought to provide for

the welded section being able to sustain easily a traction equal to

the greatest traction, which occurs in this case when the welded

joint is the loaded section.

[630.] The next portion of Winkler's memoir is entitled : Ring
dessen Axe am zwei geraden und zwei halbkreisformigen Theilen

besteht (S. 240-2). The analysis of this as that of the previous
cases is incorrect

;
it is not reproduced in the treatise. There is

also a difficulty about this case which does not seem to have been

noticed by Winkler and which also reappears in the case of the

oval link formed of four circular arcs which he discusses in the

treatise
1

. The difficulty arises from the discontinuity in the

tractions at the sections for which there is an abrupt change of

curvature
; thus, while to satisfy the statical conditions we make a

continuous change of bending moment and thrust at these sections,

there is an abrupt change of traction owing to the application of

the Bernoulli-Eulerian hypothesis. The exact distribution of the

stress over such sections seems on that hypothesis to be arbitrary,

but it probably may be safely taken equal to the mean of the

tractions on either side. I do not think this peculiarity invalidates

the solution for sections at small distances from those of discon-

tinuity. An interesting but I expect difficult problem would be

to analyse the nature of the stress at such a section by the general

theory of elasticity.
1 I have not verified Winkler's analysis for this oval link, which replaces the

link with straight sides and the elliptic link of the memoir. It is worked out
for special numerical cases with and without a stud, but no attempt is made in
the treatise to draw stress curves as in the memoir.

282
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[631.] I shall give my own analysis of the link with semi-circular

ends and flat sides and compare the results with Winkler's. Let a be

the radius of the semicircular ends, 2e the length of each of the straight

parts, b = a + e
; Aaj = change in semi-diameter of the link, between

the mid-points of the straight parts; Aa^ change in semi-diameter of

base of semi-circular part; MQ the bending-moment at the joint of

semi-circular and straight parts, and let the rest of the notation be as

before except that subscript l refers to the straight and 2 to the circular

parts.
We easily find :

since pQ = oo for the straight parts. Further

v = *,

whence

......... (xliii),

Let h
a
- = qx*

= qh*, where q is given by Equation (vi) of our Art.

619. Then from Equation (xxii) we have :

where

whence

qe + a
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For the tractions we have from equation (xiii),

Tu = - I ^ -
(
- cos Y)> for the curved parts

h* a *
I

(xlvii).

TVo =
||l ^ (

-
1)1 for the straight parts

It may be shown that, since <1, the greatest positive traction

occurs as a rule at x = ir/2,
but that the negative traction at the same

section is greater. Hence for wrought iron this negative traction

becomes the measure of safe loading. If T2 be the limit to safe com-

pressive stress, we must have :

For a circular link without stud we have from (xxx) :

<2< war
' a c

The latter, if we take 7i
2 A2

2

,
will therefore give a greater per-

missible value than the former for Q, if, ^ =-^ be <
,
which is

Tf (or + fi")

easily seen to be always true whatever e may be. Hence we do not

gain increased strength when we elongate a given circular link by
inserting straight pieces at the sides. In fact the longer the straight

pieces the weaker the link, till the weakness reaches a maximum with

=l,fore = oc.

[632.] For the neutral line I find :

for the curved parts,

U.(xlix).

V t

V K
-1 = - for the straight parts

Further for the change in the semi-axes we have by (xxiii) to (xxiv) :

f
e
^12/0 7 f^2m2 (

e + a gin x) ac^X f
e

AwAclj = I
~T~2~ ^2/0

~~
I 7~~2

JQ ">i Jo "2 ^0

whence

This result would agree with Winkler's were we to put y=l, or

7i2
2 = K2

, throughout.



438 WINKLER.

We easily find :

or, Euhs^^Euh:-^*- (\-Qqe- ...............
(li).

For Ab we have :

.EW*2
2Ab =^ j?K

2
e

a
+ qae +

^a?-(qae
+ a?)\ ..... (Hi).

To a first approximation (i.e. if q = 1) (lii) agrees with Winkler's result,
but my value for Aa2 appears to be quite different from his.

Winkler traces the neutral line and stress-curves for the particular
numerical case of a c and b = 4c, or the length of the straight piece J
of the diameter of the cross-section of the link. Equation (xlix) shows
us that the neutral axis for the curved part is similar to that for a

circular link without stud, while for the straight piece, it is a straight
line parallel to the straight piece and outside the link, since is < 1.

The stress curves are thus similar to those of the upper figure on the

plate, p. 430, for the curved parts, and are straight lines for the

straight pieces. I have not redrawn Winkler's curves, which an

wrong owing to his erroneous formulae. They present, however, no

novelty beyond those we have already dealt with.

[633.] The concluding pages of the memoir (S. 242-6)
are entitled: Ring mit elliptischer Axis, and deal with elliptic

links with and without studs. Not only is Winkler's anal

incorrect, but even as an approximation the terms he neglects

are of equal importance with those he retains. He expands also

certain expressions in terms of the eccentricity in very slowly

converging series, which would be better replaced by elliptic

integrals, whose values could be found in Legendre's tables. The

case of an elliptic link is not dealt with in the treatise.

The following considerations by which Winkler selects a

numerical case will, perhaps, show the difficulty I feel in accept-

ing his analysis. He argues that to prevent the jamming of tw.i

links we must have for elliptic links (axes 2a, 26) of circular

cross-section (diameter 2c) c = < -, c, whence a/6 > =
2c/a.

Redtenbacher, for a link without stud, says 6 should equal 3'6c, or

we must have a/6 > = 745. He further takes for a link with stud

6 = 4c (whence a/6 should be > = '7l). In both cases, hew-

In puts a/6 = '69 which allows jamming. Winkler takes a/6 = 7 1

and 6 = 4c, whence he finds a = 2'82c, and the eccentricity
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e = <

709,22
1

. Thus e is not a small quantity and his series con-

verge very slowly. Further his least radius of curvature = a?/b
= 2c

nearly. But he puts throughout h2 = /e
2

,
or by our Equation (vi)

>2

he neglects terms of the order J ^ or 1/8 of those he retains
;

P
thus his expansions of the elliptic integrals to high powers of e

are futile, for his results on other grounds are not necessarily

correct to the first place of-decimals. To retain the term in (c/p )
4

in h2
leads to enormous complexity of calculation, but I propose to

retain the term (c/p )

2

neglected by Winkler so that even in the

very eccentric link chosen by him, we may hope to get within

two per cent, of the true result, while for values of cf/b large as

compared with c we shall have all the accuracy requisite in

practice. In what follows I indicate only the general outlines of

my analysis.

[634.] Let x he the angle the normal at any point of the elliptic

central axis makes with the minor axis a, and let the radius to the

corresponding point of the auxiliary circle make an angle ij/
with a'

}
let

e equal the eccentricity =,Jl a?/b*.

\

Then we easily find, with the notation of the previous articles :

tan x r tan
i/f,

(liii).

1 His values for a and e do not seem to agree with those he has chosen for a/6
and 6/c 1
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If there be a stud with resistance R = Q, we have from (xix) and

(xx):

M=M -
<j
y + -

(a
-
x)

=
^ (qa

- $b suu/r
- a cos

where M +
-^

=
rj

Further from (vi) since K2 = c
2
/4 :

- e* sm2

{j/

b

Qa Qa

so that neglecting quantities of the order (c/p
4
)
we have :

Further 7/1 = M -\
--- + and therefore :

Po Po

m _Q (rja b sin
\j/

a cos
\f/

a? rja b sin
i/r
- a cos ^

A8
=
2( ~i?~ ~6~4 (l-e

a sin2

^)
3

a ^a sin \1/ + b cos i/^)

\\ liunce from (xxii) with the notation of the footnote below 1 we Imvi-

2
, (

V a . ^\= f
{K-^

ra
-

6 (m
+

rs)}

y a.

'

..... <lviii >-

+
KTr4-pr1,-r)

1 The following integrals (A^= ^/l
- e2 sin2^) will be of value in this discussion ;

the 7"s are their values for the special case of our Arts. 636-40 where e-= 1/2 :

r /

; 7i'
= 1-350,644.

(These are the ordinary complete elliptic integrals, their usual symbols and F
being discarded to avoid confusion with the elastic moduli.)

sin-ic ; >/= '908,914.
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For a link without stud we have only to put = 0, and we find

(hx) '

Winkler retains only the first terms in the numerator and denomi-

nator, thus he should have
rj
= y4/yx .

/2 si

1 /4-2e2

;7lo= '

1 3-ea=
3 TT^ ^n =3-333,333.

/

r^); W= .

685,786.

720= P2

sinVA^Z^ = i {(1
- e

2
) 72

-
(1
-
2^) 7l } ; 720

' = -618,025.

7i- (l-O 7a} ; 7-21' ='732,619.
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[635.] The second relation between and rj
mut now be found

from (xxiii). After some reductions we have since :

= nRa = nQa

a ya
-
^ (yii +

7s))
+

(~^ 720
+
5 (y + 2y13-y5

))

6
2 a2

-* y +
i (yw + yw) + y

-

Equations (Iviii) and (lx) enable us to completely solve the

problem. If there be no stud we put = on the right and replace n

by - 'on the left of (lx), using (lix) with it. If there be a stud

(Iviii) and (lx) give the values of $ and
ry.

The following is the value of A6

2^0) Ab_ ( a? a* a?
\ .jab

a?

Further the neutral line is given by

I
- e

2

(
sin3 \1/ cosa >/')} (1 e~ sin2

\b\ -

CL ( 6 \ Q> / )

i?o=-
- f sin - cos

and the traction in extrados and intrados by
3c

+
2C3 2c*\ ..

Po Po
2

Po
3
/

P
t
M

t
and p being substituted from (liii)-(lv).

The values of these quantities might be traced for a link either with

or without stud as in the case of the circular link, but the discussion

must be omitted here, and we confine ourselves to the consideration of a

numerical example.

1 The full discussion of these tractions would be complex, but the maximum
maximorum after the investigations of Arts. 625, 627-8, and 631 may be assumed
to exist at the loaded sections, \J/-= T/2. We have then, if cb\ti- be small :

for the extrados :

?
for the intrados :

. 3c&

These do not appear to agree with the results on 8. 215 of Winkler's memoir
even when we neglect c2/o

3
.
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[636.] As a numerical example we cannot take exactly Winkler's

case because his numbers do not appear to be consistent. Suppose
we put c = a?/b c and 5 = 4c, then a2

/b^= "5, or e
2

1/2, whence

a/b
= e= -707,107 and a = 2-828,427c.

[637.] Applying these values and those of the footnote on pp. 440-1

to equations (Iviii)
and (Ix), we find:

84-357,945 17 =69*687,551 +55-813,461 (bdv),

49-276,540 77
= (2n + 52-180,746) + 26-315,392, (Ixv),

or, if the link be of wrought-iron and the stud of cast-iron of the same
relative dimensions as in our Art. 628, n = 3 and:

49-276,540 77
= 58-180,746 + 26-315,392 (Ixvi).

[638.] First suppose =0 in (Ixiv), then we have for
77

77= -661,627 (Ixvii),

while Winkler has for the corresponding quantity -670,32. I believe

that -662 is very near the correct value.

Putting n = - ~ and (= in (Ixv) I find :

($/
QJ

--3-143,638 5- ...(Ixviii).a Mia

Winkler's result after some reductions yields with considerable

divergence from mine:

= -3-568,917-^.a .aw

From flxi), ^ = 2-255,656^- ... ...(Ixix),
d)

while Winkler has -=- = 2-134,83
--

. For the oval link in the treatise
JtslD

he finds ^ = 2-252,5-^-.
J&W

Lastly for the maximum positive and negative tractions we have :

^w= 2-641 Q and T<* = - 6-050$

of which the latter is the greater and may therefore be taken to measure
the strength of a wrought-iron link of these dimensions.

Winkler's numbers give To) = 5-204 Q, a result which appears
much too small. The fact is that for our present case neither (Ixiii) nor
the series in the footnote on p. 442 are sufficiently approximate.
Supposing the value of

77
to be correct, I have obtained the value above

by using (xiii). For an oval ring with a = 2'5c, b =-- 4c, made up of four

circular arcs Winkler in his treatise (p. 375) finds Ta> = - 6-3735 Q,
which tends to confirm the result we have found for the elliptic link.
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[639.] Let us compare the strengths, weights and longitudinal
extensions of three links, one elliptic, one circular and the third

with circular ends and flat sides. Suppose them all to have

a longitudinal semi-axis b = 4c, and for the ellipse suppose

a/b = 1/V2 as above
;
for the flat-sided link suppose the curvature

of its circular ends equal to that of the ellipse at the ends of

its longer axis; this involves in the notation of our Art. 631,

a = e = J6.

If T', T", T'" be the maximum compressive stresses, w, w", w"
f

the weights of the links, Ab', Ab", Ab'" the semi-extensions we find

from Equations (xxvii), (xxix), (xlviii), (Hi) and Art. 638 :

T : T : T" :: 6'050 : 6159 1

: 4'904

w' : w" : w" :: 5'4026 : 6'2832 : 51416

AV : Ab" : Ab'" :: 2'2557 : 4'9242 : 1'3085.

Whence, generalising from the results of these particular links,

it would appear that elliptic and circular links of the same

length are not very different in strength, that the elliptic link

stretches about only one half of what the circular one does and

weighs less
;
but that the link with flat sides and circular ends is,

if of the same length, stronger than either of the others, less heavy
and stretches considerably less than the elliptic one. Thus such

a link is distinctly the best of the three forms considered, and in

fact is frequently adopted in practice.

[640.] Suppose the link to have a cast-iron stud. Then we find

the following values of
rj
and from equations (Ixiv) and (Ixvi).

17 =-958,866, =-359,813,

values certainly not to be trusted beyond the third decimal place.

Winkler (S. 244-6) finds the very different values:

4 = 1-211,500, =-631,804.

We have also from equations (Ix) and (Ixi) :

^ =
-1.079,440-1,

= 1-455,83! .

Winkler has for the numerical coefficients for the case of the

ellipse in the memoir -055,353 and -866,752 and for the oval link in

the treatise 1-808,305 and -743,774. I think these coefficients in both

the memoir and treatise are incorrect. For the oval link Winklrr has

Al) actually < Aa (S. 376) and this seems extremely improbable for a

' Tiii- vain. ,liiT. is in th: first place of decimals from that given by Winkler in

iitise, 8. 372, but his approximations are very rough.
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link with a stud. We notice that the effect of studs of the character

considered above on elliptic links is to reduce the stretch of the chain to

less than two-thirds of the stretch in a chain made of links without studs.

Finally for the maximum compressive stress I find from (xiii) :

T< = - 3-9353 ().

Winkler in his memoir has (S. 246) :

^(o = - 2-092,872 Q,

a value, I think, much too small. For the oval link of his treatise he

finds (S. 376):
^o> = - 3-082,472 Q,

which differs more widely than I should have anticipated from my
result for the elliptic link. It will be noticed that the strength of the

elliptic link with stud is more than 1-5 times as great as that of the

link without stud.

[641.] In the above articles I have corrected and developed
Winkler's theory as the best yet available for stress and strain in

the links of chains. The calculations have been laborious and I

cannot hope they are even now absolutely free from error, still I

believe that I have avoided some of the slips of Winkler. The

theory can only be approximate at best, and the six places of

decimals to which some of the results are calculated must not be

supposed to suggest any real accuracy beyond the first two or

three figures, unless the dimensions of the cross-section are small

as compared with the radius of curvature of the link. This

remark applies particularly to Winkler's numerical example of an

elliptic link, which with certain modifications we have followed.

More accurate results would have been obtained by taking the

eccentricity still =
1/V2, but b equal to 6 or even 10 times c.

The formulae we have given for the ellipse may be readily applied
to centrally loaded elliptic arches as well as to complete elliptic

springs.

The absolute strength of chains will be found in reality to be

greater than would be given by the above formulae for the

maximum compressive stress. Such formulae ought only to be

applied to obtain the fail limit : see our Arts. 5 (e) and 169 (g).

Before rupture is reached set has changed the shape of the link,

and the links press upon and hold each other, till in some cases

the absolute strength of a chain appears to be close upon the

absolute shearing or even tensile strength of the material: see

Section III. of this Chapter.
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[642.] E. Winkler: Festigkeit der Rohren, Dampfkessel nnd

Schiuungringe. Der Civilingenieur, Bd. vi., S. 325-62 and S.

427-62. Freiberg, 1860. This is a lengthy analytical memoir,

which so far as its methods are concerned is more likely to be

intelligible to the mathematician than to the practical engineer.

It commences with a brief reference to Scheffler's memoir on

tubes, remarking that his hypotheses, that there is no longitudinal

expansion resulting from lateral pressure, and that the maximum
traction is the measure of strength, are both alike unacceptable :

see our Art. 654.

[643.] The first section of the paper entitled: Allgemeines

(S. 326-38) contains a general discussion of the resolution of

stress and strain, remarks on the value of the stretch-squeeze

ratio (77) which Winkler proposes to take either J or J according
to the material, the consideration of a stretch limit of strength,
and finally expressions for the stresses in terms of the shifts in

the case of cylindrical coordinates and bi-constant isotropy.

[644.] Section II. (S. 338-47) contains the theory of right

cylindrical tubes with open ends; there is nothing of real im-

portance in the section which had not already been given by
Lame, or which we have not reproduced in a more general and

accurate form from Saint-Venant : see our Arts. 1012*, 1087*-8*

and 120.

Section III. (S. 348-62) deals with the same form of tubes

with closed ends either hemi-spherical or plane. The treatment

of spherical shells presents no novelty and Winkler seems to li

missed Lame"s method of fitting the cylindrical and spherical

parts of a boiler by a proper choice of thicknesses : see our

Arts. 1038* and 125.

The treatment of the flat ends, or of circular plates (S. 355-62)
under a uniform surface pressure, is based upon the assumption
that lines in the plate perpendicular to the mid-plane before strain,

remain perpendicular to that plane after strain.

This problem had aln-ady been fully worked out for a thin plate by
Poisson (see our Arts. 495* and 502*), and another problem verylik
for

i>l;it
of moderate thickness (2e) has been considered in our Arts. 32

30. Winkler assumes that even with surface pressure (cf. our Art. .'

MI iv neglect tin- traction perpewlienlMr to the mid-plane of our
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plate, or put in the notation of our Art. 329, * = ;
this leads to the

equation :

d'Tz .'_(\
~y -4- = U,
dr T

whence as in Art. 330 we ought to have 7z of the form:
2 - 2

rz = const, x -
.

Winkler by not very intelligible reasoning deduces :

'rz = const, x r (e
2 2

),

or, a value which does not satisfy the body-stress equations. It follows

that his values for ~7r, $$ and for u, w are all wrong. Thus neither

his results nor the inferences he draws from them as to the thickness

for the plane ends of cylindrical boilers need further consideration.

[645.] The fourth section of the memoir (S. 427-48) is

entitled : Einfluss der Endflachen, des Gewichts der Rohre und des

ungleichen Wasserdruckes. This investigation seems to me abso-

lutely unreliable and quite as nugatory as that of Scheffler. In

the first place (with tbe notation of our footnote p. 79) Winkler

neglects the traction 44, i.e. the traction perpendicular to a meri-

dian plane of the cylinder (mean radius a), in the next place he

assumes w to be of the form/j (z) +/8 Cz)r, then he takes u to be

independent of r, which be says is legitimate if 2e, the thickness

of the cylindrical wall, be very small. Lastly he neglects a term
2 72

16?7 -4 -J-T as compared with dfujdz* on the ground that e
2

/
2

is
Q/ (Hz

very small (Equation 119, S. 430). On his own showing the ratio

of d*u/dz
4
to cPu/cU? is of the order 1 /I

2 where I is the length of

the cylinder ;
hence for a cylinder in which I/a is great his results

will not be correct, and were it only for this assumption, i.e. they
would not be true for flues.

In the part of the memoir which deals with the influence of the

weight of the cylindrical tube, Winkler supposes a ring cut out of the

cylinder by two planes perpendicular to its axis at unit distance and
calculates the effect of the weight of this ring in deforming itself after

the manner of his memoir of 1858 (see our Art. 622). But I have
elsewhere given reasons (see our Arts. 1547*, 537) for questioning such
a method of treatment. We might just as fitly apply it to solve the pro-
blem of the cylindrical shell subjected to external and internal pressures.
All Winkler really works out in these pages is the effect of weight in

distorting a thin circular belt of unit breadth placed in a vertical plane.
In doing this he neglects quantities of the order (thickness/diameter)

2
.

If a be the radius of the circular ring, 2e its thickness supposed of

rectangular cross-section (2e x
1), p its density, Winkler finds for the
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maximum bending moment M', which is found at the lowest point, or

point of support :

Further he has :

3M' SargpMaximum compressive stress = - = -- -
&r A

Extension of horizontal diameter = 3 (4 - TT)

Compression of vertical diameter = 3 (8 TT) -*, , .
"

These results are correct for a slender belt resting on its lowest point
and subjected only to the action of its own weight, i.e. when terms, whose
ratio to those retained equals r/a

2
,
are neglected

1

. They have no legiti-

mate application to the case of a heavy cylindrical shell. (S. 442.)
Winkler's further investigation by a similar process of the strain

in a cylinder which is only partially filled with water and is thus

subjected to different internal pressures in its lower and upper portions
seems to me equally questionable. (S. 442-46.)

Allowing for the weight of the cylinder and of the water in it,

Winkler finally gives for the thickness 2e of a cylindrical boiler of

internal radius r,, <r being the density of water (S. 447):

?_
9 I +

12W
, //29P GngpV 15^1

48 T+ n T + V V48 T n T )
H

nT \
+

Here T is a constant added to allow for wear and tear (see Section

III. of this Chapter), and n is a factor (which Winkler puts =
3) taken

to reduce the values calculated for the effects of the weights of the

cylinder and of the water inside it. P is the steam pressure and T
the safe tensile stress of the material. The author says (S. 446) :

Diese Werthe sind allerdings zu gross, da die Deformirung des Kessels durch
die Einmauening, durch die Boden, sowie durch etwaige Bander, welche man
inn die Kessel legt und welche zur Erhohung der Sicherheit sehr zu empfehlen
si ml, geochw&cht wird.

A theory which gives such large values that they have to be

corrected by arbitrary factors can hardly be considered satisfactory. I

give the result for what it may be worth, but express no confidence what-

ever even in its approximate accuracy. Winkler reduces it to numbers
and compares it with a formula which he says is usual in Prussia

(Brix's formula with an exponential : see Section III. of this Chapter).
The two frequently give very divergent results.

1 I find for such a ring of any cross-section w in the notation of this work :

Maximum bending moment = - a>a
,

tch of horizontal diameter =^
"*

( 1 - ^ ,

Squeeze of vertical diameter =^ "'(2
-

".

which agree with Winkler's results for the special case.
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[646.] Section V. of the memoir is entitled: Schwungringe (S. 448

-62). Winkler first gives a theory of fly-wheels in which the influence

of the spokes is neglected. He further supposes the traction perpen-
dicular to the meridian plane uniform across the cross-section whence

he easily finds for its value

co being the spin of the wheel, p the density of its material, and K the

swing-radius of the cross-section about an axis in its plane through its

centroid and a the distance of that centroid from the axis of the wheel.

Winkler (S. 450) goes even so far as to apply this formula to mill- and

grind-stones ! Compare our Art. 590.

In a genauere Tkeorie (S. 451-4) Winkler puts ^ = and r = 0.

This appears to be really identical with Maxwell's theory (see our Arts.

1550*-51*). Winkler finds, if T be the safe limit of tractive stress

that :

rx
and r2 being the inner and outer radii of the rim. This theory for

97
= 1/4 gives a result for an entire disc almost in agreement with that

given by the first theory (S. 454).

[647.] Finally (S. 454-62) Winkler attempts to take into account

the influence of the spokes. He practically follows the lines of Resal's

investigation (see our Art. 584), except that he treats first the case

when the portion of the rim of the wheel between two spokes can be

considered as pivoted at the spokes. Winkler's results are complex
and not put into a form which permits of easy citing. I have not

verified them. He takes the values of s and d (A<)/5o- given in his

memoir of 1858 (see our Art. 620, Equations (x) and (xi)), thus his results

if his analysis be correct, might be more exact than Resal's for the case

when Resal's e
2

(see our Art. 585) is not negligible. It usually will

be negligible in practice.

The memoir is rather cumbersome and while containing some

interesting points is spoiled by a number of assumptions for which

no strong reasons are given, if indeed they exist.

[648.] Hermann Scheffler: Theorie der Festigkeit gegen das

Zerknicken nebst Untersuchungen uber die verschiedenen inneren

Spannungen gebogener Korper und uber andere Probleme der Bie-

gungstheorie mit praktischen Anwendungen. Braunschweig, 1858,

S. 1-138.

The author of this book a practical architect had already

published a volume entitled : Theorie der Gewolbe, Futtermauern

und eisernen Brucken (see Section III. of our present Chapter),

T. E. TT. 29
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of which he writes that the object was identical with that of the

present work namely to bring more closely together the scientific

and practical sides of the subject. The present volume deals with

the buckling load and strength of struts, the slide of beams under

flexure, and the calculation of the stresses in continuous beams all

problems which have much exercised the practical engineer. Two
of these problems had received fairly complete theoretical solutions

before 1858, but, as so often occurs, the mathematical investigation

failed to reach the hands of the technologists.

[649.] S. 1-58 of the work are devoted to the discussion of the

strut problem. We have already seen what erroneous results Euln-'s

theory for the buckling load of struts gives when the length is not

very much greater than the diameter of the cross-section. This fact

caused Jlod^kinson to entirely discard that theory in favour of an

empirical formula, and led Lamarle to limit the theory to such struts

as had not passed the elastic limit before the buckling load was
reached: see our Arts. 958*-961*, 1258*. Lamarle's limitation

quite unrecognised by Scheffler. He starts from Euler's formula for

the buckling load P of a column (see Arts. 67* and 74*), or

and shews that this does not agree with experiment. He modifies the

theory as given by Euler and Lagrange by placing, as a result of the

compression, the ' neutral axis
'

in an eccentric position, he thus obtains

for a doubly- pivoted strut the formula

See Corrigenda to our Vol. I. p. 2.

But this formula does not give absolute values agreeing with

experiment, so that Scheffler after citing one or two other semi-empiric*]
formulae by various authors, proceeds to propound a modified theory of

his own. Briefly the modification consists in the hypothesis that th<

longitudinal load on the terminal sections of the column or strut is not

exactly central. By this means he endeavours to explain the discrepancy
between theory and experiment. In doing this he "adopts a true

'( -ntric j>osition for the neutral axis, but assumes in comparing his

theory with Hodgkinson's experiments that the proportionality of stress

and strain holds up to rupture. We will examine one of Scheffler's

results somewhat at length .

Let the longitudinal lo;tl /' applied at a distance b from the a

the strut, produce a deflection at the mid-point = a b. Let I be the

length of the strut, which will be supposed doubly-pivoted, and owe- tli-

moment of inertia of the cross-section about a lino through its centroiil

prrpriidirular to tlic load plane. Thru it' \vr take as axes tlir dii
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of the vertical load (x) and the perpendicular upon this from the

raid-point of the central line of the strut (y), we easily deduce for the

equation to the distorted central line :

I x .

y = bsec .-cos r ........................ (i),

2/3* 0*
/Ed) \

where ft
= f

-p
1

J
K2

.

The curvature at the mid-section of the central line

and the deflection (a b) is obtained from

a = b sec r . ....................... (iii).

20*

Equation (iii) gives a relation between the load and the deflection

which, introducing the value of
(3,

leads to :

+

Wcos-'Y
V a/

If b = 0, this coincides with the value given for the buckling load on
the hypothesis of the eccentric neutral axis.

To find the elastic strength of the strut, if the elastic limit be

reached first in compressive stress, say at the value (7, we have to

equate G to the maximum compressive stress which arises in the

extreme ' fibre
'

at the mid cross-section. Let the distance of this fibre

from the central axis be h, then the stress

7 z> /# P \ ft /C P \ l
r

'
fl = Jt ( -, } V (

Jj, yT )
COS 1

Substituting for /3 and remembering that unity in all practical cases

may be neglected as compared with EfG or EujP we find :

lib /(?<> -A I

-=(--i) cos-y
Let us put P/w = p, and

jt?
o> equal the value of the buckling load as

given by Euler's theory, then we have

lib

This equation (v) agrees with Schefner's equation (53) S. 25, and

gives the limiting safe load p per unit section for any doubly-pivoted
strut. At the same time it must be noted that b is a perfectly

292
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arbitrary constant. Till some hypothesis is made with regard to it (v)

only shews us that non-central application of the thrust does influence

the value of
;;,

but does not indicate the amount.

Scheffler >ii].|.,-rs the terminals hemispherical. In this case, if
tf>

be the angle between the central line and the direction of the load :

dy b I

tan <f>
= T- - *i

ten i .

dx
f$ 2/3-

Further b - h sin
<f>,

I
-

# 1~
whence we find 6 = h ./ 1 ^ cot2 -, ......................

(vi).

Scheffler takes b = - sin . and says n is a constant dependingn
2/3*

only on the material and form of the end (S. 26). It is quite true that

;lstituted in (v) leads to a very complicated expression for p, but

why this is capable of being "replaced practically" by the simpler
formula Scheffler takes, I fail to understand. I am compelled to look

upon his '
coefficient of correction

' n as a function of the load p.

Substituting his value of b in (v) we have :

tf (C _\ /TT //A- 1
)
cot

(
-_- /-- } ................. (vn).

WK2
'

,.
\ '1 V PJ

From this formula he calculates the value of p, putting for :

Cylindrical columns of cast iron n = 6,

wrought n=24,

Square oak n =
6,

deal n = 3.

The results obtained are compared, not with the numbers of

Hodgkinson's actual experiments but with the results calculated from

Hodgkinson's empirical formulae. There is a general agreement, but

it does not seem to me sufficient to overcome the difficulties I feel

with regard to the value chosen for b : see S. 29-39 of the book.

[650.] Scheffler makes the eccentricity of the load a function of the

material, which it must be confessed is difficult to understand. Further

the eccentricity is not small as compared with the linear dimensions of

th. . ross-section. Supposing it were and the ends truly hemispherical,
then we should have : tan <=-< = sin < = b/h and therefore,

)=^
etrr and tlii:

ations :

('40-

or, c(

H'-nce, if d~ L'// In- the diameter and this ! small as compared with

/, we have after some approximations :
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This, however, gives as a rule far too large results, i.e. values of p
which far exceed those given by Hodgkinson's experiments for rupture.
Thus we cannot suppose the load applied close to the centre of the

terminal cross-section, if the eccentricity is to account for the observed

differences.

We may, however, obtain what is, perhaps, theoretically a better

formula than Scheffler's in the following manner. We do not know
what function b is of the deflection, but as we attempt to centre the

load, when the deflection is zero, we will assume the eccentricity b of

the loading to be proportional to the deflection (a b) }
and thus :

-)aj

For a very long strut b is insensible as compared with the deflection

(a
-

b) and therefore as compared with a. Hence b is the value of b

for a very long strut. The terminal section of such a strut, in whatever
manner the load be distributed over it, cannot have any 'fibres' in

tension, hence the limiting position of the load point must correspond
to the neutral axis just touching the section. This would be the

farthest distance of the load point from the centre, and would I think

be not an unreasonable condition of things to assume as existing in a

long strut just before the limiting stress is reached. In this case

h x b = K2

,
and therefore b (K

2

/h) (1 b/a). Using (iii)
and (v) we have :

P/C = cos (^
/
-J ........................ (ix).

whence

For a very short strut p is immensely greater than p, or we have as

we should expect p = C.

For a short strut in which p/p is small we may expand the cosine

and we have after some reductions :

.(X).

This agrees very fairly with the Gordon-Rankine formula : see our
Art. 469. For example that formula in our present notation gives

p.0
p ~~

Ep+-G
where n is a certain constant empirically selected. For cast-iron we
have ^=16,000,000, (7 = 80,000 and w = 1,600 (according to Rankine),El 1
hence it follows -7= = . For wrought-iron we have -= - instead of

nL/ o llro

1/8, and for timber (taking E = 2,000,000, say) about the same.
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When
/?//>

is not small we must use (ix) as it stands, unless p pQ

nearly. In this case pn
must be small, i.e. I very large. Hence p/C is

small, and puttiug Jplp = 1 - x we find

/y~ ,.~

w-=p/C, or x = -p/C.

Thus we deduce p = '

........................... (xi),

which gives the correction on p=pt>
for a large value of 1. Corresjioiid-

in^ foi-mulae for the cases of doubly-built-in and built- iii pivoted struts

are easily deduced.

[( ;:>!.] On S. 43-58 Scheffler deals with a variety of cases

in which the terminal loads on the strut are inclined to its central

line as well as eccentric. His results are all fairly easy deductions

from the ordinary theory, but some of them e.g. those for rods

under the action of three forces (S. 48-49) are very interesting

and would probably give accurate forms for metal ribbons under

such loading. S. 58-73 deal with braced girders with parallel

straight booms. The calculation of the stresses in the bracing
bars would as a rule be now dealt with graphically. It is

difficult to understand how any of the bracing bars in Fig. 28

can be in tension, yet I imagine the alternate ones ought to be.

The whole investigation does not seem in the light of recent work

to have any importance. Scheffler points out that for bracing

bars it is usual to take the length not more than 24 times tin

least diameter of the cross-section, but that for this ratio the

buckling strength of wrought-iron struts is f the compressive

strength and therefore very nearly equal to the tensile strength.

Hence for practical purposes the tensile strength can always be

t.iken to determine the dimensions of a bar. As in most practical

cases bracing bars are subject to alternate stress, this, if correct,

would give the convenient rule that the dimensions are to be

determined from the maximum load without regard to its sign.

[652.] Scheffler next endeavours to introduce the conception of si ile

into the theory of beams under flexure. This is done very much on the

lines of Jouravski and Bresse : see our reference- An. "><S2 (c).
If x

IT the direction of the central axis of tin- h.-.-un, // perpendicular to

th- plane of flexure aud z in that plane, this theory fails !

ileals only with the shear 71 and omits to consider tin- >ln -ar pj I
it

likrwi.se omits all consideration of Ty. AH Saint-Venant's great memoir
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of 1854 had solved the problem, there is no need to enter into Scheffler's

struggles of four years later date. It is characteristic of his method
that the equality zx = 7z is announced as "die bernerkenswerthe That-

sache dass in jedem Punkte des Balkeiis die horizontalen und vertikalen

Abschervngskrafte pro Fldcheneinheit einander gleich sind" (S. 79),
and the discovery of this remarkable fact is attributed to Laissle and
Schiibler !

The discussion of the distribution of stress in a beam under flexure

(S. 82-92) is historically interesting as one of the early attempts in

this direction, and is quite as accurate as those which are still to be

found in several English textbooks.

On S. 112-138 Scheffler returns to the influence of slide in beams
under flexure. His results here seem to be entirely erroneous. Thus
in the notation of our Art. 83, he finds that for a rectangular cross-

section we must have :

which equation leads to an absurdity when we combined it with the

result of substituting the value of F from (18') in the first equation of

(19') of the same article. I have not thought it worth while to follow

out the whole of Scheffler's analysis. His first assumption that u is

independent of y is at least one fruitful source of error.

[653.] On S. 95-109 we have a method described for dealing
with the problem of continuous beams, or beams passing over several

points of support and having only transverse loading in a vertical plane.
The method depends upon certain fairly obvious relations between the

position of the points of support, the points of inflexion, and the

points of maximum or minimum curvature on the central axis.

Scheffler obtains an easy geometrical construction for the points of

maximum and minimum curvature in the case of a uniformly loaded

beam (S. 103), which might find its way into practical textbooks.

For any general system of loading the graphical methods of Mohr,
Culmami and Bitter or the application of Clapeyron's Theorem (see
our Art. 603) are, I think, superior to what is here suggested. Three

pages (109-111) on the bending of a beam into a given shape present
no novelty and seem of no practical interest.

A criticism of Scheifler's work by Grashof will be found in the

Zeitschrift des Vereins deutscher Ingenieure. Dritter Jahrgang, 1859,
S. 338-43. Grashof rejects Scheffler's theory of buckling and his

treatment of braced bars (S. 5873). On the other hand he praises
certain of the later portions of the work.

[654.] H. Scheffler: Die Elastizitatsverhaltnisse der Rdhren,
welche einem hydrostatischen Drucke ausgesetzt sind, insbesondere

die Bestimmung der Wanddicke desselben. Einefur das Ingenieur-
wesen wichtige Erweiterung der Biegungstheorie. Wiesbaden, 1859,
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S. 1-67. This is a reprint from the Organfur die Fortschritte des

Eisenbahnwesens for 1859.

The memoir deals with a very important problem in hydraulics
and gunnery, namely the strength of tubes subjected to internal

pressure and the effect obtained by strengthening them by belts

or bands of very inelastic metal. If the author's analysis could be

trusted such belts while reducing the stress at certain points in-

crease it at others. Accordingly, as he takes a stress limit instead

of a stretch limit for safety, he concludes that such bands have in

reality no strengthening effect. Whether they have or not is

certainly not determined by the present memoir for the analysis

is vitiated by errors of a most vital kind, so that I do not see any
reason for supposing the results to be even approximately true.

[655.] The author begins by referring to the paper by Blakely

(see Section III. of this Chapter). He then shews why certain

cm piideal formulae proposed by Barlow and Brix for the strength <f

an endless tube subjected to external and internal fluid pressure are

erroneous. He next proceeds to deduce the formula of Lame, which

is curiously enough given quite correctly although the method of

deducing it is entirely erroneous. With the notation of the footnote

on our p. 79, he is really assuming :

A = E and "rr = E . .

r dr

or, in other words he puts the tractions equal to the stretches multi-

plied by the stretch-modulus although he is not dealing with a n><l

under pure traction. This error he repeats, when he considers a tul>e

surrounded by rigid belts. Compared with this it is a small matter

that he considers it justifiable to neglect the shear *r. The algolu-.i

is prodigious, but the results so pretty, that we might well wish them
to be true, but the writer is hopelessly at sea in his physical conceptions
of elasticity. His hypotheses lead in fact to

du u du

e he supposes symmetry round the axis of the cylindrical r

ll.in< we are compelled to suppose JB =
2jj.,

or dujdr a const

both incompatible with other results of the investigation. Tin- real

solution for the case Scheffler proposes requires the two type-
I>->si-r.s functions of zero onler, ami then the conditions at a lielt

will tux the powers of a very first-rate analyst
1
.

tar as the result* of the earlier portions of the ninim;

i;d, Saint-Venant has completed the subject in his papn of 1860:

M 'indestructibility of error' is suggested by the fact that Virgilo makes
precisely the same mistakes five years later, See Comptes rendu*, T. LX. 1866, p. 960.
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see our Arts. 1 20-2. The latter part of the memoir involves problems
hitherto still unsolved, and of first-class importance for the .theory of

ordnance.

[656.] Eduard Zetzsche : Zur Bestimmung des Querschnitts

eines Korpers dessen absolute Festigkeit in Anspruch genommen
wird. Schlomilchs Zeitschrift fur Mathematik u. Physik, Bd. IV.,

S. 341-52. Leipzig, 1859. The author applies the theory of a

uniform vertical prism under terminal traction to the case where

there is not only terminal traction but also weight as a body-force.

He then investigates the proper form for a solid of equal resist-

ance subject to terminal traction and gravitational body-force.

He does not notice that his method is one only of approximation,
for in both his cases the cross-sections no longer remain plane,

and in the first the sides of the prism no longer remain vertical :

see our Arts. 1070* and 74.

We indicate all the contents of this article which are of any value

in the following remarks, supposing that the stretch is uniform across

each cross-section, which is obviously not the case.

Let o> = terminal cross-section to which a traction P is applied ; let

to = section at distance x from this terminal, gp weight of unit volume
of the material, and 8X = stretch across any cross-section; then by
resolving vertically we have :

P<J)
O
= to x Esx .

For equal resistance Esx must be a constant = r

l\ the limit of safe

elastic traction, therefore :

gpwdx =*= Po> = uT ...........................
(i).

Or, differentiating, ypw = Tdw/dx,

.'. CD = <7/
x
,
where ft

=
gpjT.

But x = Q, w = a>
,

hence to = w e
Bx

...........................
(ii).

Now if x = in equation (i),
CD = co and therefore we must have

P T, this is only possible if we take the positive sign, which is

obviously a condition for the material being entirely in a condition
of limiting traction. Thus equation (ii) gives us the area of the cross-

sections, and if we know their form we can determine the curve which

by its revolution generates the form of the column of 'equal resistance.'

[657.] Gustav Zehfuss : Ueber die Festigkeit einer am Rande

aufgelotheten kreisformigen Platte. Schlomilchs Zeitschrift fur
Mathematik u. Physik, Bd. V., S, 14-24. Leipzig, 1860.
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This paper involves, S. 16-21, an investigation of the equa-
tion for the elastic equilibrium of a plate on the hypotheses

proposed by Kirchhoff in 1852, i.e. the equation is not deduced

from the general principles of elasticity. I do not think anything
in this investigation calls for special notice, or is of any particular

value. There is a statement at the commencement of the article

which is not absolutely true, namely: that, when a body is

strained beyond the elastic limits, its stretch-modulus varies with

the strain. The stretch-modulus of a body may remain sensibly

constant and practically equal to its original value nearly up to

rupture : see pp. 441, 887, 889 of our Vol. i.

On S. 1415 we have results of the following kind. If

= X + 2//,
of our notation, then

_~
3 -2 /3

where e is the stretch produced by unit traction (= l/E of our notation),
and e' = the corresponding transverse squeeze (=r)jE). These results

had already been given by Cauchy in a somewhat different form.

S. 22-23 give the solution of the differential equation for

a plate, supposing it to be uniformly loaded with a total load -rrFQ, to

be of thickness k, of radius I and to be built-in at its edge. The result

for the deflection z at distance r from the centre is (see our Art. 398),

...30 f
if

~.

"iSjF^rrfw
This gives for the stretches at the surface (see our Art. 398) :

_hd?z
~2d?'

Whence if 8 be the safe stretch limit we have, to determine the

proper thickness for a given load Q from :

k ~ 1V Is'tf-K*'

This seems to me the proper condition of safety, but my numbers

do not agree with those of Zehfuss. I do not think the remarks of his

concluding paragraph are correct.

[660.] E. 0. Winkler : Die inneren Spannungen deformirter,

imbesowlereaufrelative Festigkeit in Anspruch ye ii <>,/,! /A

Erbkams Zeitschmft fur Bauwesen, Jahrgang x., S. 93-10\ -i'l I 86,

365-80, Berlin, 1860.
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The first part of this memoir only reproduces general results such
as the body-stress equations and the analysis of traction and shear

given long before by Cauchy and Lame. The republication at this

date may have been serviceable in Germany considering the ignorance
of the general theory of elasticity manifested by Scheffler and by Laissle

and Schiibler, but it has not historical importance.

[661.] The second part of the memoir is entitled: Theorie der

relativen Festigkeit. Wmkler takes as his elastic body that which
would be generated by a plane closed figure whose centroid described

a plane curve (central line) so that the plane of the figure was perpen-
dicular to the plane of the curve, the form of the figure changing during
the motion in any arbitrary manner. At any given section he takes

for axis of x the tangent to the plane curve, which lies in the plane
of xy and he supposes this plane to contain the direction of gravity
and that of the load system.

He then says that the ordinary theory of flexure has neglected *yy

and ITz or found erroneous values for them, and cites in this respect the

researches of Poiicelet, SchefHer, Laissle and Schiibler. He further

states that Schefner, and Laissle and Schiibler have attempted to take

into account JAT,
but neglected 7y and "xz. He declares that in general

all these stresses differ from zero, but remarks that ij? will usually be

quite negligible and proceeds to neglect it. He thus reduces his body-
stress equations to the form :

d^icx dlcii dlcz v
'dx

+ ^ +
dz
+A^ ()j

dxii dyy - _

-T- + -~r + ^o = idx dy
dlcz dzz
-j- + -j- = -

dx dz

He then writes down the body surface equations on the assumption
that there is a uniform surface pressure p (S. 223). The equations thus

obtained he cannot solve, and so he takes refuge in hypotheses almost as

incorrect as those of the writers he has previously cited. He first

assumes lex to have the same value for all points on a line in the cross-

section perpendicular to the load plane (or parallel to the axis of
z).

He further takes HTy or the shear in the cross-section parallel to the load

plane uniform along the same line, although the breadth of the cross-

section changes continuously with the height (i.e.
with y] :

wie z. B. beim rechteckigen mid kreisformigen Querschnitt. Bei dem
ersteren unterliegt diese und die vorige Annahme iiberhaupt keinem Zweifel

(S. 223).

It is perhaps needless to remind the reader that Saint-Yeiiaiit five

years before the publication of this paper had shown that these hypo
theses which ' admit no doubt '

are absolutely untenable for the cross-

sections in question ! Further for a thin rib Winkler takes 7~ constant
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for the whole length of the rib 'In den iibrigen Theilen kann natiirlich

die vorige Annahine beibehalten werden' (S. 223).

[662.] It is needless to follow Winkler's analysis further. It

seems to me that the modifications he introduces into the Bernotilli-

Eulerian theory do not tend to correct it in the case in which the

cross-sections are incapable of treatment by Saint-Venant's method

(T and I cross-sections etc), while when the cross-sections fall

under the cases treated by Saint-Venant the true theory is not a

bit more complex than Winkler's lengthy process (see our A
87-98). As for the case in which central line is not a straight
line and the cross-section varies, I doubt whether he has found
even an approach to an approximate solution.

[663.] The second part of the memoir discusses principal tractions

and applies them to the theory of rupture. The work is inferior to

what had been done several times previously and takes a tractive and
not a stretch limit of strength (S. 229-30). Winkler applies this

discussion of traction to several examples (S. 230-3) and conclu

this part by the consideration of the effect of a rapidly moving load

on the deflection of a girder or beam. Here he has to return to the

Bernoulli-Eulerian theory for a solution. He considers first an isolated

load.

His reasoning in this case is the following. Suppose M the mass of

the moving load, p the radius of curvature of the central line of the

beam immediately under the load supposed at the centre, v the velocity
of the load, I the length and m the mass of the beam. Then there

is a centrifugal force Mtr/p acting downward and consequently the

terminal reaction R is given by :

But the bending moment at the centre or

- Imgl

whence

AW/p= (

l

smgl+ IMyZ) (\
+

} ^/V), approximately ......
(ii),

. Ml* .

since -= is very small.
'

R can then !>< found from (i), and Wink!' for the aj.jr<.\iiii;itc

central deflection
1

1 Winkler has Tj, and ^\ for the numerical coefficients, but I presume these to

be misprints for ^f-j and -fa.
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These results shew that Winkler was quite unaware of the labours

of Stokes and Phillips (see our Arts. 1276*-91* and 372-7, 552-4),
to say nothing of Homersham Cox, who had proceeded on these very
lines, with the like inexact results : see our Art. 1433*. He concludes :

Wirkliche numerische Berechnungen zeigen, dass selbst bei bedeutenden
Lasten und sehr grossen Geschwindigkeiten die Vermehrung der Beanspruch-
ung nur ausserst gering ist (S. 234).

This is hardly however experimentally confirmed: see our Arts.

1418*, 1420* and 1375*.

L] The last section of the second part (S. 234-6) is entitled :

Einftuss eines bewegten Zuges. It deals with what we have termed
Bresse's problem (see our Arts. 382 and 540), and presents no novelty.
Winkler's results agree with those previously obtained by Bresse, but
he does not refer to him. Some numerical calculations are given to

show that the increment of bending moment and deflection due to the

velocity of the load are very small.

[665.] In the third and last part of his memoir, Winkler applies
the formulae of his second part to various special cases. Thus he
finds (S. 365) for a cantilever of rectangular cross-section (h x b) under

bending moment M and total shear Q that :

7 73 J
** vj *y 7j-"t; 770 .

Oil Oil

Comparing these with Saint-Yenant's results (Art. 95) we see that

they are incorrect.

I have again no confidence in the results Winkler gives for beams
with varying cross-sections or with X sections. Thus I think the paper
failed in achieving the purpose proposed by its author.

[666.] In conjunction with Winkler's attempt to solve an

already solved problem I may briefly refer to the following some-

what later memoir in this place :

George Biddell Airy : On the Strains in the Interior of Beams.

Phil. Trans. 1863, pp. 49-80. This memoir was received on

November 6 and read December 11, 1862. By 'strains' the late

Astronomer Royal here understands what we now term stresses.

Having regard to the full and able treatment of the flexure of

rectangular beams by Saint-Yenant in his memoir on flexure of

1854 (see our Art. 69) it seems unnecessary to analyse this paper
at any length. It may suffice to remark in this place that a solid

rectangular beam cannot be considered as built-up of a number
of parallel plates, still less can the stresses be expanded in

integer powers of x and y (Cartesian coordinates in the cross-
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section) in the manner adopted by Airy in 14. The tables and

diagrams of the memoir cannot be considered of value, but fortu-

nately the plaster models and tabulated numbers of Saint-Venant

effectually accomplish the objects Airy had in view when writing
the paper.

667. C. Neumann : Zur Theorie der Elasticitdt. Jourmil

far Mathematik, Vol. 57, S. 281-318, Berlin, 1860.

The object of this memoir is not to add anything to the

theory of elasticity, but to obtain the fundamental equations of

elasticity in a new way. The memoir consists of two parts : in the

first the ordinary equations referred to rectangular axes are ob-

tained ; in the second these are transformed so as to give the

equations referred to a system of triple orthogonal surfaces, which

were first investigated by Lame'.

The first paragraph of the memoir explains its object :

Es existiren bekanntlich zwei Methoden, um die fur das Gleichge-
wicht und die Bewegung eines elastischen Kbrpers geltenden Diffe-

ivntial-Gleichungen abzuleiten, von denen die eine von Navier, die

undere von Poisson herriihrt. Die erste geht von der Berechnung der

Kraft aus, welche ein einzelnes Moleciil des Korpers von alien ubri^rn
Moleciilen empfangt, die zweite von der Berechnung des Druekes,
welchen ein Flachen-Element im Innern des Korpers erleidet. Im
vorliegenden Aufsatze gebe ich eine dritte Methode zur Ableitun^
dieser Gleichimgen ;

ich bestimme zuerst das Potential der auf ein

einzelnes Moleciil von alien iibrigen Moleciilen ausgeiibten Wirkung ;

erhalte daraus fur das Potential aller, im ganzen Kb'rper statt-

limlenden, Molecular-Wirkungen zusammengenomnien ein dreifaches,
iiber den Raum des Korpers ausgedehntes, Integral; und gelange
dann durch Variiition dieses Integrals in ahnlicher Weise also wie

Gauss in der Theorie der Capillaritat zu den Bedingungs-Gleichun-

gen, welche erfiillt sein miissen, wenn sich der elastische Kb'rper unter

der Einw irkung ausserer Krafte im Gleichgewicht befinden soil.

The memoir is a fine piece of mathematical analysis
1

.

[G68.] Neumann supposes his material homogeneous and

isotropic. Further he assumes uni-constant isotropy or he uses

only one elastic constant in his results (Poisson's k = our X). He

1 The following misprints may be noted :

On 8. 285 observe that Neumann assumes the result in Moigno's Station,',

p. 703. S. 294, at the top, for the first K read H. S. 297, equation (20) : for

2^ + read 2, + 6. S. 315, in (55) : for -
, ,

-
, read in each case .
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starts indeed from the assumption that intermolecular force is a

function only of the individual molecular distance
;
thus he neg-

lects aspect and modified action. The second constant K which

appears in his results is not an elastic constant, but an initial

stress equivalent to the XX
Q
of our Art. 616* (see second set of

formulae on our p. 329). The following remark shows how it

arises and why its value is taken to be the same in all directions :

Wahrend der primitiven Lage solleri die Molecule gleichformig und
ohne Bevorzugung irgend welcher Richtungen durch den Raum bin

vertheilt gewesen sein. Ob damals Gleichgewicht herrschte, oder ob es

ausserer Krafte bedurft hatte, um die Molecule wahrend jener Lage
festzuhalten, mag dahin gestellt bleiben (S. 282).

[669.] Neumann's work, as an investigation on the grounds
of uni-constant isotropy, is extremely good, only alas ! such an

investigation has not much practical value now that more and

more bodies are observed to be aeolotropic. Perhaps the part
which will best repay study is the method by which he sur-

mounts the difficulties attaching to the expression of the surface-

forces in terms of the strains, when we cannot sum over the

whole of a sphere of molecular action. These difficulties had

been noticed by Jellett : see our Arts. 1532*-3*, but Neumann, I

think, surmounts them and shows that surface-forces can be really

expressed in terms of elastic constants having the same values as

at points of the body remote from the surface (S. 289-92).

[670.] It will not be without interest to compare Neumann's

and Sir W. Thomson's methods of reaching the general equations
of elasticity.

Let 2mF be the potential of the molecular forces on the molecule m,
or the total influence of all the other molecules on m \ Then Neumann's
results on S. 292-3 are, I believe, really perfectly general and have
no relation to any particular law of molecular force, or to any magni-
tude of strain. We may state them in the language and notation

of the present work as follows. Let ux ,
u
y ,

uz ,vx ,
v
y ,

vz ,
wx ,

w
y ,
wz

represent the nine first fluxions of the shifts, u, v, w, p the initial

density, 1/V the determinant

", + Ux Uy Uz

Vrf 1 + V,,, V~vx y z

1 The total potential energy of the system =^S2wJF
1

=SmF, or F=iv, the work
of the elastic strain per unit mass of the body at m.
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let Qx be the x component of the force necessary to hold the molecule

m in equilibrium when it lies within the volume of the body, and Px

the corresponding component when the molecule is near the surface of

the body, then if n be the direction of the normal to the surface measured
inwards ;m<l /<./, 77v, /v. the angles it makes with the axes, we have :

= _d_
/dF\

+
/dF\

+ d^
/dF\

j

/' .
= p (^1^.

cos wx + A y cos ny + Az cos n5) )

(dF ^ dF dF
where A x = (

-= (I + ux) + -j uv +
\dux aUy auz
'dF dF

71 dF
vx + , (1 + v,.) + ,- ve V,''"' v y/ c/w2

c?^
7 dF dF\J**w{

*-\d
~*

duz

Similar values hold for Qv , Qz and for Pyy Pz in terms of the corre-

sponding quantities 11, . // . // . Cxt Cy ,
Cz ,

obtained from
(ii) by cyclical

iiitcn haii-t s. These results are deduced by assuming F a function of

the first nine shift fluxions and applying the method of virtual mom
It must be noted that Qx is the force per unit of mass of the

material at the point x + u, y + v, z + w, while Px is the force per unit

area of the surface of the material. In the course of his work Neumann
shews that if

, rj,
be the displaced coordinates of the point x, y, z

(= x + u, y + v, z + w) then :

Thus it would appear that Ax ,
A

y ,
A z are what are generally termed

the stresses across the elementary face perpendicular to the axis of x.

Neumann does not consider under what conditions we shall have
relations of the type A

y Ex .

[671.] Sir W. Thomson (Phil Trans. 1863, p. 610, or Thomson
and Tait's Natural Philosophy, Second Edition, Part II. p. Id') takes

the work w a function of the six quantities 26^., 2f
v , 2e~, 2^, 2-rj^y

2-rjy^
of our Art. 1619* which In- represents by A \, /? 1, C - 1. ".

6, c reHpertm-ly. He deduces the general equations for the equilibrium
of a body under no body-forces and finds they are of the type

dA'x dA' dA'z
-. ? +-T-*+~r-*=0 ..................... (iv),dx dy <l~.

., dw . dw dw

dF
,

'//' dF
(1

11 in
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_ dF d x dF
drjyy dF dyxz

dcx dux drjxy dux drfxz dux

_dF
dux

'

Thus Thomson's equation given as (iv) above becomes :

d_
/dF\

d_
/dF\ d /dF\

dx \du,J dy \duyj dz \duj
and is only a special case of Neumann's

(i)
cited in our previous article.

It seems more symmetrical and concise to write the quantities
A'x ,

A'
y ,...,

'

x , B'y,..., as dF/dux , dF/duy ,..., dF/dvx , dF/dvy , ..., as

Neumann has done. We must be careful to note that these expressions

(A'x ...) are not the stresses, except for very small strains when

A --A'
dux

Generally A x = (1 + ux) A'x + uy
A'

y
+ uzA'z ,\

Ay = VXA'X + (1 + Vy) A'y + VgA'g , J

'

whence we can. at once express the stresses in Thomson's notation.

I believe that Neumann was the first to give these generalised

equations and the generalised expressions for stress.

[672.] Supposing the strain to be small and in particular uni-

constant isotropy to hold, Neumann shows (p. 285) that we may
express F by

2F=H+ 2KO + (K+ 3k) 6~ + (K + k) T+(2K+4k) F,

where Q ux + v
y + wz ,

T=(vz
-
Wyf + (wx

- uz)* + (Uy
- vx)*

= 4-r if T be the resultant twist,

F-
and //, K, k are constants depending on the molecular summations.

The value of K is physically explained at once as the value of the stress

A M (or By or CK)
when the strains are all zero.

Writing: < = F+ KV, and neglecting squares of small quantities, we

may put as types :

__1 fd*\, d fd^\ d (dVx "
dx \duj

+
dy \duyj

+
dz \du

(d<f> dd> d& _\rx
-
p 4 - cos nx + -T- cos ny + -~- cos nz\ (

Vll )j

(aux duy duz

whence the ordinary uni-constant equations of elasticity can be at once

deduced.

[673.] The Zweiter Abschnitt of Neumann's memoir is occu-

pied by a transformation of the equations and results given above

T. E. ii. 30
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to an-orthogonal, and ultimately as a limitation to orthogonal

curvilinear coordinates. The deduction of the equations in

curvilinear coordinates is hardly likely to be a short process.

Neumann's possesses an elegance which can hardly be postulated

of Lame"s original investigation, but at the same time the latter

part of it requires considerable modification, if it is to be adapted
to bi-constarit isotropy. We have already referred to Bonnet's

investigation of the uni-constant curvilinear equations (see our

Art. 1241*), and we shall have occasion to refer to others, e.g.

that of Borchardt in Crelle's Journal dei* Mathematik, Bd. 76,

S. 45-58, 1873.

[674.] E. Phillips: Mtinoire sur le spiral rfylant des chro-

nometres et des montres. Journal de Mathdmatiques, Deuxieme

SeVie, T. V., pp. 313-366. Paris, 1860. This memoir 1 was pre-

sented to the Academy and was favourably reported on by Lain-'.

Mathieu and Delaunay on May 28, 1860.

Phillips introduces his memoir with the following remarks :

Quelque important que soit le regulateur dont il s'agit, sa thoorio

n'avait pas encore ete etablie, la forme essentiellement complexe de ce

ressort iritroduisant dans 1'application de la the"orie de 1'elasticite l-s

equations differentielles tellement compliquees, qu'il serait absolumrnt

impossible de les integrer. J'ai pourtant ete assez heureux, par des

combinaisous particulieres, pour vaincre ces difficultes dans tout ce |ui

touche au probleme, et c'est cette theorie qui fait 1'objet de ce M6moire

(p. 3H).

Phillips, as in his memoir on railway-springs, adopts the

Bernoulli-Eulerian theory of flexure; that is to say he puts the

bending moment equal to the product of the flexural rigidity

(Eat*) and the change in curvature. He thus supposes the flexure

to take place without slide. Of this assumption he writes :

Je me hate d'observer que, dans une Note place*e a la fin du
Me"moire que j'ai presente a 1'Academic des Sciences, je dfrnontre que,
dans le probleme actuel, ce principe est une consequence rigoun-usr <1<

la theorie mathe"matique de l^lasticit^ (p. 315).

The note referred to is printed in an extended version of tin

memoir published in the Annales des mines: see our Arts. 677 \

1 As an earlier research in this direction I may refer to O. Atwood: Im
tiaw, founded on tJie Theory of Motion, for d,-tcrmimn<, th? Y

Watch l:,ih, ,;*. I'hil. YV/MM., 17-.M, j>. il'..
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Let G be the couple, X, Y the components of force applied to one

end of the spiral spring taken as origin of coordinates. Let 1/p l/p
be the change in curvature due to strain at the point x, y of the spring.
Then we easily see that we must have on the Bernoulli-Eulerian

hypothesis :

Eurffl- -\ = G+Yx-Xy ..(i).
\P Po/

Suppose I the length of the spiral, then integrating equation (i)

along the length we easily find

E<*K*(<t>-<t>Q )
= Gl + l(Yx-Xy) (ii),

where < < is the angle between the new and old positions of the

tangent at the force-end of the spring, and x, y are the coordinates of

the centroid of the spiral. If the force-end of the spiral be fixed at a

constant angle to the balance of the watch attached to the spring, < <

is the angle through which the balance has turned. Hence if we can

put Yx Xy 0, we have the couple G - EM*? (^ </> )/, or it is propor-
tional to the angle through which the balance has turned. Isochronism
thus follows.

Phillips investigates at some length the conditions under which we

may put Yx Xy =
Q, for example it would obviously be satisfied if the

spiral so moved that its centroid remained at the fixed end of the spring.
He also deals with a number of problems bearing on watch and
chronometer springs which have, however, more interest for the

historian of mechanics than for the historian of elasticity.

[675.] On pp. 352 4 an expression is deduced for the strain-

energy of the spiral or the work required to displace its normal at the
* balance

'

end through any given angle. If s, s be the stretches in the

spiral, then the work needful to carry it from the one state of strain to

the other is EV(s~ 5
2

)/6, where F is the volume. This is an illus-

tration of Young's theorem in resilience, see p. 875 of Vol. i. and our

Arts. 1384*, 493 and 609.

[676.] E. Phillips : Memoire sur le spiral reglant des chrono-

metres et des montres. Annales des mines, Tome XX., pp. 1-107.

Paris, 1861. This is the completer form of the memoir recom-

mended by a Commission of the Academy for publication in the

Recueil des savants etrangers. We have already referred to the

portion published in Liouville's Journal: see our Art. 674, and

touched on those parts more closely associated with the theory of

elasticity. There is a good deal of additional matter here of a very

interesting kind, thus the influence on isochronism of temperature
and of friction in the balance are taken into account, and a con-

siderable number of curves which are theoretically suitable forms

for the terminal of the spiral are given. By aid of these the

302
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centre of gravity of the spiral may be retained in the axis of the

balance, one of the conditions for its efficient working. Chapitre
1 1. Dt i tied: Des experiences faites a Vappui de la thdme prfoedente

(pp. 7<J !).">) is remarkably interesting; it gives a very considerable

number of experiments on the isochronism of spirals with or

without terminals curved to the theoretical forms. The memoir

is an excellent example of a high standard of theoretical know-

ledge applied to an important practical problem.

[677.] To the memoir as it stands in the Annales is attached

a Note entitled: Pour faire voir que, dans les circonstances qnc

pr&ente le probleme actuel, lea principes sur lesquels est fondee sa

solution et qui rentrent dans la throne de Faxe neutre, sont non-

seulement parfaitement d'accord avec I'expedience, mais avec I"

tl't'orie math&uatique de ^elasticity (pp. 95-107). Phillips remarks

in a loot note that his demonstration is an extension of that which

Saint-Venant has applied to the strain of a straight rod bent by a

couple: see the Lemons de Navier, p. 34 and our Art. 170. It

somewhat resembles the general treatment of the rod problem
due to Kirchhoff: see our Chapter XII.

The assumptions made by Phillips in his theory of the spiral

spring are that, when a couple is applied to its terminal the strain

is such, that: 1 all the points primitively in a cross-section remain

in a cross-section and that the strained cross-section remains

perpendieular to the central line, 2 the central line remains un-

stretched. It is obvious that these are the ordinary assumptions
of the Bernoulli-Eulerian theory extended to rods with an initially

curved enitral axis. The problem is how far are they true fora

spiral acted upon by a couple. Let us assume them to be true

and investigate the resulting shifts and consequent stresses. In

addition to 1" and 2" above Phillips makes the further assumptions
involved in the following remarks:

.1 'apprllr li^iu- nrutrc le lieu gdoniltriquo <I <!. ^ravitr .1.-

boat < (ions tnuiHVi-i ill unc rmirl>r <|iiclco]i(juc.

mm .uppose plane, en negligeant, pour lo spiral cylindriqur, l.i

t'iiil.lr 'UK -linaison dos spires. J'admets quo toutes ICB

ii.m 0galatetqu'elle0aont p Tm$triqoemeiitp*riin
j>l;iii, jiir j'ajijH-llrnii plan hori/ontal, passant par la li.i<ne m-utn-.

.1 iiiiiinim- |iir sans i-liani;rr la lon^iK'iir <! l:i li^in- nniti-f, ct tout

nditioiis ! position rl d'iiiflinaisou assi^ne** i

060 (li-ux c\| |-('inil<-H, on drt'orinr crllfci dans son plan, il'apirs la
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loi 1/p I/PO- constante, p et p dtant les rayons do courbure on uu

quelconque de ses points: le premier avant la deformation et le second

apivs. On a vu precedemment qu'il cat possible de satisfaire geomdtri-

([iicineiit a cette condition en donnant aux courbes extremes uno forme

determinee (pp. 95-6).

[678.] At any point of the central line let its tangent be taken

as axis of #, its normal as axis of z and the axis of y perpendicular to

the horizontal plane containing tin-so and defined above. Lot n, v, w be

the shifts parallel to these axes of a point ./' on a cross-section, infinitely
near to that through 0, and

, v,,, ?r,, the shifts of the centroid of this

latter cross-section. Then Phillips shows by easy geometrical analysis
that we must have :

u = xz

To determine v and u\}
he assumes that the three stresses 7^, 77 and

T: are zero as in Saint-Venant's theory of flexure : see our Art. 77.

This leads him to the values

*-- wz (1/p
-

I/ft), w. = hV -
*) (1/P

-
1/P.)-

The values of u, v, w are now completely known. They will be found

1 to satisfy the body shift equations, 'J to give *z and i/t zero values,
and make

Hence obviously if the neutral-axis goes through the centroid of eaeh

cross-section, there will be a zero total traction and the total system of

stress over a cross-section will be represented by the couple, i.e. the

bending moment :

\\liich is constant since (1/p l/p )
is assuined constant. Kurt her the

surfaee stress-equations are satisfied at every point. Thus if the force

given by //: (1/p l/p )
t/o> be applied to eaeh element dot of the cross-

sections \\hich bound a small portion of the spiral, this portion will !><

in elastie equilibrium, but since the cross-sections remain />fan,e any
number of such portions can l>e put together, and it is only necessary
to apply such forces to the terminal cross-sections of any length of

spiral. Thus by the principle of the elastic equipollenco of statically

equivalent loads (see our Arts. 8-9, *J1 and 100) we see that Phillips'
solution on the basis of the Bernoulli-Eulerian theory is really rigid

on the complete mathematical theory, provided the terminals of his

spiral are acted upon by couples of the magnitude

AW(l/p-l/p ). (pp. 106-7).

[679.] It will be noted that the above investigation is in no

wise dependent on tbe central line being initially a spiral. It

would seem that the above values -of the shifts would apply to a

rod with its central line in the form of any plane curve whatever,
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when its terminals were acted upon by equal and opposite couples.

Their effect is to produce a constant change of curvature, and the

Bernoulli-Eulerian theory is rigidly true.

[680.] Another interesting memoir by Phillips may be not

unfitly considered here, although it belongs to a somewhat later

date. It is entitled : Solution de divers problemes de Mfaanique,
dans lesquels les conditions imposdes aux extrimites des corps, au

lieu d'etre invariables, sont des fonctions donndes du temps, et

ote. Von tient compte de I'inertie de toutes les parties du systeme,

Journal de Mathematiqiies, Tome ix., pp. 25-83. Paris, 1864.

This interesting paper unfolds a valuable method for the treat-

ment of various mechanical problems involving the longitudinal

and transverse vibrations of rods. The author deals with the

solution of problems in which the shift at one end of the rod is a

given function of the time, or in which the rod itself, subject to a

given system of load, is moving in space. The value of such

solutions lies in their application to the stresses in various moving

portions of machines. The mode of solution adopted is the

determination of the special arbitrary functions involved in tin-

general solution u = F (x + at) +f(x at).

[681.] The memoir is divided into two chapters: the Hrst

deals with the following problems:

Problem (i). To determine the relative shifts of the parts of a

rod, one end of which is subjected to a given motion, and the other

is free when each point of the rod moves parallel to its axis

(pp. 25-38). Phillips treats in detail the cases when the motion

imposed on the end is uniformly accelerated (u = J/
2

), p. 29, and

when it is harmonic (u = a a cos at), p. 35.

Problem (ii). To find the stresses in AB a connecting rod, AC
and BD being two parallel revolving cranks of equal length r nut I

having a spin o>. The section, length and tueight of the connecting
rod are given and the constant resistance Q is supposed to be <>/>/

at B tangentially to the circumference of BD. (pp. 38-45.)

Problem (iii). To find the stresses in a rod one end of which is

subjected to a harmonic motion, while the other is attached to a

piston under the action of steam, (pp. 4">

Phillips to simplify matters replaces the romp >un<l harmonic
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action of the steam, by a single harmonic term of the same period
but of different phase from the harmonic motion of the other

terminal (difference equal to Tr/4). He supposes this to represent

simply and approximately the mean action of the steam.

Problem (iv). A crank OM turns uniformly round 0, which is

fixed. A force, for example that of steam, acts upon the extremity
M in a constant direction MC. The law of this force being given

by a harmonic term of the same period as the rotation, to determine

the strain in the crank (pp. 55-61).

Problem (v). One end of a cord being fixed and the other

caused to vibrate transversally with harmonic motion, it is required

to find the transverse vibrations of the string (pp. 61-65).

This is the case for example of a string one end of which is

fixed to a massive tuning-fork set vibrating harmonically.

The following two problems (vi) and (vii) treat the same string

when both ends are caused to vibrate in a certain manner, not

however the most general possible.

[682.] In the second chapter Phillips adopts the solution in

Fourier's series of the partial differential equation for the longi-

tudinal vibrations of rods, but he first breaks up his shift u into

two components
u^^+U

and chooses u^ in such a manner that it causes the terms resulting
from the special terminal conditions, which are functions of the

time, to disappear from his equations; U will then be found by
the ordinary methods for evaluating the coefficients of Fourier's

series.

Thus in his Problems
(i)

to (iii) (pp. 71-79) Phillips verifies

results of his first chapter. In his last Problem (iv), however, he

passes to somewhat different considerations. He makes use of

Poisson's solution for the transverse vibrations of a rod to solve the

following problem :

The two terminals of a connecting rod receive the same harmonic

motion perpendicular to its length. It is required to find the strain

(pp. 80-3).

Analytically this amounts to solving the equation :
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subject to the conditions :

u = r sin cot, d?u/da? = when
|j= Jj (ii).

In addition Phillips supposes that initially, or for t = 0,

a = 0, du/dt = r for all points from x = to x = z. . .(iii).

The form of the special integral, which removes the time

tunas from the terminal conditions, is easily found to be

u
l
= {A l

sin (Jco/k x) -t- B
1
cos (Jco/k x)

+ Cl
sinh (Jco/k x) + D^ cosh (Jcajk x)} sin cat.

Thus if, w = ^j-f U we easily find 7 by Poisson's pro-

cur Art. 468*), while A
lt
B

I}
G

I}
D

l
are determined from the

four equations (ii). Equations (iii) give the constants of Poissori's

solution.

SECTION II.

Physical Memoirs including those of Kupffer, Wertheim

and others.

GROUP A.

Memoirs on t/te correlation of Elasticity to the other physical

proper-ties of bodies.

[6<S:j.] A. J. Angstrom: Om de monoklinoedriska

molekaldra konstauter. Kongl. Vetenskaps-Akadeiniens J/ninllin;/iir

for dr 1850, Sednare Afddnimjen, Vol. 38, pp. 425-61, Stockholm,
1851. This memoir 1 was presented on March 7, 1851. It is an

important contribution to a subject still very obscure, notwith-

standing the investigations of Pliicker, Senarmont, WiedemaoD
and Angstrom : see the references in our Chapter XII., Section I.

Its topic is the exact nature of the relation between tin- various

s of a crystal the axes of figure, of elasticity, of electrical

conductivity, the thermal, the optic, and the magnetic u

French and German translations of parts of Angstrom's
1 There is un earlier memoir by Angstrom in the Upsala memoirs of the

previous year, which I have not examined. It belongs to the theory of light, and
endeavours to show that the optical properties of gypsum and of crystals <

mouocliiiohedric sv ..iaim-di>y the elasti<

ether has relation to a system of oblique axes.
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will be found in the Annales de Chimie, T. 38, pp. 119-127, 1853,

(by Verdet) and Poggendorffs Annalen der Physik, Bd. 86, pp.

206-237, 1852.

[684.] Neumann's identification of the principal crystalline

axes had been, at least for certain types of crystals, discovered in

later researches to be inaccurate : see our Arts. 788*-793* and

Chapter XII., Section I. Angstrom's investigations with regard
to gypsum are some of the most important in this direction.

Detta stadium bor dessutom for de klinoedriska kristallerna blifva

sa mycket mera fruktbarande, som hos dessa ett nytt bestdmnings-
element framtrader, nemligen den olika riktningen of de principala
elasticitetsaxlarne (p. 427).

[685.] The first section of the memoir is occupied with

the determination of the optic axes of gypsum (pp. 428-38).

Angstrom shows like Neumann in his later work, that the optical

axes of elasticity are not fixed but vary with the temperature and

the colour of the light : see our Chapter XII., Section I.

The second section of the memoir (pp. 438-49) is entitled :

Klangfigurer hos gipsen and investigates the axes of acoustic

symmetry by means of Chladni's figures. The theory of the

nodal lines for a substance of the elastic complexity of gypsum
has not I think been worked out, Angstrom takes rather arbitrary

curves to represent the lines, although very possibly they give
close enough approximations to the acoustic axes.

The third section of the memoir (pp. 449-51) is entitled :

LedningsformagcL for vdrmet. This confirms in part Senarmont's

results, but the author believes that the isothermals change with

change of temperature.

Ehuru forsoken icke aga all den noggranhet man kunde onska, tror

sig dock forfattaren kunna sluta, att isothermerna i det symmetriska
planet hos gipsen verkligen fo'randra liige med temperaturen, och att

derma forandring sker at samma led och ar tillika af ungefarligen
samma stoiiek som de optiska elasticitets-axlarnes vridning vid eii lika

temperaturforandring (p. 451).

The fourth section entitled: Gipsens utvidgning genom vdrme

(pp. 451-3) cites Neumann's results and determines the absolute

extension of gypsum. It shows that there is a direction in which

gypsum apparently shrinks with increasing temperature (p. 453).

The fifth section entitled: Gipsens hardhet (pp. 453-5) cites
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Frankenheim's results: see our Art. 825*. Angstrom's results in

part confirm, in part modify Frankenheim's. Those of Franz he

rejects as unsatisfactory : see our Art. 839.

The sixth section is entitled: Gipsens forhdllande till elektricitet

och magnetism (pp. 455-6) and cites the results of Plucker, Wiede-

mann etc.: see our Chapter XII., Section I. Angstrom's researches

confirm Wiedemann's for electricity, but he could not confirm

PI ticker's for magnetism.
In the seventh section (pp. 457-8) we have a resume of the

results
1
for axes of all kinds:

Saimnunfor.is de resultater, vi i det foregaende erhallit, bekoimnrr
man foljande ofversigt af dc olika axelsystemernas lage i det symmetriska
planet, hvarvid a betecknar lutningen emellan denjibrosa genomgangen
och den axeln, soin fuller inom de bada genomgangarnes spetsiga viukel :

a

Optiska axlarnes medellinie 14^
Minsta utvidgnitigen for varme 12l
Storsta hiirdheten omkring 1 4

|

Magnetisk attraktion omkring 1 4'

Storsta ledningsfbrmagan for varmet 5

Storsta elasticitets axeln i akustiskt hanseende 53'

Minsta ledningsforniagan for elektricitet 62

a.
2")

It will thus be seen that these axes group themselves in two

distinct sets which probably connotes some inter-relation of the

corresponding physical quantities. Angstrom makes some not

very conclusive remarks on the reason for these groupings (pp.

457-8).

[686.] Section vin. is devoted to felspar (pp. 458-60). On

p. 460 a system of results for this crystal is given, partly bas< .1

on the experiments of Brewster, Se'narmont and Plucker, partly on

Angstrom's own experiments. We have for the angle a between

the given directions and the base of the fundamental prism of

felspar :

Optiska polarisationsaxeln 4,
lj

Diamagnetiska axeln

Hardheten ..

:*
!|

.4', 1 1)

1 I have purposely refrained from translating the Swedish as there seems to me

a certain amount of vagueness in the expressions used by Ingstrom.
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Storsta ledningsformagan for varmet.

Akustiska axeln 63 +

Minsta leduingsfdriuagan. for elektricitet 63C

Thus the like two groups recur.

Further discussion of results is given in Section IX. (pp.

460-1), while Section x. (p. 461) sums up as follows :

Slutligen och sasom hufvudresultat af det foregaende anser sig
fo'rfattaren hafva pa experimentel vag bevisat oriktigketen af det vanliga

antagandet) att kristaller hafva 3ne rdtvinkliga elasticitetsaxlar, sa vidt

nemligeii satsen galler de monoklinoedriska kristallerna
',

och att

tvertom ej blott kristallernas form utan dfven deras optiska^ thermiska

och akustiska fenomener ovillkorligen hdntyda pa tillvaron af snedvink-

liga elasticitetsaxlar, konjugataxlar.

[687.] The theoretical relation of three rectangular and

unequal axes of elasticity supposing them to exist to the various

physical vectors the position of which is given by Angstrom seems

in the present state of our knowledge of the correlation of the

various branches of physics somewhat obscure. The planes of

cleavage at any rate would probably take up a variety of positions

relative to the three axes of elasticity depending on the exact

relative magnitude of the constants of cohesion, and we should

hardly expect them to make any definite angle (such as 45 or

90) with these axes. How far Angstrom's opinion that it is

impossible to admit three rectangular axes of elasticity in crystals

of the monoclmohedric system is correct must be left to the

decision of those who have a wider knowledge of the properties
and structure of crystals than the present writer.

[688.] James Prescott Joule. The first contribution of this

physicist to our subject, namely the memoir of 1846: On the Effects

of Magnetism upon the Dimensions of Iron and Steel Bars, has

already been briefly referred to : see our Art. 1333* and its foot-

note. This memoir was published in the Philosophical Magazine,
Vol. XXX. pp. 76-87, 225-241, and is reprinted in the Scientific

Papers, Vol. L, pp. 235-264. Joule commenced to experiment
in 1841-2 (see Sturgeons Annals of Electricity, Vol. 8, p. 219), so

that he was really the first investigator in this field : see our Art.

1333*. He obtained the following results :

(i) Magnetisation [?
below a certain critical value] increases the

length of a bar, but
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(ii)
It does not perceptibly increase its bulk owing to a lateral

contraction.

(iii) The elongation is p perhaps approximately below the critical

value] in the duplicate ratio of the magnetic intensity of the bar.

The bars for which Joule deduced these results were of annealed
and unannealed iron and of steel.

(iv) When iron wires are submitted to longitudinal tension and
then magnetised, the increase of tension diminishes the elongation due
to magnetism and with more than a certain tension increase of magneti-
sation produces a shortening effect.

(v) When iron bars are subjected to pressure the amount of the

pressure does not seem to sensibly affect the magnitude of the elonga-
tion due to a given magnetic intensity.

(vi) The shortening effect when a wire is under tension is very
nearly proportional to the product of the magnetic intensity in the wire

into the current traversing the coil. [Hardly warranted by Joftle's

own experiments and scarcely confirmed by later investigators.]
In a particular experiment with iron wire one foot long and a

quarter of an inch in diameter the tension at which magnetisation
would produce no elongation for the electric currents employed in the

experiments was conjectured to be about 600 Ibs. By this I take Joule

to mean the total tension : see his p. 232. Scientific Papers, Vol. i.,

p. 254. With regard to the apparently diverse results (iii) and (vi),

Joule remarks :

The law of the square of the magnetism will still indeed hold good
where the iron is sufficiently below the point of saturation, on account

of the magnetism being in that case nearly proportional to the intensity
of the current. For the same reason, on examination of the previous
tables, it will be found that the elongation is, below the point of satu-

ration, very nearly proportional to the magnetism multiplied by the

current. The necessity of changing the law arises from the fact that

the elongation ceases to increase after the iron is fully saturated
;

whereas the shortening effect still continues to be augmented with the

increase of the intensity of the current (pp. 232-3. Scientific Papers,

p. 255).

(vii) Shortening effects in the case of iron wire arc proportional
caeteria paribus to the square root of the tension. [Scarcely proven.]

In the tax- of hardened steel wire, however, the shortening effects

were found not to increase sensibly with increase of tension.

(viii) No magnetic influence on strain could be found in the case

of copper wires.

These results of Joule's have been considerably modified (as

indicated above) by more recent researches and new light has

been thrown on the whole subject by Villari, Shelford Bidweli,

Kwing and others in memoirs to be discussed later.
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[689.] The next paper of Joule's touching on our subject is

entitled: On the Thermo-electricity of Ferruginous Metals, and on

the Thermal Effects of stretching Solid Bodies. Proceedings of
the Eoyal Society, Vol. vin., pp. 355-6, 1857; Scientific Papers,

pp. 405-7. This paper records that experiments on the stretching

of metals showed a decrease of temperature in the metal when the

load was applied and an increase when it was removed. The

experiments were on iron wire, cast iron, copper and lead. Joule

writes :

The thermal effects were in all these cases found to be almost

identical with those deduced from Professor Thomson's 1 theoretical

investigation, the particular formula applicable to the case in question

being H -
-j.

x Pe, whereH is the heat absorbed in a wire one foot long, t

J
the absolute temperature, i/the mechanical equivalent of the thermal unit,

P the weight applied, and e the coefficient of expansion per 1 (p. 355).

The same results occurred with gutta-percha, but they were

exactly reversed in the case of vulcanised india-rubber, which was

heated by loading and cooled by unloading. Sir William Thomson

suggested that loaded vulcanised india-rubber would be found to

be shortened when heated, a result Joule found in accordance

with experiment as well as theory.

[690.] On the Thermal Effects of the Longitudinal Compression

of Solids. Proc. Eoyal Soc., Vol. vin., pp. 564-6, 1857
; Scientific

Papers, Vol. I. pp. 407-8. In this paper Joule continues his experi-

mental verifications of Thomson's thermo-elastic theory. He finds

that for metal pillars and cylinders of vulcanised india-rubber

heat is evolved by compression and absorbed on removing com-

pressive force. His investigations lead him to determine how far

the "force of elasticity in metals is impaired by heat," or what

may be the effect of tensile stress on expansion by heat. He
makes experiments on a helical spiral of steel wire and on one of

copper wire, and he supposes such spirals, like J. Thomson (see

our Art. 1382*-3*) to resist extension only by torsion. He thus

finds that for the steel wire the *

force of torsion is decreased

00041 by each degree of temperature
'

(C), while the number for

copper wire is '00047. Kupffer found for steel wire '000471

and for copper '000691 : see our Art. 754, where however, these

results are given for a degree R.
1 Now Sir William Thomson,
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[691.] On some Thermo-dynamic Properties of Solids. Phil.

Trans., 1859, Vol. CXLIX, pp. 91-131; Scientific Papers, pp. 413-73.

This contains a detailed account of experiments similar to those

referred to in the two previous memoirs (see our Arts. 689-90)

bearing on the thermo-elastic relations of metals and india-rubber.

Joule had found that a helical spring showed no sensible thermal

changes when compressed, and he attributed this to the equal and

opposite thermal effects produced in its compressed and extended

portions. At the suggestion of Sir William Thomson, he undertook

to investigate independently the " heat developed by longitudinal

compression and that absorbed on the application of tensile force."

[692.] The portion of the memoir which really concerns us begins
with 18 and is entitled : Experiments on the Tliennal Effects of Tension

on Solids. Joule made careful experiments to measure the thermal

increase // in degrees centigrade due to the stress, and he compared his

experimental results with the formula of Sir W. Thomson 1

sw

where t temperature Centigrade from absolute zero,

J- mechanical equivalent of the thermal unit in foot-pounds,

p = total load in Ibs. (negative of course for a tension),

e = longitudinal expansion per degree Centigrade.

s = specific heat, and w = mass in Ibs. of a foot length of the bar.

As a measure of the coincidence of experiment and theory I think

it well to cite the following results, noting that Joule took some of lii.s

constants from Dulong and Petit, Lavoisier and Laplace, etc., otlicrs

he ascertained experimentally for his own specimens.

Values of II in degrees Centigrade.
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[693.] Joule next turns to the curious thermo-elastic phenomena
presented by india-rubber 33-58 (Scientific Papers, pp. 429-440),
which he discusses at considerable length. He refers to the discoveries

of Gough : see our footnote, Yol. I., p. 386. Joule confirms Gough's
conclusions, which might be deduced from Thomson's formula by
supposing e negative. These conclusions are in accordance with those

previously noted by Joule : see our Art. 690. Besides Gough's con-

clusions Joule deduces from his experiments the following results :

(a) India-rubber softened by warmth, may be exposed to Fahr.

for an hour or more without losing its pliability, but a few days rest at

a temperature considerably above the freezing-point will cause it to

become rigid.

(b) A large amount of elastic after-strain exists in india-rubber.

(c) Moderate 'stretching weights produce little heat or even a

slight cooling effect, but after a certain weight is reached there is a

rapid increase of heating effect.

(d) When by keeping india-rubber at rest at a low temperature for

some time it has become rigid, it ceases to be heated when stretched by
a weight, and, on the contrary, a cooling effect takes place as in the

metals and gutta-percha.

(e) For vulcanised india-rubber results similar to (d) hold, but that

the specific gravity is increased by stretching it, as Gough supposed

(Yol. i. p. 386 ftn. (4)), appears to be exactly contrary to Joule's

experience, 45 (Scientific Papers, p. 434).

(f) The slight cooling effect referred to in (d) produced by weak
tensile forces disappears for vulcanised india-rubber when the tempera-
ture of the thong is a few degrees higher than 7'8 C.

(g) The effect of heat on a thong of india-rubber under tension

predicted by Thomson was experimentally measured 50-58 (Scien-

tific Papers, pp. 433-40) and the numbers (p. 438) agreed with theory

perhaps as closely as could be expected with a material of this kind.

(h) A rise of temperature removes from vulcanised india-rubber set

produced by earlier experiments at high tensions.

(i)
For vulcanised india-rubber H (see our Art. 692)

= + -137 by
experiment (corrected 'for elongation of rubber by use' to + '155), and
= + '114 by calculation.

[694.] Joule next turns his attention to wood which presents some
remarkable thermo-elastic properties and leads him to rather incon-

sistent results.

The discrepancies arose apparently from considerable elastic after-

strain and from the effects of moisture on the wood in altering its elastic

condition. Thus different hygrometric conditions could cause the wood
under tension either to expand or contract, as the case might be, when
its temperature was raised, and here again there were great differences
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according as the wood was strained with or across the grain. Joule's

general results are stated in 75 (Scientific Papers, Vol. i., p. 450).
Removal of set by heating and also elastic after-strain were observed in

whalebone as well as wood 84-5 (Scientific Papers, Vol. I., pp. 454-6).

[695.] The next portion of Joule's memoir
( 94-122, Scientific

Papers, Vol. I., pp. 459-71) is devoted to the Tliermal Effects of Longi-
tudinal Compression on Solids. Here again Joule compares the heat
evolved in degrees Centigrade with that calculated by Thomson's

formula, and he finds the following mean results, where we omit tln^r

for vulcanised india-rubber and wood, the apparent agreement in the

case of wood cut across the grain disappearing if the individual results

are analysed :

Values of II in degrees Centigrade.

Thermal Effect from
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on extension Joule was able to measure this slight cooling effect.

He found it '00306, theoretically it should have been '00403.

The three-thousandth part of one degree Centigrade as measured

by Joule is rather a small quantity to draw definite conclusions

from, but he found in these numbers sufficient evidence of the

truth of the theory and concludes his memoir with the words :

Thus even in the above delicate case is the formula of Professor

Thomson completely verified. The mathematical investigation of the

thermo-elastic qualities of metals has enabled my illustrious friend to

predict with certainty a whole class of highly interesting phenomena.
To him especially do we owe the important advance which has been

recently made to a new era in the history of science, when the famous

philosophical system of Bacon will be to a great extent superseded, and

when, instead of arriving at discovery by induction from experiment,
we shall obtain our largest accessions of new facts by reasoning

deductively from fundamental principles ( 126; Scientific Papers, Yol. j.

p. 472).

[697.] One or two other memoirs of Joule's may be just

referred to here, although falling into a later period.

(a) On a Method of Testing the Strength of Steam Boilers. Memoirs

of the Literary and Philosophical Society of Manchester, 3rd Series,

Vol. I. pp. 175 and 233, 1861. This contains nothing with regard to

the strength of the materials of the boilers tested.

(b) On a new Magnetic Dip Circle. A memoir of this title was

published in the Manchester Proceedings, Vol. vm. 1869, p. 171, and
when it was republished in the Scientific Papers, Vol. I. p. 575, Joule

added (pp. 579-583) some account of experiments on the strength of

silk and spider filaments made in 1870. These experiments show the

large influence of elastic after-strain, and further prove that silk and

spider filaments, like caoutchouc, when under tension, become shorter

if the temperature be raised. The effect of moisture tends to obscure

both after-strain and temperature effects. Numerous experimental
measurements are given.

(c) On the Alleged Action of Cold in rendering Iron and Steel brittle.

Manchester Proceedings, Vol. x. pp. 91-4, 1871 ; Scientific Papers,
Vol. I. pp. 607610. Further Observations on the Strength of Garden
Nails will be found on pp. 127-8 and 131-2 of the same volume of

the Proceedings, or on pp. 610-13 of the Scientific Papers.

Joule brings evidence against the hypothesis that cold renders iron

and steel brittle from : (i) Experiments on iron and steel wires, part of

which were in contact with a freezing mixture and part at about 50 F.

The wires broke outside the freezing mixture. These were pure tractive

experiments, (ii) Flexure experiments on steel darning needles. The

average strength of the metal at 12 F. was found to be slightly greater

T. E. IT. 31
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than at 55 F. (iii) Impact experiments on warm and cold cast-iron

garden nails, broken by the blunt edge of a steel chisel falling upon
the middle of the nail terminally supported. These experiments were
not in favour of the hypothesis that frost makes cast-iron brittle.

[698.] C. Matteucci : Sur la rotation de la lumiere polarisfo,

sur I'influence du magnetisme et sur les phdnomenes diamagndtiquet
en gdndral Annales de Chimie, T. xxvin., pp. 493-9, Paris, 1850.

A heavy glass prism (presented to the author by Faraday)

placed in a strong electro-magnetic field rotated the plane of

polarised light. Matteucci records somewhat vaguely in this

note the effect produced on this power of rotation by compress-

ing the glass. He finds that :

(i) Before compression the rotations to the ri^ht or to the left

according to the sense of the current are the same for the same intensity
of current. After compression the one rotation is much greater than
the other

;
the one being twice to thrice the other.

(ii) The greater rotation is always that which is produced by the

passage of the current which acts in the same sense as the compression *.

(iii) The maximum rotation of the compressed glass is sometimes

greater, sometimes less than that which occurs when the glass is not

compressed ;
when the rotation produced by the compression is very

much greater than that which the electro-magnet produces in the

uncompressed glass, then the maximum rotation due to the action of

the electro-magnet on the compressed glass is equal to or greater than
that which the electro-magnet produces in the uncompressed glass ;

the

contrary occurs when the rotation produced by the electro-magnet in the

uncompressed glass is equal to or greater than that produced by the

compression ;
in this case the maximum rotation is equal to or less

than that produced upon the uncompressed glass.

(iv) Other glasses such as flint and crown exhibit the like pheno-
mena. But the electro-magnetic field produces no sensible rotatory
action on pieces of crown glass subjected only to slight compression.

Matteucci holds that this last result will explain to some extent

why crystals do not exhibit rotatory power in the magnetic field. The

electro-magnet further produced no rotatory power in compressed laminae
of quartz and annealed glass : see Wertheim's results cited in our

Arts. 786 and 797
(</).

(v) When the compression was removed the glass resumed its

previous magnetic rotatory power.

(vi) There was a sensible although hardly measurable {in-

between the instant of closing the circuit and the instant at which the

1 The ' rotation
' due to the compression alone seems to have been measured by

the angle through which the Nicol's prism of a l>i -quartz analyser had to

i>f the imiij-'e sliouM have the same colour.
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maximum rotation was attained. This interval was greater when the

glass was compressed than when it was uncompressed.

[699.] Matteucci further records some experiments in which he

placed vibrating square plates of glass, brass and iron between the poles
of an electro-magnet. He found that the Chladni-figures or system
of nodal lines were the same whether the current was passing or not,
whence he argues that very different groups of atoms (groupes d'atomes)
must be affected by the action of magnetism and by the influence of

acoustic vibrations (p. 499).

[700.] C. Matteucci. Some account of a memoir by this

physicist entitled : Sur I*influence de la chaleur, de la compres-

sion, sur les phenomenes diamagnetiques will be found on pp.

740-4 of the Comptes rendus, T. XXXVL, Paris, 1853. The only

part of the account which concerns us is entitled: Compression
du bismuth and occurs on p. 742. Matteucci writes :

J'ai trouve qu'une aiguille prismatique de bismuth, comprimee dans

le sens de son axe, se dirige toujours equatorfalement, quelle que soit la

face qui est suspendue horizontalement
;

son pouvoir diamagnetique
est considerablement augmente par la compression. Si 1'aiguille de

bismuth a etc comprimee perpendiculairement a son axe, elle se dirige
dans la ligne des poles quand les faces comprimees sont verticales, et

dans la ligne equatoriale si les faces comprimees sont horizontals. Oette

propriete persiste apres avoir chauffe 1'aiguille de bismuth jusqu'a une

temperature pen inferieure a la fusion du metal.

[701.] C. Matteucci: Suifenomeni elettro-magnetici sviluppati

dalla torsione. II nuovo Cimento, Tomo vn. pp. 66-97, Pisa, 1858.

Annales de Chimie, T. LIU. pp. 385-417, Paris, 1858; Comptes

rendus, T. XLVI. pp. 1021-4, Paris, 1858.

Parte I. of this memoir is entitled : Di un nuovo caso d'in-

duzione elettro-magnetica (pp. 67-81). Matteucci begins by

describing his apparatus and mode of experimenting. Briefly an

iron rod supported perpendicular to the magnetic meridian was

placed in circuit with a galvanometer and to this rod any amount
of torsion in either sense could be given. Eound the rod was

placed a coil of three or four turns of wire, through which a current

could be sent in either direction and this served to magnetise
the rod.

When a current from two to four Grove elements was sent

round the coil magnetising a bar of half-hard iron (ferro semiduro),
then at the moment when it was started a small deflection of

312
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J to a scale division was exhibited by the galvanometer needle

of the secondary circuit. But the result was quite different when a

sudden torsion was given to the bar:

Perche non vi sia difficolta alcuna a concepire il risultato dell'

esperienza principale, supporremo che per 1' azione della spirale mag-
netizzante si formi un polo sud (o attratto dal polo nord della terra) in

quella estremita della verga che e volta verso 1' est, e un polo nord all'

estremita opposta, che e quella fissata nel centre della ruota. &up-

porremo finalraente che T osservatore che deve torcere la verga magnetiz-
zata guardi la ruota. Nel momento in cui & applicata alia verga una
certa torsione elastica che pub essere di 5 fino a 20, o 25 gradi secondo

la qualita del ferro, in modo che lo zero della ruota giri alia sini>tra

dell' osservatore, 1' ago del galvanometro e spinto a 10 o 20 o 30 gradi
o phi, indicando una corrente diretta nella verga dall' estremita sud all'

estremita nord. L' ago torna subito allo zero o al suo punto d' equilibrio
e se allora si fa cessare bruscamente la torsione, 1' ago indica una nuova
corrente in sen so contrario della prima. Ripetendo la stessa torsione

in senso contrario, cioe verso la destra dell' osservatore, si ha di nuovo
una corrente della stessa intensita di quella ottenuta colla torsione a

sinistra, ma diretta in senso contrario cioe dal nord al sud nella verga.
Anche in questo caso la detorsione sviluppa una corrente che e in senso

contrario della corrente prodotta dalla torsione corrispondente (pp. 68-9).

Reversing the magnetising current, we have secondary currents

in the reversed sense. The phenomena repeat themselves so long
as the rod is subjected only to elastic torsion. Like all induced

currents the secondary currents vary in intensity with the time in

which a given torsion is produced

Matteucci develops in this earlier part of his memoir (p. 70) the

theory (rejected by Wiedemann) that the iron bar may be looked upon
as a bundle of conducting fibres which are converted into spirals by the

torsion (see our Art. 713), and he supposes that the magnet isini: roil

has greater induction on this bundle of spirals than on the bundle of

fibres parallel to its axis.

Matteucci further notices that when he first twists the bar and then
closes the primary circuit he likewise obtains an induced cunvnt, and
that its magnitude is more constant for the same torsion than that

obtained by reversing the order of proceeding. Opening the primary
circuit

1 when the bar is twisted gives a less induced current, how.
than the process of magnetising, and Matteucci attributes this to the

n-idual magnetism (j>. 71). After the primary circuit has been opened
and closed several times, the bar reaches a definite permanent m.

tisation and the induced currents at closing and opening become t In-

flame (p. 75). Experiments were also made on steel rods with a

greater or less degree of hardness; the phenomena were the same in

1 Termed by Mattencci tho >l> iniKint'titntioii.
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general character as for the iron rods, but the induced currents were
much less in magnitude.

[702.] On pp. 76-7 we have various experimental results con-

necting the induced current with the length, diameter and angle of

torsion of the rod
;
on the latter page are also some statements with

regard to the influence of torsional set or 'tort.' Matteucci found that

for rods of hard and half-hard iron of '4 m. in length and of diameters

of 4 mm. and upwards the current was proportional to the angle of

torsion, and he further concluded that set had not the power of develop-

ing a current, see his p. 77, to be compared with Wiedemann's results

in our Arts. 713-4. Matteucci found that the induced currents due to

twisting did not increase in proportion to the strength of the primary
current 1

,
but began to diminish after this reached a certain intensity (cf.

Wiedemaim in our Art. 714). Further conclusions as to the difference

in magnitude of the currents induced, according as untwisting was
followed by the opening of the primary circuit or the reverse order was

adopted, are given on pp. 79-81, but the results are not stated with the

clearness and precision of Wiedemann's : see our Art. 714. Indeed the

memoir suffers from the want of a general statement of results, and the

leggi determinate to which Matteucci refers on p. 81, have to be drawn
from a rather confused mass of experimental statements.

[703.] Parte II. of the memoir is entitled : Delle variazioni

nello stato magnetico di una verga di ferro prodotte dalla torsione

(pp. 828).
Matteucci opens this Parte with an historical resume of his

own 2 and Wertheim's earlier investigations (see our Arts. 812 and

811, 813 et seq.). Wertheim had not obtained for rods of cast

steel any diminution of the magnetisation by elastic torsion (see

our Art. 814 (ix)), but Matteucci asserts (p. 83) that he has found

small variations of the magnetisation with torsion in a variety of

cast-steel bars. He sums up the conclusions to be drawn from the

scarcely sufficient experiments recorded in this part as follows :

1. La torsione elastica di una verga magnetizzata a saturazione

determina una diminuzione nella sua forza magnetica, la quale persiste

per tutto il tempo in cui la torsione dura; colla detorsione la forza

magnetica e ristabilita come prima.

2. Dalle relazioni che esistono fra le variazioni determinate dalla

torsione e detorsione nella forza magnetica di una verga e le correnti

indotte nella spirale esterna, e dimostrato che quelle variazioni sono la

cagione delle correnti stesse (pp. 87-8).
See Wiedemann's results cited in our Art. 714.

1 Matteucci says
'

magnetisation of the rod ', which he erroneously takes to be

proportional to the strength of the primary current.
2
Comptes rendus, T. xxiv. p. 307.
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[704. j
I'arte 111. (pp. 88-97) of the ineniuir is entitled :

zione delfenonieni descritti. This portion of the memoir, after a remark
that the phenomena of induction described in the preceding parts can

only be produced in iron and some other magnetic bodies, proceeds
to develop a second * bundle of fibres

'

theory, namely : that each

fibre is a separate iron rod and that these rods after being converted

into magnets are then twisted by the torsion round the current in the

direction of the axis of the bundle. This theory is supported by rather

vague reasoning which does not seem to meet the objections which

Wiedemann has raised against it : see our Art. 713.

On the whole Matteucci, while doubtless the first to discover inany

points relating to the influence of stress upon magnetism, had not that

power of marshalling his experimental facts and clearly stating the

conclusions to be drawn from them which is characteristic of both his

French and German rivals in the same field. The memoirs of Wertheim
and Wiedemann are models of physical research, but we must confess to

finding Matteucci's letter-press, never broken by a symbol or a formula

and only occasionally relieved by a thin scattering of experimental
numbers, wearisome reading.

[705.] In a footnote on pp. 95-7 of the memoir Matteucci records

some earlier results as to the effect of stretching three magnetised iron

wires of 1-5 mm. diameter. A wire was placed along the common axi*

of two spiral coils, one in circuit with a galvanometer, and the other

used for magnetising; on the stretching or unstretching of the win-

when magnetised an induced current was observed in the galvanometer.
Matteucci measured by means of a certain astatic system, described in

the second part of the memoir, the changes in the magnetisation of the

wire due to the stretch, and he found induced currents corresponding
to the changes in magnetisation. After demagnetisation (? opening the

magnetising circuit) the currents obtained by stretching or unstretchiug
the iron wire were much stronger than when the magnetising cunvni
was flowing. These phenomena were most marked in annealed iron

wire, but the induced currents were in tin- (>j>i><'ite sense to those in t In-

case of hard iron wire. Thus stretching appeared to diminish the mag-
netisation of annealed and increase that of hard iron wire. If the current

in the magnetising coil were however broken, a stretch indicated an
increase of magnetisation for annealed in the same way as for hard iron

wire.

When an iron wire magnetised by a surrounding coil was put in

circuit with a galvanometer, n<> ti -urn-nt along the win- was
rved ut the moment when it was stretched or mistretched.

These results become more intelligible in the li.u'ht of the later

researches of Villari, Ewing and others.

[706.] G. \Vi< dciiiaiin: Ueber die Torsion, die Bieynmj
den Magnefamus. Verhandlvnff** der

/ >sel, Vol. II., Basel, 180", g, it;s-247.
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This important paper was reproduced in a rather fragmentary manner
in various volumes of Poggendor/s Annalen.

The following scheme shows the corresponding pages and will enable

the reader to whom only the Annalen are accessible to identify our

quotations :

Verhandlungen. Poggendorff.

S. 169-172 = Bd. cvi., 1859. S. 161-164, (a).

S. 172-184 = Bd. cvi., 1859. S. 174-183, (a).

S. 184-193 =Bd. CVIL, 1859. S. 439-448, (ft).

S. 193-196 and S. 201-7 = Bd. a, 1857. S. 235-244, (y).

S. 197-201 -Bd. cvi., 1859. S. 170-174, (a).

S. 207-223 -Bd. cm., 1858. S. 563-577, (8).

S. 223-227 -Bd. cvi., 1859. S. 164-168, (a).

S. 227-247 -Bd. cvi., 1859. S. 183-201, (a).

We shall cite the pages of the Annalen by the Greek letters.

[707.] Wiedemarm commences his memoir with the following

account of its object :

Eine Reihe von Beobachtungeu hatte mich vermuthen lassen, dass

die durch mechauische Mittel hervorgebrachten Aenderungen der

Gestalt der Korper nach ganz ahnlichen Gesetzen von den dieselben

bedingenden Kraften abhangen, wie die Magnetisirung der magnetischen
Metalle von den dieselbe bewirkenden magnetisirenden Krai'ten. Ich

habe deshalb die Gesetze der Torsion und Biegung der Korper einerseits

ebenso wie die der Magnetisirung des Eisens und Stahles anderseits

in dieser Beziehung einer neuen Uiitersuchung unterworfen, deren

Resultate ich im Folgenden mitzutheilen niir eiiaube (S. 169).

[708.] The first section of the memoir is entitled Torsion, and

occupies S. 169-84. The section opens with an account of the

apparatus employed (S. 169-72
; a, S. 161-4), and then Wiede-

mann continues :

Drahte von verschiedenem Stoffe wurden mit Hiilfe dieses Apparates
durch aufsteigende Gewichte L tordirt, welche stets so lange wirkten,
bis der Draht eine constante Torsion angenommen hatte. Die dieser

Belastung L entsprechende temporare Torsion L des Drahtes wurde an
der Kreistheilung abgelesen. Nach dem Heben der drehenden Gewichte
wurde wiederum einige Zeit gewartet, bis die zuriickbleibende perma-
nente Torsion T vermittelst der Spiegelablesung bestiramt wurde.

Nach der Torsion des Drahtes wurde er allmahlig durch eiitgegengesetzt
drehende Gewichte... detordirt, wieder tordirt u. s. f. Dabei wurde sorg-

faltigst jede Erschiitterung des Apparates vermieden (S. 172-3; a,

S. 174).

This passage enables us without describing Wiedemann's

apparatus to grasp his method of procedure. The intervals which
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elapsed between the experiments served to remove as far as

possible elastic after-strain. Wiedemann's experiments were upon
annealed iron and brass wires

;
the numerical results of his experi-

ments are given on S. 174-7 (a, S. 175-7) and they are in part

represented graphically in Fig. 3 of his Plate I. His general con-

clusions for torsion including certain temperature effects, which are

based on less careful experimental methods (mit manchen Fehler-

<j'ielle>< behafteten Versuche, S. 183), are given on S. 178-84

(a, S. 177-83). I do not cite them here, as we shall return to a

general statement of conclusions for torsion and magnetism when

considering the sixth section of the memoir.

[709.] The second section of the memoir is entitled : Bie<j

and occupies S. 184-93 (ft S. 439-48). It shows that result -

similar to those holding for torsion hold for flexure also. Wiede-

mann's apparatus is described on S. 184-5 (j3, S. 439-40). His

experiments were made on annealed brass rods built-in at one

end and bent in a horizontal plane. The numerical details are

given on S. 187-9 (ft S. 442-4) and the general conclusions on

S. 189-91 (ft S. 444-6). These are of such great interest and

anticipate so much of Bauschinger's later work that we cite them

here :

(i)
If a rod previously unbent be bent by a series of increasing

loads, the elastic flexures which the rod exhibits while subjected to these

loads increase more rapidly than the loads.

(ii) After removal of the loads the rod exhibits flexural sets or

bents
1

; these begin with the smallest loads and increase in a far more

rapid ratio than the corresponding loads.

(iii) If a bent rod have its bent removed (entboyen) by the applica-
tion of reversed loads, then the bent decreases somewhat more slowly
than the loads increase. To produce complete unbending a considerably
smaller load is necessary than that which produced bending.

(iv) If the rod after the first bending and unbending is repeatedly
bent and unbent, then the bents do not increase so much more rapidly
than the loads as is the case in the first binding ; on tin- contrary tln-y

become more and more nearly proportional to the loads, being greater t'..r

small loads than in the first case. The bent due to the maximum load

decreases gradually to a definite limit after K prat* d lo.nli the

other hand the load necessary for mil tending tin; rod increases with

1 Isaac Walton uses this word of a fishing rod, \Vilkins of a bow and Kichard
Hooker for the set of 'an obstinate heart.'
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repeated loading and unloading the load which removed the first bent

now leaving a residual bent.

Thus in one set of experiments with Wiedemami's units a bending
load of 240 produced a bent of 89, and an unbending load of 211 left a

bent of only 1, but after repeated operations the same bending and

unbending loads produced a bent of only 44'8 and left a bent of 24'4.

(v) If a rod has been so often bent and unbent that the same

bending load always produces the same bent, then when the rod is left

to rest for awhile, it returns a little towards its primitive condition.

This result was only based on one experiment. Indeed in these ex-

periments on flexure upon only one occasion was 15 hours left between
two series, the other series being carried on continuously and therefore

their results were probably somewhat affected by after-strain : see S. 188

(ft,
S. 443) of the memoir.

(vi) It is obvious that if a definite load L deprives a rod of bent,
neither this load nor any less load repeated in the same direction as

L will give the rod a bent in the direction opposite to that of the

first bent. But the load + L on the contrary will produce a greater
or less bent of the rod.

(vii) If a rod, which possesses a bent B (which may be = 0) be

brought to another bent B' by a load L, and then by a load L' opposed
to L be brought to a bent B" which lies between B and B', then to

bring the rod again to the bent B' the load L will be again needful.

(viii) If a rod be shaken while subjected to a bending load, this

increases the elastic flexure
;

if it be shaken after the removal of the

load, this decreases the bent. If a rod be bent and then deprived
of bent by reversed load, shaking produces anew a bent in the sense of

the initial bent.

These results are at least qualitatively the same as for torsion.

The temperature effect is not so great in the case of flexure as in that of

torsion : see our Art. 754.

[710.] The practical value of these results has only been fully

brought out by the more elaborate experiments of Bauschinger on larger
masses of material, but Wiedemann certainly draws from his more
limited range of experiments conclusions which to some extent anticipate
those of the careful Munich technical elastician : see also our Arts. 749
and 767. These are given on S. 191-3 of the memoir

(/?,
S. 447-8) for

both torsion and flexure.

Wiedemanii remarks that it depends merely on the sensibility of our

apparatus whether we are able or not to measure the set of the smallest
loads (see our Art. 1296*) :

Demnach ist der Begriff der sogenannten Elasticitatsgranze, wie man ihn
gewohnlich fasst, durchaus ein nur fur die Praxis willkuhrlich eingefuhrter, in-
sofern man dieselbe da ansetzt, wo eben fiir bestimmte Beobachtimgsniethoden
die permanenten Gestaltveranderungen der Kb'rper sichtbar werden (S 192
A S. 447).
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Thus if a body be bent to set and afterwards deprived of bent,
or torted 1 to set and afterwards deprived of tort, and this process be

repeated, then on the bending or torting by any less load there will always
be a sensible set, which becomes more nearly proportional to the load as

the process is more often repeated. There is here then no limit of elas-

ticity. Thus although we return to a state of no torsion or flexure, that

is, of no apparent strain, the elastic condition of the material has quite

changed in character. What we term the 'state of ease' has, for one
sense of loading, been reduced to a vanishingly small range. On the

other hand if a set has been produced by a load //, no load less than L
in the same sense will produce any set. Thus, as we have frequently
noted, L marks the elastic limit or state of ease. To obtain a state of

ease, which starts from the position of no apparent strain and embraces
a load L

l ,
we must proceed as follows :

First apply a load L, in the opposite sense to L^ and then a load L3

in the same sense as L which just undoes the bent or tort produced
by //

8 ,
thus Ll by (vii) will not produce any set provided we have taken

L3 so great that Lz is greater than L^
The suggestiveness of these results will be still more apparent as

we come in the course of our History to further experimental investiga-
tions bearing on the state of ease.

[711.] Section in. of Wiedemann's memoir is entitled: Mu>.

siruny von Eisen und Stahl (S. 193-210; y, S. 235-244 and 6, S.

563-6). This deals with the problems of temporary and residual

magnetism and the effect of temperature on magnetism. The results

obtained are very similar to those obtained for elastic strain and set

in the previous sections of the memoir, but to discuss them here would
lead us beyond our limits : see our Art. 714.

[712.] Section IV. is entitled: Einfliiss der Torsion auf den

Magnetismus der Stahlstdbe (S. 210-16; S, S. 566-71). This

problem had already been considered by Wertheim (see our Arts.

811-18), and Wiedemann commences by quoting Wurthri

results as to the magnetic equilibrium produced by npiat* d

torsions in iron and steel bars: see our Art. 814. Wiedi mann

confirms and extends Wertheim's conclusions, measuring the

changes in magnetisation by direct magnetometric means and nt
as Wertheim by induced currents in a coil surrounding the rod.

only result of this section which is not cited in tin-

general results of the sixth section is iv. (S. 216
;
but v. in S,

S. 571), and this accordingly may be noted here :

1 I use the noun tort for torsional set and the verbs to tort and to d>-i<>rt for the

processes of twisting and untwisting when it seems advisable to emphasise th-

part of the strain produced.
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If by torsion more magnetism be withdrawn from a steel bar than

could be withdrawn by repeated changes of temperature within definite

limits (in the experiments to 100 <J

C.), then any loss of magnetism
produced by a rise of temperature within those limits is restored when
the bar is again cooled to the previous temperature.

[713.] Section v. of the memoir is entitled : Einfluss der

Magnetisirung auf die Torsion der Eisen- und Stahldrdhte (S.

217-27, S, S. 571-7, and a, S. 164-8). The influence of magnetism
in reducing torsional set or tort is here noted and measured. Iron

wires which have no tort do not appear to be twisted by magnetism.
As most of the results of this section are restated in the following

section, we shall not specially cite them now
; they deserve, how-

ever, careful attention from those interested in the mutual rela-

tions of magnetism and set
1

. Wiedemann gives cogent reasons for

rejecting Matteucci's hypothesis that an iron wire may be looked

upon as a bundle of parallel fibres, which are converted by torsion

into spirals and which magnetisation by producing mutual repul-

sion again straightens : see our Art. 704. He also rejects the

hypothesis that the phenomena observed can be due to the heat

produced in the wire by magnetisation (S. 222-3; 8, S. 576-7).

At the conclusion of the section the author promises in a

future paper to deal with the influence of bending on magnetism,
but at the same time he notes the great difficulties which stand

in the way of experimental investigation (S. 227).

[714.] The sixth and final section of the memoir is entitled :

Vergleichung der Resultate und Versuch einer Theorie (S. 227-47;

a, S. 183-201)'. We first find a comparison of the properties of

magnetism and torsion which, although pressed rather far, con-

tains a good deal of matter novel at the time. I reproduce it here :

Torsion. Magnetism.

1. The temporary torsions of a 1. The temporary magnetisa-
wire twisted for the first time by tions of a bar magnetised for the

increasing loads increase more rap- first time by increasing galvanic

idly than these loads. currents increase more rapidly than
the intensity of those currents.

2. The torsional sets or torts of 2. The permanent magnetisa-
the wire increase still more rapidly. tions of the bar increase still more

rapidly.

1 On S. 227 Wiedemann gives in grammes weight a measure of the detorting
force of magnetism in a special case (a, S. 167-8).
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3. To completely detort the

wire a much less load is required
than to tort it.

4. By repeated tortings and

detortiugs the torts of the wire

approach nearer and nearer pro-

portionality with the corresponding
ID; n Is. The torts are greater than

at the first torting.

5. By repeated application of

the same torting and detorting
loads L and L' the maximum of

tort reached by the torting sinks

and the minimum reached by the

detorting rises to a certain definite

limit.

6. The wire, if torted beyond
tho limits of the repeated tortings
and detortings, conducts itself as if

torted for the first time.

7. A torted wire, detorted by
the load L, cannot by repetition
of this load be torted in a sense

opposite to that of the initial tort-

ing. The load + L torts it, how-

ever, in the first sense.

If a wire having the tort

A be brought by the load b to

the torsion B, and afterwards be

brought to any other torsion C,
\\hirli lii-s between A and /?, then

to obtain the torsion />' again
we have only to apply the .same

I"; K| It. Here A can be zero, and
B greater or less than A.

3. To completely demagnetise
the bar a much weaker current is

required than to magnetise it.

4. By repeated magnetisations
and demagnetisations of a bar, the

permanent magnetisationsapproach
nearer and nearer proportionality
with the intensity of the magne-
tising currents. The magnetisa-
tions are greater than at the first

magnetising.

5. By repeated application of

the same magnetising and demag-
netising currents J and - J' the
maximum of magnetisation reached

by the magnetising sinks and the

minimum reached by the demagnet-
ising rises to a certain definite limit.

6. The bar, if magnetised be-

yond the limits of the repeated

magnetisations and demagnetisa-
tions, conducts itself as if mag-
netised for the first time.

7. A magnetised bar, which is

demagnetised by a current of in-

tensity J cannot by repetition of

thiscurrentbe magnetised in a sense

opposite to that of the initial mag-
netisation. The current + J mag-
netises it, however, in the first sense.

8. If a bar having permanent
magnetism A be brought by the

current b to the magnetisation B
and afterwards be brought to any
other magnetisation C, which lies

between A and B, then to obtain

the magnetisation B again we have

only to apply the same t-nnvnt l>.

Here A can be zero, and />' greater
or less than A 1

.

1

Important 'nullifications of the above statements as to magnetisation, especially

of] I, will be found on S. 192-200 (a, S. 172-8 . \Vi,,l,-mann apparently omits
them in this rfnumf as he wishes only to emphasise the correspondences between
torsion and magnetisation. These statements are thus very far from representing

accurately the complete results of his purely magnetic experiments.
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9. Shaking (Erschiitterung) dur-

ing the application of a twisting
load increases the torsion of a

wire.

10. The tort of a wire after

release of the load is lessened by

shaking.

11. A torted and then partially
detorted bar loses part of its tort

by shaking or gains tort afresh

according to the magnitude of the

detorting.

9. Shaking during the appli-
cation of a magnetising current

increases the magnetisation of a

bar.

10. The residual magnetisation
in a bar after cessation of the

current is lessened by shaking.

11. A magnetised and then

partially demagnetised bar loses

still more of its magnetisation by
shaking or gains magnetism afresh

according to the magnitude of the

clemagnetisation.

12. Tort in an iron wire de-

creases owing to its magnetisation,
but in a ratio decreasing with in-

creasing magnetisation.

1 3. Repeated magnetisations in

the same sense scarcely continue

to decrease sensibly the tort of a

wire. A magnetisation in the op-

posite sense, however, produces
afresh a large decrease of the tort.

14. If a wire by repeated mag-
netisation in opposite senses is so

far detorted as is possible by the

given range of magnetisation, then

by magnetisation in one sense the

wire shows a maximum and by
magnetisation in the opposite sense

a minimum of tort.

15. A torted wire which has

been slightly detorted loses by mag-
netisation much less of its tort

than one which has only been
torted. If the wire be further

detorted, it exhibits at first by
slight magnetisation an increase

of tort, this by increasing mag-
netisation rises to a maximum
and then decreases. The more the

wire has been detorted the greater

12. Residual magnetisation in a

steel bar decreases owing to torsion,
but in a ratio decreasing with in-

creasing torsion.

13. Repeated torsions in the
same sense scarcely continue to

decrease sensibly the residual mag-
netisation of a steel bar. A torsion

in the opposite sense, however, pro-
duces afresh a large decrease of the

magnetisation.

14. If a bar by repeated torsion

and detorsion is so far demag-
netised as is possible by the given

range of torsion, then by torsion in

one sense it shows a maximum, by
torsion in the opposite sense a

minimum of residual magnetisa-
tion.

15. A magnetised bar which
has been slightlydemagnetised loses

by torsion much less of its mag-
netism than one which has only
been magnetised. If the bar be
further demagnetised, it exhibits

at first by slight torsion an increase

of its magnetisation, this by in-

creasing torsion rises to a maxi-
mum and then decreases. The
more the bar has been demagnet-
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must be the magnetisation in order

to reach this maximum. If the

wire has been very much detorted,
then its tort increases even on the

application of very great magne-
tisation.

16. If a wire be magnetised
while subject to the twisting load,
then its torsion increases for slight
and decreases again for greater

magnetisations.

ised the greater must be the
torsion in order to reach this

maximum. If the bar has been

very much demagnetised, then
its magnetisation increases even
on the application of very great
torsions.

16. If a steel bar be twisted
while under the influence of a

magnetising current, its magnet-
isation increases for slight but
decreases again for greater tor-

sions.

17. A wire torted at the or-

dinary temperature loses tort by
heating and regains a part of its

loss on cooling. The changes in-

crease with increasing tort.

After repeated changes of tem-

perature the wire reaches a stable

condition in which a definite tort

corresponds to each temperature,

decreasing as the temperature
rises.

18. A wire torted at the or-

dinary temperature and then partly

detorted, loses by heating so much
the less of its tort the more it

has been detorted. Its tort on cool-

ing is less than before if the de-

torting has been slight, it is greater
if the detorting has been large.

19. A wire torted at a higher

temperature loses tort on cool-

ing. On a second warming it loses

still further and only by the second

cooling regains a part of its loss.

If the wire is shaken before the

first cooling, it gains at once in

tort.

17. A bar magnetised at the

ordinary temperature loses residual

magnetisation by heating and re-

gains a part of its loss on cooling.
The changes are proportional to

the magnetisation. After repeated

changes of temperature the bar
reaches a stable condition in which
a definite residual magnetisation

corresponds to each temperature,

decreasing as the temperature rises.

18. A bar magnetised at the

ordinary temperature, and then

partly demagnetised loses by heat-

ing so much the less of its residual

magnetisation the more it has been

demagnetised. Its magnetisation
on cooling is less than before if the

demagnetisation has been slight, it-

is greater if the demagnetisation
has been large.

19. A bar magnetised at a

higher temperature !<<> n->idu;tl

magnetisation on cooling. ( *'

ond warming it loses still further

and only by the second cooling re

Xains a part <>i its lo.^s. If the bar

is shaken before the first eoolin<:,

it gaii
' in iiKigni't i>;iti.n.
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A conception of the advance made by Wiedemann may be formed

by comparing the above statements with those of Matteucci and

Wertheim, the most important previous investigators in this field : see

our Arts. 701-5 and 811-8 especially comparing 12 and 13 above with

(ii), (vi) and (vii) of Arts. 813-4.

It will be seen that the laws of torsional set (tort} which is what
Wiedemann refers to when he speaks generally of a wire being "torted"

in the above analysis are similar to those of flexural set (bent), and

their investigation constitutes a wide field for research which is only
in the present decade being thoroughly explored.

[715.] On the basis of these analogies Wiedemann attempts a

mechanical as distinguished from a hydromecJianical or aetherial ex-

planation of magnetisation (S. 233-47 ; a, S. 189-201). Like W.
Weber, he supposes the ultimate magnetic element to be a polar

molecule, and the axes of these molecules to be initially turned in all

conceivable directions. He then attempts by general descriptive

reasoning to account for the above relations and analogies between

magnetism and strain. As a type of the general reasoning I quote the

following paragraph :

Erschiitterungen setzen die Theilchen der Korper in Bewegung, die Keibung
der Kuhe zwischen ihnen wircl gewissermassen in eine Reibung der Bewegung
verwandelt. Daher werden in alien Fallen die Theilchen mehr den gerade
auf sie wirkenden Kraften folgen konnen, und es miissen Erschiitterungen
eine Zunahme der temporaren, eine Abnahme der permanenten Torsionen und

Magnetisirungen bewirken (S. 239
; a, S. 193).

The perusal of this type of descriptive (as distinguished from quanti-

tative) reasoning leaves the mind almost as unsatisfied after as before,
and Wiedemann himself freely acknowledges that his theoretical con-

siderations do not fully explain all the observed phenomena (S. 247,

a, S. 201). They do not, however, reduce in the least the value of the

experimental part of this important memoir.

[716.] Eesal : Recherches sur les effets mecaniques produits
dans les corps par la chaleur. Comptes rendus, T. LI., pp. 449-50,

Paris, 1860.

This is an abstract from a memoir presented to the Academy.
The author supposes a body which is submitted to a uniform surface

pressure to be heated. The heat expended is then divisible into

two portions, one of which does work against the uniform pressure,
the other does internal work (travail que Von pent considerer comme
le resultat du developpement ou de Vintroduction dans le systeme
materiel de nouvelles forces moleculaires essentiellement repulsives,

p. 450). The object of the memoir is the discovery of an expres-
sion for the latter work in the case of homogeneous bodies.
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Resal gives the following expression for it in solids :

37TC
'

where a = coefficient of linear dilatation,

E = stretch-modulus,

w =
specific weight,

c = specific heat.

No proof is given of this formula, nor do I understand how
it is deduced.

[717.] Hermann Vogel : Ueber die Abhdngigkeit dea

ticitdtsmoditls vom Atomgewicht. Annalev der Physik, Bd. cxi.,

S. 229-239, Leipzig, I860.

This is an endeavour to find a relation between the stretch-

modulus and the coefficient of thermal expansion, but neither the

theoretical reasoning nor the numerical results are satisfactory.

Let a be the coefficient of linear thermal expansion, c the specific
In-; it and w the specific weight of a prismatic metal rod of unit length,
unit cross-section and unit (? absolute) temperature. The quantity of

heat of a volume of water equal to that of the rod being unity, then
the amount of heat in the metal rod equals cw. This amount of heat

produces an extension in length equal to a, and therefore unit quantity
of heat produces an extension equal to a/(cw).

Vogel then continues :

Derselbe Stab erleidet durch eine, in der Richtung der Liin^e wi

dehnende, der Gewichtseinheit gleiche Kraft eine Ausdehnung, die man <k-n

Dehnungsquotienten nennt.

1st nun die Arbeit, welche die Warmeeinheit zu leisten vermag, eine con-

stante Grosse, so werden die Ausdehnungen, welche verschiedeno Metalle

lurch die Warmeeinheit erfahren, in demselben VerhaltnisM> /u einamler

utehen, wie ihre Dehnungsquotienten (S. 230).

Vogel denotes by Dehnungsquotient the reciprocal of our stret. h-

modulus; and the first paragraph is intelligible, but I do not uiuli-r-

stand the second, for the amount of heat communicated not only li!

the body but also raises its temperature, and even if there were n<> heat

expended in raising the temperature, the extensions which different

metals receive from unit quantity of heat ought to be as the reciprocals
of their dilatation-moduli rather than as those of their stretch-moduli.

Those two sets of ratios will not necessarily be equal unless we j>n

suppose uni-constant isotropy.

[718.] Tt is po^ible of course if the amount of heat us. d in rai.vin^

r !

] <>).<.rtional to tlic total amount of heat applied to a
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body that we may have, on the uni-constant hypothesis, a relation of the

form :

or, = a constant .................. , ..... (i).
cw

Hence it is worth while noting what numerical results Yogel gives.

He finds for the metals the mean value of Ea/(cw) = 244, exactly

agreeing with its value for silver. The minimum is 1 '85 for lead and
the maximum 3 '18 for zinc. Below zinc stands iron with 2*79, and
above lead are platinum with 2-01 and gold with 2*10. Thus the

presumed constant has a rather wide range, which may be due to error

in the theory, to the fact that the quantities were not determined from

the same specimens of metal, or to the need of replacing the stretch-

modulus by the dilatation-modulus.

[719.] According to Dulong and Petit and Regnault, if A be the

atomic weight,
Ac -SL constant.

Hence, it must follow that - = a constant ........................ (ii).w

Or, the product of the stretch-modulus, the coefficient of thermal

expansion, the atomic weight and the reciprocal of the specific weight
is a constant.

The exactitude of
(ii)

seems even less than that of
(i).

The
constant is 6*03 for lead, rising to 10*22 for zinc, the mean value

being 7'716, which is not very different from that for tin (7 '69).

Vogel remarks of these results :

In Anbetracht des Umstandes, dass alle in der Formel EaA/w enthaltenen

Werthe, A ausgenommen, innerhalb gewisser Granzen schwanken und noch
dazu von verschiedenen JBeobachtern an verschiedenen Metallstiicken be-

stimmt worden sind, 1st eine solche Uebereinstimmung immerhin merkwiirdig
genug (S. 233).

[720.] Vogel then draws attention to a result of Masson's referred

to in our Art. 1184*, 7, namely that the product of the reciprocal of

the stretch-modulus (coefficient d'elasticite) arid the atomic weight or a

multiple of the atomic weight is a constant. This would only be true

according to Vogel's theory on the assumption that the ratios of the

values of aE2

/w for the metals were as whole numbers. As a matter
of fact they are nearly as 30 : 15 : 5 : 3 for iron, copper, silver and tin

(S. 235). Vogel draws as easy corollaries from his formula the follow-

ing statements :

(i)
If the values of a/to are in a very simple ratio to each other,

then the product of the stretch-modulus and the atomic weight or a

multiple of it is constant.

T. E. II. 32
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For example, in the case of copper and silver, the values of a/w are

very nearly equal, and we have EA = 397391 for copper, and = 409482
for silver.

(ii) If for different metals Ea is constant, then their specific

volumes (or the values of A/w) are equal.
For example, in the case of iron and copper, A/w = 3'6, while the

values of Ea are -2458 and -2157 respectively.

Natiirlich kann hier nicht von absoluter, sondern nur von anniihernder

Uebereinstimmung der Werthe von A/w und von Ea die Rede seyn (S. 236).

[721.] Vogel in conclusion refers to Wertheim's result (see our

Art. 1299*) that E (-
J

is approximately constant for metals. Vogel

combines this with (ii) and finds: a oc
( )* . He shows that for
\wj

silver, iron and cadmium there is some approach to this law (S. 238).
He does not refer to Person's results, which are in some respects akin

to his own : see our Art. 1 388*.

While Vogel's theory is wanting in accuracy, and he himself admits

that his formulae must not be pressed too far, still the numerical results

of his paper are sufficient to show that careful experimental investiga-
tion in this field might lead to the discovery of results of great value,
and for this reason the paper has been more fully referred to here than
at first sight it appears to deserve.

GROUP B.

Kupffers Memoirs with Znppritz's theoretical Discus-

of Kupffers Results.

[722.] In 1849 the Russian government established a Central

Physical Observatory in St Petersburg and appointed A. T. Kupffer
as Director. According to the rules the Director had to furnish

a yearly report on the experiments conducted in the Observatory
as well as on other matters to the Minister of Finances. Thus

arose the Compte rendu annuel of the Observatoire

central. In these Comptes rendus for the years 1850 to

\\ ill be found accounts of the researches in elasticity carried on by

Kupffer. In 1860 he published the first volume of a great \\..rk

entitled: Reclierches e./-///-////r/,/'//r.v >,// r, :

l,isficit6 des m&OMm

faites d Vobservatoire pkytiqut central de Ruxsie, T<>in, i
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Petersburg, 1860. This first volume is devoted to the ex-

perimental study of flexure and the transverse vibrations of

elastic laminae with a view to the discovery of the elastic

properties of metals. A second volume was to be devoted

especially to metals prepared in Russia and a third to torsion

and torsional oscillations. Further Kupffer promised to consider

the resistance of metals strained beyond their elastic limit and

also up to rupture. Only the first volume of this important
work was ever published ; experiments partly covering the

ground of this volume, and partly that of the proposed suc-

ceeding volumes, will be found in the above mentioned Comptes
rendus up to 1861 : see also our Art. 1389*. After this date

they ceased and Kupffer died in 1865. Separate memoirs by

Kupffer belonging to the period 1850-60 are also considered in

our Arts. 745-57. His researches are among the most elaborate

and careful that have ever been made on the elasticity of metals.

We shall commence our consideration of them by noting points in

the Comptes rendus not embraced in the volume of 1860.

[723.] Compte rendu annuel, Ann6e 1850 (St Petersburg, 1851).

Pp. 1-11 are occupied with a description of the apparatus recently
erected and of the experiments made on the elasticity of metals at the

new observatory. The torsional experiments referred to are chiefly
those of the memoir of 1848 : see our Art. 1389*. The experiments on
flexure are the earliest of the series described in the work of 1860,

namely : the determination of the stretch-modulus by the transverse

oscillations of a clamped-free rod. One or two' points may be noted :

(a) Kupffer as a rule uses in his experiments the symbol 8 (some-
times 8') for the extension of a rod of unit length and unit radius

(circular cross-section) under the traction of unit force. On p. 9 of the

Compte rendu for 1850 he gives a formula: ' ou 8 designe le coefficient

d'elasticite du metal.' On p. 19 of the Recherches experimentales he
writes :

* on designe par 1/8' ce que Ton appelle ordinairement le

coefficient d'elasticite.'' Here 8 or 8' = I/(TT^), where E is the stretch-

modulus. Elsewhere in the Recherckes he uses 8 for 7r8' and terms it

the dilatation elastique (pp. xv and xxxi). On p. 299 of the Recherches

he says let /8
= I'accroissement du coefficient de dilatation elastique, and

then uses a formula involving /? and 8 in such fashion that he evidently
means 8 to be the coefficient de dilatation elastique. His experiments
really go to show that the stretch-modulus (and presumably the slide-

modulus) decreases with increase of the temperature, or that 8 increases

with increase of temperature. If this be so, he must in the paragraph
of the memoir of 1848 cited in our Art. 1395* mean by coefficient

322
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d'elasticite the quantity 8, although both in that memoir and in the
RechercJies he defines this coefficient as either 1/8 or 1/8'. This really
follows from the results in our Arts. 1392* and 1396*. Hence in

the remarks following the citation in our Art. 1395* the words
4 slide-modulus increases

' and '
is probably increased

'

should be re-

placed by slide-modulus decreases
' and '

is probably decreased
'

respectively. This confusion in terms is not confined to the coefficient

d'elasticite; it is occasionally difficult to understand what Kupffer
means by la force elastique du metal, a term which he freely uses in

summing up his results.

In the present notice of his experiments (p. 4) he refers in the

following words to Wertheim's results on the relation of temperature to

the elastic moduli (see our Arts. 1298* and 1301*, 5) :

Ces m&nes experiences [i.e. those on torsion of 1848] m'ont fait voir que
les changements de temperature exercent une influence sensible sur la force

eiastique des fils mdtalliques, qui augmente, lorsque la temperature diminue,
et rdciproquement. Les experiences de M. Wertheim avaient dejk signalu
cette influence pour de grands intervalles de temperature ;

mes experiences
etaient assez rigoureuses pour la preciser pour les differences de tenqMiratiire
de 10 & 15 R. M. \\Vrtheirn est arrive k des resultats fort differents des
in ions, et la loi qu'il a trouvee n'est pas aussi simple que celle que je \

d'enoncer
;
mais comnie nos valeurs ont ete obtenues par des methodes d'ob-

servation tres diffeVeiites, elles ne sont pas exactement comparables. Cette

question a encore besoin d'etre traitee a fond, et le sera assurement, puisque
la Societe Royale des Sciences de Gottiugue en a fait une question de prix
pour 1'annee 1852.

[724.] (b) A second point worth noting is a suggestion, made I

believe for the first time, to determine the mechanical equivalent of heat

from the force necessary to produce a given stretch. It is contained in

the following words :

Nous avons vu dans ce qui precede qu'on peut determiner, avec une tres

grande precision, la dilatation qu'un fil epromv ]>ar 1 action d'un poids ;
cvaluer

ensuite la dilatation de ce m6me fil ]>ar la chaleur, n'est-ce pas evalucr m
poids la force mecanique de la chaleur ? (p. 5).

The reasoning, however, by which Kupffer deduces the mechanical

equivalent of heat seems to me very doubtful, and the agreement of his

value for it with Joule's must I think be looked upon as a happy
coincidence.

The same numerical results as are here given are repeated in a

paper in the Bulletin, but the reasoning there is somewhat diHVn-nt :

see our Art. 745.

In the first place Kupffer makes an appeal to the theorem, due to

Poisson, that the same traction applied to the terminal sections of a l>ar

produces double the stretch that it would do if applied all over the sin

face. This is easily proved on the uni-constant hypothesis, but I fail to

see that it is properly applicable to the present problem, where it would

seem we ought to deal with equal quantities of work spent in ti
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two forms of strain rather than with equal tractions. Kupffer then

continues :

Un cylindre, dont la longueur et le rayon sont egaux h 1'unite, est allonge de
cette mme unite" (c'est-a-dire d'un pouce), par un poids p= l/d, oti 8 designe

1'allongement que ce m6me cylindre eprouve par la traction de 1'unite de poids

(c'est-&-dire d'une livre) ;
on peut done evaluer la force elastique du cylindre,

en disant qu'elle eleve le poids p a la hauteur d'un pouce. En echauffant ce

nieme cylindre de a, 80 R., il s'allonge de la quantite a
; d'apres 1'hypothese

que nous avons adoptee plus haut, il s'allongerait de la quantite 2, si 1'efFet de
la chaleur n'avait lieu que dans une seule direction comme la traction

;
la

quantite de chaleur, qui produit cet allongement est egal & wmd/d', ou w est la

quantite de chaleur, qu'il faut pour elever de h, 80 R. la temperature d'un

cylindre d'eau, dont la hauteur et le rayon sont egaux k 1'unite, m la chaleur

specifique et d la densite du corps elastique, et ou o?'...est la densite de 1'eau*:

nous aurons done 1'expression wmd/^ad') pour la quantite de chaleur, qui
produirait un allougement d'un pouce ; ou, comme les causes doivent etre egales,

lorsque les effets sont egaux, nous aurons evidemment p= wmd/(2ad'). Mais
nous avons aussi^>

=
l/S (p. 6)

*
J'appelle densitS le poids de 1'unite de volume ou d'un pouce cube:...

Hence Kupffer reaches as his final equation :

1/3
= u>md/(2ad

f

) ;

and by substituting the numerical values of the quantities involved, he
finds a magnitude for iv agreeing closely with Joule's.

[725.] But Kupffer obtains this result by a compensation of errors.

In the first place the elastic work corresponding to p and unit extension

ought to be \p and not p. And further it is not evident that ' the
effects are equal

'

(les effets sont egaux), for in the case of a pure elastic

strain we have the body at temperature say, but in the application
of heat we have the same strain together with the body at a tempera-
ture of 80 R. Suppose If the quantity of heat given to the body and
let it be held at the strain produced by this amount of heat and cooled

down to temperature 0, and in doing so let //' be the amount of heat
communicated to the refrigerator, and fi the amount of heat the body
would give off in being strained at constant temperature zero up to the
same expansion, then the heat equivalent to the mechanical strain would
seem to be H-H' + h and not H as Kupffer assumes. There is, I

think, no reason for assuming H' - k indefinitely small as compared
with H, indeed Kupffer's result seems to indicate (since he has dropped
the J) that H' h = \H approximately in his case, otherwise his errors

would not compensate each other as they appear to do 1

.

1
Kupffer's results are quoted without any apparent questioning in some modern

works, e.g. G. Helm, Die Lehre von de.r Energie, S. 91, just as they were cited in
the Philosophical Magazine, Poggendorffs Annalen, and other journals without
demur in 1852. In the Fortschritte der Physik for 1852, S. 373-7, Helmlioltz
remarks that the argument of the famous St Petersburg physicist is too brief

to be open to intelligent criticism, and he shows that Kupffer's formula is

not identical with any of the known equations of Thermodynamics. He does

not, however, distinctly state that it cannot be true. Compare Vogel's paper
discussed in our Arts. 717-21.
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[726.] (c) The last point to be noted in the present paper is the

experimental discovery of after-strain in metals. Both Seebeck and
Clausius had suggested its existence (see our Arts. 1402* and 474),
but no physicist had distinctly seen and measured its effect, so far as

I am aware, before Kupffer.
The following sentences give his conclusions :

(i) La flexion qu'une verge encastree par unc extremite et lil-i

1'autre dprouve par une charge quelconque, suspendue a son extremite libre,

augmente avec le temps, et ne s'arrSte qu'apres un temps plus ou moins long,

quelquefois apres plusieurs jourH seulement.

(ii) Lorsqu'une verge est reside fldchie pendant quelque temps, cc nVst

qu'apres un intervalle de temps plus ou moins long, qu'elle revient exactement
sa premiere position.

(iii) Une verge flechic par un poids, pendant un instant seulemmt,
revient tout de suite et exactcinent h, sa premiere position, aussitot quo le

poids a dtd 6td, mais cela n'a lieu quo jiisqu,'^ une certaine limite
; lorsque le

poids ddpasse cette limite, la verge m- iwirnt plus tout de suite a SSL pro:

position ;
elle n'y revient qu'apres longtemps ou pas du tout (p. 11).

The last statement shows the possibility of set combined with after-

strain arising from instantaneous loading.

[727.] Compte rendu annuel Annee 1851 (St Petersburg, 1852).

Pp. 1-11 give an account of experiments to determine the el.

constants of iron and brass by different methods. Kupffer finds that

for brass pure traction and flexure experiments give practically tin;

same value for the stretch-modulus, but that this value differs con-

siderably from the value deduced on the uni-constant hypothesis from

the slide-modulus as determined by the method of torsional vibrations.

Nor is the ratio of the slide- to the stretch-modulus the same for 1

and for iron wire. This would be an argument against uni-constancy,
if we could assume Kupffer's wires to have been isotropic (pp. 1-5).

Kupffer next refers to the various effects which strain, annealing etc.

have on the stretch-modulus, as obtained by the method of transverse

vibrations of a bar (pp. 5-7), and then he deals with the influence of

the resistance of the air on tor.sional vibrations (pp. 7-10). Th ><

matters will !>< more fully dealt with in our discussion of Kupffri-'s

great work of 1860.

[728.] Compte r'!)</ mmiel Annexe 1852 (St Petersbn

Pp. 1-19 furnish a furthci account of flexure experiments t<> 1 t. imin,

the stictdi modulus. The rxpi-riiiH-nts wnv made partly by oscillatory,

partly by statical methods. 1/8'
-

l/(7r8) is defined as le coefficient

d'elasticlt' >/ metal 1

(p. 6). With regard to experiments by these

1 8 and 3' exactly change meanings in ti . //<///* and the /

compare pp. 1'J and 133 of the latter work with p. '. of the ("<>//)f. I860
or p. (i of that for 1852 ; i.e. a=T' = l//; in t: /*, but d'= rd = llE in the

memoir of HI* ,m.l th- C-mijttea rendu*.
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different methods Kupffer finds (pp. 13 and 19) in Russian measure the

following results for ijE :

Material
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transverse oscillations the rods oscillate elliptically and never in a

plane, and he holds that this tends to diminish slightly the duration of

the oscillations (ftn. p. 19). He does not demonstrate this, and I do

not see why it should be true : see as to other difficulties our Art. 821

and footnote.

[729.] Compte rendu annuel Annee 1853 (St Petersburg,
The continuation of experiments on the determination of the stretch-

modulus by static and kinetic methods is described on pp. 1-7.

Kupffer notes that the static flexural method gives results more in

accordance with themselves than the kinetic (on voit encore ici, que
les valeurs de 8', obtenues par la flexion, sont d'une exactitude bien

superieure a celle, qu'on peut obtenir par des oscillations transversals,

p. 4). A series of experiments on the static flexure of cast-iron is

described on pp. 6-7. Kupffer remarks that flexural set always occurs

with this kind of iron, and that when this is subtracted from the total

flexure due to the load the deflections are still not proportional to the

loads, but increase more rapidly than the loads. Thus for two bars

(i)
and (ii) of specific gravities 7*124 and 7*130 respectively we have

(8'= 10- 13 x 622,724 for a total load of 1 Ib.

(i) \
= .. x 636,762 ..................... 1-125 Ibs.

(
= ... x 653,590 ..................... 1-375 Ibs.

For this bar 8' = 10~ 13 x 559,288 from transverse oscillations.

($= 10- ia x 589,100 for a total load of 1 Ib.

liE
x 601,650 2 Ibs.

x620,860 3 Ibs.

x636,980 4 Ibs.

For this bar 8' = 10" 13 x 564,137 from transverse oscillations
1

. Tin-st-

and similar results are in general conformity with Hodgkinson's ex-

periments: see our Arts. 969* and 141 1*, and conclusively show the want
of exact meaning in the term stretch-modulus for the case of cast-iron.

[730.] In this year Kupffer also began a series of experiments on
the dilatation by heat of the same metal bars as he had been experi-

menting on elastically. The observations were made by taking each

bar as a pendulum, the bob being so attached to the bar that the

distance of its centre of gravity from the axis of oscillation depended
only on the length of the bar. The results of experiments on two brass

bare only are given. These bars were taken from the same casting but

one had been vigorously hammered. The coefficients of linear expan-
sion were measured for an increment of l

u
between 25 R. and 30 K

We have :

Coefficient

Cast brass -000,025,727.
1 1 animered brass -000,024,980.

1 This number is incorrectly given in the Compte rendu : see the Rechfrcht$ t

p. 87.
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Thus the ratio = 1 '030 : 1 about. The ratio of the specific gravities

was 1 : 1-035, or the coefficients of expansion were nearly inversely

proportional to the specific gravities.

[731.] The Compte rendu for this year also contains a scheme for

an extensive series of experiments on the entire elastic life of materials

prepared in Russia. This scheme is perhaps the most complete ever

drawn up for a detailed investigation of the cohesive and elastic pro-

perties of metals. The commission proposed in it would have achieved

on a more catholic and more scientific (physical as distinct from

empirico-technical) basis for many metals what the English commission

did for iron only : see our Art. 1406*. Such experiments as Kupffer
made in this direction would have occupied the second volume of his

Recherches ; what they were we can only gather from subsequent
numbers of the Comptes rendus. The programme is drawn up with a

view to the industrial use of metals, and I only regret that our space
does not permit of its reproduction here. Elastic properties, as well

as those of set and rupture, are taken into full consideration
;
further

the influence of the various processes of manufacture, of working, of

temperature-effect, of impulsive and long continued stress on one and
all of these properties are dealt with. As a scheme for further physico-
technical researches in elasticity, or for a treatise on the subject,

Kupffer's programme would still, with a few modifications in the light
of more recent discoveries, be of very great value. It occupies pp.
1114 of the Compte rendu annuel.

[732.] Compte rendu annuel. Annee 1854 (St Petersburg, 1855).
The account of elastical researches occupies pp. 1-28. It commences
with some further remarks on flexural measurements chiefly directed to

investigate the effect of '

working
' on the metals. Kupffer concludes

that "1'elasticite des metaux est considerablement augmentee par le

travail qu'ils subissent dans le laminage, 1'ecrouissage et en passant par
la filiere

"
(p. 3). By an augmentation of the elasticity is to be under-

stood a smaller value of 8' or a greater value of the stretch-modulus.

[733.] The major portion of this report is occupied with experi-
ments on torsion (pp. 4-28). These were made with an apparatus
similar to, but far more exact than that used for the experiments
described in the memoir of 1848 : see our Art. 1389*. An account of
this apparatus will be found in the Compte rendu for 1850 and it is

repeated here (pp. 4-5). The apparatus involves an oscillatory method
of experiment, but one used by Kupffer with extreme accuracy and
careful determination of all the possible sources of disturbance. The
real slide-modulus

JJL
is to be obtained from Kupffer's 8 by the relation

l/8 ^TTjj.: see our Art. 1390*. Kupffer's ju, (p. 6) is not our slide-

modulus, but =
i-TT/x, i.e. it is the moment of the force necessary to turn

through unit angle a cylinder of unit radius and unit length.
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[734.] Kuptfer confirms liis Ibrmer result (see our Art. 1391*) as

to the law connecting the duration of the oscillations with the ampli-
tudes. He finds that a/P8 (in the notation of our article referred to),

now written
\j/, depends largely on the nature of the material and the

working it has been subjected to. This quantity \j/
is termed by

Kupffer the coefficient of fluidity. Kupffer's
'

fluidity
'

of metals is a

property corresponding to Sir W. Thomson's '

viscosity
'

(see our

Chapter devoted to that physicist), and as it appears to be the first

real consideration of the matter, I quote p. 1 5 of Kupffer's remarks :

>//
a une valeur constante pour chaque fil, mais varie considdrablement

d'un fil a 1'autre, comme le prouvent non seulement les experiences que je virus

d'exposer et qui se rapportent an fer et a 1'acier, mais aussi toutes les observa-

tions qui vont suivre.

Les observations precedentes donnent

pour le fil de fer ^= -000(31 6,

pour le fil d'acier ^= "00003736.

C'est-a-dire la valeur de ^ est 17 fois plus grande pour le fer, que pour
1'acier.

De la il suit que 1'accroissement, que la durde des oscillations eprouve
lorsque les amplitudes augmentent, ne peut etre un effet de la rdsistance de

Fair, ni une consdquence de la loi gdndrale de I'dlasticite", quelle qu'elle suit

d'ailleurs (que 1'dlasticitd soit proportionnelle aux accroissements de la

distance entre les molecules, ou qu'elle suive uue autre loi relativemeut a ces

distances); cela doit etre une proprietd inherente aux corps elastiques, qui
varie d'un metal a 1'autre, qui varie meme pour le mmemdtal, selon le travail

qu'il a subi.

J'ai fait voir, par des experiences rapportdes dans mon Compte rendu de
1'annde 1851, que rainplitude des oscillations diminue aussi bien dans le vide,

que dans 1'air, cette diminution ne peut done pas etre non plus un effet de la

-ranee de Pair, cette rdsistance la fait seulement diminuer plus rapidi-mrnt.
La position d'dquilibre, a laquelle il faut rapporter toutes les forces, qui font

osciller un fil metallique, se ddplace continuellement et toujours dans lr

des oscillations
;
de sorte que cette position d'dquilibre oscille avec le fil memo

autour d'une position moyerme, qui est celle cm fil complfctement revenu an

repos. II paralt que les moldcules des corps solides possedent la ]>n>]>

non seulement de s'dcarter les unes des autres, en produisant une resistance

pn>]>ortionnellc aux ecarts, mais aussi de glisser les unes sur les autres, i

priHUiire aucun effort. Cette propriete est pOM&Ue a un haut degre p;

fiui'lcs
; je la nommerais done volontiers la fluiditd das coqw solides; le co-t!i-

cii-iit
\}s jiuiirrait ctrc ap}>eld coefficient de fluiditd

;
la malldabilitd des mdtaux

paralt en ddpendre, et i>eut 6tre aussi leur durete
;
des experiences ultdrieurea

i|>pn-inlront jusqu'ou va cette analogic.
Le coefficient de fluidite prut varier beaucoup dans lo nieine inrtal, deux

autres fils de fer de '04801 et de '08' von ont doune ^= '0003:

^.
= 000494. Pour un fil de cuivre jaune de '09518 de rayon, il a

\ O00284, pour un autre, dont le rayon dtait egal a -0807 on a eu

^=000930. Mais il varie surtout d'un nu'-tal a 1'autre : OO a :

pour le platine ^ = '0001

uour Targcnt ^
n.,url..r ^ = '000300.
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Here we have a very clear description of the action of viscosity

in metals, a property which has much exercised physicists upon its

frequent rediscoveries since Kupffer's investigations of 1848-1854.

[735.] But Kupffer's torsion experiments led him to consider

several other points connected with torsional vibrations which have
heen largely dealt with in recent years. Thus :

(i)
On pp. 16-23 he shows how the resistance of the air may be

taken into account and eliminated.

(ii)
On p. 23 he refers to the reduction of the observations to a

constant temperature: see our Arts. 1392* and 1396*.

(iii) On pp. 23-28 he discusses what effect the traction of a wire

has on its torsional resistance. This is important as it is necessary to

allow for the weight of the vibrator.

Kupffer had in the Compte rendu for 1851 given the following
result, where M and M' are respectively the torsional rigidities of the

wire
1 without and with a traction which produces a stretch s in the

wire:

Kupffer remarks that Neumann of Konigsberg (the great Franz) had
sent him the result

M' = M(\-ts) t

where e can vary between the limits 1 and 3, as the result of a mathe-
matical investigation in which it is not assumed that the elastic

coefficients are altered or the proportionality of stress and strain

abrogated. The investigation is not given, but it is easy to replace it.

Let
rj

be the stretch-squeeze ratio, and let the wire be of length I and
radius r, then we have for the torsional rigidity without traction

and with traction

Now
rj
can take all values from to ^ for bi-constant isotropy : see

our Art. 169 (d). Hence Neumann's statement follows. That Kupffer's
experiments gave 1 + 4?y 3 or

rj
= for his wires, brass and steel, I

attribute, not to the fact that those wires had bi-constant isotropy

approaching its limit, but to their being really aeolotropic.

[736.] A result also due to Franz Neumann and recorded by
Kupffer in a note on p. 24 deserves notice. He says that Neumann
had shown by fixing small mirrors to a rectangular bar under flexure

1 Torsional rigidity of a wire is a convenient term for the torsional moment per
unit angle of torsion.
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that a cross-section perpendicular to the axis is no longer a rectangle
but a trapezium

1
. This had been previously shown by E. Clark for set

(see our Art. 1485*), and it is a physical confirmation of Saint-Venant's

theory so well exhibited in his plaster-models of flexure : see our Arts.

92 and 95, and also the Lemons de Navier, p. 34.

Kupffer further notices that Neumann had experimentally demon-
strated that the volume of a wire increases under traction up to the

elastic limit, but that if it is stretched beyond this limit, the volume
remains constant, i.e. that set is unaccompanied by change in volume.

According to Kupffer, Neumann had also shown experimentally that

the value of the stretch-squeeze modulus is not constant (e.g. ^
according to Poisson, or J according to Wertheim) but varies with tin-

nature of the metal. Kupffer does not state what was the method
used in Neumann's experiments (experiences egalement ingenieuses et

precises).

[737.] Compte rendu annuel. Anne"e 1855 (St Petersburg, 1856).
This report deals with the influence of heat on the elasticity of metal ->.

This as we have seen (Art. 723) was the subject of a prize offered by
the Royal Society of Gbttingen. It was awarded to Kupffer in

November, 1855.

He divides his researches under two heads :

(i)
Influence of an increase of temperature on elasticity, lasting

only while this temperature is maintained.

(ii) Changes produced by an increase of temperature on elasticity

after the thermal influence has ceased. Of these he writes :

On verra dans le cours de ces recherches, que ces deux actions de la chaleur

.sur les corps (Slastiques sont tres diffdrentes, elles peuvent me'me etre opp
lorsque la temperature d'un corps dlastique augmente, son dlasticite diminue

toujours ;
mais lorsque 1'action de la chaleur cesse et lorsque le corps t'lasti<|iie

est revenu a sa temperature initiale, son elasticite ne revient pas toujours a

la memo valeur, mais elle a souvent change considdrablement
;
tantot on la

trouve augmented, tantot on la trouve diminue'e (p. 2).

Kupffer points out that the elasticity of metals can be easily in-

1

Turning to our Art. 95 we obtain for the tangent of the angle \f/ through
which a small mirror would be turned if fixed at the middle of a vertical side of a
cantilever at a distance f from the loaded end

If a small mirror were fixed to the middle of the top of the beam at the same
distance, it would be turned through an angle \f/ l , given by

Ph*
tan^.= ., ,, approximately ............... (ii).

J:ii)K~

Hi nee tan
\f/
= ^ - tan f, , and we have what appears to be a practical optical method

of determining the stretch-squeeze ratio 77^ It might also be found by substituting

tly the value of K in
(i).
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vestigated in three different ways and the effects of heat on all these

ought to be considered. These are :

Statical Traction Longitudinal Vibrations,

Statical Flexure Transverse Vibrations,

Statical Torsion Torsion al Vibrations.

[738.] He points out how the investigations in these directions are

affected by secondary elastic properties, more particularly by elastic

after-strain. He now attributes to this property the augmentation of

the duration of the oscillations, which he had found in torsional oscilla-

tions to vary as the square root of the amplitude : see our Art. 1391*.

In other words he supposes elastic after-strain to be the origin of the

property he has termed fluidity, or of our more modern viscosity. Sir

W. Thomson seems to think also that the viscosity may be due wholly
or partially to elastic after-strain : see our ftn. p. 390, Vol. i.

[739.] Returning to the formula of our Arts. 1391* and 734, or

we note that Kupffer now states that he has found more accurately
how

if/
varies with the size of his wire. If r be the radius of the wire,

I its length and v a constant coefficient which depends on the elastic

properties of the material, then :

Kupffer terms v the "true coefficient of fluidity or ductility." We
may perhaps term it the "after-strain (or viscosity) coefficient for tor-

sional vibrations
"

: see our Art. 751 (d).

[740.] The rest of the memoir is occupied with details taken from
the great memoir on therm o-elasticity : see our Arts. 748-57. If the

temperature be raised from t to t' and the stretch and slide-moduli

change from E, p to E', // respectively, then Kupffer gives the values of

$f and f$T for various metals, where :

E'=E{l-pf (t'-t)},

These values are determined by transverse and torsional vibrations
1

.

1
Kupffer neither here nor in his memoir clearly states whether he has

attempted to eliminate the effect of heat in lengthening his wire, and so affecting
the torsional vibrations. If he has not, then, by our Art. 735 (in), the torsional
moment is altered, and thus the slide-modulus will appear to be altered. The
alteration would be given by a formula of the form /*'

=
!* (1- es), where s is the

thermal stretch =a(t'-t), a being the coefficient of linear thermal dilatation.

Now for brass Kupffer has found (see our Art. 730) a -000,025,727 and e= 3

nearly, hence /= /* {1- -000,077,181 (t'
-

t)}, but @T for the like brass =-000,6982.
Thus the purely lengthening effect of change of temperature on the wire would only
account for about 1/9 of the change in

/j..
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It should be noted that f$r here is twice the ft of our Art. 1396*. The
results are considered at length in our Arts. 752-4. We merely note
now that the values of J3T are given for higher ranges of temperature
than in the memoir of 1848: see our Arts. 1392* and 1396*. The
effect also on v of changes in temperature are noted as in the memoir
above referred to.

[741.] Compte rendu annuel Annee 1856 (St Petersburg, 1857).

Pp. 57-66 give an account of the elastical researches carried out during
the year in the Observatoire physique central. One or two points may
be noted :

(a) Three laminae were formed from the same piece of cast brass,
the first remained as originally cast, the second was vigorously rolled

(fortement lamine) and the third vigorously hammered (fortement

niartele). It was found that their stretch-moduli were nearly in the

ratio of the squares of their densities. The same result was very

nearly true for specimens of English and Swedish wrought-iron (com-
pare Art. 759 (e)).

On voit par ce qui precede, combien Tinfluence du martelage et du laminage
sur Pelasticite des metaux est grande (p. 58).

The result is important if only approximate.

(b) Kupffer regards (pp. 59-62) from a very insufficient theoretical

standpoint the effect of a stretch produced by heat or load on the value

of the elastic constants as obtained by experiment. He seems to have
considerable difficulties with Neumann's formula (see our Art. 735

(iii)),

largely due, I think, to his assumption that wires possess isotropy. He
wants (p. 62) to reject the formula

JT-JT (!*-)
as an explanation of the effect of traction on torsion when he finds

values of e greater than 3, although this would in fact not necessarily
indicate anything more than aeolotropy : see our Art. 308 (b).

He gives the results of some experiments on the value of c when
successive set-stretches are given to a wire under torsion

;
e begins by

being as great as 6 and diminishes to about 3*4 as the sets are <

tinned.

(r) The report concludes with the results of a number of Kupil'er's

expei iiiinits Diving the elastic moduli in kilogramme-millimetre units:

see our Art. 77 1.

[742.] Compte rendu annual. Ann6e 1857 (St Petersburg, 1

This contains :

(a) Values of the strHrli-inodiili for various kinds of Russian
:ilnl e<>n,p;il i-.ui \\itli t lie \:ilucs for Kn^'lisli Steel (pp. ">'-('.).
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(b) Proposals to measure the value of gravitation at different

points of the earth by the difference in the periods of transverse vibra-

tion of an elastic rod clamped vertically and with a weight attached to

its upper or free extremity (pp. 60-1).

[743.] Compte rendu annuel. Annee 1858 (St Petersburg, 1860).
A few results for the stretch-modulus of copper, steel, aluminium and
tin are given in French measure (p. 51).

Compte rendu annuel. Annee 1859 (St Petersburg, 1861). This

contains nothing concerning elasticity but a notice of the completion of

the printing of the first volume of the Recherches (p. 41).

Compte rendu annuel. Annee 1861 (St Petersburg, 1862). On

pp. 45-48 numerical values are given of the inverse of the stretch-

moduli and of the specific gravities of various metals, principally
different kinds of Russian and Austrian iron and steel.

The Comptes rendus for the years 18624 give promises of further

experiments on elasticity, promises destined never to be fulfilled.

[744.] We now turn to the memoirs Kupffer published during this

decade and note first two shorter ones which are printed in the Bulletin.

We shall then pass to the long memoir on thermo-elasticity and conclude

with an analysis of the Recherches.

[745.] A. F. Kupffer : Bemerkungen ilber das mechamsche

Aequivalent der Wtinne. Bulletin de la Classe pltysico-mathe-

matique de I'Academic Imperials des Sciences, T. x., cols. 193-7.

St Petersburg, 1852. A reprint of this paper will be found in

the Annalen der Physik, Bd. 86, S. 310-14, 1853. Suppose a

cylinder of unit length and unit radius to receive extension S

under unit tractive load, arid further when it is raised from

freezing to boiling point of water let its extension be a. Then
if m be the specific heat of the metal and S its specific gravity,

it will take mS times the beat to raise the metal cylinder from

to 100 that it takes to raise a cylinder of water of the same

radius and height through the same range of temperature.
Let c be the latter quantity in mechanical units, then we have

cmS for the work done. Kupffer now continues :

Da nun die Ausdehnungen, die ein Drath erleidet, den angewandten
Kraften proportional sind, so sieht man gleich, dass die Werthe von a
und 8 uns eine Vergleichung der ausdehnenden Kraft der Warme mit
der dehnenden Kraft eines Gewichts darbieten, oder mit andern

Worten, dass jene Werthe uns ein Mittel an die Hand geben, das
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mechanische Aequivalent der Warme zu bestinimen. Man muss hier

nicht vergessen, class die Warme gleichmassig nach alien Seiten wirkt,
wie ein Druck : nun hat aber Poisson gezeigt, dass ein Gewicht welches

einen Drath um 8 ausdehnt, als nach alien Seiten gleichmassiger Druck

angewandt, eine lineare Ausdehnung von J8 hervorbringen wiirde.

Wir haben also 2a/8 als das Verhaltniss der mechanischen Wirkung
der bezeichneten Wannemenge zur mechanischen Wirkung eines Pfundes
anzusehen. Um dieses Verhaltniss in Zahlen auszudriicken, darf man
mir fiir irgend eine Substanz die elastische Constants, den specifischen
Warmestoff und das specifische Gewicht, so wie auch ihre Ausdehninii,'
durch die Warme kennen (Col. 194).

Kupffer then gives the equation :

cmS = 2a/8,

and calculates c in Russian units for the results he has found for

iron, brass, platinum and silver wires. The mean value of these

results he reduces to English and French units and finds

/=9921 inch-pounds for 1 R,

= 453 kilogrammetres for 1 C.

[746.] I do not follow Kupffer's reasoning. Putting aside

the fact that he assumes the wires to possess uni-constant iso-

tropy, he seems to me on this occasion to equate a quantity of

heat or energy to a force. I have already alluded to the diffi-

culties I feel with regard to Kupffer's method of treating this

problem in Art. 725, and his argument here seems to me, although
somewhat different, no clearer than that in the Compte reixlu

annuel.

[747.] A. F. Kupffer: Unttrswhungen iiber die Flexion e1<t*t-

ischer Metallstabe. Bulletin de la Classe physico-mathcuiutique de

VAcadtmie Imperials des Sciences, T. xn., cols. 161-7. St Peters-

burg, 1854.

This contains matter which reappears in Kupffer's great woik.

n.t:il)ly the erroneous formulae for flexion : see our Arts. 760-2.

Ibid. T. xiv., cols. 273-84, and cols. 289-99. AY//////ss for

TemjH'i'nttir "f die Elasticitdt der featrn AV;/-/><'/-.
This contains

unit tcr which reappears in the memoir of 1852-7 (see our A

748-57) and partially in the Compte rendu annuel (see our Art.

740) and the Recherches (see our Arts. 770-1), so that we

not discuss it further here.
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[748.] A. T. Kupffer : Ueber den Einfluss der Wdrme auf die

elastische Kraft der festen Korper und ins besondere der Metalle :

Memoires de VAcademie...de St Petersbourg, Sixieme Serie, Sciences

mathematiques, physiques et naturelles, T. VIIL, Premiere Partie :

Sciences mathematiques et physiques, T. vi., pp. 397-494 (separate

pagination 1-98), St Petersburg, 1857. This memoir, written in

German, received the prize of the Royal Society of Gottingen
in 1855 : see our Art. 723. It was apparently read before the

St Petersburg Academy on December 3, 1852.

It commences with a Vonuort describing its scope, of which

the first paragraph may be cited here :

Die nachstehende Abhandhmg ist aus einer grosseren Arbeit iiber

Elasticitat entnoiumen, die noch nicht beendigt ist, und die zu ihrer

Zeit wird bekannt gemacht werden. Ich liabe einstweilen. in der

Einleitung einige allgemeine und noch nicht bekannte Thatsachen aus
der grosseren Schrift mittheilen. zu miissen geglaubt, um den Leser zu

zeigen, wie man die Elasticitatscoefficienten. derselben Metalle sehr

genau bestiimnen koiine, und bestimmt hat, fur welche in dieser Schrift

der Einfiuss der Temperatur auf diese Coefficienten bestimmt worden
ist. Indem ich durch Versuche erwies, dass der Einfluss der Tempe-
ratur bei Torsionsschwingungen ein anderer sein kann als bei Trans-

versalschwingungen, war es interessant nachzuweisen, dass auch der

Elasticitatscoefficient fiir die Torsionsschwingungen ein anderer ist,

als fiir die Transversalschwingungen. Diese Mittheilungen fiihrt-en zur

Erwahnung des Coefficienten
i/,

den ich den Fliissigkeitscoefficienten

genannt habe, und von dem meines Wissens vor mir noch nicht die

Rede war, oder dessen Werth wenigstens vor mir noch nicht genau
bestimmt worden ist (S. 399).

Thus Kupffer's discovery of viscosity and after-strain in metals

dates at least from 1852. The coefficient of fluidity certainly

appeared implicitly in the memoir of 1848 (see our Art. 1391*),
but I do not think Kupffer had at that date clearly separated its

effect from that due to the resistance of the air.

[749.] The Vonuort goes on to state that all the experiments
on temperature have been made by vibration al as distinguished
from statical methods

;
in this case by means of transverse and

torsional oscillations.

Ich habe auch Versuche iiber den Einfluss der Temperatur auf das

statische Moment der Elasticitat gemacht, aber sie sind vollstandig

misslungen : bei fortdauernder Erwarmung war die bleibende Aender-

ung des Flexions- oder des Torsionswinkels so stark, dass die voriiber-

gehende, mit der Erhohung der Temperatur eintretende, und mit deren

T. E. II. 33



514 KUPFFER. [750

Verminderung sich wieder verminderade, ganz darin verschwand
; die

elastische Nachwirkung brachte iioch mehr Verwirruug in die Resultate

(S. 399).

The full complexity of elastic problems was fully appreciated

by Kupffer and he foreshadows in the following words the direc-

tion of much of the research taken later by Bauschinger :

Ich sah daraus, dass um die Einwirkungen der Warme auf das

statische Moment der Elasticitat zu finden, man vor alien Dingen ein

Mittel haben miisste, die Einwirkung derselben Warme auf die Ver-

riickung der Granzen der Elasticitat und auf die Nachwirkung von ihrer

Einwirkung auf die Elasticitat selbst zu trennen
;
um ein solches Mittel

zu finden, werden noch viele Arbeiten iiber die Granze der Elasticitat

und iiber die Nachwirkung erforderlich sein, so dass die Losung dieses

Problems mir noch sehr ins Unbestimmte hinaus geriickt zu sein scheint.

Man hat aber erst angefangen die Gesetze der Elasticitat in ihrem

ganzen Umfange zu studiren
;

bei jedem Schritte stosst man in diesen

TJntersuchungen auf neue Eigenschaften der elastischen Korper; je
weiter man vorgeht, desto mehr Verwickelung. Bei solchen Umstan-
den ist wohl in diesem Augenblick keine vollig abgeschlossene Arbeit

iiber irgend eine Eigenschaft der elastischen Korper moglich (S. 400).

Notwithstanding our great increase in knowledge, the same

words may almost be used of the science of elasticity to-day.

The fact is that to grasp thoroughly the bearing and mutual

relations of the secondary elastic properties we must know what is

the real kinship between the various branches of physics when
viewed from the standpoint of the molecule and this is very far

from being understood even forty years after Kupffer wrote.

[750.] The next portion of the memoir, termed Einleitung, occu-

pies S. 401-427. It contains details of the methods of experiment
and of the formulae adopted

1
. Several points here deserve notice:

(a) On S. 404-7 we have the details of the first scientific

experiments on the elastic after-strain of metals*, the existence of

1
Kupffer, 8. 402, defines the stress that can be called into play in a body

by external pressure its
'

elasticity.' This is another instance of his tendency to

rather vague definition to which I have previously referred : see our Arts. 723 (a),

728 and footnote.
9 Between Weber and Kupffer a few experiments on after-strain were made

by B. Kohlransch, and are referred to by him in an article on an electrometer

in Poggendorffx Anmili-n, Bd. 72, 1847: see S. 393-6. His remarks amount
to little more than the assertions that he has confirmed Weber's discovery of

after-strain in silk threads, and finds that it is manifested also in the torsion

of glass threads. He makes, further, some not very conclusive statements (S.

396-8J
on the influence which rise of temperature has upon the torsional elasticity

of silk threads, and upon the effect which boiling them in soapy water has on
their elastic after-strain.
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which had been doubted even by Wertheim and Saint-Venant :

see our Arts. 819 (noting Art. 803) and 197. The experiments
were made on the flexure of a cylindrical bar of steel and the

continual decrease of the deflections for a period of several days

aj'ter the removal of the load was clearly marked. The influence

of elastic after-strain on the redaction of the amplitude and period
of torsional vibrations in vacua is also referred to on S. 407-8.

Die allmahlige Abnahme der Schwingungsweiten (selbst im luftleeren

Raum) lasst sich sehr gut durch die Nachwirkung erklaren, weshalb
auch schon Weber vorausgesehen hat, dass die Schwingungsweiten
elastischer Korper in luftleerem Raum allmahlich abnehmen wiirden,
wie ich spater durch Versuche bewiesen habe. Die Nachwirkung
bringt hier dieselbe Wirkung hervor, wie die Friction beim Widerstande
der Luft, und besteht wohl auch in Nichts anderem, als in einem mit
Friction verbundenem Glitscheii der Theile iiber einander: nur ist nicht

zu ubersehen, dass die Friction der Theilchen unter einander nicht zu
erklaren im Stande ist, warum der Stab oder der Draht, nach Aufhe-

bung der ablenkenden Kraft, wiecler zu seinem urspriinglichen Gleich-

gewichtszustande zuriickkehrt
; diese Erscheinung setzt offenbar eine

gewisse Kraft voraus, welche jeden festen Korper, selbst wenn er durch

Aenderung seiner Form in andere Gleichgewichtsbedingungen versetzt

worden ist, dennoch imnier wieder in langerer oder kiirzerer Zeit zu
seiner urspriinglichen Form (oder zu seiner urspriinglichen Gleichge-

wichtsbedingung) zuriickfiihrt, wenn die Abweichung von der urspriing-
lichen Gleichgewichtslage nicht gar zu gross gewesen ist (S. 407-8).

This passage seems to me to mark off the real distinction

between after-strain and any frictional action between the parts of

a body, and I think destroys the force of the comparison of a solid

body's elastic after-strain with fluid action. It is a strong reason

for not allowing elastic after-strain to be masked under the term
'

viscosity' : see the footnote p. 390 of our Vol. i.

(6) Kupffer shows that elastic after-strain is not proportional
to the load and that accordingly the vibrations are not truly
isochronous (see his S. 407-8). He further adds that working,

temperature etc. have all great influence on the elastic after-strain

as well as on the elastic fore-strain (S. 409).

[7ol.] (c) The next portion of the Einleitung is termed: Trans-

versalschwingungen elastiscker Stabe, and occupies S. 409-419. This

contains the formula for transverse vibrations, which I shall have
occasion again to refer to when dealing with the Recherches. It must
be looked upon, I suppose, as an empirical formula, to be justified by its

agreement with the data of Kupffer's experiments, but I cannot see that

332
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theory at all justifies its form : see our Arts. 763-6. I shall return to

this point more fully later. A series of experiments intended to show
the good results obtainable from this theoretically questionable formula

are given in this part of the Einleitung.

(d) The remainder of the Einleitung (S. 41927) is occupied
with the formulae for torsional vibrations. The method is that due to

Gauss and presents some variations on that of the memoir of 1848,

notably the equation Pa
= P 1 1 + vr /- )

is used for the reduction

of the periods : see our Art. 739.

Some interesting experiments as to the exactness of this formula are

given on S. 423-426. Kupffer finds that for

( unannealed, v= -04302 (to -04828),

'{annealed, v = -2365 (to -2450),

steel v = -007 122.

He shows that the coefficient v of elastic after-strain is capable of

immensely modifying the value of the elastic-modulus as determined

by the method of torsional vibrations (S. 427). It should, however, be

noted that the discrepancy he finds between the values of 8= \l(irE) as

found by transversal and torsional vibrations for copper wire need not
be solely due to the influence of elastic after-strain. Kupffer's 8 as

obtained from torsional vibrations is =
2/(5/i,7r) and from transverse vibra-

tions = \l(TrE\ but any want of uni-constant isotropy in the copper wire

would not allow of our assuming E=5fjL/2 or these values of 8 to be equal.
On the other hand the fact that steel wire with a very small v (see above)

gave for 8 almost the same values when determined by torsional and by
transverse vibrations may only point to a nearer approach to uni-con-

stant isotropy in that material.

[752.] The next portion of the memoir is entitled : Einfluss
der Temperatur auf die elastische Kraft der festen Korper. Kupffer
divides the effects of heat into two main groups :

(i) Change of elasticity during the time the temperature is raised,
the elasticity returning to its old state when the temperature is lowered
to its first value.

(ii) Change of elasticity remaining after the heating has ceased, and
the old temperature has been restored.

The first series of investigations as to (i) was upon the transverse
vibrations of a rod clamped at one end so as to be vertical, the free

end being loaded with weights of different magnitudes. If E
t be the

stretch-modulus at temperature t, we have according to Kupffer

*,-*,{! -&(*-*)},
where t' > t and

/?/
is a constant. Kohlrausch takes the effect of

temperature to be represented by an expression involving also the square
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of
(t

1 -
t)

so that the factor is then of the form {1
-

(3 (t'
-

t)
-
y (t'

-
t)

2

}.

In most cases y is very small, but if t' - t be large the term in (t'-t)
2

might be sensible. Kupffer's first series of experiments were only made
for the difference between external and internal winter temperatures

amounting to from 13 to 25 degrees Reaumur. The values of flf were

obtained from what I have spoken of as the questionable formula for

transverse vibrations (see our Art. 751 (c)),
but as the stretch-modulus

probably appears as a factor of the correct formula at least to a close

degree of approximation, serious error would hardly be introduced by
the use of the formula.

Kupffer neglects the effect of heat in expanding the rods, remarking
that the changes of temperature only altered their dimensions insensibly :

see, however, the ftn. on our p. 509. At the same time he notes that

the least change in the distance from the point of clamping to the centre

of gravity of the vibrating load would have made an important altera-

tion in the period of oscillation (S. 430 and ftn.). He does not seem
to have noted that the dimensions of the rod would also have been

slightly different in the positions when the weight and the clamped end
were respectively uppermost. Both these causes might somewhat effect

the values of fif he gives for the different metals. They are reproduced
in the Table I. below from his S. 451. S. 431-51 are occupied with

numerical details of the observations.

I.

Values of /3/
for one degree Reaumur found from changes of temperature lying between

- 15 R. and 15 R., the changes being not much more than 20,

t, t'>t.

Metal.
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[753.] In the third column of the above Table I. I have placed the

mean fff of some of the results of Kupffer's experiments included in

the following section of his memoir (S. 551-63) entitled: Einfluss der

Temperatur auf die Elasticitat der Metalle bei Iwhern Temperaturen.

(i) Bei Transversalschwinf/ungen. The change in temperature here

was a rise from about 14R. to 79 R. In all cases except those of

Swedish wrought-iron where there appears to be a reduction, and of

cast-brass where there is no sensible change ftf appears to be >/?/; in

the former case the experiments do not seem to have been made on
the same specimens, so that not much stress can be laid on the result.

We see therefore that the introduction of Kohlrausch's term y (t'
-
tf

with a positive value of y would be in accordance with Kupffer's results.

[754.] Our author next ((ii) Bei Torsiomschwingungeri) determines
the effect of a like large change in temperature on the slide-modulus.

Assuming in his memoir uni-constant isotropy Kupffer speaks of this

effect as an alteration in the stretch-modulus. Without this assumption,

however, we may gather the following results from S. 464-8 of his work :

II.

Values of /3V for one degree B6aumur found for changes of temperatures between
15 B. and 79 B., the changes being about 65, where /, = /*, {(1-/3T ('-)}, '>

M.-tui.

Copper -0008634

Best Viennese Pianoforte Wire (Steel) -0005885

Very soft Brass Wire -0006982

J
unannealed -0004258

Very hard Brass Wire
j ftnnealed

Thus, so far as we can compare the materials of these wires with those

of the bars in the previous article, we see that /3'T for copper and steel

is greater than /^ or that the slide-modulus for these metals dimini

with the rise of temperature more rapidly than the strot eh -modulus.

Kupffer's result for copper differs widely from that of Kohlrausch. Imt

supposing Kohlrausch's brass wire to have been of the sort that Kupffer
terms very hard, then they agree fairly closely for this metal.

[755.] The next section of the memoir is entitled : Beoba^lit-

iiber den Einfluss vorubergeJiender T'emperaturerlwhungen auf die Elasti-

citat der Metalhtabe. It occupies S. 469-492.

Da die Warme den Agregatzustand des gehammerten, oder gewalzten,
oder geharteten Metalls bleibend andert, so ist zu vermuthen, dass der

Elasticitatscoefficient sich ebenfalls durch voriibcrgehende Temperatui
derung bleibeud andert (S. 469).

The < xjn i iments were made by means of the transverse vibrations

of rods exactly as in the method referred to in our Art. 752. Tin-

change in temperature was produced by heating the n><l> with a Ber-

zelius' spirit lamp, sometimes to incandescence. The stretch-modulus

was determined before and after this thermal
J.I-.H

.
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[756.] Kupffer concludes his memoir by an investigation of the

effect of heat on elastic after-strain (Einjluss der Temperatur auf die

elastische Nachivirkung S. 4924). We have already seen that Kupffer
attributes to elastic after-strain a considerable portion of the reduction

of the amplitudes of torsional oscillations. Hence if the wire be sub-

jected to any thermal process the effect of this on its after-strain

property will be shown by the difference, if any, in the number
of oscillations made between the same amplitudes before and after the

thermal process the resistance of the air being the same in both cases.

Thus the change in the after-strain coefficient, if not its absolute value

in either case, could be ascertained without the need of experimenting
in vacuo. Details of the experiments on the various metals in the case

of both elasticity (see the previous article) and after- strain are given
in the memoir

;
we summarise them in the following Table :

III.

Temperature Effect on Metals.

Metal.
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The general law thus seems to be that processes which increase

the coefficient of after-strain or '

viscosity' decrease the elastic-constants

and vice-versd, but there are exceptions to this rule.

Kupffer speaks simply of the 'elasticity' as being increased or

diminished. I have put stretch- or slide-modulus according as his

method was that of transverse or torsional vibrations, in order that

there may be no assumption that even in questions of thermal influence

these necessarily exhibit the same tendencies.

[757.] In conclusion we may remark that this memoir of

Kupffer's is of very considerable value although we cannot feel

thoroughly satisfied with his use of the experimental method of

transverse vibrations, and could have wished a more complete

investigation of /3/ and f3T for a greater variety of temperatures.

Still to have demonstrated the existence of after-strain in metals

and indicated its changes with temperature is no small service,

while the absolute measurements of the tbermal coefficients are

at least valuable for comparison.

[758.] A. T. Kupffer: Recherches experinientales sur Vel<t*ti-

citi des metaux faites a I'observatoire physique central de Russie.

Tome J. folio, (all published), pp. i-xxxii and 1-430, with nine

plates. St Petersburg, 1860.

This work contains some of the most carefully made experi-

ments on the stretch-moduli of different metals and the effect of

temperature upon them, which we have to record in this period.

The experiments seem to have been conducted with extreme

accuracy ; unfortunately the formulae used by Kupffer do not

appear equally accurate, and it may be questioned whether very
useful labour might not still be spent in revising Kupffer's numbers

with the aid of a more accurate elastic theory.

The preface to the work explains its scope and the contents of

the projected remaining volumes: see our Art. 722. It also states

the relation between Russian, English and French measures 1
. It

occupies pp. i-ix.

[759.] The htiroduction occupies pp. xi-xxx. One or two brief

remarks may be made here.

1 A Russian foot = an English foot ; a Russian inch = an English inch = 2-540

centimetres. A Russian pound = -9 English pounds nearly = 409-512 grammes (or
1 kilogramme = 2-442 Russian pounds).

For comparison of specific gravities we may note : a cubic inch of water at

the normal temperature 13 R. (
= 62 F.) and in vacua weighs very nearly -04

Russian pounds.
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(a) On p. xii Kupffer remarks that the formula of Euler for the

transverse vibrations of a rod clamped at one end and loaded at the

other does not give accurate results. He seems to think the formula

theoretically correct, but this is not the fact. It is only an approxi-
mation which neglects the inertia of the rod.

(b) The author insists upon the importance of a national institution

for experiments on the resistance of materials. This importance is no
less to-day than in 1860, greater also in a manufacturing country like

England than in Russia.

Je crois, qu'un etablissement special, consacre a des experiences sur la

resistance des materiaux entre et hors des limites de 1'elasticite, ou Ton

pourra mettre k 1'epreuve les productions metalliques de toutes les usines
du pays, avarit et a mesure qu'elles sont livrees au commerce, lie presenterait

pas seulement des donnees certaines pour la rectification des devis de con-

struction, mais contribuerait aussi puissamment au perfectionnement des
methodes de fabrication, puisque chaque fabricant desirera que ses produc-
tions fussent notees le plus haut possible. Kien n'entrave les perfectionne-
ments dans la fabrication des metaux, comme 1'incertitude ou le gouverne-
ment ou le public se trouvent relativement a leur qualite, et si, a cause de
cette incertitude, ils sont toujours taxes de la me'me maniere, qu'ils soient bons
ou mauvais. L'elevation des prix, que la confiance publique accorde a
certaines usines anciennes et connues, n'a pas d'autre source que 1'epreuve du
temps, qui pourrait etre considerablement abregee par des experiences pre-
liminaires (p. xiii).

(c) The doubtful formulae for flexure and transverse vibrations to

which I have referred in Arts. 747 and 751, and to which I shall return
in Arts. 760-6, are given on pp. xv-xvii and pp. xx-xxiv.

(d) On p. xviii Kupffer cites experiments confirming Hodgkinson's
result namely that the stretch-modulus of cast-iron decreases rapidly
with the load. Of this he remarks :

La rapidite, avec laquelle la dilatation elastique de la fonte augmente avec
la charge, me semble prouver, que nous n'avons pas ici affaire a uue autre loi

des dilatations et des compressions, mais a une autre propriete des corps
elastiques que quelques metaux seulement possedent et qui cache la veritable
loi (p. xix).

He promises to return to this matter in a later volume, but we have
no later trace of it, I think, in his published work. (See our Arts
729 and 767, however.)

(e) Remarks on the relation of the stretch-modulus to the density
are given on p. xxvii. In the case of brass KupfFer shows that, after

working different specimens of the same piece, the moduli were as the
cubes of the densities (compare Art. 741 (a)). Our hope, however, of

finding any general law connecting modulus and density is even to-day
very small. He further notes the effect of working in producing a
difference in the stretch-modulus for different directions (p. xxviii).
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[760.] The first portion of the text of Kupffer's work deals

with the preliminary experiments and the theory of the statical

deflection of bars. It occupies pp. 1-44. He remarks (p. 2) that

he had noticed the fact of the distortion of the contour of the

cross-sections by flexure. This had already been observed ex-

perimentally by Clark for set (see our Art. 1485*) and theoretically

by Saint-Venant for elastic strain (see our Art. 170). Thus a

rectangular contour becomes a trapezium with slightly curved

sides : see our Art. 736.

Kupffer then turns to the formula for flexure which he states as

follows for the case of a horizontal cantilever :

\JE= \ nj /3
--

, ,
fora rectangular section,

\\E=\ jj-r, rx ,
for a circular section,

d = \L tan
<f>,

for both, ................................... (ii),

where : d is the total deflection of the free end,

< is the angle the tangent at the free end makes with the

horizontal,

I is the length of the bar,

L is the horizontal distance of the free end from the built-in

end after flexure,

p' is the load at the free end,

p is the weight of the bar,

a is the horizontal, b the vertical side of the rectangular cross-

section, r the radius of the circular cross-section.

(See pp. xvi, xvii, 11, 19, 45, 50 etc.)

The angle <f>
can be measured by the angle between the reflected

and incident rays of light on a small mirror attached to the free end of

the bar, and thus the stretch-modulus E can be determined. This

Kupfler did with very great caution and accuracy.
The formulae above occur frequently in his works on elasticity, and

we have now to ask how far they are as accurate as his measurements

really require.

[761.] Neglecting slide we have on the Bernoulli-Eulerian hypo-
thesis

(iii),

where x is the horizontal distance of the element da of the central axis

of the rod from the built-in end, p the radius of curvature at ds and
the flexual rigidity of the bar: see our Art. 79.
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First suppose the deflections so small that we may neglect (dyfdxf
or put I /p

=
d-i/jdx- and ds = dx. Then we easily find

and

Hence d = ~ tan d> .

'

(iv).

i-

Thus we see that Kupffer's formula
(ii)

cited above is not true even

for small flexures unless
,

be very small.

In several of the experiments p' and p were about the same order of

magnitude, so that the values of d derived from this formula would have

an error of 2 or 3 per cent. Further it is to be noted that Kupffer

replaces I by L, and that many of his rods were so flexible that L could

differ from I very considerably without the elastic limit being passed.

Suppose then the difference between I and L to be so considerable that

we must take it into account. Then we ought to solve the equation (iii)

above to at least a second approximation, but this leads to very complex
results. To test the accuracy of Kupffer's formulae however, it is suffi-

cient to take the case when p = 0. We then find, if XL
Z or

be a small quantity, that to a second approximation :

Hence: d= fL tan < {1
-
^

We thus see that Kupffer's formula neglects the term in
(X

2

)

2
,
but

this is just the order of the difference between I and L. Thus his

results would have been as satisfactory, if he had always taken I for

L. But in some of his observations the difference between I and L is

so considerable 1 that he does not feel able to neglect it
;
in these cases

therefore his numerical results are still liable to the same order of error

as if he had replaced L by I in hisformulae.

Further the deflection due to slide is of the order ^ ,
and if we

i

include terms of the order ( ~ -

J
,
we cannot neglect slide unless (K/l)

3

is small as compared with p'jEw. For these reasons I do not think

Kupffer's values of E are necessarily so accurate as his attempted
distinction between I and L would lead us to believe.

1 For example, Z = 28-003, L = 27'685 (pp. 17-18); Z=13'9607, L= 13-7985

(pp. 39-40).
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[762.] A value to a second degree of approximation of the stretch-

modulus obtained from flexure is given by Saint-Venant in his Leqons
de Navier, p. 84, footnote. He supposes however, that p is distributed

uniformly along L and not along I
;
further in his equation, p. 82 (at

the top of the footnote), I do not see why the second term on the

right, which he admits is only approximate, is really admissible to the

degree of approximation required. It is equivalent in our case to

replacing the integral on the right of equation (iii) by \ (L #)
2

/cos <.

I have not succeeded in solving equation (iii) to a second approxima-
tion.

If p =
0, we easily find from (v)

XL? = 2 tan <
- tan3

<,

but Z*

Hence X = 2 tan * {
1 -r ^ tan2

<},

J=
For a circular section :

l-

Kupffer uses :

r4

which really
=

,
tan

<j> {
1 + -^ tan2

<}.

He further replaces tan< by <tanl'. In most cases I do not

think that the term with tan-
<f> really affects his results, but the distinc-

tion between L and I ought not then to have been preserved.

Kupffer's own deduction of the result d = fL tan < is absolutely
erroneous

;
he assumes the form of the elastic line to be a semi-cubical

parabola, which is of course quite inadmissible (p. 11).

[763.] We next turn to the formula which Kupffer has

adopted for the transverse vibrations of a loaded elastic rod

clamped at one end. This formula has been largely used in

his researches. It will be found discussed in his volume

on pp. xix-xxv and pp. 126-135. Kupffer's experiments were

made in the following manner. A bar, of which the weight
of the vibrating part was p, was loaded with a weight p' at

one end; the other end was then firmly clamped and the bar

set vibrating about a vertical position, first with the weight p'



764] KUPFFEK. 525

uppermost, and secondly with the clamped end uppermost, t
l
and

t, the periods of the complete oscillations in these two positions,

were then observed.

Kupffer gives the following empirical formula for E, the stretch-

modulus, in the case of a rectangular bar of cross-section a x 6, oscillating

parallel to the side b :

9^^-f^ /A
~2ab*ti

2 -t2 V <r"

where :

/ = total moment of inertia of bar and load about the clamped end.

X~ length of a simple pendulum having the same period as the

pendulum which would be formed by the bar of weight p and the load

p supposed rigid and capable of freely oscillating about an axis through
the clamped end.

t
2 2 a

o- ^ ^ j ~a )
Or

5 according to Kupffer, tr is the length of a simple
Cj t It

pendulum, which would have the same period as the bar "si le barreau
n'avait point d'elasticite, et si la pesanteur agissait seule" (p. 133).

By this Kupffer means that the '

elasticity of the bar is supposed zero/
but I do not grasp the exact bearing of this. Practically he calculates

the value of a- from t
l
and t as given above.

[764.] Let us examine a little more closely into the formula for a

vibrating rod. The complete period T of the fundamental note of a
'

clamped- free
' bar is given by

4^12
ab*Egm*

J

where m is the least root of

cos m cosh m + 1 = 0.

See our Art. 49* or the footnote Vol. i. p. 50.

Seebeck, in the memoir referred to in our Art. 471 (see his p. 140),
finds m = 1-875104, hence we have

m4 = 12-3624.

Thus if found from the fundamental note

Now Kupffer says (p. xx. and p. 134) that, if a free-clamped bar
oscillates very rapidly, so that the influence of gravity is inappreciable
whatever be the position of the bar, then Euler has given the following
formula for its stretch-modulus :
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Formula (ii) would, of course, be a close approximation if a hori-

zontal bar were oscillating in a horizontal plane and its weight p
produced no vertical deflection worth taking into account. For example
a short bar in which a was considerably greater than b.

Kupffer cites (iii) indeed as due to Euler but I do not know to

what memoir of Euler's he is referring. He supposes it to hold in

cases in which (ii) is really true. It is therefore not surprising that

he found formula
(iii)

in small agreement with observation.

[765.] But the point to be noticed is that even with an unloaded

bar, Kupffer found the action of gravity was sensible and different

according as the bar was placed vertically with the free end upwards
or downwards, in other words gravity produced different effects upon
the periods in the two cases. Thus for an unloaded brass bar

,/2
= -31625 seconds and t/2

--= -28200 seconds (p. 135).
We cannot therefore apply formula (ii)

still less (iii) to this case.

We are bound to take gravity into account. Indeed Kupffer's bars

must have been so flexible that they vibrated with something of a

pendulous nature about the clamped end. He measured the transverse

vibrations not by the note but by the eye :

Une lame, qui est assez longue et assez mince, pour que sea oscillations

transversales soient appre"ciables k la vue, oscille plus lentement, lorsque son
extrdmitd libre est en haut que lorsqu'elle est en bas, la fonnule d'Euler
n'est done plus applicable directement (p. xx).

Kupffer modifies the formula (iii) and deduces from it (p. xxi) :

but I am unable to accept his reasoning. This formula still not giving
results in accordance with experiment, he proceeded to further modify
it and found that it would give values agreeing among themselves and
with those obtained from flexure experiments if the right hand side were

multiplied by \/A/<r. I cannot find any formula in the least agreeing
with Kupffer's by attempting to solve the problem by the assumption of

a form for the normal-function. Indeed, as Lord Rayleigh has pointed
out for a similar case where, however, gravity and the inertia of the

bar are neglected there seems to be not one but two principal peri<

see The Theory of Sound, Vol. i. 183. This formula must ther ;

be treated as a purely finj)ii-icul formula, and I find it accordingly diffi-

cult to draw any comparison between the values of the stretch-moduli as

found from the statical and from the vibrational methods. On the other

hand for comparative values of E, as for the same bar affected only by

temperature, possibly (i) may give good results. Kupllt-r in this case

works with the formula :

S_tf+f '

w~ t*~e
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supposing the part
-

-j^ / - of
(i)

to be but slightly influenced by

temperature.

[766.] The problem of a vertical rod clamped at one end and
loaded with a weight at the other was first attempted by Menabrea in

the memoir referred to in our Art. 551 (g). He did not, however,
form and solve the equation for the notes, and the equations which give
rise to the transcendental equation for the notes do not look promising
(especially when as in Kupffer's case the weight of the rod and the load
are not very different). One thing appears clear, I think, from
Menabrea's results, that there would be two different series of notes,
nor does there seem any reason why both of these should not have been

present in Kupffer's experiments, nor for the terms involving the funda-
mental note of one series being negligible as compared with those

involving that of the other. Kupffer observed the time of, say, a
thousand transits of a mark on his rod across the mid-thread of his

telescope; dividing the time by the number (1000) of vibrations, he
considered the result to be the time t^ or t (as the case might be) of
an oscillation of the rod, and substituted in the formula given above.
There thus seems to me considerable doubt as to what period t

l
or t

really denotes, and till the theory of this vibrating motion is fully
worked out, it does not seem possible to derive all the profit from

Kupffer's experiments that their accurate methods of observation
would justify. We shall see later (Arts. 774 et seq.} that Zoppritz also

has not surmounted the difficulties which arise in dealing analytically
with this case.

[767.] The details of the first series of experiments on the

statical flexure of bars of rectangular cross-section are given on

pp. 51-109. Such bars Kupffer terms laminae (lames), while

those of circular cross-section, details of experiments on which
he gives on pp. 109-125, he terms rods (verges). The former set

of experiments contains most interesting evidence as to after-strain

in cast-iron: see pp. 83-4, 88-9, and to its imperfect elasticity

(see our Art. 729 and Vol. L, p. 891, Note D), that is, the apparent
decrease of its stretch-modulus with 'increase of the load (p. 87).

This appears still more markedly if we can accept the value of the

stretch-modulus given by Kupffer from transverse vibrations as

that for vanishingly small loads.

The values Kupffer gives for S (= l/E) as obtained by statical

and vibratory methods do not show that E is invariably greater or

less when measured by the one or by the other method, but this

does not seem to me very conclusive as those values are obtained
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from formulae which I cannot recognise as sufficiently exact for

this purpose.

Kupffer notes on p. 125 that the original limits of elasticity

(state of ease) can be altered by repeated alternating stress

(extension of state of ease : see our Vol. i. pp. 886-8 and Arts.

709, 749). The flexure experiments were made on various kinds

of steel, cast and wrought iron, brass and platinum.

[768.] On pp. 135-268 we have details of experiments on the

transverse vibrations of bars of rectangular cross-section, and on

pp. 268-94 on those of bars of circular cross-section. The value

of E is found to depend to some extent on the length of the vibrat-

ing portion of the bar. This divergence Kupffer thinks is due

rather to the variation of E along the bar than to the effect of the

resistance of the air acting on different lengths. It seems to me
it may also be partially due to defects in Kupffer's empirical
formula: see his pp. 153, 172 etc.

The experiments cover most of the principal metals: brass,

steel, iron, silver, gold, platinum, zinc bars and brass, copper and

steel wires.

[769.] Pp. 294-7 are entitled: Oscillations transversales des

lames horizontales, dont line extremitt est encastrde, and would, if

more extensive, have been most valuable for comparison and in-

vestigation of Kupffer's empirical formula for the vertical vibrating

rod. We have here a case to which existing theory ought directly

to apply. Unluckily Kupffer only gives the details of a few

experiments on a steel bar, and substitutes the results in an

empirical formula instead of the theoretical one.

He adopts the following formulae :

For the transverse vibrations of a bar in a horizontal plane,

(i) loaded at the free end :

...
9 47T

2
//' /a*ryWr-

(ii) without load :

2

where : T
l

- duration of the oscillations (= twice Kupffer'a T7

,),

p = weight of vibrating part of rod,

I' = distance of centroid of load from clamjied < -ml.
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and the remainder of the notation is the same as in our Art. 763.

If we supposed p]p very small, we might obtain a formula suitable

for case
(i) by supposing the bar to take at each instant the statical form

corresponding to the actual deflection at I'. We then find :

On the other hand Equation (vii) ought to be the same as Equation
(ii) of our Art. 764. Thus we ought to find at least approximately that

with load >/*/X= -8889, and without load A/tr/A
= -9707. From the

values given on p. 296 I find with load \/o-/A= '9410 (in a case, how-

ever, for which p/p' is not very small), and without load \/cr/A= -9908.

I do not clearly understand what the physical meanings of o- and X are

supposed to be (neither in the latter case equals -|), and the above results

show that their values when substituted do not give any close relation

between Kupffer's empirical formulae and our (viii) or (ii) above. We
cannot delay longer over the matter now, but there seems to be

sufficient ground for suggesting that Kupffer's experiments and formulae

require cautious dealing with. See Zoppritz's investigations referred

to in our Arts. 774-84.

[770.] The remainder of Kupffer's work is devoted to the influence

of heat on the elasticity of metals. A great part of this is reproduced
from the memoir of 1852 : see our Art. 748, and thus does not require
further discussion here. As the measurements are chiefly based on

Equation (v) of our Art 765, by putting Et>jEt
= 1 /?/(T' T) where

T'-T is the rise of temperature and f$f the thermal constant required,
I do not think there is the same difficulty about the trustworthiness of

the results as in the case of absolute measurements.
P. 299 gives the formula; pp. 300-2 describe the apparatus and

method of experimenting ; pp. 302-341 give the details of the experi-
ments on various metals the results of which have already been
tabulated in our Art. 752. These pages indicate how the value of

ftf

differs for ordinary and for high temperatures, and according as the

metal has been cast, hammered or rolled.

[771.] Pp. 341-373 deal with the influence of a past change in

temperature on the elasticity. These experiments have already been
considered in our discussion of the memoir of 1852 : see our Art. 755.

The remarks in the memoir on after-strain are omitted in the Recherches

as they would have fallen under the head of Torsion, the topic of the

projected third volume of the work.

Pp. 377-425 are entitled : Additions, and are occupied with the

details of experiments on the determination of E for steel and copper
bars by the method of transverse vibrations. The experiments on steel

were made with a view of determining >/A/<r, especially when the bar

being vertical the load at the free end was such that it buckled in

the position of equilibrium.

T. E. II. 34
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On p. 425 Kupffer finds that for a soft and for a rolled copper bar

without load N/X/<r= 1 '02200 and 1-02625 respectively. These give

A/<r/\='978,47 and -974,42, the theoretical value, if the bar were

horizontal, being -970697 (see Art. 764 above). Hence I am inclined to

think that if Kupffer had placed his bars horizontally and allowed them
to oscillate horizontally without any load at the free end, he would have
obtained better results and these in good accordance with a well estab-

lished theoretical formula.

[772.] Kupffer prefixes to his work (pp. xxxi-ii) a table of

the quantity S(=1/E), or in his units the number of millimetres

which a bar of one metre length and one square millimetre cr

section would be extended by a load of one kilogramme. The

density of eacb material is also tabulated, but there is no obvious

relation between the density of a substance and its B. Indeed it

is not always the denser specimen of a metal which has the least

S, although this is generally true.

As Kupffer's work is not accessible to all and his numbers are

not to be found cited in the ordinary text-books of elasticity, I

give in Table IV. on p. 531 certain of his results for nn-tal bars

in wbich I have taken mean values for the different specimens
whenever tbe number is followed by (m), and have added some of

the results for brass, iron, steel and copper wires.

The numbers in brackets with the letter Z. attached to them I

have calculated from Zoppritz's discussion of Kupffer's experi-

ments. Zoppritz obtains his results from a more accurate theory,

but they are deduced from a very small range of Kupffer's measure-

ments and so are more liable to the influence of error in the

individual experiment or to fault in the individual specimen.

It should be noted that Wertheim's value of the stretch-modulus

for gold is considerably larger (by ) than Kupffer's and consequent 1 v

his value of B smaller. Wertheim finds 8 = '115,674 to '112,971.

But the effect of annealing was to send 8 up to '179,051, so that

tbe form of treatment or working appears to alter the modulus of

gold very greatly. See the memoir referred to in our Art. 1292*.

[773.] A useful rfaumibi the various memoirs on elasticity by
both Kupffer and Wertheim will be found in the KlUlnil',

nniverselle de Geneve: Archives des sciences physique* vt nutun

T. 25, pp. 40-58, Geneve, 1854. TaU-s ,f tin- i.uin.-riral ramlte

of both investigators an- likewise
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Dissertation, published in Tubingen, 1865, and entitled : Theorie

der Querachwingungen eines elastischen, am Ende belasteten Slabes.

Its purpose is explained in the following words of the Einleitmnj :

Die vorliegende Arbeit wurde veranlasst durch das Erscheinen von

Kupfters Recherches experimentales .........
;
mid mir von meinem hoch-

verehrten Lehrer, Herrn Professor Neumann in Kb'nigsberg empfohlen
mit dem Wunsche, dass es mir gelingen moge, durch eine strenge, auf <li-

Principien der Elasticitatslehre basirte Theorie diese Versuche in der

Ausdehnung fur die Wissenschaft zu verwerthen, wie es dem fiir ilnv

Anstellung gebrauchten Aufwand an Zeit, Mitteln und Miihe entspre-
chend sei (S. 1).

After reference to the labours of Euler, D. Bernoulli, Poisson and

Seebeck, the Ew/cifm/f/ draws attention to an erroneous theory of

the vibrations of a loaded, weightless rod given by Lippich (Pog-

gendorffs Annalen, Bd. 117, S. 161, 1862). It then points out the

difficulty of solving generally the differential equation for the

vibrations of a heavy loaded rod, especially for the case when
the weights of the rod and load are, as in Kupffer's investigations,

not very different, and finally gives a r&umd of the contents of the

paper.

[775.] The first section (S. 3-8) is entitled : AUeitung der

Differentialgleichungen fur die Bewegung eines schiveren, am Endc

belasteten Stabes. As in Kupffer's experiments the rod is supposed

vertical, clamped at one end, and loaded at the other or free end.

Zoppritz adopts the method of Lagrange (Statique, Sect. V. Art. 42)
and deduces by a not very luminous or satisfactory process the ^ncrul

equation. We can obtain Zoppritz's form at once, if w be tin- en

soction of the rod, hy writing equations (i)
of our Art. 730 in thr form .

*A - 1 (ir I' A*fe) - A- r= o.
dxt dx \dx Jx J

Here, I &u>Xdx = (m --=- +
J/J g,

where m (= Aco) and M are the masses of the rod and load ivsprc -ti\<
-ly.

1 1- nee
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Zb'puritz writes

whence we find :

TTT .

A

i r

The upper sign corresponds to the free end downwards, the lower to

it upwards
1
.

For terminal conditions we have :

at x = 0, y = 0, dyjdx = 0,

=
0,

at x =
I,

**
e. =

.(ii).

[776.] If we neglect the terms involving y explicitly in equation (i),

equations (ii) remaining the same, we have the case of a loaded weight-
less rod. This case is discussed in the second section of the memoir

(S. 9-16), while the case of a heavy unloaded rod is discussed in the

second memoir (see our Arts. 780-1).

Zoppritz, taking the upper sign, solves
(i) for the former case by

assuming
y = SA"H (Cn cos mnt + Dn sin mnt),

where Xtt is of the form

Cl cosh ax + Cz sinh ax + C3 cos ax + C sin a'x,

and
I =^

O> = T v a2 + \/a
4 +

.(iii).

To determine inn he obtains the transcendental equation (S. 12) :

Iff.
(2a

4 + b2mn
2

)
cos a'l - 2yabmn sin

a'l]
(.a" J

+ sinh al {'2ya'mnb cos a'l + gbmn sin a'l} (iv),

where y = va4 + b
2mn

2
.

The least root of this equation would give the periodic time observed

by Kupffer, for rods whose weight is insensible as compared with the

load. The above case corresponds to the clamped end uppermost and

1 It will be noted that Zoppritz neglects the influence of the rotatory inertia of

the rod which would introduce the term - K" 7 .. "f .. into (i).
dt2 dx-
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the load undermost. For load uppermost we must change the signs
of g and a'

J in
(iii)

and (iv). Zoppritz makes no attempt to solve (iv)
for any of the large range of numerical examples given in Kupffer's Re-
cherches.

[777.] The second section concludes by demonstrating that if

y = Xn {Cn cos mnt + Dn sin mnt]

be a solution of the general equation (i)
of a loaded heavy rod, then

if n be not equal to ri.

Zoppritz indicates how this enables us to determine the arbitrary
constants of the solution in terms of the initial conditions.

[778.] The third and final section of the memoir is entitled :

Angendherte Awwendung auf den schweren Stab (S. 17-24). There

are some interesting points in it, but the reasoning seems oc-

casionally questionable.

Suppose a rod of weight w to have the weight W attached

to one end; further suppose the rod to remain straight and

rigid while the effect of its flexural rigidity is replaced by a

restorative couple e<, when the rod is inclined at an angle (f>
to

the vertical position, I being the length of the rod. Then the

equation of small oscillations would be

the negative sign corresponding to the fixed end uppermost.
Hence if T = %Tr/m be the periodic time we have :

_
T* I

(v)J+J'
where S and S' are the first and / and J' the second moments of

the weights of load and rod about the point of support
1
.

To compare this very questionable result, which suggested Kuptl. i >

formula, with what really takes place, Zoppritz returns to equation (i)

and assumes the principal vibration to be of the form

y X cos (mt + a),

1

/<>i>}>rit/ has dropped an I & factor of his t in either his equation (62) or

((',.",),
which equation is not clear from his definition of e.
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so that by substitution we have, taking the upper sign,

d

Integrate from to cc,
and we find :

dX .,

To determine the constant C put x=l, and use equation (ii); we thus have

C = - m2

( X, + f

l

Xdx] .

\g Jo /

Substitute this value of C and integrate again between the limits

and I; then remembering (ii)
and integrating where necessary by parts,

we have :

^] + J
i
2ft3 +

ff IV* - m*

( f xXdx + lX
i\-

<MT /o Jo Uo ^

Whence substituting the values of a3 and 62 and putting

t
lf

f
-+ JFZ + w I ^

,
O \/lfl ^O./f / .V

we have: m* =g-*--7--.
- .................. (vi),

Wl2+w 4dx

where 1/^? is the maximum curvature at the clamped end, ft
the maxi-

mum deflection at the free end, and f the deflection at the distance x
when the rod takes the maximum deflection at the free end.

Comparing (v) and (vi) we see that they will be identical, if we take:

EUK>
f
lf (

l

xf
e = --JT5- ,

$ = w I
j, dx, J = w

I
dx.

Ji-tio Jo Ti Jo Ji

Obviously f can never be greater than xft /l or the maximum values

of

/ ^ dx and I ^ dx
JoJi Jo Ji

are l/'2 and l'
2

/3 respectively.

I cannot, however, agree with Zoppritz's arguments on S. 20, that to

a close approximation we may suppose these quantities equal to their

maximum values. I think a far closer approximation would be obtained

by giving them their values for the statical relationship of f to ft
. I

have not worked out the ratio offtoft
for the general statical case, but

it can be found in terms of Bessel's functions in the manner indicated
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in the footnote to Vol. I. p. 46. If we suppose W only to act, n-r-

tainly a more reasonable hypothesis than supposing the bar to remain

straight, we find :

(I f (I xf
I ^d#=-3634J and -dx='268'tP
Joji Jo Ji

instead of "51 and '3- which Zoppritz adopts.
An approximation to the value of JK

{} might also be made from

statical considerations, but while results for dynamical deflections based

on such considerations are generally fairly approximate, those for

curvature are often very erroneous : see our Art. 371
(iii).

Zoppritz himself suggests (S. 21) putting for R
Q the value calculated

in the second part of his paper, but this would involve the solution of

(iv) for every experiment and an appalling amount of labour for the re-

duction of any series of observations. For a rod with the free end

uppermost we must change J? to .#'
, f to f, and alter the signs of W

and w in the numerator of (vi).

[779.] For the case of an unloaded rod, if 2ir/m and 2ir/m be the

periods when the free end is undermost and uppermost respectively :

/> + w
m2 = g -

(fdxJo

ri

xfdx
Jo

to

Suppose 27T/ia the period when the rod ig weightier, thru >imv tin-

in ii- 1 be the same whichever way the rod is placed we have

or,

/Jipprit/, who seems to me to have treated RQ
and A",, as

constants independent ofw, tln-n j.uts (S. 22)

m* + ml* = 2mH
-
........................ ( vii)
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In this he supposes the second members on the right hand of the

expressions for m- and m"2
to be equal, i.e. he does not distinguish between

fandf, but, assumes without comment that they can be taken equal.
For the gravest note of a weightless free-clamped rod we have

(see our Art. 764 or Lord Rayleigh's Theory of Sound, Vol. i. pp. 207
and 224).

Whence for a rod of rectangular section a x 6,

R--- " V 1 M'' - ~ "~~
9 I ~m^ rni-2 J \^

Equations (vii) and (viii), if T and T be the times of half oscilla-

tions
(i.e.

T TT/W, T' = Trjin) give :

w

g atf 1-0302

This agrees with the result of Zoppritz's third memoir (see our Art.

783, Equation (xi)), but in the present paper (S. 20) he has the

number 1'019 instead of 1-0302 in the denominator.

He concludes by calculating E for one series of experiments made

by Kupffer on an iron bar. Owing to the numerical error just referred

to, the results cannot be very accurate.

The exactness with which this approximate theory gives the fairly
accurate formula (ix) is, considering the assumptions, somewhat sur-

prising and suggests the use of like methods in similar cases.

[780.] The second of Zoppritz's memoirs is entitled : Theorie

der Querschwingungen schwerer Stdbe, and occupies S. 139-56

of Bd. 128 of Poggendorffs Annalen, Leipzig, 1866. Zoppritz
first forms the equations for the equilibrium of a thin prismatic

rod of uniform cross-section and density built-in at one end and

acted upon by any body-forces in such wise that the flexure takes

place in one plane.

The equation for the deflection y at distance x from the built-in end
is easily found to be

EK? d4

y d2

y
A dx* dx2

where X and Y are the body-forces per unit mass in the plane of flexure

parallel to the axis and perpendicular to it respectively, while I is the

length and A the density of the rod. Further,

when x 0, y = 0, dy/dx = ;
1

when x = I,
d2

y/dx* = 0, d3

y/dx*
= 0. J

Zoppritz now takes the special case of X= + g, Y = -d2

y/df
2

,
or that

of a vertical rod vibrating transversely in a vertical plane under its own

/>= +*l- r= o
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weight. A" will be + y or y according as the fixed or free end of the

rod is uppermost. The equation (i)
now becomes :

The solution of
(iii), subject to

(ii),
will therefore correspond to

Kupffer's experimental determination of the period of oscillation of a

heavy vertical rod built-in at one end.

[781.] Zoppritz writes (iii)
in the form :

dx4
^ "

where p ~- ^ly/fir and V = ^/A.
Now Zoppritz remarks that p, or as I think he should say pF, is a

very small quantity owing to the magnitude of E as compared with

A/^r, and hence it will generally be legitimate to neglect its square (i.e.

if P/K? is small as compared with Ej^lg). He assumes y to be of the

form :

> (v),
74 2

where - um = 0, or um is the type of term given by the Euler-

Poisson solution for the vibrations of a weightless rod. Neglecting p',

vin will be given by the equation (S. 146) :

Equation (vi) is then solved subject to the conditions (ii).
This is

followed by a rather long algebraic investigation of the equation for

the notes. If X = I *Jm/b, Zoppritz finds (S. 153) :

0=1+ cosh X cos X + [X- (coshX sin X + sinh X cos X)oA

- 2X sinh X sin X + 4 (cosh X sin X - sinh X cos X)] (vii),

a result which I have not verified. If we put ^ =
0, the equation

reduces to Euler's form

1 -i- cosh X cos X =
0, (see our Art. 49*)

the root of which corresponding to the fundamental tone is X,,= rN7"ln I.

Assuming X - X -f px, X is ^und to be given by

or X = X -39342 -
3

See S. 148-56 of the memoir 1

.

1 In the equations of lines 9 and 10 on S. 156 rend /
:l for



782 783] ZOPPRITZ. 539

[782.] The third memoir of Zoppritz is entitled: Berechnung
von Kupffers Beobaclitungen uber die Elasticitdt sckwerer Metall-

stdbe, and is published in Poggendorffs Annalen, Bd. 129, S.

219-237. Leipzig, 1866. It directly applies the result (viii) of

our preceding article to Kupffer's numbers. This result, however,

only covers a very limited range of Kupffer's work, for his most

important experiments were made with heavy rods having weights
attached to their free extremity. Zoppritz does indeed indicate

how this latter problem might be treated and describes the stages

of the theory so far as he has worked it out (S. 221) :

Diese Arbeit ist indessen eine wegen der algebraischen Rechnung
iiusserst miihselige und zeitraubende und die Endform der Gleichung
so complicirt, class ich mich bis jetzt noch nicht zu einer Berechnung der

Kupffer'schen Beobaclitungen danach habe entschliesseii konnen und
somit der grosste Theil dieses ausgezeichneten Materials noch unvoll-

kominen benutzt liegen bleibt
1

.

Zoppritz also concludes, although on different grounds (S. 220),

that Kupffer's formula which we have criticised in our Arts. 763-5

is inadmissible.

[783.] Let T be the time of a A/*-oscillation, then 2J

=7r/m, whence,
since X = I *Jmfb, we have, neglecting^3

,
from

(viii) of Art. 781,

where v = '39342.

Whence to the same degree of approximation :

w I
s

1
or, E =

where w is the weight of the rod.

Thus (x) gives the stretch-modulus when the period T of a half-

oscillation is known. If T be the half period when the free end is

downwards, T when the free end is upwards, we have,

w I
s TT ( 1 1

1 Elsewhere he refers to the invaluable material which, owing to the want
of a strict theory, has not yet been used in a manner corresponding to what the
excellence of the instruments and methods employed would warrant (S. 219).
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By subtracting the two values of E we have

Let o- be the length of the simple pendulum equivalent to the rod
when oscillating about an extremity supposed pivotted ;

then o- = |7, or

16 T-T"2

yv=
3

v
T"~ - T- Tr

2
.....................

(
xn

)'

Remembering that in the notation of our Art. 763, J,
= 22* and

t = 2T, we see that, there being no terminal load, Kupffer puts for his v

_ 2T2T'~ g-
^_TL ^-

or he omits the factor i/ = 1*04912 in his estimation of the values of a-.

For the case of a rod of rectangular section (a x b) we have
a)K

a = o6
3

/12, and with the rest of the notation as in our equation (i),

Art. 763, we find from (xi) by the aid of (xii) :

9 Ig ^ + t* . 32v*=
2^V3|r

k
A?

..................... (xm).

1*04912
The factor 32//A

4 =
1

'

<)3090
= 1 '01837, and instead of this Kupffer

has >/X/<r where A is the symbol defined in our Art. 763. KupH'<T
obtains values of \/X/7 such as 1-02016, 1-02581, 1-02399 etc. (see his

pp. 136, 148, 156 etc.) when the bars are unloaded. Thus his E will

be slightly too large and his 8 too small. Kupffer works, I think, for

the unloaded beams from a formula like equation (i) of our Art. 763
and not from one of the type of (ix) in our Art. 779 with the number

1*0302 replaced by \/A/<r as Zoppritz (S. 237) seems to imagine. Hence

the amount of his error is measured by the ratio of \/A/<r to 1*01837

and not to 1*0302 as Zoppritz states. Further Kupffer endeavours

to allow for the effect of certain parts of his apparatus in his value

of >A/(7 (see his value of X, p. 134, which contains
i'), which Zopprit/.V

theory of course does not include. Thus the error in his formula is not

so large as might be imagined, and his results agree very closely with

those calculated by Zoppritz (S. 223 33) for the case of unloaded bars.

In many cases the difference is within the limits of experimental error.

But this is not the case when we compare Kupffer's values of the

stretch-modulus for rods carrying a load with the results calculated

by Zoppritz for unloaded rods; i.e. it is, as we have indicated in Art.

771, in the case of the loaded rod that Kupffer's formula is inadmissible.

/'"ippritz sums up his results as follows :

Kupffers Werthe fur 5 sind fa>t duivhweg kleincr als die mcinigen.
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staben. Bei den Eisenblechstreifen 1 mid 2 sind aber Kupffer's Werthe um
ein voiles Zehntel zu gross. Bedeutendere Abweichungen zeigen auch Gold ^3-,

Zink Jy, mid Kemscheid-Stahl No. 17 ebenfalls
-^.

Die Werthe, welcne

Kupffer aus den Versuchen ohne angehangtes Gewicht berechnet hat, kom-
men den meinigen im Allgemeinen viel naher, manche fallen innerhalb der

Fehlergranzen mit ihnen zusammen
;

leider aber hat KupfFer gerade diese

Beobachtimgen verworfen, well ihm die Resultate zu schlecht mit den itbrigen,
bei angehangtem Gewicht angestellten, iibereinstimmten (S. 234).

[784.] Zoppritz notes four misprints of Kupffer's on the latter's

pp. 270 2 and corrects them (S. 229). Further on S. 233 he gives the

value in French measure of those few of Kupffer's experimental results

which allow at present of calculation by accurate theory. He compares
them with the numbers obtained by Wertheim and other earlier experi-
mentalists. These results on S. 233 may be said to represent all of

Kupffer's work which has probably a numerical exactness equivalent to

the excellency of his experimental methods. We have tabulated them
in a somewhat different form alongside Kupffer's results on our p. 531.

They are the numbers in brackets with the letter Z attached.

Zoppritz's three memoirs certainly throw a great deal of light on
the degree of accuracy in the results obtained by Kupffer from

empirical formulae of a doubtful character. They form also an interest-

ing chapter in the theory of vibrating rods.

GROUP C.

Wertheim s Later Memoirs 1
.

[785.] Wertheim and Breguet : Experiences sur la vitesse du

son dans lefer (Extrait). Comptes rendus, T. 32, pp. 293-4. Paris,

1851. This paper gives some account of experiments by the

authors on the velocity of sound in the iron wire used for

telegraphing between Paris and Versailles. Biot had found the

velocity of sound in cast iron to be 10'5 times that in air,

although the theoretical value of the velocity deduced from the

stretch-modulus was 12*2 times that of air. After describing
their method of making the experiments, the authors continue :

Ces experiences ont donne en moyenne une vitesse de 3485 metres

par seconde, tandis que 2 metres du meme fil de fer tendus sur le sono-

metre longitudinal rendent un son de 2317 vibrations, d'ou 1'on deduit

une vitesse de 4634 metres.

La vitesse lineaire, d'apres 1'experience directe clans le fer, est done

1 For Wertheim's earlier researches see our Arts. 1292*-1351*.
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de beaueoup inferieure, et a la vitesse theorique, et a celle que Ton deduit

du procede de Chladni
;
la difference est dans le meme sens et plus gramle

encore que celle qui resulte de 1'experience de M. Biot sur la fonte.

[786.] G. Wertheim : Me'moire sur la polarisation ckrom<it-

ique produite par le verre comprimL Gomptes rendus, T. 32,

pp. 289-292. Paris, 1851. This is an abstract of a memoir which

contained the details of certain experiments made with the aid

of apparatus described in a sealed packet ;
this packet had been

opened and read by the President on February 3 of the same year

(see Comptes rendus, T. 32, pp. 144-5. Paris, 1851).

The object of the investigations described in the memoir \\:is

to ascertain whether the very different doubly-refracting pov,

of glass or crystals of different materials are really inherent in

their substance, or are due to different states of initial stress

(tensions moleculaires) in different crystals.

En d'autres termes : si, dans differents corps homogenes et dans IPS rnf-inrs

directions, on pouvait produire des compressions et des dilatations 4

corps acquerraient-ils le meme pouvoir birdfringent on auraicnt-ils le>

pouvoirs divers ? (p. 290.)

Wertheim experimented on crown, plate and flint glass, all suUst

with different specific gravities and very different stretch-moduli. I It-

loaded these with different weights till he produced the same difference of

pliase between the two rays, which he rather unfortunately terms

the 'ordinary and extraordinary' rays. Suppose this to be obtained

in any case by a vertical squeeze 8, then the horizontal stretch =ij8,

where
rj

is the stretch-squeeze ratio. Then Wertheim found that

the ratio (1 + r)s)/(l s) was the same for the various kinds of glass.

He terms this the rapport des deiix densites lineaires, and he puts

17=1/3 on his own hypothesis: see our Art. 1319*. I do not know quite

why he should thus define it, but it is interesting to know that it is

the same for all kinds of glass. Since
rj

is taken by Wertheim a

constant, it is the same thing as saying that it requires tin- same

squeeze to produce the same doubly-refracting power in all kind

ulass, which is one way in which Wertheim himself states his result.

Since s=T/E, the measurement of the load T required to produ.

given doubly-refracting power gives a means of ascertaining the

ich-modulus of the glass.
Wertheim points out in the conclusion of the paper that the

magnetic rotation of the plane of polarisation is the more feel.le the

tor the mechanical strain : see our Arts. 698, (iv) and 797, (</).

[787.] Rapji'Tt NUT divers MJmoires de M. !!>////<////, by

Etegnaillt, Dtlhamel, ])<^pjv|/ and ('aueliy (rapporteur).
'
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rendus, T. 32, pp. 326-330. Paris, 1851. The Commission

appears to have dealt with those memoirs of Wertheim which

supported his hypothesis that ?;
=

1/3 ;
see our Arts. 1319*-26*

and 1339* 51*. They sum up briefly the experimental argu-

ments he has given for 97
=

1/3, but remark that this value is

impossible on the ordinary (i.e. rari-constant) theory of elasticity.

But that theory is based on the supposition that each molecule

may be reduced to a point :

Si Ton suppose, au contraire, chaque molecule composee de pluaieurs

atomes, alors, suivant la remarque faite par 1'un de nous, des Fannee

1839 (compare our Art. 681*), les coefficients compris dans les Equations
des mouvements vibratoires cesseront d'etre des quantites constantes, et

deviendront, par exemple, si le corps est un cristal, des fonctions

periodiques des coordonnees. Or, en developpant ces fonctions et les

inconnues elles-memes, suivant les puissances ascendantes et descen-

darites des fonctions les plus simples de cette espece, representees par des

exponentielles trigonometriques convenablement choisies, on obtiendra

des equations nouvelles desquelles on deduira, par elimination, celles qui
determineront les valeurs moyennes des inconnues. D'ailleurs les equa-
tions definitives, trouvees de cette maniere, seront encore des equations
lineaires et a coefficients constants, qui lie pourront devenir isotropes et

homogenes, sans reprendre la forme obtenue dans la premiere hypothese.
Mais le rapport entre les deux coefficients (X + /*, /A) que renfermeront
alors les equations dont il s'agit ne deviendra pas necessairement egal
a 2, quand les pressions interieures s'evanouiront

;
et Ton verra par

suite disparaitre I'objection. proposee (p. 329).

Cauchy thus sees clearly what Wertheim never appears to

have done, namely : that the latter's theory is incompatible with

the uni-constaricy of the early elasticians. Cauchy attempts a

reconciliation by means of his suggestion of 1839. The objec-
tions to this hypothesis have been considered by Saint-Venant :

see our Art. 192, (d).

The Commissioners speak highly of Wertheim's memoirs and
recommend their insertion in the Recueil des savants etrangers.

[788.] G. Wertheim : Note sur la double refraction arti-

ficiellement produite dans des cristaux du systeme regulier.

Comptes rendus, T. 33, pp. 576-9. Paris, 1851.

Wertheim holds that the optic axes of these crystals under

pressure do not coincide with their elastic axes, but make with

them an angle which changes when the same force is applied in

different directions to the body. His reasoning is founded on the
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statement that it is impossible to suppose the '

coefficient of

elasticity' to be different in different directions in these crystals.

It would contradict Neumann's statements, which, however, had

been already corrected by Neumann himself as well as by

Angstrom: see our Arts. 788*-93* and 683-7. Wertheim's argu-
ments are based on experiments on alum, which he says ought to

have its elasticity equal in all directions.

[789.] G. Wertheim : Deuxieme Note sur la double refraction
< i /i ificiellement produite dans des cristaux du systeme regulier.

Comptes rendiis, T. 35, pp. 276-8. Paris, 1852. This Note gives

a series of results similar to those referred to in the previous
article. We may note the following points :

(a) Crystals of cubic form act under external force like

homogeneous bodies, the same force in any direction perpendicular
to two faces of the crystal produces the same difference of pli

between the '

ordinary and extraordinary
'

rays.

(b) For rock-salt and fluor-spar the difference of phase in

the two rays is the same when the compression is the sum.

Wertheim found for the different kinds of glass (see our Art.

786), i.e. they have the same specific doubly-refracting power as

glass.

(c) Alum which crystallises, Wertheim says, in cubo-octanl/r

does not act like a body optically homogeneous, "although its

elasticity is equal in all directions." Under pressure the elastic

and optic axes do not coincide.

This is a restatement of the conclusion in our Art. 788.

Various results as to the effect of pressure on other forms of

crystals of the regular system are given. Wertheim sums up
these results with the following statement, which seems some-

what doubtful in so far as it definitely asserts that the elasticity

of a body is independent of the various changes of form (? s>

which the body has previously undergone :

Tous ces phe"nomenes : l'ine"gale compressibility ojti<ju<. ai;ssi l>i<n

que la rotation de Pellipsolde optique, paraissent avoir leur origine dans

lea effets permanents produits par les tensions ou ]>n-sH.ns jui out lieu

pendant 1'acte de la cristallisation
;
on sait qu<- lVla>ti< itc nnVaniqiir ou

molcVnlairc ost inl'j.-n(laiitc dcs cliaii^-inciits do forim- qm- 1-

sul.is antr-ricnrrincnt ; maix IVlastiritr- o]itii|iic OODaerve pour ainsi

dire rnnpn-intr (|. J78).
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[790.] G. Wertheim : Note sur des courants d'induction

produits par la torsion du fer. Comptes rendus, T. 35, pp. 702-4.

Paris, 1852. The contents of this Note are stated among many
others in our discussion of the second part of the great memoir

on Torsion : see our Art. 813.

[791.] G. Wertheim : Memoire et these sur la relation entre la

composition chimique et Velasticite des mineraux. Conclusions.

Cosmos T. IV., pp. 518-20. Paris, 1854.

This paper gives the results of a memoir by Wertheim which I do

not think was ever published.
Wertheim considers the elasticity of a metal to be independent of its

manufacture and to depend only on its density, chemical constitution,
and crystalline form. The coefficient of elasticity increases with the

density, but more rapidly; a slight chemical change has a great influence

on the elasticity. On passing from the amorphic to the crystalline

stage a body changes its density, and it has yet to be determined

how far crystallisation directly affects elasticity (the densities of

graphite and diamond 1
are as 1:2, their elasticities, if graphite is

like other carbons, are as 1 : 20). A body which can crystallise in two
different forms with the same density (e.g. pyrites) and composition can

have different elasticities in the two forms. When bodies enter into

chemical combination each retains its own elasticity, which is not

destroyed by the action of the chemical forces, but only modified by
the elasticities of the other bodies in the combination (Wertheim
appears to have arranged bodies in tables according to their chief

constituent, e.g. iron, nickel or manganese, but I do not know that

these tables were ever published). The following conclusion seems of

sufficient importance to be cited at length :

D'apres ce qui precede, on pourrait e"tre tente de calculer 1'elasticite d'un

corps compose en prenant la moyenne entre les elasticites des corps compo-
sants, et en attribuant aux corps gazeux on liquides une elasticite hypothe'tique

qu'ils auraient & 1'etat solide, par im precede analogue a celui dont on s'est

servi pour le calcul des densites et des points de fusion. En effet, les sulfures

et les arseniures se pretent assez bien & ce mode de calcul, mais il est

completement en defaut pour les oxydes ; 1'oxyde magnetique est doue' d'une
elasticite inferieure k celle du fer metallique, tandis que les sesqui-oxydes de
fer ont une elasticite superieure a celle-ci. II faudrait done, d'apres le

S
rentier, attribuer ci 1'oxygene solide une elasticity inferieure k celle du fer

;
et

'apres le second, lui en attribuer une superieure (p. 519).

When two bodies of "
analogous composition

"
or "which belong to

the same type are compared, the elasticity is always the greatest for

that in which the molecules are closest (les plus rapprochees), but this

relation does not hold for bodies of entirely different composition. For
these on the contrary the elasticity and molecular distance diminish

1 The Encyldopadie der Natunvissenschaft, Handbuch der Physik, Bd. i., S. 155,

gives the ratio of the mean density of graphite to the density of diamond as
2-25 : 3-52, considerably less than 1 : 2.

T. E. II. 35
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as they become more complex" (p. 520). The memoir concludes by
suggesting the need for new hypotheses as to the grouping of molecules

and as to molecular weight; such hypotheses, however, could only be

verified by a wider range of experiments than, Wertheim states, he had
at that time undertaken. He promises to complete his researches in

this direction.

[792.] G. Wertheim: Mdmoire sur la double refraction tem-

poniirenient produite dans les corps isotropes, et sur la relation

c Ielasticity mfoanique et Velasticite optique. Annales de chimie

et de physique, T. XL., pp. 156-221. Paris, 1854. This memoir is

translated into English in the Philosophical Magazine, Vol. viu..

pp. 241-61 and 342-57. London, 1854. It is an attempt to in-

vestigate the relation between stretch and traction and the question
of the equality of the stretch- and squeeze-moduli by means of

photo-elasticity. There are references in the memoir to the re-

searches of Brewster, Neumann and Maxwell : see our Vol. I. p. 640

Arts. 1185*, and 1556*. I do not tbink, however, that Wertheim

has sufficiently expressed his indebtedness to these authors.

[793.] The memoir commences with twelve pages entitled

l/ixfnriqne (pp. 156-168). Here it is pointed out that the theory

of elasticity assumes: (i) the proportionality of stress and strain :

Mini (ii) the equality of the stretch- and squeeze-moduli. There

are, however, various experimental investigations, which throw

doubt on the truth of these assumptions, notably those of

Hodgkinson (see our Arts. 234*, 1411*-12*). Wertheim remarks

on the great difficulty of making direct experiments on com-

pression. For sensible squeezes we require a long bar of material,

and this will certainly buckle unless supported at the sides. But
if supported at the sides the disturbing action of friction is

introduced. This disturbing action Vicat had met with in his

experiments on the compressibility of lead (see his memoir <>f

I s:>3 referred to in our Art. 724*). Wertheim also attributes the

large values of the squeeze-modulus for wrought-iron obtained by
Pictet (sec his memoir of 1816 referred to in our Art. 876*) to the

same cause. The difficulties attending experiments on compression
have hindered the undertaking of any important series of ///

experiments except those of Hodgkinson. Th > Wertheim dis-

s at very considerable length on pp. !.">! Hii). lie takes

I 1
"

i'jl. moon's result-, and reino\ in-4 the sets, lie OftlculfttOfl from



794] WERTHEIM. 547

the purely elastic stretches and squeezes the values of the stretch-

and squeeze-moduli for forged and cast-iron. He obtains the

following results :

(i) Removing the set, the proportionality of stretch and traction

for wrought-iron holds almost up to rupture.

(ii) Removing the set, the stretch increases more rapidly than the

traction for cast-iron. (Wertheim holds that this result may be due to

defects almost unavoidable in the method of experiment.)

(iii) Removing the set, then for eight series of experiments on cast-

iron the squeezes dimmish with the pressures in three series, in one

series they increase, and in four there is a sensible proportionality. Two
of the last series of experiments are for a mixture of cast-irons (Lees-
wood and Glengarnock)

1

. Wertheim considers that Hodgkinson's ex-

periments are very far from giving any conclusive answer as to the

legitimacy of the assumptions made in the usual theory. He proposes
therefore to investigate them afresh by the aid of photo-elastic measure-

ments. For the theory of photo-elasticity he claims (p. 168) some

precedence for Fresnel over Neumann. He refers to a memoir of

Fresnel's written in 1819 and only published in 1846. live years after

Neumann's (see Annales de Chimie..., 3 e
serie, T. xvn.). Fresnel's

paper in nowise detracts from the transcendent merits of Neumann's

great memoir. That memoir was based upon Brewster's experimental

researches, and the discovery of double refraction by pressure is the real

contribution to be attributed to Fresnel. The statement of the funda-

mental equations of photo-elasticity and their application to the wide

range of phenomena observed by Brewster is undoubtedly due to

Neumann.

[794.] Pp. 169-185 describe Wertheim's apparatus, which is

constructed with his usual ingenuity ;
not the least valuable part is the

differential arrangement described on pp. 181-2 for use when the loads

are small. It lies beyond the scope of our History to do more than
refer to accounts of physical apparatus. Suffice it to say that Wertheim
shows that the difference of the equivalent air-paths of the two rays
is approximately proportional to the loads, and by means of a very
complete table on p. 180 he is enabled to measure the loads by a scale

1 These results assume of course that we may suppose the set not to affect the
stretch- and squeeze-moduli ; they are not based on experiments in which the bars
have been previously reduced to a state of ease embracing the maximum load.

Supposing squeeze set to be produced by lateral stretch, we should not expect
the squeeze-modulus to be so sensibly affected by set as the stretch-modulus until
the pressure was 4 to 6 times as great as the traction (i.e. granted 77

= to ).

Thus the compression load of about 350 cwt. which limits the compression
experiments ought not to be compared, so far as equality of the stretch- and
squeeze-moduli is concerned, with a load of more than about 70 cwts. in the traction

experiments. It will then be found that the difference between the stretch- and
squeeze-moduli is not great.

352
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of colours of the two images. He thus carries out exactly what Brewster

lmd proposed in the Chromatic Teinometer: see our Art. 698* and ftn.,

Vol. i. p. 640. The reader will easily understand how this colour scale

of stress can be applied to the problems stated in the previous article.

[795.] Taking Neumann's theory (see our Art. 1191*, Eqn. (iv)) we
see that air thickness answering to the colour measured in Newton's
scale is proportional to the stretch (or squeeze) in the case of a prism
under pure positive (or negative) traction. According to Wertheim's

experiments it is proportional to the load
;
we have thus a method of

ascertaining whether stress is here proportional to strain, and if so

whether the constant of proportionality is the same for both positive
and negative stress. Wertheim's own theory and his comparison of its

results with those deduced from Neumann's seem to me somewhat
obscure. Thus he says :

" Let be the velocity of light in the air
;

and Oe the ordinary
and extraordinary velocities in the substance 1

,
which possesses for the

time double refraction" (p. 199).
Then if h, I, b be the height, length and breadth of the prism

subjected to a total traction P in the sense h, these dimensions become

/*(!+), *(!-, &(1~J),
where 8 is the stretch produced by P. Wertheim puts this down without

stating that he is assuming that A = 2/n and consequently 77
=

1/3, his

own particular theory of the inter-constant relation for isotropy. He
then continues :

" The two rays have to traverse the distance 1(1
-

and consequently the difference of their equivalent air-paths d, after

they leave the prism is proportional to l(\-\8) (0/0 - 0/0e )
and to

the dilatation 8, we have then :

rf = fl (!-{.) (0/0.- O/OJ" .................. (i).

Assuming .v- negligible, and stress proportional to strain, or,

Now :

"
0/0 and 0/0e are the two indices of refraction / and 7

e ;
:nid

for d= 1 and 6 = 1, we have P- C, and accordingly,

(iii),

whi-n- it i- necessary to take tin- negative sign for positive traction and
tin i ign for negative traction."

I do not understand Equation (i).
I should have thought that if

1 WcTtheini following the analogy of natural double refraction speaks of ' ordi-

nary .iii-l extraordinary' rays. Homogeneous plane polarised liuht, IK in- im-Mi-iit
normal to the face /ixfc of the prism, will be decompose i rays, one with
vil'i '.]} to //, the other with vibrations parallel to //. Those rays ti

with velocities differing from each other and from the \rloritv <>f li-li't IB

linfttrur M llni- 11 special claim to lie ti-nm-.l 'oi.ii-
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and Oe
were the ray velocities the value of d must, for small s, be

1(OJ0 -OIO^ which agrees with Neumann's value in our Art. 1191*,
if we remember that his 8 is not the length of the equivalent air-path,
but the thickness of air for the corresponding colour of the Newtonian
scale. Further, since Wertheim makes 0/0 - 0/0e or 7 - /

e ,
a constant

in Equation (iii) depending on the elastic nature of his material, he can

hardly mean and Oe
to be the velocities of the two rays. They are

really the velocities divided by the stretch. Comparing Wertheim's

Equation (i)
above with Neumann's (iv) of our Art. 1 191*, we see that:

or, that the constant I Ie ,
which Wertheim terms " the true measure

of the double refraction,"

in terms of the photo-elastic constants p and q of Neumann, where r is

the refractive index and V the velocity of light in the unstrained

material. Taking rOjV and assuming it =1*543 for plate glass,
Neumann's values for p/V and qjV (see Art. 1193*) give / -/e

= *158

according to my calculations and with uniconstant isotropy. Wertheim

gives '157 for its theoretical value for
17
=

J, and, '168 for
77 1/3. His

experimental determination gives '191. The difference is considerable,
but in both Neumann's and Wertheim's results all the elastic and optic
constants were not determined for the same kind, still less for the same

piece of glass.

It may be noted that Wertheim terms the constant C above

(Equation (iii))
the "coefficient d'elasticite optique." Thus G is pro-

portional to the inverse of what Maxwell terms the "
optical effect

"
:

see our Arts. 1543*, 1544*, and 1556*. Wertheim's name seems well

chosen, as we have from Equation (ii), dP/(Cb) t
an equation analogous

to s PI(Ebl); thus C is the load corresponding in a prism of unit

breadth to unit difference of equivalent air-paths (p. 196).

[796.] Wertheim's first three experimental results verify the

relation d = P/(Cb), where C depends on the material and not on

the size of the prism taken (Experimental Laws, 1 3, pp.

189-90). A fifth law stated on p. 197 is that the difference (d)
of the equivalent air-paths of the two rays is independent of the

wave length ;
thus the dispersion accompanying the double refrac-

tion is insensible.

Wertheim's fourth experimental law is the answer to the

problems he stated at the commencement of his memoir. Accord-

ing to Neumann's theory d is proportional to the stretch s, and
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by Wertbeim s experiments <! is given as ;i function of P. Hemv
if (I be pitted up to P, the curve ought to be a straight lim-

it P be proportional to s, or if stress be proportional to strain.

Further this line ought to pass through the origin without change
of slope if tin- stretch- and squeeze-moduli are equal. The fol-

lowing is Wertheim's conclusion:

Double refraction or the difference of the equivalent air-paths of the

two rays is proportional to the mechanical stretch or squeeze, but

these are not rigorously proportional to the tractions. In taking t In-

fractions for abscissae and the stretches and squeezes for ordinal*

curve is obtained for the pressures concave to the axis of abscissae, and

another for the tensions convex to the same axis
;

these curves

!-htcn themselves as the stresses increase till they coincide with

on. jtnd the same straight line which corresponds to the elastic modulus

usually adopted for both stretch and squeeze (p. 191).

What Wertheim's experiments go to show is a want of pro-

portionality between d and P. He gives (pp. 192-3) reasons for

supposing that s and d are proportional, hence it follows that 8 and

P are not. It must be remembered that Wertheim has been

plotting up his curves starting with initially very small loadings

<piite within the elastic limit, and that it is not till these small

loadings are passed that the exact proportionality of stress and

strain appears to commence. In other words the slopes of the

tangents to the stress-strain curves at the origin are not what ire

an- to understand by the statical moduli. Are we to take then

the slope of one or other tangent at the origin as the modulus ob-

tained by vibrational methods, or are we to suppose no propor-

tionality between very small stresses and strains? This \;i

view is opposed to the isochronism of sound vibrations. Of course

in experiments involving delicate measurements of this kind, it

is always possible to raise a suspicion as to the accuracy of the

results. Here is what Wertheim himself says of his results :

LCH resultats quo nous venous d'obtenir ne sont d'ancmic importance pour
la pratique dcs constructions

;
ces differences sont trop petite* pmr

:atiin lorsqu'il
<

I'emploi des niateriaux, -t

:-ment. <|iie Ton pent continue! 1 en tout' ,-rvir d'un

'icite pour calculer les cfict I des

compressions. M .:-|uiereiit one grande importance lonqu^oo
les il point de vue de la thcWie des f.nvi-s liiolecul.i : : cclle

eaniqOM et des vibrations <:s <|u'ils foiir-

niront la solution d'un certain noml>re de questions <jui sont rextce
't >lir leM|llel!ev j

(
. ],. p,

caaiou (pp. iy;
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[797.] Some other points in the memoir deserve notice :

(a) The "double-refractive power" (=ih Wertheim's notation

I - I
e ) depends in some undiscovered way on the other elastic and

optical properties of the bodies. According to Wertheim it is not the

same for all substances (he finds on p. 202 values from -2182 for crown

glass to -0875 for 'Flint Faraday' and '0641 for 'alum inactif '); neither

does it stand in any simple relation to the density, nor is it a function of

the refractive index only.
We note that Neumann's value of the " double-refractive power

"

contains (1 + rj)
and r

2
as factors, if it be written in the form

and hence throws us back on the determination of p and q as functions

of the elastic and optic constants (pp. 204-5).

(b) Wertheim holds that there is no relation between the two
kinds natural and artificial of double refraction. To convince

oneself of this, he says, it is only requisite to consider the forces

which it is necessary to apply to an isotropic body in order to produce
for equal thickness the same double refraction which arises from the

passage of a ray across a plate of doubly refracting crystal cut parallel
to the axis. For example he takes Iceland spar and ordinary crown

glass, for which he says "the differences of the two indices of refraction

are the same." Now I have already referred to his obscurity about
the quantities and Oe and indicated that his I and Ie are not

the true refractive indices. It seems to me that s (I I
e )

is the

real difference of the refractive indices for the strained material.

Does he then mean that this or that the "double-refractive power"
I Ie for crown glass is equal to the difference of the indices for

Iceland spar ? If he does mean, as he says, the difference of the indices,
then the force required to make the crown glass refract as the Iceland

spar is P jEs, or P would be the pressure required to produce the

necessary strain in the glass for the given difference of indices. On the
other hand if he means that the " double-refractive power

"
of crown

glass is equal to the difference of the indices of Iceland spar, then we
have P E, as he says, or a pressure is required a thousand times

greater than would crush the glass (p. 204).
This apparent confusion leads me to doubt the accuracy of the

values given for T
e in the table p. 202. EjC is presumably found from

the experiments and equals 7 - 1
6
in Wertheim's notation, but why is

/ = to the refractive index for the isotropic material*? Since it is

s (I
- I

e )
which is the difference of the refractive indices of the 'ordinary

and extraordinary
'

rays, this appears a perfectly arbitrary assumption.

(c)
In a footnote on p. 206 Wertheim objects to Maxwell's having

referred (in the memoir of 1850) to his hypothesis that A 2/x, while

citing only his experiments on caoutchouc as evidence for it, and neglect-

ing all the other experimental evidence in favour of it. He also not
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unreasonably objects to Maxwell's taking cork and jelly as types of

isotropic homogeneous bodies, but Maxwell has not been the only
<>f li-nder in this respect.

(d) Wertheim considers what rotatory effect magnetic force has on
the, plane of polarisation when an isotropic body in the magnetic field is

subjected to positive or negative traction. His experiments were on

bodiea which possess to a high degree the magnetic rotatory power when

isotropic ('
tels que les flints

').
The result was always the same, a

small stress rendered this power relatively feeble. The exact load at

which it disappeared was not capable of accurate measurement, but, the

liijht being homogeneous, all rotation had disappeared when the difference

of tin.- ri[iiiv;iK'iit air-paths of the two rays had become equal to halt

the wave length of the light. Wertheim considers that for all natural

or artificial doubly-refracting media the magnetic rotatory power is in

inverse ratio to the doubly-refracting power, when the one is must

-IK -rgetic the other is feeblest. Thus it is to be noted that purely
UK -i -hanical forces can apparently annul the action of magnetism on the

medium 1

(pp. 207-9).

(e) On pp. 209-216 Wertheim describes what he terms the

l)iiini.innmtre Chrornatique. This is men-ly a variation of Brewster's

Chromatic Teinometer: see our Art. 698*, Vol. i. p. 640, ftn. Brewster's

Ti milometer is based on flexural stress, Wertheim's on traction, but tin-

idea is exactly the same in both. Wertheim, it is true, makes con-

>iderable practical application of his instrument, and describes accurately
its structure and use, but he ought to have acknowledged the source

from which he had taken his idea, as he elsewhere refers to the very

paper of Brewster's in which an account of the Teinometer is given.

Wertheim, assuming the accuracy of his Teinometer, shows what

very large errors may arise in the manometric measurements of pressure
in a large hydraulic press (p. 215).

(f) He applies his Teinometer to ascertain the squeeze-modulus of

diamond. Turning to Equation (ii)
of Art 795, we have

Now rf, I, and /' can be measured, hence if we knew I -I
e
we should

hav A'. Hen- I tail to follow Wertheim, he assumes /
?
-/

e ,
m4

Of s(I -I
e ),

as the difference of the refractive indices again. He puts
7 =2'470, Brewster's value for unstrained diamond, and assumes for

7e
a value equal to that of tluoi sj.ar. Thus he obtains E= 10,^<>."> 1

per sq. mm., or about the value for annealed copper "et nulleim nt < n

rapport avec sa grande durete" (p. 217).

I'p.
L'17-L'l contain a resume of the results of this memoir, a

memoir which is undoubtedly of value, but which requires somewli.it

cautious and critical reading

1 Wertheim (p. 208) refers to experiments of Bertin and Matteucci in the same

:ion, but without giving the loci of their memoirs : see our Arts. 698, (iv) and

780.
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[798.] G. Wertheim : Memoire sur la torsion. Comptes rendus,

T. 40, pp. 411-414, and Memoire sur les effets magnetiques de

la torsion, in the same volume, pp. 1234-7. Paris, 1855.

These contain extracts from the great memoir on Torsion: see

our Arts. 799 et seq.

[799.] G. Wertheim : Memoire sur la Torsion. Annales de

chimie et de physique, T. 50. Premiere Partie (Sur les effets

mecaniques de la torsion), pp. 195-321. Seconde Partie (Sur les

effets magnetiques de la torsion), pp. 385-431. Paris, 1857. This

paper was presented to the Academy on February 19, 1855.

Wertheim exhibits here as in other work all his merits and

demerits, excellency and width of experimental investigation,

ignorance or misapplication of theory, which leads him to mis-

interpret the results of some even of his own experiments.

[800.] The memoir, after a brief statement of the problem of

torsion, opens with an account of the history of that subject (Histori-

que,pp. 196-202). Here reference is made to Coulomb (Art. 119*)
and Biot (Art. 183*) for the theory of torsion

;
to Poisson, Cauchy,

Lame and Clapeyron for the general equations of elasticity; to

Neumann, Stokes and Maxwell as arriving at the same results

by different processes but as adding nothing essential
;
to Heim 1

and Segnitz (Art. 481) as determining the shortening of a prism

by torsion; to Savart (Art. 333*), Duleau (Art. 229*), Bevan

(Art. 378*), Giulio (Art. 1218*) and Kupffer (Art. 1389*) as ex-

perimentally verifying the laws of torsion, or as determining by its

means the elastic constants; reference is made also to Saint-

Venant, whose work Wertheim seems totally to have misunderstood,

probably to a great extent through insufficient analytical know-

ledge. The footnote on p. 199 is neither just to the results

which Saint-Venant had published before 1857, nor does it

apparently grasp his position. It is one thing to agree that a

certain coefficient of correction is necessary, it is another to accept
Wertheim's erroneous theory of torsion and his purely empirical
relation between the coefficients of bi-constant isotropy (X = 2//,)

in order to deduce that coefficient. We cannot enter at length into

1 Heim in the work referred to in our Art. 906* deals (S. 237-47) by a
cumbersome analysis with the stretch in the 'fibres

'

of a prism due to torsion.

What is material on this point has been said in our Art. 51.
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the details of this controversy which we have had occasion several

times to refer to (see our Arts. 1339*-43*, 1628*-30*, and in 1-2).

It must suffice to state here that we hold Wertheim to have IKM-H

in the wrong throughout, and occasionally, we fear, influenced by
the dread that Saint-Venant's brilliant theoretical achievements

would throw into the shade his own very valuable experimental
researches. The lesson to be learnt from the controversy is the

ever-recurring one, namely, the need that physicists should ha\

sound mathematical training, or, failing this, leave the theoretical

interpretation of their results to the mathematician.

[801.] After a description (pp. 202-205) of the apparatus adopted
for the experiments, Wertheim states the problems he proposes to deal

with. They are the following:

(i) Whatever may be the magnitude of the elastic strain, are the

angles of torsion still rigidly proportional to the moments of tin-

torsional couples and to the lengths of the prisms to which torsi- >u

is applied?

(ii)
What is the relation between torsional elastic strain and

torsional set (tort) ?

(iii)
Is torsional elastic strain accompanied by change of volume,

ami if it be, what is the relation of that change to the torsional conplo
and to the shape of the prism?

(iv) How far is the accordance with experiment of the formulae of

torsion modified by the aeolotropy of the material or by the shape of

the prism ?

(v) How far do the results of torsional experiments confirm

Wertheim's theory that A. = 2/a, or tend to demonstrate uni-coiistant

isotropy, A = /n?

Wertheim's experiments were made on 65 prisms, partly on circular,

j tartly on square, rectangular and elliptic bases, some beinij solid and
some hollow. The materials were steel, iron, brass, glass, and in a few
cases oak and deal.

In the experiments on torsion the terminal cross-sections of the

prism were fixed at a constant distance from each other, i.e. the length
of the prism could not change with the torsion (p. 202).

[802.] Wertlu ini takes the opportunity afforded by tin 1 hollow

prisms to investigate in Regnault's manner the value of the stretch slide

ratio
17.

The hollow prism Mocked at the ends is filled with fluid c.m-

niuniratinr with a capillary tube passing through one of the terminal

blocks. The prism is then stretched with a uivm stretch >-.. If the

in were isotropic the change in unit volume of the hollow ought to be

8
l (\ -2?;). This ehange in volume can be measured by the amount the

lluid has advanced or receded in the capillary tube. There are con-ider-
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able difficulties in making the experiment, e.g. Wertheim found that

the results depended to some extent on the diameter of his capillary
tube (see pp. 209-10 and the numerical tables). The results are given
in a table on p. 212. Wertheim puts rj= 1/3 and thus takes the change
in unit volume to be 1/3 of the stretch. The calculated results do

not agree very closely with the observed, being greater for cylinders of

brass and less for those of iron. Rectangular prisms of brass give fairly

good results. At the same time
rj
=

1/3 gives generally better results

than could be obtained from
17 =1/4. As Wertheim, however, admits

that despite the annealing his prisms were not isotrojric, there is no real

reason why 77
should be equal to 1/4. This want of isotropy Wertheim

considers beyond the reach of the then existing theory, and an attempt
he makes to deal with it on the basis of Cauchy's equations is not

successful. The difficulty was fully overcome in Saint-Venant's paper
of 1860: Sur les divers genres d'homogeneite : see our Arts. 114-125.

While probably the aeolotropy accounts for the variety of the results,

Wertheim also notices that the fluid itself may affect chemically the

material of the tube or the cement which fastens its terminals (p. 216).

Pp. 216221 are entitled : Sur les effets optiques produits par la

torsion, and mainly describe the difficulty of making the necessary

experiments. Wertheim concludes from experiments made on glass

only that :

Ces experiences prouvent qu'il s'agit seulement d'une double refraction

ordinaire qui devient positive ou negative selon que la torsion a lieu vers la

droite ou vers la gauche ;
on ne pent rien en conclure eu ce qui concerne uii

corps parfaitement homogene, et elles ne peuvent scrvir ni &, confirmer ni a
infirmer les previsions de 1'analyse de M. Neumann. (See our Art. 1195*.)

[803.] Pp. 221-225 are entitled : Sur quelques faits generaux et in-

dependants de laforme de la section transversale. Wertheim commences

by dividing the angle of torsion into two parts, i/^ the elastic part and
ty a

the set part. He recognises the after-strain discovered by Weber (I'effe't

secondaire decouvert par M. Weber, et qui est insensible dans I'allongement
des metaux) to be sensible in torsion experiments on metals, but he

disregards it because

ses effets se confondent avec ceux des oscillations tournantes que la barre
execute autour de chaque position d'equilibre avant de revenir au repos

(p. 221).

As after-strain can be observed for more than twenty minutes in

steel wires, I am somewhat doubtful as to the exact meaning of the
sentence cited.

The following general conclusions are drawn by Wertheim :

(a) There is no point at which set can be said to commence (thus
Wertheim had not reduced his prisms to a state of ease).

(6) The set-angle bears no obvious relation to the elastic angle.
It is not proportional to the length of the prism nor to the load

couple, although of course it varies with these. It begins to increase
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at first very gradually, then more rapidly, and finally just before the

l>ar breaks (ou se niette a filer) becomes incapable of determination.

(This seems to point to the early stages of set being merely due to the
'

working' of the individual specimen.)

(c) The angles which measure the elastic strain are not rigorously

proportional to the load-couples applied.
Wertheim attributes this result to two causes : the first that stretch

is not proportional to traction as shown by his paper of 1854 (see our

Ait. 796), whence, as he holds torsion involves a longitudinal traction,

torsional stress ceases to be proportional to strain ; and the second

that as the torsion increases the cross-sections contract, and so the
' moment of resistance

'

of the prism decreases. (Both these causes

seem to me quite insignificant except for very large strains, which of

course do not fall within the ordinary theory of elasticity. The effect

of the traction on the torsional couple is given in our Art. 735, (in)).

(d) The angles of torsion are not rigorously proportional to the

lengths of the prisms.

(e) The interior cavity of a hollow prism, whatever be its form,
is diminished under the influence of torsion. This diminution is pro-

portional to the length of the prism and to the square of the angle of

torsion per unit length of prism.
For the case of hollow circular cylinders Wertheim gives the following

formula for the diminution 8V of the cavity V :

where r is the angle of torsion per unit length of the prism and a
l
the

inner radius of the hollow cylinder (p. 226). This gives results fairly
in accordance with his experiments. He propounds a partial theory
on pp. 229-235, which I am not able to accept. It contains the con-

clusions cited below, which I think are erroneous :

presente d'abord la question de savoir si, aiusi que nous lc .supposons,
la diminution de volume que nous venous de trouver represeuto rccllcment
cclle qu'aurait dprouvee un cylindre solide de memo matiore que la paroi du

tube, de dimensions telles, (ju'il rempllt toute la cavitc interieure de celui-ci,
et qui aurait etc soumis & la mfime torsion temporaire ? L'amrmative ue me
scmblo pas douteuse (p. 229).

We can test the result in the manner of our Art. 51. With the

notation of that article the longitudinal squeeze of a solid cylinder of

radius a is if the cylinder be allowed to shorten. The cylinder,

however, in Wertheim's experiments was maintained at length I. 11*

T2**2

there would be a longitudinal tension corresponding to a stretch of -j- ,

or if
r;

be the stretch-squeeze ratio its radius a would become

aH
-*?-]-)

and therefore
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87 T2a2
,.,

or =-2r} (i),

= - for uni-constant isotropy,

= on Wertheim's hypothesis (\= 2/x).

On the other hand the longitudinal squeeze is not equal to

for a hollow cylinder of inner radius %. To ascertain its value e (= the

77
of the notation of our Art. 51) we must put instead of the equation

at the middle of our page 42 :

/_2~.2 \

. . **ppir=o.
Jai \ A ./

-2 ( 4 _ 4\

This gives us

or,

that is the double of its previous value if a2 be nearly equal to

Hence by the same reasoning as before the internal radius a
1 becomes

Hence the new volume of the cavity

= F+ 8F= TT

SV
OT

7-=
-

-^-- .......................................

= -~ ( 2
2 + i

2

)
for uni-constant isotropy,

T2= - -
( 2

2 +
ffij

2

)
on Wertheim's hypothesis.

Thus
(ii) gives for the hollow cylinder a value at least double that

for a solid cylinder of the radius of the hollow. Our theoretical inves-

tigation, however, gives a value for 8V/ V for these cylinders only about
a third to afourth of that given by the formula which Wertheim holds
established by experiment. I am unable to explain this discrepancy
between the above theory and experiment. Possibly it arises from the

difficulty in Wertheim's apparatus of the terminal sections contracting
and hence in some way there may result a tendency to an inward buck-

ling of the sides of the cylinder.
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[804.] On pp. 235-7 we have a resuim of the results for hollow

and solid circular cylinders. In comparing the experimental results

with theory Wertheim takes rj
=

1/3, and it appears to agree better than

17= 1/4, but if we adopt bi-constant isotropy then there is no particular
reason for taking rj

=
1/4, and if we suppose rari-constant aeolotropy the

same remark holds. In l>oth cases we should choose a value of
rj

best

fitting with the experiments and varying from one material to another.

Hence it is impossible to agree with Wertheim's statement :

Quant h 1'exactitude de la constante que j'ai introduite dans la formule,
mil doute ne peut subsister &, cet 6gard ;

tons les angles calculds seraient avec
r.-uu'ieime formule de ^ plus petits, et il en resulterait entre le calcul et

I'cxpcrience un de'saccord constant et de beaucoup supe'rieur k la limit*

ire, de'saccord qui, dans les torsions considerables, atteindrait souvent

Pimportance de plusieurs degree (p. 237).

This statement is a fair enough argument against the uni-constancy
of the material of Wertheim's prisms, but is of no value in favour of

a general law that
ij
=

1/3. He appears to consider that there is really
a theoretical reason for this particular value, so that it has more
claim on our attention than

rj
= '3 say, while in fact it has a purely

empirical basis: see our Arts. 1324*-6*.

[<S05.] Wertheim next passes to the torsion of prisms on

elliptic bases. Here his method is very singular. He writes :

On obticnt la formule pour la torsion de ces cylindres, en suKstituant dans
la formula que M. Cauchy a trouvee pour les prismes rectangulaires, a la

place <lu moment d'inertie du rectangle par rapport & 1'axe, le moment polaire
de 1'ellipse (p. 238).

Wertheim has a footnote to 4'ellipse' "Voyez les ouvrages de MM.
Persy, Poncelet, Moseley et Weissbach."

Now Cauchy's formula for rectangular prisms is quite wron
(
i:

our Arts. 661*, 684*, 25 and 29), and if it were correct it could

not l)e applied in the manner suggested to elliptic prisms. But the

wroni,' formula for rectangular prisms, erroneously assumed to hold for

elliptic prisms, does give the true result for the latter as Saint-Venant
had shown ten years before this memoir (see our Art. 1627*). Wertheim
in this manner reaches Saint-Venant's formula for prisms of elliptic

cross-section (see our Art. 18) without referring to its discoverer. The
footnote can hardly serve to do more than mystify the reader. In

our Ait. IML':',* it" lias been pointed out that Saint-Vonant in I

rated the yauchisaeinent into two elements, a distinction which he

afterwards dropped. This distinction, however, made no change in the

facts or formulae he deduced for torsion. Now Wertheim (taking
however 17= 1/3) finds a close agreement between what is really Saint

formula and the results of his own experiments. He writes:

i-.'sultats i
.. rienro >'a-,-.rd-nt done ;iver ], ralrul d'une

mai! '

in. in,- pour Irs cylindres 12 et 11 qui mt jM.ur Lase
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des ellipses d'une forte excentricite ;
dans la theorie de M. de Saint-Venant

cet accord prouverait que le premier gauchissement qui seul existerait dans
des cylindres elliptiques, et dont 1'influence sur le moment de resistance a la

torsion n'a pas ete determinee par ce geoinetre, serait completement negligeable
sous ce rapport (p. 239).

The only intelligible reading of this passage would seem to be that

Wertheim had a different theory from Saint-Venant for elliptic prisms
and that the theory of the latter was demonstrated by the experiments
to be erroneous. These conclusions would be the exact opposite of the

truth. Saint-Venant's reply to "cette observation de 1'honorable et con-

sciencieux experimentateur
"

is polite but complete (see the Leqons de

Navier, pp. 629-31, and our Art. 191).

[806.] The next section of Wertheim's memoir is entitled : Sur
la torsion des prismes homogenes a base rectangulaire, and occupies pp.
239-53.

Before entering on the matter of this section we must remind the

reader that Saint-Venant had in 1847 given the true theory for

rectangular prisms (see our Art. 1 626 *) and shown wherein Cauchy's

theory was erroneous. Further that in 1854 Cauchy had acknow-

ledged the justice of Saint-Venant's criticism (see our Art. 684*).
Wertheim's memoir was read in 1855 but not published till two years

later, after, indeed, the appearance of Saint-Venant's great memoir on

Torsion, which was printed in a volume of the Memoires des savants

etrangers dated 1855. Hence it seems unaccountable that Wertheim
should without comment adopt Cauchy's formula as the theoretical view
of the subject, and apply to it a numerical coefficient of correction

which depends in an unknown manner on the ratio of the sides of

the rectangular base.

Wertheim commences by comparing the experiments of Duleau and
Savart on rectangular prisms with Cauchy's formula and deducing
a coefficient of correction. This is close to its value as given by
Saint-Venant's theory: see our Arts. 31, 34 and 191.

The next point dealt with is the diminution of volume of the

interior of a hollow rectangular prism or tube under torsion. Wertheim

gives the formula,

where 2%, 2^ are the sides of the hollow and r the angle of torsion

per unit length of the prism. But he remarks :

il n'est pas impossible que la the'orie apres de nouveaux progres conduise
<i une formule differente de celle-ci, et qui ne s'accorde pas moins bien avec les

experiences (p. 243).

This seems possible as there is a mistake somewhere in this
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empirical formula, for the left-hand side is a numerical quantity, but

the right-hand side is an area. Possibly Wertheim intended to write

in the denominator 16 (a^)^f.
Tf we go back to Art. 51 and assume the shortening of the 'fibre'

at any point of the hollow rectangle to be still JrV - c, where r is the

distance of the fibre from the axis of the prism, we easily find e = JrV,
where K2 is the swing-radius of the section about the axis of the prism.

In the case of a hollow rectangle with lengths of inner sides 2^ , 2^ ,

of outer sides 2a2 ,
262 ,

and uniform thickness we easily find :

Whence with the same reasoning as before :

1 1 tin; prism be very thin we have :

8 Vf V - -^ (oj
4-

>i)

2 r2 for uni-constant isotropy,

on Wertheim's hypothesis.

For the case of a square section (al
= b

{ ) these give only about one

third to a Jialf of Wertheim's results, thus differing almost as much as in

the case of a hollow circular cylinder (see our Art. 803, (e)).

If we were to multiply the above results by (1 + 2r))/2r),
or 1>\

3 or 2 '5 according to the hypothesis adopted, they would then a_

fairly well with Wertheim's experiments. But this amounts to sup-

posing that Wertheim's terminal conditions were of such a nature that

there was for a thin prism a reduction of sectional dimensions given by

(1 + 2
77).

Thus according to Wertheim if the torsional couple be so

large that it would produce, when the ends of the prism were not fixed,

a sensible longitudinal squeeze, then, if the ends be fixed, there will be a

<liminution of the linear dimensions of any internal cavity of about

(1 + 2rj)
x this squeeze.

[807.] So far as Wertheim's own experiments on solid

of rectangular cross-section go, the '

coefficient of correction
'

was

very nearly that required by Saint-Venant's theory, the errors

were such as were not unlikely to occur in material which was

hardly isotropic and in torsions carried in many cases beyond tlic

limit of linear elasticity. See Saint-Venant's Lefons de Navier,

The formula for the torsion of hollow rectangular tubes giv.n
on p.

_">'> i- "t OOUIM \vrmg: see our Art. 49.
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[808.] Sur la torsion des corps non-homogenes is the title of the

section of the memoir which occupies pp. 253-258. Wertheim supposed
that for sheet-iron and wood there are three rectangular axes of elasticity,

but his struggles to reach a theoretical formula for this case were not

successful. The true formulae for prisms of elliptic and rectangular
cross-sections are given in our Arts. 467. Wertheim obtains by a

series of inadmissible hypotheses a formula for a rectangular prism
which corresponds to some extent with Saint-Venant's for an elliptic

prism. He applies it, not very satisfactorily, to his experiments on

wood.
One point in this section deserves to be noticed, namely that for

hollow cylinders of sheet-iron there was an increase instead of a de-

crease of internal capacity produced by torsion (p. 254). This cannot

be explained by the formula
(ii)

of our Art. 803 (e) unless we put 17

negative, which is, however, impossible. Wertheim's own formula is

equally inapplicable.

[809.] The following section (pp. 258-269) deals with the torsional

vibrations of homogeneous bodies. So far as the theory of this section

goes it is partly erroneous (e.g. for rectangular prisms) and partly

hypothetical. It was a retrograde step to publish it after Saint-Venant's

memoir of 1849 : see our Arts. 1628-30*. Saint-Yenant shows in the

Legons de Navier (see pp. 635-645, especially p. 643) that Wertheim's

experimental observations are in complete accord with the formula

n IE o)K
2

n' V /x v

given in our Art. 1630 *. Wertheim introduces as before a ' coefficient

of correction
'

for the bars of rectangular section.

In a footnote (pp. 264-6) he corrects a slip of Cauchy's in his

Exercices, T. iv., p. 62. This slip is also noted by Saint-Venant in a

footnote to p. 641 of his edition of the Lemons de Navier. It is not of

importance, however, as the corrected formula is itself wrong.
There is only one remark in this section which it seems interesting

to quote. Possibly the influence which produced the effect observed

was after-strain :

Je profiterai de cette occasion pour faire remarquer que cette de"pendance
mutuelle entre 1'intensite du son et son elevation n'a pas seulement lieu pour
les vibrations tournantes

;
c'est au contraire un fait general dont on a pu

faire abstraction pour faciliter les calculs, mais dont il faudra tenir compte
actuellement. Les sons des corps solides montent en s'eteignant, tandis que
ceux des liquides et des gaz baissent a mesure qu'ils s'affaiblissent. En ce

qui concerne les corps solides, ces inegalites proviennerit evidemment de ce

que 1'allorigement qu'ils eprouvent par 1'effet d'une faible traction n'est ni

rigoureusement egal k la compression produite par cette meme force lorsqu'elle

agit comme pression, ni rigoureusement proportionnel a cette force (on this

point Wertheim refers to the memoir discussed in our Art. 792). Maintenant,
lorsque 1'on se sert de vibrations longitudinales pour determiner le coefficient

d'elasticite, on trouve necessairement une valeur plus ou moins elevee selon

T. E. II. 36
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que Ton considere comme le vrai son fondamental de la barre ou du fil un son

plus ou moins faible. Ordinairement on n'emploie k cet effet que les sons

les plus faibles, parce que ce sont en me'me temps les plus purs, et qu'on les

reproduit plus facilement avec le sonometre, la sirene, ou avec I'mstrument

quelconque qui sert b, la determination du nombre de vibrations. On com-

prend done qu'en opdrant ainsi, on obtiendra toujours un coefficient d'elastkite

t
!<>}) eieve, et que cette difference ne disparaltrait que si Ton pouvait, pour

ces determinations, se servir de sons tellement intenses, que leurs ampliti
fussent egales aux allongements et aux compressions considerables, que
Ton emploie pour la determination directe de ce nidme coefficient (pp.

259-60).

The inequality of the elastic constants as found by statical and

vibrational methods has, indeed, been disputed : see our Arts. 767 and

824. But if the pitch of the fundamental note really depends
Wertheim asserts on the intensity of the disturbance, it must

necessarily follow. If this assertion were true then the argument of

Stokes in favour of the linearity of the stress-strain relations from

the tautochronism of sound vibrations falls to the ground : see our

Arts. 928* and 299. The matter would be clearer if the effects of

after-strain which Wertheim holds "se confondent avec ceux des

oscillations tournantes
" could be eliminated in all cases of vibrations.

[810.] We now pass to the section of the memoir entitled: Sur
la rupture des corps homogenes produite par la torsion (pp. 26980).
Wertheim distinguishes two kinds of rupture, which he considers

characteristic respectively of hard and soft bodies (des corps roides

et des corps mous). In the first class rupture occurs by slide, in the

second by stretch of the fibres converted into helices. As hard bodies In-

takes glass, tempered steel and sealing wax ;
as soft certain sorts of iron

(far doux), cast-steel and brass, the second metal forming the transition

from one class to the other. The distinction does not seem to me very
real or necessary. I imagine that sealing wax might be made to show
a very great change in form before rupture if a small twisting force

were applied to it for a very long time. Our figure reproduces the

rupture -surfaei- ncconlinit to Wertheini fur cylinders of seal in.g wax or of

glass of small diameter. As he remarks, this Mirface certainly merits,

were it feasible, analytical treatment.

To the Jiard bodies Wertheim applies a theory of strength

deduced from the hypothesis that elasticity lasts up to rupture. hut

when Applying this theorv lie always supposes rupture to occur in the

outermost ill, re.' The- theory of elasticity, however, only nial

strain ; n this fibre in the case of a riijht circular cvlinoVr. In
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addition Wertheim puts //,
= ^E, a result which flows from his hypo-

thesis that X =
2/x,.

He gives, even admitting this assumption, a totally

wrong expression for the strength of a rectangular prism (p. 275).
For soft bodies Wertheim believes rupture to take place by the

stretch of the extreme fibres when they become helical. He appeals
for the case of a right circular cylinder to Weisbach's Mechanik, and

T
2
a?

gives for the stretch in a surface fibre . With the notation of

T2^3 ^2a2

our Art. 51, it is -= y = p ,
and this must be less than T/E, where

T is the rupture traction. This gives for the safe angle of torsion

Now if S be the shear at which rupture would take place by pure
slide we have ra <

///,.
Hence in order that rupture should take place

by longitudinal stretch we must have

Now according to Wertheim's hypothesis E =
JM,,

and as a rule T
and S are not very different (see our Vol. I. p. 877); hence we must have

S/H something like 3/2, which seems quite absurd as S is at most 1/500

part of
//,.

Wertheim's whole treatment, however, of rupture is very

unsatisfactory. He applies the proportionality of stress and strain,

which does not extend beyond the fail-limit (see our Arts. 5 (e) and
169 (g)\ and although he uses this elastic theory he places his fail-points
in the surface fibres of his prism farthest from instead of nearest to

the axis. The only grain of satisfaction to be found in these pages is

the confirmation of Saint-Venant's theory to be found in the following
words :

Le fer fibreux se rompt par 1'allongement des fibres extremes ; longtemps
avant la rupture on y remarque souvent des fentes profondes et paralleles &

1'axe, surtout vers le milieu des petites faces des prismes (p. 278).

See our Arts. 23, 30, etc.

Wertheim states that for practical construction it is worth noting
that a torsional set in soft iron increases the resistance to torsional

elastic strain
(p. 280).

The Premiere Partie of the memoir concludes with a summary
of results on pp. 280-6 and with tables of the experimental
measurements possibly the most valuable portion of the whole

paper on pp. 288-321.

[811.] The second part of the memoir is entitled : Sur les

effets magnetiques de la torsion (pp. 385-431).

We have already referred to other experiments of Wertheim

362
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himself and to those of de la Rive, Joule, Matteucci, Wiedemann
etc. on the relations between magnetism and stress. Wertheim
in this memoir proposes to deal with the influence of shearing
or rather torsional stress on the magnetic properties of a body.
He commences with some account of the early researches on the

inHuence of mechanical action on magnetism. Gilbert was ap-

parently the first to observe that the regular or irregular vibrations

of a bar of iron affect its state of magnetisation or the rate at

which it develops magnetisation. Gay-Lussac was among the first

to analyse these effects, while Rdaumur1
offered an explanation

of them which would hardly be considered satisfactory to-day.

Scoresby* added to previous knowledge by showing that the same

mechanical actions which cause an iron bar to acquire magnetism
when parallel to the direction of magnetic force, produce a !

when the bar is perpendicular thereto
;

further that repeated
blows cause a highly tempered and strongly magnetised bar of

steel to lose a large part of its magnetisation whatever may be

its position relative to the magnetic poles of the earth. Baden-

1 Mgmoires de VAcadtmie Royale des Sciences, Paris, 1723 (Edition Amsterdam,
1730). Experiences qui montrent avec quelle farilitr li- fer <b Voder t'trimenttent,

meme sans toucher Vaimant, pp. 116-149. See also the Histoire, pp. 7-8. Reaumur
notes the effect of hammering in magnetising a bar : Apres le premier coup de

marteau, cette vertu est encore faible ; on 1'augmente si on applique une seconde
fois la pointe de 1'outil sur un morceau de Fer, & qu'on frappe sur 1'autre bout
une seconde fois. Cette operation simple, repStee un nombre de fois, ajoutera

toujours a la nouvelle force attractive
;
mais il y a un terme par de-U lequel on

r6p6teroit inutilement 1'op^ration, la vertu de 1'outil n'y gagneroit plus rien (p. Hi)).

This is probably the first scientific notice of the effect of impulsive stress on

magnetism.
- William Scoresby: Transactions of the Royal Society of Edinburgh, Vol. ix.

pp. 243-58, 1823, gives an account of the influence of impulsive stress (hammering)
on the production of magnetism in iron and steel bars. A n'mnni- of his results is

given in the Edinburgh Philosophical Journal, Vol iv., 1821, pp. 361-2. We extract

the following :

4. A bar of soft iron, held in any position, except in the plane of the magnetic

equator, may be rendered magnetical by a blow with a hammer or other hard
substance ;

in such cases, the magnetism of position seems fixed in it, so as to

give it a permanent polarity.
5. An iron bar with permanent polarity, when placed anywhere in the plane

of the magnetic equator, may be deprived of its magnetism by a blow.

6. Iron is rendered magnetical if scoured or filed, lent < tici*t,-il, when in the

ion of the magnetic axis, or near this position; tin- upper end becoming a

south pole and the lower end a north pole; but the magnetism is deatr -\.-.l l>v

tin- sunn- means, if the bar be held in the plane of the magnetic equator.
A. bar-magnet, if hammered when in a vertical position, or in the position of

the magnetic axis, has its power increased, if the soutli pole be upward, and loses

some of its magnetism if the north end be upward.
10. A bar of soft steel, without magnetic virt

fixed in it, by hammering it when in a vertical position ;
and loses its magnetism

by being struck \vhen in tin- plane of the magnetic equator.
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Powell
1

following Scoresby was apparently the first to deal with

the effect of torsion on the magnetisation of an iron bar placed in

the magnetic meridian but inclined at different angles. He also

sho\ved that a straight bar magnetised and then bent loses a

great part of its magnetisation. De Haldat 2 observed that sound

vibrations have less effect than irregular impulses in destroying

magnetisation, but according to Wertheim his views on the in-

fluence of torsion are incorrect. A memoir by E. Becquerel of

which the title, Wertheim says
3

,
will be found in the Comptes

rendus, February 9, 1845, had not yet been published when
Wertheim wrote, but Wertheim was able to state briefly one

of Becquerel's conclusions :

Un fil de fer doux est charge d'un poids a son extreruite inferieure, et ime

partie de ce fil vertical est placee au centre d'une spirale dont le circuit

comprend un galvanometre ;
on observe un courant de meme sens pour

toutes les torsions, que celles-ci aient ete effectuees dextrorsum ou sinistror-

sum, et un courant de sens oppose pour toutes les detorsions quel que soit

leur sens (p. 387).

[812.] Finally Wertheim cites a note of Matteucci to Arago
4

.

This ought to have been noticed in connection with our Arts. 1333* 36*;
It gives an earlier date to several of Matteucci's results published in

the memoir of 1858 : see our Art. 701. In it Matteucci arrives at the

following conclusions :

(i)
A bar of soft iron or steel being magnetised by the passage

round it of a spiral current, the first torsions of the bar increase the

strength of the magnetisation.

(ii) This effect is independent of the sense in which the torsion is

applied, i.e. whether it is in the same or the opposite direction to the

current.

(iii) When the current has ceased the same torsions tend to

decrease the magnetism, and this whether they are applied immediately
after the cessation of the current or several days after.

(iv) If the same mechanical stresses be applied at short intervals

successively they cease to have the same magnitude of effect.

Le magnetisme acquis par les memes actions de torsion, donnees
successivement soit dans un sens, soit dans le sens oppose, soit alternative-

ment, va toujours en diminuant
;

si Ton continue toujours, on voit apparaltre
les signes du magnetisme qui se detruit qui sont remplaces par des signes
du magnetisme qui s'accroit, et tous ces faits oscillent dans les memes
limites (p. 388).

1 Thomson's Annals of Philosophy, Vol. in., 1822, pp. 92-5.
2 Annales de Chimie, T. XLII., 1829, pp. 39-43.
3 I cannot find even the title of this memoir in the Comptes rendus for 1845.

The memoir in T. xx. (pp. 1708-11), contains nothing material to the present point
and was read on June 9.

4
Comptes rendus, T. xxiv., 1847, p. 301.
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(v) When the current has ceased the same repeated actions rapidly

destroy the magnetism.

[813.] Wertheira in a note communicated to the Academy in

and printed in the Comptes rendus, T. xxxv. p. 702, had announced
results not in perfect accord with Matteucci's and he repeats the

contents of this note in the present memoir. They are as follows :

(i)
In so far as a bar of iron has not attained a state of magnetic

equilibrium torsions and detorsions
1

act upon it as all other mechanical

disturbances, i.e. they tend to facilitate its magnetisation when under the

influence of a current or terrestrial magnetism, and they tend to

facilitate its demagnetisation when it is under no such influence.

(ii)
In both cases as soon as magnetic equilibrium is established,

whether the bar be or be not under the influence of magnetic induction,
all elastic torsion, whatever be its sense, produces partial demagneti>a
tion, while elastic detorsion restores the primitive magnetisation.

(iii)
When an iron bar or a bundle of iron wires under the action

of a current or terrestrial magnetism receives a large torsional set,
then all elastic torsion or detorsion which is applied to it in the sense
of the torsional set produces a partial magnetisation, and all elastic

torsion or detorsion in the opposite sense produces a demagnetisation
(p. 389) : see our Art. 815, (xiv) and (xv).

[814.] Wertheim in the memoir under consideration discusses

the experiments which confirm the results of the previous article.

He gives in addition certain amplifications and corrections of

them. Among the latter we may note :

(iv) The purely mechanical actions of torsion and detorsion aiv in

themselves insufficient to magnetise iron (p. 401). This result, as

Wertheim remarks, is initially probable.

(v) The torsion of a bar under magnetic influence enables it to

take a much greater permanent magnetisation than it would other \

be capable of (p. 401).

(vi) When the bar has taken all the temporary and permanent
magnetisation of which it is capable under the action of the ^i\ n

external magnetising force, then torsion diminishes, and the corn-spond-

ing detorsion restores its magnetisation (p. 401).
This is only an ampler statement of (ii).

(vii) When the external magnetising influence is removed torsion

and detorsion (as other mechanical <li>tuH.ant -s) rapidly destroy the

temporary magnetism, but they continue indefinitely to exercise in-

1
dttortion, by which I presume Wertheim means a release from a state of

torsion, not a negative torsion, but his language is obscure.
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fluence on the permanent magnetism, i.e. the latter is diminished by
the torsions and restored by the detorsions (p. 401).

This is an amplification of
(ii)

and it is important to notice that

Wertheim now makes a distinction between a temporary and a perma-
nent magnetisation.

(viii) The effect of torsion is generally greater than the opposite
effect of detorsion (p. 401).

This may possibly have been only apparent, i.e. due to Wertheim's
mode of experimenting.

(ix) Whatever may be the magnetic state of the bar, provided it

be one of equilibrium, the effects of the torsions are proportional to the

angles of torsion, but the magnitude of these effects appears to depend
more on the magnitude of the permanent than on that of the temporary

magnetisation (pp. 4012).
Wertheim follows up these results (pp. 4024) by some remarks on

the different effects produced by torsion on different materials, e.g. soft

iron, hard iron and untempered cast steel (see our Art. 703).

(x) The effects of torsion dimmish with the elapse of time as the

iron loses a part of its magnetisation. There appeared however to be a

limit to this diminution as iron bars of any quality gave perceptible

magnetic results when twisted six months after their magnetisation

(p. 407).

(xi) Je dois faire remarquer ici une anomalie que j'ai observee plusieurs fois

et qui me semble tout a fait inexplicable : elle consiste en ce que les fers durs

donnent souvent, immediatement apres 1'interruption du courant, des devia-

tions plus fortes qu'ils n'en avaient fourni taut que le courant passait ;
dans

ces cas la diminution ne se fait sentir qu'apres quelque temps (p. 407).

The * deviations
'

referred to are those of a galvanometer, con-

nected with a coil round the bar, and were caused by the induced

currents whereby Wertheim measured the changes in magnetisation of

the bar. The further current, which he himself mentions in (xi.), is that

which produced the magnetising force on the bar.

(xii) Wertheim was unable to obtain any sensible results in the

case of torsion applied to diamagnetic bodies (p. 407).

[815.] The next points to which Wertheim turns are of consider-

able interest. Suppose the torsional set to be zero or negligible, then

suppose any elastic torsional strain given to the bar and let it be

magnetised in the strained state. Will the magnetisation be a

maximum in this state, in the state of zero strain, or in any other

state ? Wertheim found that :

(xiii)
The maximum of magnetisation always coincides with the

position of zero strain (p. 409).
He next turned to the problem of torsional set. Set he found

exercised no influence, if it preceded magnetisation. But supposing
the set was applied during the time the bar was under the influence

of magnetising force, what would be the position of maximum magneti-
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Nation
;
would it coincide with the position in whicli the bar would

have no elastic torsional strain ? The angle between the positions
of zero torsional couple and maximum magnetisation is termed the

angle de rotation du maximum. Wertheim found that for harder
sorts of iron (fer dur, ou meme demi-dur) very large torsional sets

were not necessary in order that this angle of rotation should be
sensible

;
on the other hand it was very difficult to obtain sensible

measurements when soft iron bars and not wires were used. A table of

numerical results is given on p. 413. We may note :

(xiv) The angle of rotation is less than the elastic limit to torsional

in measured from the new position of zero elastic strain, and is in

the direction of the torsional set.

(xv) Torsional strains when less than this angle of rotation produce
increasing magnetisation, when greater than this angle decreasing mag-
netisation, which becomes less than the magnetisation at zero strain for

double the angle of rotation (pp. 411-1 L').

It will be noted that (xiv) and (xv) sensibly modify (iii) of

Wertheinfs Note of 1852: see our Art. 813. The latter statement is

only true provided the torsions do not exceed double the angle of rota-

tion.

[816.] Wertheim now turns to the last of his experimental in

gations. A bar having been given an elastic torsional strain while

under the influence of the magnetising force, what will be the character
of its magnetism when the magnetising force is suddenly removed ? He
found that :

(xvi) For all qualities of iron the effect of removing the magnetising
force (stopping the current in the coil) while there is an elastic torsional

strain is to rotate the position of maximum magnetisation in the
direction of the temporary strain, but the angle of rotation is always
less than the angle of this torsional strain (p. 414).

The phenomena of (xiv), (xv) are especially marked in hard iron,
those of (xvi) in soft iron. Some additional information will be found
on pp. H 1 and 419, while pp. 415-8 are occupied with tables of the

experimental results.

[817.] On pp. 419-428 Wertheim discusses how far the phenomena
lit- lias d,->.-ril,,-(l ,in be accounted for by any known theory of magnetism.
His results, as mi.u'ht be supposed, are negative. Thirty years lat. ,

have hardly reached ;i really valid theory of the relation between strain

and in. although we see more exactly their physie.-d r -lat i

The two-fluid theory, the force coercitive of Coulomb, or even the

hypothesis of Matteucci that the magnetic effect of strain is a secondary
effect of i(> change of volume- glV6 \Vertheiui no aid. It is curious
that Wertheim tak< - n -fiii,"' in a wave theory of the ether. \Ve may
not be able to follow his somewh iva>onin.', but it is

without interest to note that he holds that magnetisation as a po-
sition or a briiiLriii'4 into concordance "t

|

iant
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ether-vibrations surrounding the molecules, is a hypothesis far better

fitted than those before cited to account for magnetic phenomena.
The memoir concludes with some rather general remarks on the

effect of earth-strain (produced by other celestial bodies, change of

temperature, earthquakes etc.) on terrestrial magnetism, and on possible
methods of correcting compass-deviations in iron ships.

[818.] Historically the importance of this memoir of Wertheim's

seems considerable. He noticed a number of novel phenomena,

although he did not see the necessary limitations to some of his

statements in particular he did not discover the existence of a

'critical twist,' except in so far as this is implied by (xiv)-(xvi)

for the cases of previous torsional set under magnetisation or of

elastic torsional strain with sudden cessation of the magnetising
force. Wertheim's results must therefore be read with due regard
to more recent researches : see the references to Magnetisation
under Stress in the Index to this Volume, also Wiedemann, Lehre

von der Elektricitdt, m. S. 692, and J. J. Thomson, Applications of

Dynamics to Physics, pp. 59-62.

[819.] Wertheim : Memoire sur la compressibilite cubique
de quelques corps solides et homogenes. Comptes rendus, T. LI.

pp. 969-974. Paris, 1860. (Translated in the Philosophical

Magazine, Vol. XXL, pp. 447-451. London, 1861.)

Wertheim refers to his memoir of 1848 (see our Art. 1319*)
and to the value 1/3 which he there proposes for the stretch-

squeeze ratio 77, and which he holds has been confirmed by
subsequent experiments. He remarks that several distinguished

mathematicians, without doubting the accuracy of his experiments,
have yet endeavoured to bring them into unison with the results

of uni-constant isotropy by the aid of hypotheses tres diverses,

mais malheureusement aussi tres arbitraires (p. 970). Wertheim
refers in the first place to Clausius : see our Art. 1400*. Clausius

did not deny the homogeneity of Wertheim's materials, but, as we
have noticed, supposed like Seebeck (Art. 474) that elastic after-

strain had affected his results. Wertheim rejoins that no one

has yet observed after-strain in metals or glass. This statement

was absolutely incorrect even in 1860: see our Arts. 726, 748

and 756.

Wertheim next remarks that he does not assert that rj
=

1/3

holds for all metals, but only for those upon which he has
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experimented. This, I think, is not in complete accordance with

his earlier statements, but it allows him to maintain that he is

nut in disagreement with Lame* and Maxwell, nor even with

Clapeyron's results for vulcanised caoutchouc : see our Arts.

1163*-4, 1537* (and footnote) and 610.

He next proceeds to criticise Saint-Venant's hypothesis of

aeolotropy, or rather of varied distributions of elastic homogeneity

(see our Arts. 114, et seq.\ in language which suffices to prove tliut

he has not understood it.

Finally Kirchhoff's memoir of 1859 (see Section II. of our

Chapter XII.) with its direct determination of 77 for brass an<l

tempered steel is discussed. Wertheim holds that Kirchholt s

apparatus and his mode of experimenting were likely to produce
error (sont autant de circonstances fdcheuses : p. 973).

He takes comfort in the fact that the mean of the values

given by Kirchhoff for rj ('294 for tempered steel and '387 lor

brass) is not very far from 1/3. He will not affirm that tj
= 1/3

for steel, but he holds that Kirchhoff's experiments do not demon-

strate its improbability. Putting aside Clapeyron's experinn
on caoutchouc, Wertheim sees no fact that has yet been dedim-d

to show that 17 varies from body to body. He promises to present

shortly a memoir to the Academy on this subject.

[820.] The last mentioned memoir (Experiences /'// tu

Flexion?) has never, so far as I know, been published. Scarcely
a month (January 19, 1861) after the presentation of the memoir
discussed in the last article Wertheim in a fit of melancholy
<-Miiimitted suicide by throwing himself from the tower of tin-

Cathedral at Tours. A bibliography of Wertheim's papers ami

-me criticism of his methods by Verdet will be found in

Llnstitut, T. xxix., pp. 197-201, 205-9 and 213-6. Paris,

GROUP D.

Memoirs on tlie Vibrations of Elastic Bodu

[821.] A. Baudrimont: RecJierches expc'i-'um ///<//< .< war /'

des corps httdrophones. Annales de chimie et de phyxt
T. xxxii., pp. 288-304. Paris, 1851.

1 See also Arts 438-9, 471-4, 510, 534, 539-41, 546-8, 550-9, 583, 612-7, 680-2,
722-86 jmmrim, and 809 of this Chapter.



821] BAUDR1MONT. 571

Baudrimont uses the word isophone to denote a body, the

elasticity of which is the same in all directions, or an isotropic

body ; heterophone he applies to aeolotropic bodies, but especially

to bodies having axes or planes of elastic symmetry. The object

of this paper is to present a preliminary investigation of the notes

given by rods vibrating laterally. Baudrimont's ultimate object,

however, is to calculate the stretch-moduli in different directions

of an aeolotropic material by means of the notes given by the

lateral vibrations of rods so cut from the material that their axes

are in the given directions.

It is first needful to ascertain how far, what Baudrimont terms

Euler's formula, is accurate for such rods. This formula gives for the

frequency f:

where n is a mere numeric depending on the graveness of the note, E
is the stretch-modulus in the direction of the length I of the rod, p the

density of the material and K the swing-radius of the cross-section about

au axis through its centroid perpendicular to the plane of vibration

(see Lord Rayleigh's Theory of Sound, Vol. I. 171). Thus for the

gravest note of a given material the frequency varies directly as the

swing-radius and inversely as the square of the length.

Equation (i)
is obtained theoretically : (a) by supposing the cross-

sections to remain plane after bending and perpendicular to the axis

of the rod, (b) by assuming the rod not to diverge much from absolute

straightness, and (c) by concentrating the inertia of each cross-section at

its centroid.

Baudrimont by a series of experiments on ice, metal, quartz, and
wooden bars, believes that he has demonstrated that the laws which hold

for isotropic and aeolotropic bodies are the same, but that the frequency
of the notes is not inversely as the square of the length of the rod.

Lord Rayleigh has given a correction for the rotatory inertia of the

cross-section (Theory ofSound, Vol. I. 186), but assuming Baudrimont's

experimental results to be true 1

,
this correction is very far from

accounting for the divergence between Euler's formula and physical

fact, even when the ratio of length to diameter is as great as 30, 40, or

even 50. The correction is in the right direction but not nearly large

enough. It is obvious that we must for sound vibrations accept the

assumption (b). Hence if we are to trust Baudrimont's results, the

formula obtained from the Bernoulli-Eulerian theory for the notes

of rods is very inaccurate so long as the ratio of length to diameter of a

1 I suspect some large source of error, which might possibly have arisen in

clamping the rods. See the remarks on the difficulty of determining the stretch-
modulus by lateral vibration, in a memoir by Wertheim in the Annales de chimie
et deplnjsique, T. XL., p. 201. Paris, 1854.
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rod is less than 30 to 40. The complete theory, which ought to be
deduced from the general equations of elasticity, would like Saint-

Venant's theory of the flexure of beams take account of slide ; it would
be interesting to ascertain the order of the modification such a theory
would introduce into the expression for the frequency : see for the

case of longitudinal vibrations Chree, Quarterly Journal of Mathematics,
Vol. XXL, p. 287. If we accept Baudriinont's results it is obvious

that the stretch-modulus as calculated from Euler's formula for lateral

vibrations must diverge very considerably from that obtained by pure
tractional loading, except when the length of the rod is immensely
greater than its diameter. Such rods it would be difficult to procure
in many of the aeolotropic bodies (crystalline materials for example)
whose elasticity Baudrimont proposes to investigate by the method of

transverse vibrations.

[822.] Montigny: Procede pour rendre perceptibles et
/><>///

compter les vibrations d'une tige dlastique. Bulletins de I'Academic

Royale...de Belgique, T. xix. l
re

Partie, pp. 227-50. Bruxelles,

1852.

This is an extension of a method suggested by Antoine (Annales
de chimie et de physique, T. xxvii. pp. 191-209. Paris, 1849) of

rendering sonorous vibrations visible by combining a motion of

translation with that of vibration. Montigny used the following

arrangement to render visible the vibrations of a rod :

Si 1'extremite de la tige autour de laquelle les vibrations doivmt

s'effectuer, est fixee perpendiculairement a un axe de rotation, si, lors

de sa revolution rapide, I'extrgmite libre eprouve un choc contre un

obstacle fixe, les vibrations transversales de la tige, excitees de cette

nianinv da-is le plan de sa revolution, la ivndrnt visible sur toute sa

longueur dans des positions rayonnant du centre, et qui se trouvcnt

egalement espacees (p. 228).

After some general reasoning as to what it is the eye really

sees in this combination of motions Montigny concludes that:

II resulte de la que Trail ne perc,oit la tige qu'a chaque vibration

double, et que nous dcvrons prendre pour le nombre des vibrations

simples, effectuees dans un temps dmim-, le double des images de la tige

jit-ivurs pendant le inline intervalle de temps (p. 229).

Tlie rotation round the axis is so arranged that after a complete
revolution the rod returns to visibility at the same position as before;

this can always be obtained by quickening or slackening its spin.

Hence if t be the time of a revolution and // tlic number of im

of the r<l seen, tin- number of vibrations of the rod will be 2n

and their period t/2n. The positions of visibility arue where the
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velocity due to the spin is almost equal and opposite to the

velocity of an element of the rod due to lateral vibration. It

seems to me that Montigny is using the word vibration for what

we in England term the half oscillation and that with our termin-

ology we should have the period of oscillation equal to t/n.

Montigny applies his method to verifying some of the well-

known theoretical laws of the vibration of rods. His experiments

confirming theory are thus opposed to the results obtained by
Baudrimont and cited in our Art. 821. This difference between

his own and Baudrimont's results our author discusses at some

length (pp. 241-7), and the inference certainly is that there was

some large source of error in Baudrimont's experiments. The
memoir concludes by noting how the new method may be

rendered available for technical purposes, for example, in finding
the stretch-moduli in the case of iron and wood *.

[823.] A. Masson : Sur la correlation des proprietes physiques
des corps. Annales de chimie et de physique, T. LIII., pp. 257-93.

Paris, 1858. This memoir was presented to the Academy, March

2, 1857. It is only the first chapter of the Premiere Partie

(Vitesse du son dans les corps) with which we are concerned.

Masson after some slight discussion of the relation between the

stretch-modulus, the coefficient of thermal expansion, the specific

heat of a material and the mechanical equivalent of heat, which

is based upon Kupffer's erroneous hypothesis (see our Arts. 7245
and 745), proceeds to describe the experiments by which he has

measured the velocity of sound in metals (pp. 260-4).
As he had previously found that the velocity of sound deduced

from the longitudinal vibrations of a metal rod increased with the

1 While referring to memoirs dealing with methods of rendering vibrations
visible I may note the following paper which escaped record in its proper place
in our first volume :

E. F. August : Ueber einige isochrone Schwingungen clastischer Federn. Zwei
Abhandlungen physicalischen und mathematischen Inlialts. Berlin, 1829. This was

published in the Program des Colnischen Heal-Gymnasii. It contains some account
of simple school experiments for proving Taylor's laws for vibrating strings (here

represented apparently by fine brass wire spirals) with no more complex apparatus
than the stand of an Atwood's machine. The effect of isochronous vibrations is

rendered visible by the oscillating of the machine violently for one length only
of the spring under a given load. The paper concludes (S. 4-10) with a rather

clumsy demonstration of the formula for the period of vibration of a weight
suspended by such a spring and with some experimental confirmation of its

accuracy.



574 MASSON. TERQUKM. [824825

length of the rod, the diameter remaining constant, he replaced

the rod by a wire of very small diameter: see our Art. 821.

He took wires as a rule of 1*5 metres length and of diameters

form *1 to *9 mm. The wires were placed horizontally and kept

stretched, one end being passed over a pulley and attached to

a weight. The vibrations were measured by the aid of a sono-

meter, and in all the experiments the periods of a great number

of harmonics as well as that of the fundamental vibration were

measured on each wire.

[824.] The densities for a number of metals are tabulated on

p. 263, and the corresponding velocities of sound are given on p.

264. These velocities were found for gold, brass, copper, silver,

platinum, iron, zinc, lead, tin, aluminium, cadmium, palladium,

steel, cobalt and nickel. Direct experiments were also made on

some of these metals to find their stretch-moduli. Masson gives

the following among other results on p. 264 :

Stretch-modulus in kilogrammes per sq. millimetre.

Gold

Brass

Silver

Platinum

Iron

From Sound Experiments.

8247

9783

7421

16932

19993

From Traction Experiments.

6794

9446

7080

15924

18571

These are in general agreement with Wertheim's results except
in the case of iron: see our Art. 1297* and compare with Art. 72s

[825.] (a) A. Terquem : Note sur les vibrations

I" lies des verges prismatiques. Comptes rendus, T. XLVI. pp. 775-8.

Paris L85&

(b) Same author and title. Comptes rendus, T. xi.vi. pp.

975-8. Paris, 1858,

(c) Idem: Etude des vibrations longitudinales des verges

prismatiques libres aux deux extrtmitts. Annales de chimie et

de physique, T.' LVII. pp. 129-190. Paris, 1S59.

(d) J. Lis>:ijinis: Note sur lesvilrot'n.Ks tran&enale* </<s I

elastiqiies. Corn/ T. XLVL pp. 846 v I'.-iii- 1^
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(e) J. Bourget et Felix Bernard: Sur les vibrations des

membranes carrees. Premier Memoire. Annettes de chimie et

de physique, T. LX. pp. 449-479. Paris, 1860.

These five memoirs deal with the nodes of vibrating bars and

the nodal lines of square membranes, and so belong more particu-

larly to the theory of sound 1

. They contain, however, references to

the elastical researches of Wertheim, Savart, Germain, Poisson,

Lame etc., while (a) and (b) ought to have had a reference to

Seebeck : see our Arts. 471-5. The papers (a), (b) and (c) have

special application to the case in which a rod is able to vibrate

longitudinally and transversely with the same tones and to the

1 I may take this opportunity of referring to a memoir on the nodal lines of

plates which escaped my attention in the first volume.
It is by Giovanni Paradisi and entitled : Ricerche sopra la vibrazione clelle

lainine elasticlie. Mem. delV Accad. delle Scienze di Bologna, T. i. P. 2, pp. 393-
431. Bologna, 1806.

The memoir is among the earliest which followed the publication of Chladni's

researches. The author made experiments on plates of rectangular (including

square) and equilateral form, the material of the plates being glass, brass, silver,

tin, wood (walnut and maple) and bone. The material was observed to influence

the note but not the nodal lines. The author found that the nodal lines (le curve

polvifere) and the centres of vibration (centri di vibrazione} were such that the

point of support of the plate might be anywhere on a nodal line and the point of

disturbance (punto del suono, il centra primario) at any other of the centres of

vibration (centri secondari di vibrazione) without any change in the system of

nodal lines. By the centres of vibration 'primary and secondary' Paradisi appears
to denote the points of maximum vibration corresponding to the loops in the

vibrations of a rod or string. Paradisi asserts that with the same point of support
and the same centre of disturbance plates can be made to vibrate with one, two or

more different tones, according to the manner in which the vibrations are excited

and that each such tone has a different system of nodal lines (pp. 416-9) ;

Dallo stesso triangolo sospeso nel centre, e suonato alia meta della base

in S, secondo che si preme piii o meno 1' arco, ricaviamo un tuono diverse
;

talvolta un tuono acuto, talvolta un medio, e talvolta un grave. Questi tre

tuoni i quali sono i soli che possono ricavarsi dal punto S dispongono la

polvere in tre diverse maniere (p. 417).

He supposes that the nodal lines must be due to one or other of two causes
;

(1) that they are the locus of points at which the plate is at rest, (2) that they are

the locus of points at which, although the points themselves are in motion, the

forces on the grains of powder are in equilibrium (p. 397). He chooses the latter

alternative, notwithstanding his experimental demonstration that the nodal system
remains unchanged if the points of the vice which supports the plate be moved along
a nodal line. His arguments in favour of this alternative are far from convincing
and his comparison of the nodal lines and centres of disturbance in plates with
wave motion in strings and water is unsatisfactory (pp. 399-401, 404-5). His

diagrams showing the manner in which the lines of powder are gradually formed
in experiment are however interesting.

Finally his attempt to form on his hypothesis a differential equation connecting
the nodal lines with the centres of vibration maybe dismissed as absolutely fruitless.

It is based upon the assumption that the unknown force on any grain of powder
upon a nodal line is along the tangent to that nodal line, which would cause the

powder to move along the nodal line and not remain at rest there (pp. 429-31).
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resulting nodes. Lissajous confirms Terquem's conclusions by a

very different experimental method. The excitement of trans-

versal tones by longitudinal vibrations had been already noted by
Savart

1
: see our Art. 350*. Bourget and Bernard give in-

teresting figures of the nodal lines of square membranes.

The title of another acoustic paper by Terquem bearing on a

kindred subject but belonging to the next decade may be cit< -<1

here:

(/) Note sur la co-existence des vibrations transversales et t</r-

nantes dans les verges rectangulaires. Gomptes rendus, T. LV. pp.

283-4. Paris, 1862.

[826.] J. Lissajous: Mdmoire sur fe'tude optique des mouve-

ments vibratoires. Annales de chimie et de physique, T. LI.

pp. 147-231. Paris, 1857. This classical memoir deserves at

least a reference here. By means of the image of a bright point
reflected from a small mirror attached to a vibrating elastic body,
the image being given a translatory or oscillatory motion per-

pendicular to the direction of the vibration produced in it by
the vibrating body, we obtain an optical representation of the

vibrations of the body. Lissajous shows how vibrations may be

analysed, and vibrations in the same or perpendicular directions

optically compounded. His methods are as important for the

investigation of the vibrations of large masses of elastic material

as for the ordinary purposes of acoustics.

[827.] F. P. Le Roux: Sur les phdnomenes de clwler qni

accompagnent, dans certaines cirConstances, le mouvement vibratoire

des corps. Comptes rendus, T. L. pp. 656-7. Paris, 1860.

This note draws attention to the fact that if a vibrating rod of

wood, ivory, steel etc. be clamped at a point which is not a node

of the free vibrations, this point rapidly rises in temperature.
Various experiments are described by which this rise in tem-

perature can be easily rendered sensible.

Le Roux concludes that when any vibratory motion is damp. ,1.

the kinetic energy of the vibrations will be converted into luut in

the neighbourhood of the parts damped.

1 The subject is briefly referred to by Lord Rayh i^h : Tlnunj ,>fS,,iiml. Vol. i.
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GROUP E.

Elastic After-Strain in Organic Tissues.

[828.] E. Weber: Muskelbewegung, S. 1-122, Zweite Abthei-

lung, Bd. in. of R. Wagner's Handworterbuch der Physiologic.

Braunschweig, 1846. This article contains a considerable number
of experiments on the elasticity of muscle (S. 70-99) and some

attempt to explain their elastic action (S. 100-117). The

treatment, however, is rather physiological than physical. The

general results of the writer as to the elasticity of muscle are

given in S. 1212, and we cite the following:

27. Die Thatigkeit des Muskels besteht namlich niclit nur in

einer Aenderung seiner (natiirlichen) Form, die sich verkiirzt, sondern

auch in einer Aenderung seiner Elasticitat, die sich vermindert.

28. Weil die Elasticitat des Muskels sich beim Uebergange zur

Thatigkeit betrachtlich vermindert, iibt ein Muskel durch seine Verkiirz-

ung eine weit geringere Kraft aus, als er ausiiben wiirde, wenn seine

Elasticitat unverandert dieselbe wie im unthatigen Zustande bliebe.

29. Die Elasticitat des thatigen Muskels ist sehr veranderlich
;

sie

vermindert sich bei Fortsetzung der Thatigkeit immer welter. Diese

fortschreitende Abnahme der Elasticitat bei fortgesetzter Thatigkeit ist

die Ursache der Erscheinungen der Ermiidung und der grossen Kraft-

losigkeit, welche die Muskeln wahrend derselben zeigen.

Weber also points out that the elasticity is more imperfect in

dead than living muscle, and that there is a great difference in

the general elastic properties of the two conditions.

[829.] W. Wundt : Ueber die Elasticitat feuchter organischer

Gewebe. Archiv fur Anatomie, Pliysiologie und wissenschaftliche

Medicin, Jahrgang 1857, S. 298-308. Berlin, 1857.

After referring to the experiments of Wertheim and E. Weber

(see our Arts. 1315* and 828) Wundt remarks that these experi-

ments leave us without any simple conception of the stretch-

modulus in the case of moist organic tissues, and that we are

thrown back on an empirical stress-strain diagram. At the same

time he takes exception to Wertheim's experimental methods,

chiefly on the grounds that they were made too long after the

T. E. II. 37
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death of the tissue-bearing individual, and that sufficient regard
was not paid to the time-element, which is so important a factor

in the elastic after-strain of such tissues.

Wundt's objects in this paper are to measure : (i) the ultimate

extensions by given loads, and (ii) the temporary extensions in

given intervals of time.

[830.] On S. 301-3 Wundt describes his apparatus, especially
his means for keeping the tissue moist. As to his results he concludes

that the ultimate extensions are proportional to the loads, but he comes to

no definite conclusions as to after-strain (die vorliegende Untersuchung
hat zu keinem fur die Kenntniss der elastischen Nachwirkuny bemerkens-

werthen Resultat gefuhrt, S. 303).
The following diagram clearly indicates the results of experiments on

a frog's muscle of 2-79 mm. length ;
AB is the stretch-traction curve for

ultimate extensions, where two abscissa-divisions represent 1 gramme and

the ultimate extension for 1 gramme^ -272 mm. The three heavy line

ordinatesa, 6, c, respectively -272 mm., -254 mm. and -242 mm. long, are

projected on CB and, one abscissa-division measuring lOminnt.s, tin

after-strain curves for these three loadings are given to the right of CB,
so that after each increase of load we see the extension gradually

increasing up to linear elasticity. Wundt points out that the line M>
is within the limits of experimental error straight, and his after-strain

curves are distinctly of interest. He concludes also that the limits

within which this proportionality of traction and final stretch hold

wider the fresher is tin- tissue and the less it has l.ecn previously loaded.

The following are the stretch-moduli in grammes per sq. millimetre,

the loads being from 1 to 10 grammes and the temperature 10 t-

Artery 72'6; muscle 273-4; nerve 1090-5; sinew 16*,

The experiments were made on art. i \ (calf), muscle (ox and :

nerve (calf), tendon (calf),
l'"t Wundt only gives details of some few of

then,
(ft

::<>: s).
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[831.] A. W. Volkmann: Ueber die Elasticitdt der organischen

Gewebe. Archiv filr Anatomie, Physiologic u. s. w., herausgegeben

von C. B. Reichert und E. du Bois-Reymond, Bd. i. S. 293-313.

Leipzig, 1859.

W. Wundt : Ueber die Elasticitdt der organischen Gewebe.

Zeitschriftfur rationelle Medicin von Henle und Pfeufer, Bd. VIII.,

S. 267-279. Leipzig, 1860.

These papers relate to a controversy of considerable interest upon
the exact form taken by the stress-strain relation for organic tissues.

We have already referred in our first volume to Wertheim's researches

(see our Art. 1315*), but his chief results may be cited here in order

that the reader may understand the point in dispute between Volk-
mann and Wundt. They are as follows :

(i)
Wertheim recognised after-strain to exist in human tissues.

He found it to vary with their dryness but to be only a very small

proportion of the total strain when the latter was measured in the first

few minutes after loading.

(ii)
He represented the immediate stress-strain (stretch-traction)

relation by an equation of the form :

s,* axx~ + fe.

If a be positive as Wertheim found it, the stretch-traction relation is

thus hyperbolic
1
. Set was excluded from the measurement of strain

(see our Arts. 1315*-18*).
These experiments of Wertheim are in agreement with those of

E. Weber, who also found that the stretch-traction relation for muscles

was not linear : see our Art. 828.

[832.] As we have seen W. Wundt published in 1857 a paper

(see our Art. 829), in which he asserted that if regard were only paid
to elastic after-strain, it would be found that the stress was proportional
to the strain for organic tissues.

It is at this point that Volkmann took up the matter, and made an

attempt to measure elastic fore-strain by itself (see Vol. i. p. 882). He
adopted an ingenious method of tracing by a Kymographion the longi-
tudinal vibrations of a muscle or artery suspended vertically and

suddenly loaded but without any impact. The load then oscillated

about the mean position which was that of statical equilibrium. This
mean position altered with the time the weight was left oscillating

owing to elastic after-strain. The mean positions are those of maximum
speed in the oscillating weight, and they correspond to the points of
inflexion on the diagram of the oscillations which is drawn on the

revolving cylinder of the kymographion. The first point of inflexion

ought to give the elastic fore-strain. Unluckily Volkmann found that

1 The hyperbolic form of this curve is really confirmed by the researches of
C. S. Hoy : see the Journal of Physiology, Vol. in. pp. 125-59, corrected Vol. ix.

pp. 227-8. Cambridge, 1880 and 1888.

372
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the points of inflexion were not easily determined with great accuracy,
as slight errors in the motion of the cylinder or of the tracing pen
influenced their position. Under these circumstances he gave up the

idea of measuring the first mean position, and contented himself in

each series of experiments by measuring all the strains at the same
small interval of time after the instant of loading.

In eight series of experiments he compares his observed stretches

with those given by Wertheim's relation in (ii) above. The result is a

very close agreement. Volkmann finds for silk thread, for human hsiir,

for an artery, for a nerve (nervus vagus of man) that a is positive ;

on the other hand for muscle it is negative, or the stretch-traction

relation is elliptic. Permanent set appears to have been sensible only
in the final experiments of any series. In the last series of exj>< ii

ments (S. 307) Volkmann subtracted the set before applying Werthoin is

formula and again found it to hold. He thus considers that formula
to be proved for elastic fore-strain, i.e. for primaiy strain within the

elastic limits.

I may note that Volkmann seems to think this stretch-traction

relation something peculiar to organic bodies, distinguishing them
from inorganic bodies. But as we have seen (see our Vol. I. p. 891)
that the stretch-strain relation within the elastic limits for certain

metals is not linear whatever else it may be, it is not necessary on
this account to suppose that an absolute distinction must exist between
the elasticity of organic and of inorganic substances.

[833.] The remainder of the paper is a criticism of Wundt's

experiments, chiefly based on the ground that the time-element had
not been taken into account, and that accordingly the strain nieasun !

by him was neither fore- nor after-strain. Further Volkmann holds

that Wundt's experiments cover such a small range of loads, that for

that range the stress-strain curve might approximately be taken as

straight. An attempt to show that some of Wundt's expei-iim-nts

contradict his own hypothesis is, I think, fairly met in Wundt's reply.

[834.] In Wundt's reply, the title of which I have given in Art. 831,
he does not I think do justice to the care with which the experiments of

Wertheim and Volkmann appear to have l.een conducted. Again*! !!.

Weber's and Wertheim's results Wnndt cites their want of caution in

drying the tissues, in noting the influence of set, the effect of phy.sieal

change (as rigor mortis), and above all the existence of after-strain,

which he asserts was left out of consideration. Now it seems to me
that Wertheim does reckon with all these factors and especially i-

to the latter: see our Art. 1317*. Wundt suggests also that the

weights applied were such as to change the elastic modulus of the bodv,
i.e. its elastic constitution.

He defends his own limited range of loads on the ground that only
for such loads as he applied do set and elastic after-strain cease t

BO considerable that elastie f<-e st rain can he ea>ily me;n-un-d. (\Y<-
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may note here that Wundt seems to consider that want of propor-

tionality between stress and strain would certainly mark organic
substances sharply off from inorganic substances

!)
He objects to

Volkmann's method of getting rid of after-strain by making his

measurements of stretch at a constant interval after loading. He
remarks that the empirical formula given by W. Weber for after-strain

involves a constant itself depending on the load (the c of our Art.

714*). He complains also that Volkmann gives 110 evidence that he
has proved the unaltered condition of the elasticity of his material

after each experiment by allowing it to return to its original condition
as to load. This, he holds, is especially necessary to free successive

experiments from the after-strain of previous ones.

I do not think these objections of Wundt have really great force,
because Volkmann's observations were made \vhile the elastic after-strain

was an exceeding small quantity, and because his notice of the existence
of set shows that he must have examined whether his tissues returned
to their original lengths. A further and supposed conclusive argument
of Wuiidt's against Volkmann, namely, that the elliptic nature of the
stress strain relation would prove that by increase of load the muscle
would ultimately be shortened instead of extended, is simply absurd.
What the formula really denotes is the elliptic form of the relation

within the limits of elasticity. Had Wundt examined the values of the
constants given by Volkmann he would have found that the extension
would have become enormous far beyond the limits of rupture before
the stretch began to decrease with the load.

[835.] On S. 274 6 Wundt compares the accuracy for tissues of

Hooke's law as deduced from his own experiments, with its accuracy as

deduced from Wertheim's. But it is no argument to assert that

because the former experiments give results less divergent from Hooke's
law than the latter do, therefore this law must hold for the latter as

well as the former. The fact is that Hooke's law may hold for neither
within the range of loads applied.

On S. 277 we are treated to a proof by means of Taylor's Theorem

(!!)
that stress must be proportional to strain for all bodies whatever

within certain limits of strain : see our Arts. 928* and 299.

Having deduced from Taylor's theorem that the stress-strain relation

to a second approximation must be of the form :

xx = Asx + JBsx
2

,

Wundt, by squaring and some absolutely illegitimate process of neg-

lecting the cube in preference to the fourth power, deduces that

^ 3 = 4 a

( a
a

)+^ a (O a
-

This he naively remarks is an equation of the hyperbolic form of
Wertheim and Volkmann, whose results he then attributes to the fact

that the strains considered by them exceed those for which the first term
of Taylor's series suffices. It is perhaps needless to remark that Wundt,
if a good physiologist, is but a poor mathematician and physicist.
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GROUP F.

Hardness and Elasticity.

[s:J6.] We now reach a number of memoirs dealing with the

hardness of materials, a subject intimately related to their elas-

ticity and strength. It will perhaps not be out of place here to

refer briefly to the earlier history of the subject. I owe my
references chiefly to M. F. Hugueny's RechercJies exptrinientales
sur la Dureti des Corps

1 and to the memoir of Grailich and

Pekarek 2
, but I have in every case consulted the original

authorities for myself, and I have often amplified the notices

of these writers when the original papers were not accessible

to them or had escaped them.

(a) Apparently the first writer to make any reference to the

scientific measure of hardness and the variation of hardness with

direction is Huyghens. In his Traite de la Lumidre (Leyden, 1690)
after suggesting a grouping of flat spheroidal molecules as suited to

explain the optical phenomena of Iceland spar he continues (pp. 956) :

Tout cecy prouve done que la composition du cristal est telle que nous
avons dit. A quoy j'ajoute encore cette experience ; que si on passe uii

cousteau en raclant sur quelqu'une de ces surfaces naturelles, & que ce soit en
descendant de Tangle obtus Equilateral, c'est-a-dire de la pointe de la piramidc,
on le trouve fort dur ; mais en raclant du sens contraire on 1'entame aisement.
Ce qui s'ensuit manifestement de la situation des petits spheroides ;

sur

lesquels, dans la premiere maniere, le cousteau glisse ;
mais dans Pautre il

les prend par dessous, & peu pres comme les ecailles d'un poisson.

(b) Musschenbroek concludes his Physicae Experimentales et Geo-

metricae Dissertatio'nes (Leyden, 1729) with a chapter entitled: Ten-

tamen de corporum Duritid (pp. 668672), that portion of his work

(Introductio ad CoJiaerentiam corporum Jirmorum) to which we have
referred in our Art. 28* 8. His method, of which he speaks \

diffidently, was to count the number of the blows of a mass swung like

the bob of a pendulum which are required in order to drive a chi>-l

through a slab of definite thickness of the given material. He supposes
that the number of blows divided by the specific gravity of the material

may be taken as a measure of its hardmm He tested in this way the

hardness of a great number of specimens of wood and of some of the

1 This work will be dealt with under the year 1865.

See our Arts. 842-4.
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more usual metals. He gives the following ascending order of hardness

for metals : lead, tin, copper, Dutch silver of small value, gold, brass,

Swedish iron. Obviously Musscheiibroek's definition of hardness would
involve absolute strength rather than set.

(c) Torbern Bergman writes in 1780 that testing gems by their

hardness is usual. The following passage is taken from his Opuscula
Physica et Chemica, Vol. u., p. 104, Upsaliae, 1780 (De Terra Gem-

marum, pp. 72117). English Translation, Vol. n. Physical and Che-

mical Essays. London, 1784 (Of the Earth of Gems, pp. 107-8).

The species of gems is used to be determined by the hardness
;
and by

that quality particularly, together with the clearness, has their goodness been
estimated. The spinellus is particularly worthy of observation, which is not

only powdered by the sapphire, but even by the topaz ;
as also the crysolith,

which is broken down by the mountain crystal
1
,
the hardness of which seems

rather to be owing to the degree of exsiccation than the proportion of

ingredients. The analysis of spinellus, of crysolith, and other varieties, will

sometimes illustrate the true connection
; otherwise, after the diamond, the

first degree of hardness belongs to the ruby, the second to sapphire, third to

topaz, next to which comes the genuine hyacinth, and fourth the emerald.

(d) A. G. Werner in 1774 in his treatise on mineralogy gave a

first scale of hardness. This was somewhat extended by B. J. Haiiy in

his Traite de Mineralogie, Paris, 1801.

In Tome I. (p. 221) Haiiy defines hardness in a vague way, and

gives (pp. 268-71) in four groups the substances (i) which scratch

quartz, (ii)
which scratch glass, (iii)

which scratch calcspar and (iv)
which do not scratch the latter substance. In these lists he confines

himself to substances usually termed stones. On p. 348 of Tome in.

Haiiy gives the following list of the usual metals in order of hardness :

lead, tin, gold, silver, copper, platinum, iron or steel. Perhaps the only

importance of Hatty's work for the theory of hardness lies in the fact

that he appears to have first suggested the ' mutual scratchability
'

of

substances as a measure of their relative hardness.

Ultimately Mohs' modification of Haiiy's scale was adopted by
mineralogists. In his Grundriss der Mineralogie, 1822, Bd. I. S. 374
he gives the following order : (i)

Talc
; (ii) Gypsum ; (iii) Calcspar ; (iv)

Fluorspar; (v) Apatite; (vi) Adularia; (vii) Rock Crystal (Rhombo-
hedric Quartz); (viii) Prismatic Topaz; (ix) Sapphire; (x) Diamond.
In this scale each member was able to scratch all preceding members.
Mohs gave numbers to these classes and placed other bodies with
decimal places between these numbers by testing the relative hardness
of two nearly equally hard bodies by their resistance to a file and
the comparative noise. In 1836 Breithaupt attempted to introduce a
scale of hardness of 12 classes, but it does not appear to have met with

any wide acceptance.

1 The Latin version has crystallo montana; I suppose rock crystal. See also

p. 113 of the Opuscula for a further remark on the hardness of diamond.
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(e) The conception of relative hardness based upon the power of
one body to scratch a second is evidently very unscientific. Huyghens
had shown a century earlier that the hardness of a body varies with

direction, and its power to scratch varies also with the nature of the

edge and face. The latter fact was well brought out by a memoir
of Wollaston entitled : On the Cutting Diamond, Phil Trans. 1816,

pp. 265-9. This memoir draws a distinction between cutting and

scratching, which has been unfortunately lost sight of by later writers

on hardness. Wollaston shows that the diamond irregularly tears the

surface unless its natural edge, which is the intersection of two curved
surfaces and thus a curved line, be so held that a tangent to it lies in the

plane face of the material to be cut and is also the direction of motion
of the diamond. The curved surfaces must also be held as nearly as

possible equally inclined to the plane face. By paying attention to

similar principles Wollaston succeeded in getting sapphire, ruby and
rock crystal to cut glass for a short time with a clean fissure. It re-

quired a fissure of only YJ^ of an inch deep to produce a perfect fracture.

Further evidence in the same direction is given by C. Babbage in

his work On the Economy of Machinery and Manufactures (London,

1832). After some remarks (p. 9) to the same effect as Wollaston's on
the proper position for working the diamond he continues :

An experienced workman, on whose judgment I can rely, informed me
that he had seen a diamond ground with diamond powder on a cast-iron mill

for three hours without its being at all worn, but that, changing its direction

with reference to the grinding surface, the same edge was ground down (p. 10).

(f) L. Pansner in a pamphlet published in St Petersburg in 1813
seems to have been the first to adopt the plan of testing minerals, not

by scratching them upon each other but by means of a series of diamond
and metal points. Later in a memoir entitled : Systematisclie Anord-

nung der Mineralien in Klassen nach ihrer Ildrte, und Ordnungen
nach ilvrer specifiscfien Schwere, published in both Russian and Ger-

man in the Memoires de la Societe Imperiale des Naturalistes, T. v.,

pp. 179243, Moscow, 1817, we find him classifying minerals as folio

(a) Adamanti-CJiarattomena (scratchable by a diamond, but not by a

steel graver); (b) Clwdybi-CltaraUomena (by a steel but not by a copper

graver); (c) Chalco-C/iarattomena (by a copper but not by a lead

graver); (d) M<>l;/I,<l<>-Charattomena (by a lead graver); (e) Achar-

mena (those whose hardness cannot be tested by scratching). These

classes formed by relative hardness are again subdivided according as

the specific gravity of tin; mineral is less than 1, less than 2 etc., into

(0) Natantia, (1) Hydrobarea, (2) Dirhydrobarea, (3) Trv-hydrobarea etc.,

etc. Pp. 183-202 (erroneously paged 173) are occupied with a tal>l

several hundred minerals thus classified, with the specific gravi
to four places of decimals. The remainder of the memoir does not

relate to hardness but to a classification of inorganic substances by other

physical character! s
1

Pansner was followed by Krutsch who also states that he had used
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metal needles to scratch bodies in his Mineralogischer Fingerzeig,

Dresden, 1820, but I have been unable to find a copy of this work.

(g) The first experimentalist to obtain results of value from this

method was Frankenheim in his De crystallorum coliaesione : Dissertatio

Inauguralis, Bratislaviae, 1829. Of this work I have been unable to

procure a copy. Its contents are, however, embodied and extended in

the same author's later book Die Lehre von der Go/tasion, Breslau, 1835 :

see our Arts. 821* and 825*. Frankenheim's results were obtained by
scratching with the metal needle held in the hand and judging relative

hardness by the pressure and pull necessary to produce a scratch. He
applied this method to test the relative hardness of crystalline surfaces

in different directions. It cannot be said that such a method is capable
of really great scientific accuracy, but we shall have occasion later to

compare some of Frankenheim's results with those of other experi-
mentalists.

(k) About 1822 Barnes of Cornwall had noted that a circular

plate of soft iron if revolving with very great rapidity is capable of

cutting the hardest steel springs and files. His experiments were

repeated by Perkins in London, and accounts of them were published in

most of the physical and technical journals. Further experiments were
made by Darier and Colladon in 1824 (BibliotJieque universelle des

Sciences et Arts, T. xxv. pp. 283-89, Geneva, 1824, or Schweigger's
Jahrbuch der Chemie u. Physik, Bd. xm. S. 340-6. Halle, 1825,) and
these physicists showed that when the iron disc moved with a circum-

ferential speed of less than 34 ft. per second it was easily torn by
hardened steel, but that with a speed of 35 ft. 1 in. per second the

iron began to affect the steel, till at 70 ft. per second only small

fragments of iron were thrown off, although the steel was violently
attacked (pp. 265-6). They further showed that the effect was not

produced by the softening of the steel during the process, nor, at any
rate initially, by the particles of steel which cling later to the iron

disc and increase the effect. They attributed the result to the in-

fluence in some way of the impact, and supposed it to depend, not
on the cohesion of the iron, but on each particle of the iron acting for

itself. Chalcedony was slightly attacked and quartz was torn by the

rotating iron disc (p. 287). A disc made of copper mixed with one-fifth

tin produced no effect on steel, and a copper disc was itself attacked

by steel even at a circumferential speed of 200 ft. per second (p. 288).
In Silliman's American Journal of Science, Vol. x. p. 127, and

p. 397, 1826, will be found further facts with regard to the above

phenomenon in letters to Silliman from T. Kendall arid I. Doolittle

(see also Schweigger's Jahrbuch der Chemie und Physik, Bd. xvn. S.

7781, 1826). The former points out that when the iron cuts the steel,

it is the latter which gets hot, but that when it fails to do so, the iron

takes even a blue colour from the heat. He considers that the steel

is in the process heated up to that particular heat ('black heat') at

which it is easily fragile, which it is not at a less or greater heat.
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He thus IK.Ids that the results are associated with a particular

temperature, and attributes to the inability of copper to produce this

temperature in steel its failure when rapidly rotated to cut the latter

metal. I. Doolittle notes that although he could cut steel with a

rotating iron plate, he found it quite impossible to cut perfectly gray
and soft cast-in n.

I have cited the above results to show that in measuring relative

hardness the velocity with which the graver moves is in itself of impor-
tance; hence the report referred to by Darier and Colladon that the

Chinese cut diamonds with iron may not after all be so entirely

mythical.

(i) Seebeck in a school program of 1833 (Ueber 11 / />
/

> ////// ng an

Krystatten, Priifungsprogramme des Berliner Real-Gymnasiums), of

which I have been unable to procure a copy, invented a more s in it i lie-

instrument for measuring hardness. He placed a loaded needle or

scriber on the crystal and measured the hardness in any direction by
the least weight which would just cause the needle to scratch the crystal
when the latter was drawn under the point by the hand. Seebr.-k

writes of this method :

Bei der hier angeordneten Bestiinmungsmethode 1st PS nur dcr Druck dcr

Spitze gegen die Flache welcher gernessen wird
;
etwas anders wiirde ee -fin,

wenn bei constantem Drucke die zurn Verschiebcn nothige Kraft gem
wiirde; auch hier wiirde man wohl, wenigstens bei einem ziemlich starken

Drucke zwischen den verschiedenen Richtungen des Krystalls, Uiiterochiede

finden, andere zwar als die vorigen, aber init ihncn sosammeiihangetide, I lei

der Priifung mit der Hand (Frankenheim) werden sich beide Wirkuntien dun h

das Gcfiihl ziemlich vermischen, wenn man auch vorziiglich auf den gegen die

Flache ausgeiibteu Druck achtet.

Franz, as we shall see later (Art. 837), experimented much in

Seebeck's manner except that he used a conical point, instead of a

needle, and did not draw the crystal by hand.

The * Sklerometer '

of Grailich and Pekarek (see our Art. 842) is a

more complete form of Seebeck's instrument.

Seebeck did not make very much use of his machine, but he

confirmed with it Huyghens' statement (see our Art. 836 (a)) and made
some experiments on calcspar, gypsum and rock salt. In the case of

the first substance Seebeck's results differ from those of Frankeuheim

(Die Lehre von der Collision, S. 335) and Franz : see our Art. 839.

(j) It will be seen that Seebeck did a good deal to advanee tin-

scientific conception of hardness, and to produce an in>tniment which

would measure those ditt'< -n -n< vs in the hardness of crystals which had

been first noted by Frankenheim, namely : (i) hardne>s in dilleivnt

senses of the same direction, (ii) hardness in different directions of the

same face, (iii)
hardness in different faces of the same crystal.

But none of the various ideas of hardness held by tin-so writers

clearly distinguish : (i) between set and rupture, (ii) between shear

tensile and compress!ve actions. Yet it seems very clear that r* 1.
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hardness may be different according as the instrument applied merely

produces set or actually tears the material: that is according to the

manner in which it produces an effect, whether for example by indent

or by scratch. The reader will find it well to bear in mind this

obscurity in reading our resumes of later memoirs on the subject.

(k) To the researches of Angstrom on the hardness of gypsum and

felspar and to those of Wade on the hardness of metals, we have
referred in other parts of this chapter: see our Arts. 685 and 1040-3.

The following ten articles are devoted to some account of the

researches on hardness due to the decade 185060.

[837.] R. Franz : Ueber die Hdrte der Mineralien und ein

neues Verfahren dieselbe zu messen. Poggendorff's Annalen, Bd.

80, S. 37-55. Leipzig, 1850.

Franz defines the hardness of a mineral as follows :

Mir scheint namlich die Harte eines Minerals diejenige Kraft
desselben zu seyn, welche seine Theilchen zusammenhaltend, dem

Korper, der diese zusammenhangenden. Theilchen trennen will, Wider-
stand leistet. [So far this might stand as a definition of cohesion.]
Sie ist also diejenige Kraft des Minerals, welche das Eindringen eines

Korpers in das Mineral verhindert, und zugleich der Fortbewegung
einer in die Oberflache eingedrlickten Spitze sich eritgegenstellt. Das
Maass dieser Widerstandskraft ist nun aber offeiibar der Druck, welcher

angewandt werden muss, um den Korper zum Eindringen in das Mineral
zu bringen (S. 37).

It seems to me that this manner of determining hardness may
really measure two different kinds of resistance, viz. the resistance

to entry and the resistance to tearing after entry. Franz assumed

that in measuring these resistances he was measuring one and the

same property hardness 1
.

[838.] Seebeck in 1833 had already drawn attention to these

different methods of measuring hardness, viz. by (i) the least load

on a scriber drawn normal to the surface of a mineral which will

produce a scratch, (ii) the least load parallel to tbe surface which

will draw a scriber which has already entered the mineral across the

surface. Franz's apparatus differed little from Seebeck's, except
that he has two separate instruments for measuring the resistances

(i)
and (ii), and in (i) tbe mineral mounted in a car is drawn

1 A criticism of Franz's methods on rather different grounds will be found on

pp. 39 and 48 of Hugueny's Eecherches experimentales sur la Durete des Corps,

Paris, 1865.
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on its bed by a winch and not pulled with the hand : see our

Art. 836 (t). Franz used the first method to determine consider-

able differences of hardness and the second for slight differences,

such as occur for example in the relative hardness in different

directions of the same crystalline surface. He used for scribers a

steel cone of 54 vertical angle and a diamond crystal. The steel

cone was sharpened daily before experimenting till it was just

sharp enough to scratch under a given load a standard bit of

gypsum.

[839.] We may note the following results :

Talc. No variation of the hardness with different directions was
found (S. 40).

Gypsum. The hardness in the plane of most perfect cleavage was

investigated. The maximum hardness was found in a direction making
an angle of about 20 with the shorter diagonal of the rhombus ami

approximating to the second direction of cleavage; the minimum hard-

- in a direction about perpendicular to this (S. 41-3). Angstrom
rejects Franz's results as untrustworthy. See our Art. 685.

Iceland Spar. On the rhombohedric surface the greatest hardm ->s

was found in the shorter diagonal when the scriber moved in the <li

tion from the obtuse to the acute angle of the rhombohedron. Tin-

mini mu in hardness was in the same direction but in the reversed

sense. In the direction of the greater diagonal both senses ^.

the same value. Frankenheim, according to Franz, found the greatest
hardness in the greater diagonal, the least in the same direction as

I'Yanz. Franz demonstrated Frankenheim's supposed error by cau>

the scriber to describe circles on the face; when it went round clock-

wise the deepest furrow was made exactly at the points where there

was scarcely a trace of a furrow when it went round counter-clock v.

and vice versa. He refers for Frankenheim's error to S. 337 of tin-

work discussed in our Arts. 821* and 825*. On reference to this
j.

it will be found that Frankenheim says nothing about the directions of

least atest hardness in the rhombohedric surface, but that on S.

335, where he does, he writes :

Am g it die Harte ]>arulld der kur/iMi Dia-onale, \vi-mi man n.u-h

der si-liari-'ii K'-kc xielit Die Harte auf der lan;/en Dia-.uiale >u>ht

/.wi-M-hen der Iliirte auf beiden IJk-htiingi-n der kur/en I): . llein dem
Maximum niiher, al> dem Minimum.

In a footnote Frankenlieim < % -n corrects an error of Seebeck's who
found the minimum hardness in the direction of the longer diagonal.
Franz's 'correction' of Frankenheim's 'error* is thus rather gratuitous.
I think he could not have carefully read Frankenheim'fl wm-k. What tin-

latter indeed says abou' the hardness in the longer diagonal beinij m-an-r

the maximum than the minimum is continued neither by Franz nor by
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Grailicli and Pekarek (see our Art. 844). Franz returns to the real

error of Seebeck and the imaginary error of Frankenheim on S. 535.
In fig. 4 on Plate II. he gives a curve of hardness for the rhombohedric

surface of Iceland spar. I believe he was the first to make use of

these curves of hardness, in which radii-vectores measure the hardness

in a given direction
;
the credit of them has been recently attributed

to Exner.

Fluor-Spar. The least differences in hardness are found in the

octahedric surface. In the cubic surface, the greatest hardness is in

the diagonal, the least in lines parallel to the sides of the cube (S. 45).

[840.] Various rather scanty results are given for the hardness in

certain planes and in a few directions of Apatite, Felspar, Quartz, Topaz,

Sapphire and Syenite (in this case somewhat more complete, with a
curve of hardness, Fig. 5 on Plate II.). From all these results Franz
draws the following conclusions (S. 49-51):

(i)
The directions of the greatest and least hardness in the same

crystalline surface are intimately associated with the directions of

cleavage.

(ii) The direction which is the softest in planes which cut the

planes of cleavage is that which is perpendicular to the direction of

cleavage, the hardest direction in the crystal is that which is parallel to

the planes of cleavage.

(iii) If the surface of the crystal is cut by two directions of cleavage,
then in this surface the hardest direction approaches the direction of

easiest cleavage:

(iv) Of the different surfaces of the same crystal, that one is the

hardest which is intersected by the plane of most perfect cleavage.

(v) If the direction of an easy cleavage is not perpendicular to the

surface of investigation, then the hardness is greatest when the acute

angle between the surface and the plane of easy cleavage points in the

direction opposed to that of the motion of the scriber
;

it is least in the

opposite direction. (Compare with these the almost identical results of

Frankenheim on S. 337-8 of his work above cited.) On S. 51-3 Franz

gives details of the mean hardness of a considerable number of minerals.

[841.] A. Kenngott: Ueber ein bestimmtes Verhaltniss

zwischen dem Atomgewichte, der Hdrte und dem specifischen

Gewichte isomorpher Minerale. Jahrbuch der k. k. geologisclien

Reichsanstalt. Jahrgang iii., Vierteljahr
1

iv., S. 104-116. Wien,
1852.

This memoir does not state particulars as to the manner in

1 Each Vierteljahr has a separate pagination.
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which the hardness of the various substances discussed has been

determined. The author supposes his atoms to be liquid and

spherical ;
he states that they can or must be treated as liquid if

they are to group themselves into molecules and as such into

crystals (S. 104). As to the numerical results given in the

memoir, I am unable to express any opinion as to their value, but

the conclusions which the author draws from his chemical data

appear to be summed up in the following paragraph which occurs

on S. 114-5, and which I content myself with citing:

Wenn die hier vorgefiihrten Beispiele zeigen, dass bei isomorphen

Species, welche homolog zusammengesetzt sind, ein bestimmtes Ver-
hiiltniss zwischen dem Atomgewicht, dem Atom- oder Moleciil-Volumen,
dem specifischen Gewichte und der Harte vorhanden ist, so dass mit

dem relativen specifischen Gewichte in geradem, oder dem Atomvolumen
in umgekehrtem Verhaltnisse die Harte steigt und fallt, und bei

gleichen gleich ist, wahrend die Krystallgestalten wegen der iibercin-

stimmenden Gruppirung iibereinatimmend sind, weil die gleichgeord-
neten Atome der einen die Masse in einem dichteren Zustande enthalten

als die Atome der anderen, so zeigen sie auch gleichzeitig, dass auf diese

Differenzen der Harte und des relativen specifischen Gewichtes die

Stellung in der elektrochemischen Reihe oder das elektrochemische

Verhaltniss der verbundenen Atome ohne Einfluss ist. Aus diesem

Grunde habe ich die Atome in der elektrochemischen Reihenfolge

vorangestellt, darunter die Verbindungen der ersten Ordnung und in

denselben die hoheren, wo es dergleichen gibt, und es wird daraus

ersichtlich, dass nicht durch den starkeren elektrochemischen Gegensatz
die grossere Harte und das grossere relative specitische Gewicht hervor-

gemfen sind.

[842.] J. Grailich und F. Pekrek : Das Sklerometer, ein

Apparat zur genaueren Messung der Harte der Krystalle. Sit-

zungsberichte der k. Akademie der Wissenschaften. Bd. xnr.,

Math. Naturwiss. Classe, S. 410-36. Wien, 1854.

This memoir opens with an interesting historical account of

the various modes of classifying or measuring hardness (S. 410-21).
The authors note how unscientific was the earlier use of the word

'hard' by palaeontologists and mineralogists, and then record tin-

researches of some of the writers to whom we have referred in our

Art. S

[843.] Grailich and Pekarek describe on S. 421-3 the jrin-

eiples of their own fcfonH9i0t0r (o-/cX^/3o?
= har<l). It is essentially
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based on Seebeck's ideas. They use, however, a conical scriber

of 20 to 30 vertical angle, pull the sleigh containing the crystal

by a weight, and have accurate means of levelling and rotating into

any azimuth the polished surface of the crystal to be scratched.

The description of their apparatus occupies S. 423-6, and it is

easily grasped in principle from the plate which accompanies the

memoir.

They used it in three different ways (S. 426-32). First they
counted the number of times the crystal must be drawn in any
direction under the scriber in order to make a visible scratch, this

involved a constant minimum load on the scriber. Secondly they

put a constant maximum load on the scriber and determined the

force necessary to draw the crystal in any given direction. Ob-

viously the load on the scriber must be sufficient to produce a

scratch even in the hardest direction. Or thirdly they measured

the least load on the scriber which would produce a scratch when
the crystal was drawn in a given direction. This method they
found to be the most exact, and their experiments on Iceland

spar were made in this manner.

[844.] The memoir concludes with the details of these ex-

periments on Iceland spar (pp. 4326). The authors found that

the hardness depended not only on direction but also on sense. The

accompanying figure taken from their

memoir gives their general conclu-

sions, where the numbers are the loads

on the scriber in centigrammes which

just sufficed to produce a scratch.

Sklerometric properties of rhombo-
hedric carbonate of lime.

Hardest surface : R + oo .

Softest surface: R.

Hardest direction: 970 centigrammes.
Softest direction: 96 centigrammes.

R-OD

P+oc P-foc P-foc

[845.] F. C. Calvert and R. Johnson : On the Hardness of
Metals and Alloys. Manchester Memoirs, Vol. xv. pp. 113-121.

Manchester, 1860. The hardness of the metals was tested by the

weights which would drive a steel point 3*5 mm. into a disc of

the metal in half-an-hour. It. is worth noting that in the tables
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given of the relative hardness of metals and alloys, cast-iron stands

at the top
1
. I do not understand the reference to the " half-hour"

in the method of experimenting, nor how the load could be so

regulated as to drive the steel point into the disc just 3*5 mm. in

half-an-hour.

The method differs from that of the continental experimen-
talists and approaches more nearly that of Wade (see our Art 1040),

but it is open to the same objection as the methods of Seebeck

and Franz, i.e. that a steel point driven 3*5 mm. deep would some-

times produce set and sometimes rupture.

[846.] Clarinval : Experiences sur les marteanx pilons a

carries et ressorts et sur la duretd des corps. Annales des mines.

T. xvii., pp. 87-106. Paris, 1860. This paper gives an account

of a marteau pilon invented in 1848 by Schmerber and its

application in ascertaining the relative hardness of various sub-

stances. Clarinval finds that, the hardness of lead being taken

as unity, tin has a hardness of about 4, and very hard iron heated

to the temperature usual in forging from 1*4 to 2'5, the increase

depending on the cooling of the metal during the series of experi-

ments (pp. 98-102). He compares these results with those

obtained by F. C. Calvert and R. Johnson in the Manchester

Memoirs of 1848 (see our Art. 845), who with unity for 1-

give 1'7 for tin. Clarinval attributes this divergence to want of

chemical purity in his own specimen. At the same time In-

remarks that he much prefers his own method of experiim n

for practical purposes (p. 106).

GROUP G.

Memoirs on Elasticity, Cohesion, Cleavage etc.

[847.] Volpicelli: Cosmos, T. I. pp. 214-15. Paris, 1852. W<>

find here a note attributing to this writer une in>'tl< ous semble

nouvelle, pour la determination des coefficients d'elasticite. The co-

efficients in question are the so-called coefficients of restitution in the

1 Staffordshire cold blast cast-iron being taken as 1000, we have : steel 958 (?),

wrought-iron 948, platinum 375, copper 301, aluminium 271, silver 208, zinc 183,

jrnld 107, cadmium ins, bismuth r>2, tin 27 and lead 10. Probably these are not

very trustworthy results as absolute numbers.
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theory of impact of elastic bodies, or the kinetic coefficients of elasticity
in Newton's theory. The ' new ' method is the one used by Newton and
described by him in the Principia : see footnote to p. 26 of our Vol. i.

[848.] J. T. Silbermann : Memoire sur la mesure de la variation de

longueur des lames on regies soumises a Faction de leur propre poids; pour
servir de correctif aux mesures lineaires. Comptes rendus, T. xxxvm.,
pp. 825-8. Paris, 1854. This memoir remarks on the effect of the

weight of a standard scale of length in elongating it when it is

supported vertically by one terminal and not placed horizontally : see

also our Art. 1247*. It gives the detail of some experiments to

ascertain this elongation for certain bars used as scales of measurement.

[849.] Ch. Brame : Sur la structure des corps solides. Comptes
rendus, T. xxxv., pp. 666-9. Paris, 1852. This letter to M. Babinet

discusses the cleavages of various substances and is not directly con-

cerned with our subject.

[850.] A. Laugel : Du Clivage des roches. Comptes rendus, T. XL.,

pp. 1825. Paris, 1855, with a Supplement on pp. 978-80.
This memoir, of which only a resume is given, was an attempt to

extend the methods of Lame and Resal : see our Arts. 561-70. The
author apparently starts from Lame's ellipsoid of elasticity and supposes
that at each, point of the earth's surface one principal plane of the

ellipsoid will be horizontal. He then states a number of propositions
which he says he has demonstrated with regard to the planes of

cleavage. It is not evident how he has obtained them from the

ellipsoid of elasticity or how, if found, they would necessarily be true,
for I see no reason for associating cleavage with a stress rather than a

strain surface: see our Arts. 1367* and 567(6). Numerical measure-
ments of the inclinations of the planes of cleavage in various localities

are given and are compared with what are termed ' calculated values,'
but the method by which the latter have been obtained is not explained.
The Supplement contains further results professing also to be based
on the ellipsoid of elasticity bearing on rupture and the general eleva-

tion of mountain chains by eruption, but it is difficult to understand,
from the vague description given of the memoir, whether the statements
made have any real basis in the theory of elasticity.

[851.] P. Boileau: Note sur 1'elasticite du caoutchouc vulcanise.

Comptes rendus, T. XLII., pp. 933-7. Paris, 1856.
The author made experiments on

'

springs
'

composed of alternate

plates of iron and annular discs of vulcanised caoutchouc. He found
that the squeeze of such a *

spring
' was very far from being propor-

tional to the load. The increments of squeeze for increments of charge
amounting to -2 kilog. per sq. centimetre are tabulated, and it will be

T. E. II. 38
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found that they reach a maximum for a load of about 4 -7 kilog. per

square centimetre, and then decrease, far less rapidly, however, than

they have increased. The writer neglects apparently the squeeze of

the iron plates as compared with that of the caoutchouc. There are

various other irregularities in the way in which the increments of

squeeze alter. Thus after a load of 1T5 kilog. they become very small

indeed, and after set has begun they appear to have alternate periods of

slow and rapid alteration up to rupture. The author attributes these

complicated phenomena to the peculiar molecular structure of caoutchouc
and to its thermal characteristics. He notices also elastic after-strain

in the springs. Finally he proposes 14 kilog. per sq. centimetre for

static and 10 for impulsive or repeated loading as the proper limit for

vulcanised caoutchouc of good quality.

[852.] There is a paper on the strength of ice in the Mon\t.,-

Industriel, No. 2417, Paris, 1860, but I have been unable to find a

copy of this periodical.

[853.] W. Fairbairn and Thomas Tate : On the Resistance of
Glass Globes and Cylinders to Collapse from external pressure ;

and on tlie Tensile and Compressive Strength of various kinds of
Glass. Phil Trans., pp. 213-247. London, 1859. The paper was
received May 3 and read May 12, 1859.

[854.] This is a memoir which in some senses is character-

istically British. Its authors display little theoretical knowledge
and small acquaintance with the works of previous writers or

investigators, but at the same time they present us with a

number of useful experimental results, which would have been
of very much greater value had the researches been directed by
any regard to theory. There is no reference to the experiments
of Oersted, Colladon and Sturm, Regnault or Wertheim, nor to the

theories of Poisson or Lame': see our Arts. 686*-91*, 1310-11*,
1227*, 1357* and 535*, 1358*. It is true that the results of

the mathematical theory of elasticity will only apply appr<

mately, if they apply at all, to absolute strength; still a com-

parison of Saint-Venant's results (see our Art. 119) with those

of this memoir would be of value, even if we did not adopt an

empirical stress-strain relation at rupture such as that su

in our Art. 178. The words 'hard/ 'rigid/ 'homogeneous' are

used in a rather vague manner in the memoir and without prc

definition.
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[855.] I cite the following experimental results (pp. 216 and 221) :

Glass
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tudinal stretch takes place at 2896 (or probably a little less, if skin-

effect were allowed for) the ratio of these numbers is about 4-6 : 1,

or somewhat different from the 4 : 1 of the theoretical limiting loads

for elastic stretch and squeeze.
In some General Observations on these crushing experiments (pp.

223-4) the authors refer to Coulomb's theory of compressive strength ;

they are apparently unaware of its erroneous character : see our

Arts. 120* and 169 (c).

[857.] Section III. of the memoir (pp. 224-231) is devoted

to the '

resistance of glass globes and cylinders to internal pressure.'

There were only 17 experiments, 14 on spherical, 1 on cylindrical

and 2 on ellipsoidal vessels. Section IV. (pp. 231-240) deals

with external pressure. Here 11 experiments were made on glass

spheres and 12 on glass cylinders. It is obvious that such a very
narrow range of experiments (4 vessels of the last set were not

ruptured) cannot be considered as a very satisfactory basis for the

purely empirical formulae given in Section V. as a deduction from

the experimental results (pp. 241-247).

[858.] These empirical formulae are the following :

External Pressure.

P = external pressure at rupture in Ibs. per sq. inch.

d = diameter of the sphere or cylinder,
= length of the cylinder.

T = thickness of the glass.

p = pressure P reduced to unity of thickness taken to be r - *01 inch.

Then if C, C", a, a, /?, ft be constants the authors assume we can

represent P by :

Cr
a

\P =
j-

for spheres,

L a being the samefor both.

=
a

< for cylinders,

They conclude that

(a) For spheres :

P= 28,300,000 x

This formula, however, gives calculated results varying in some cases

from the experimental by * 1/4 of their valu. , ;md does not therefore

seem to me worthy of mm -li < r dit (p. 243).
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(b) For cylinders :

P = 740,000 xr14
/^.

This formula gives values of P differing in some cases by 4- 1/3
to 1/7 from their experimental values and is not deserving of more
confidence than the previous one.

[859.] The authors next deal with internal pressure, and adopt,
as experimentally proved for vessels of glass, the formula

T
=
T'

where P bursting pressure, T = the tenacity of the material, <o = the
area of a longitudinal cross-section of the material, that is, the area
of the rupture-surface, and A = the area bounded by a longitudinal
section of the vessel.

From the experiments in Section III. the authors find in Ibs. per sq.
inch :

^=4200, for flint glass,

4800, for green glass,

6000, for crown glass.

Thus the mean tenacity = 5000 or nearly twice its value as given by
direct tractive experiment : see our Art. 855. The authors remark :

The tenacity of glass in the form of thin plates is about twice that of

glass in the form of bars (p. 246)...This difference is no doubt mainly due to

the fact that thin plates of this material generally possess a higher tenacity
than stout bars, which, under the most favourable circumstances, may be
but imperfectly annealed (pp. 216-7).

[860.] The memoir in its concluding paragraph assumes that

the mean ratio of the tensile and compressive strengths of glass
is equal to the mean ratio of the tensile and crushing strengths or

as 1 : 11 '8 nearly. It seems to me that we ought to take frac-

ture rather than crushiog to powder as the limit of compressive

strength, in which case the results for the flexural strength of

glass bars deduced on p. 247 from formulae and not from

experiment would be much modified.

It should be noted that Saint-Venant's theory for cylinders
and spheres of thickness small as compared with the radius does

not lead to formulae for safe loading of the type given in the

preceding articles for bursting pressures: see our Arts. 120 and
124.
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GROUP H.

Minor Notices chiefly of Memoirs on Molecular Structure.

[861.] J. Szabo : Einfluss der mechanise/ten Kraft auf den
Molecidar-Zustand der Korper. Haidingers Berichte uber die Mittlieil-

ungen von Freunden der Naturwissenschaften in Wien. Bd. vii., 1849, S.

164-73. Wien, 1851. This paper brings a good deal of rather discursive

evidence to show that bodies of the same chemical constitution can

exist in more than one physical condition, and that the application of

such mechanical processes as scratching, vibrating, changing the tempe-
rature etc., suffices to throw the body from one condition into the other.

The author cites for example black and red cinnabar and wrought
iron in the fibrous and crystalline conditions. The paper is not of any
permanent value, and is a collection of old rather than of novel facts.

[862.] O. L. Erdmann : Ueber eine inerkwiirdige Structurveranderung
bleikaltigen Zinnes. Berickte uber die Verliandl. der k. sachnnchen

GeseUschaft der Wissenschaften. Mathematisch-physische Classe, Jahr-

gang 1851, S. 5-8. Leipzig, 1851.

At the repair of an organ said to date from the 17th century in the

ticldosskirche at Zeitz, the pipes were found to be strangely crystallised
in certain places, die ohne Ordnung, jedoch ziemlich gleich/n
vertlieilt standen und von verschiedener Grdsse, von der eines Silber-

groscJiens bis zu der eines Thalers waren. The crystallised parts were

extremely brittle, the rest of the metal ductile. Analysis showed the

constitution of both parts to be chemically the same, so that the differ-

ence was in mechanical structure. Erdmann attributed this change
of structure to the vibrations which the pipes had undergone, but

hazarded no conjecture as to the manner in which the crystallisation
was distributed.

Jedenfalls diirfte aber die mitgetheilte Beobachtung nicht ohne Int-

in Bezugauf das von einigen Technikern uoch immcr bezweifelte Kry.stnllinis. h-

werden von eisernen Achsen, Radreifen u. s. w. sein, wenn diesclben, wie beim

Eisenbahnbetriebe, fortwahrenden Erschiittenmgen ausgesetzt sind (S. 8).

[863.] D'Estocquois : Note sur Vattraction moleculaire. Comptes-

rendus, T. 34, p. 475. Paris, 1852. This note merely refers to a

paper which the author had submitted to the Academy. He states

that he has proved that, if the molecules of a liquid all attract or all

repel each other according to some inverse power of the distaix ,

then they cannot retain the liquid condition "a moins que cette

puissance ne soit le carreV* No further reference is given to the mode
in which this singular result has been deduced, beyond the staten

that it depends on the equation of continuity.
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[864.] Sir David Brewster : On the Production of Crystalline
Structure in Crystallised Powders by Compression and Traction.

Edinburgh Royal Society, Proceedings, Vol. in., 1853, pp. 178-180.

Edinburgh, 1857. Evidence is given in this paper of the effect of

compression on powders and of traction on 'soft-solids' in producing

doubly refracting properties.

[865.] I have given a reference to several memoirs by Seguin in

Art. 1371*. The molecular theory expounded in them formed the

subject of a quarto volume of 55 pages and two plates published
in 1855 at Paris. It is entitled : Considerations sur les causes de

la Cohesion, envisagees comme une des consequences de Iattraction

Newtonienne et resultats qui sen deduisent pour expliquer les pheno-
menes de la Nature.

The author in his preface speaks somewhat sorrowfully of the

neglect which his memoirs read before the Institut have met with,
and also somewhat slightingly of the advantages of mathematical

analysis. His present work, he tells us, aims at providing a basis for

the discussion in thefuture of molecular action :

Tout le monde salt, que chaque question scientifique a son heure et son

moment, qu'il ne depend pas de la volonte d'un seul homme de faire avaucer

ou retarder. Cette heure et ce moment viendront, je 1'espere, et alors ma
cosmogonie se trouvera forcement k 1'ordre du jour.

Seguin's cosmogony is based on the hypothesis that the ultimate

elements of bodies, here termed molecules, are of infinitely small

volume and infinitely great density. This idea he appears to have

gained from a conversation with Herschel in 1823 (p. 2, ftn. 3). Seguin.

supposes the density to increase inversely as the diminishing radii of

the molecules which are taken to be spherical. By arranging these

molecules in files and supposing them to obey the Newtonian law of

gravitation, he endeavours to explain some of the features of cohesion,

i.e. to obtain from the Newtonian law a sufficiently great cohesive force.

The whole of his calculations are of a most crude, insufficient and often

obscure kind. I mast confess that I am in many places unable to

follow his reasoning. The density of the molecule has to be immensely
greater than the density of the earth (pp. 8-9) ;

this might be intel-

ligible, but as he puts the molecules of a bar of iron in contact, it seems

to me that he makes a bar of iron of a different order of density to

the earth. Perhaps this difficulty may be got over by a right inter-

pretation of the following words :

Si Ton considere la vaste echelle sur laquelle Dieu a tout cree, tout fait,

tout ordonne ! et le temoignage de nos sens, tout comme notre raison, doivent

etre, en pareille matiere, completement elimines comme tendant a retrecir et

restreindre nos idees dans la sphere de nos conceptions qui sont si eloignees de

Pintelligence des O3uvres du Createur (p. 20).

Further Seguin tells us that in the beginning matter created by
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God consisted of infinitely small, infinitely dense molecules uniformly
distributed through space. Then :

au fiat lux la matiere re$ut de Dieu la faculte dc s'attirer en raison

directe des masses et inverse du carr des distances, et je considere quo cette

attribution, que la matiere inerte a re9ue de Dieu, constitue pour elle une

Gspece de vie materielle (p. 41).

The fiat lux of the Jewish cosmogonist has received many inter-

pretations, but scarcely any so grotesque as this of the French physicist
and member of the Institut !

The reader will probably agree with the view expressed in our first

volume (Arts. 163*-72*, 752*-8*) that the Newtonian law is insuffi-

cient to account for the phenomena of cohesion. What might !><

said for Herschel's idea, does not, however, seem to me to have been
said in an intelligible fashion by Seguin

1
. I feel, indeed, reluctantly

compelled to class him with Eisenbach and Pere Maziere. From the

Polytechnische Bibliothek 1887, No. 9, S. 133, I see that a reprint of

Seguin's work has just appeared in Lyons. I venture to doubt whether
' son heure et son moment * has even yet anived.

[866.] R. P. Bancalari : Sur Us forces moleculaires. Cosmos, vni.,

pp. 501-3. Paris, 1856. Bancalari appears to have published a memoir
in the preceding year in which he is said to have established the

remarkable proposition that : the resultant of tJie molecular forces in a

body is directly proportional to tlie increments or decrements of inter-

molecular distance and inversely proportional to the cubes of the same
distances. The methods by which the law of gravitation and Hooke's
law are deduced from this proposition seem to me very unsatisfactory,
and have not encouraged me to examine the original memoir for in<n<

particulars than Cosmos provides.

[867.] J. Zaborowski : De triplici in materia coJioerendi stalu.

Disquisitio physica. Posaniae, 1856. This is a quite worthless meta-

physical dissertation which asserts that cohesion, treated as ritln-r

negative or positive, is really adhesion and depends on the absolute

continuity of matter. The author appeal's quite ignorant of tin-

enormous advances which had been made in physical science between
the time of Bacon and the middle of the nineteenth century, and tin-

sole interest of his pages lies in their demonstration of the possibility
of atavism in science.

1 The theory of Herschel has been dealt with by Sir William Thomson iu a

paper published in the Proceedings of the Royal Society of Edinlmriih, Vol. iv.,

pp. 604-6, 1862, and reprinted in the Popular Lecture* and Addresses, Vol. i..

pp. 59-63. London, 1889. Sir William, of course, is suggestive and clear, but his

conclusion that :

It is satisfactory to find that, so far as cohesion is concerned, no other
force than that of gravitation need be assumed,

seems to me far too optimistic.
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[868.] 0. S. Cornelius : Ueber die Bildung der Mater ie aus ihren

einfachen Elementen. Oder: Das Problem der Materie nach ihren

chemischen und physikalischen Beziekungen mit Riicksicht auf die

sogenannten Imponderabilien. Leipzig, 1856.

This tract of xi + 64 pages professes to explain chemical, cohesive

and gravitational forces by a new atomic theory. The method of

procedure, although making frequent appeals to physical and chemical

facts, is so metaphysical that I have not been able to perform the

gewisse Denkopercbtionen, die ihren Grund mehr oder weniger im That-

sdchlichen haben, which would have allowed me to reach the principles
011 which the author bases the sensible properties of matter. I am the

more disappointed in this as the author assures us that his investi-

gation is in ihrer Art vollstdndig, and it appears not only to explain

gravitation and elasticity but to remove in general any difficulty about

the mutual action between body and soul. It would appear that the

author arrives on S. 18 at precisely Boscovich's definition of an atom,

although he associates it with the names of Ampere, Cauchy, Seguin,

Moigno and Faraday, together with a metaphysician or two. After
this I can only follow an occasional passage here and there. It seems
that a true element of matter must be ein vollig intensives Eins, but
a contradiction arises from the fact that ein sick selbst gleiches substan-

tielles Eins cannot influence its kith and kin : Da jedes dem anderen
hinsichtlich der Qualitdt vollig gleich ist, so kann keinem etwas von
dem anderen widerfahren (S. 20). However by a dauernder Act
innerer TJidtigkeit an element can produce motion in the unlike.

Hence arises a vibratory motion of a sphere of ether all round an
atom. At this point we are rather abruptly introduced to mass and

pressure, shown how action at a distance takes place, and given a
demonstration of the law of gravitation. Strangely enough an atom
treated as a pulsating ether-squirt does go a considerable way to explain
chemical and cohesive forces. Perhaps some scientist who is capable of

performing the required Denkoperationen, die ihren Grund mehr oder

weniger im Thatsdchlichen haben will be able to say whether the author
has any inkling of this. If so metaphysicians have a royal road to
truth quite out of the ken of the ordinary scientist.

[869.] Vogel : Zur Theorie der Glasthrdnen: Erdmanns Journal
fur praktische Chemie, Bd. 77, S. 481-2. Leipzig, 1859. The writer
of this note placed

' Prince Rupert's drops
'

(larmes bataviques) in

hydrofluoric acid so that the outer coat including the major part of
the tail of the drop was dissolved away in 48 hours. The drop did not
break up, and no effect was produced by breaking away the fragment
left of the tail. A slight blow of the hammer, however, caused the drop
to burst. The author concluded that the outer surface of the drop was
not that which preserved the inner material in a state of great strain,
or its removal would have brought about the bursting of the drop.

[870.] A. Bouche : Recherches sur ^attraction moleculaire, Me-
moires de la Societe Academique de Maine et Loire, T. vi., pp. 229-333.
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Angers, 1859. T. vin., pp. 133-144. Angers, 1860. T. x., pp. 181-

\ngers, 1861.

Tliis is an elalx>rate attempt to explain the phenomena of gravita-

tion, cohesion and chemical affinity by means of the law of inter-

in- >lecular attractive force -/?,

fi
,/

:
'H)

when- f/ is the distance of two molecules, a is a very small constant

distance and / another constant

Bouche obtains this law by simply combining Newton's law of

gravitation with Mariotte's law that the pressure of a gas varies as its

v, while the density of a gaseous mass must vary inversely as the

cube of the intermolecular distance. He proposes in the first paper to

apply this law to distances less than interplanetary and greater than

gaseous intermolecular distances.

[871.] Bouchd works out at very considerable length the results

whi.-h flow from accepting this law in the cases of planetary action, of

the pressure of gases <fec., but there is nothing very conclusive in these

results, or that could not in general terms have been almost foreseen

fn>in the nature of the formula itself. The second part of the memoir
consists of rather indefinite philosophical reasoning. In the third paper

:'>) in Tnim' A., Bouch6 makes a a function of the temperature
and obtains an expression for the pressure p of the form :

Ba.(\+K0)\
cP /'

where A, B, K are additional constants and is the temperature. ( >f

this formula he now writes :

;s regarderons cette formule conime vraie dans toute I'etendue des
intervnllcH planctuire et gazeux, ct pour les valours de 6 aus>i urandes qu'on

;p. 223).

There is again much indefinite discussion, and we conclude the memoir
with the feeling <f having made no real progress in understanding how
far such a law as (i) will carry us in explaining intermolecular action.

The same form of force has been discussed by Saint-Venant and
Berthot : see our Art 408.

1

l>. : An adaptation of the Philosoj'!
toi d Boscovich to l/te Atomic T/ieon/. <t>/s of

the Philo*^ -riety of Glasgow, Vol. iv., pj>. 32-80. Cl

deals with atomic and molecular phenomena from
the metaphysical standpoint. The remarks on elasticity (pp. 55

Iligible to me, and some critics might term them nonsense.
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SECTION III.

Technical Researches.

GROUP A.

Treatises and Text-books dealing with the Strength of

Materials from the Technical Standpoint.

[873.] THE decade with which we are dealing is marked by
the publication of many works treating of the strength of

materials and the theory of structures. I cannot hope to have

formed even an approximately complete list of works of this

character, but it is probable that those I have considered in the

following articles are very fair representatives of their class and

suffice to indicate the progress of technical research and applied

elasticity.

[874.] A work by G. F. Warr entitled : Dynamics, Equilibrium

of Structures and the Strength of Materials was published in London in

1851. There is an interesting chapter, now of course quite out of date,

011 bridge-structure (pp. 117-232), and one on the strength of materials

(pp. 232-282), which contributes, however, nothing of value to the

history of our subject.

[875.] C. L. Moll and F. Reuleaux : Die Festigkeit der Materialien,
namentlich des Guss- und Schmiedeisens. (Besonderer Abdruck aus der

Constructionslehre fur den Maschinenbau), Braunschweig, 1853, 72

pages. This work is a synopsis of formulae rather than a treatise. It

emphasises, however, an important principle, which has too often been

forgotten by technical writers, namely that the rupture strength of a

material is not a true guide to its use in construction. The authors

adopt what they term a Coefficient der stabilen Festigkeit as a measure
of the stress permissible in a material. This coefficient is based upon
the elastic limit, hut we are not told how the elastic limit is to be

determined, while we know that within a certain range, it can safely
be extended without injuring the material. For cast-iron they take

the elastic limit in compression double its magnitude in extension

(7*5 kilogs. per sq. millimetre), and they suggest that upon this result the

best practical section for a cast-iron beam ought to be based, and not

upon Hodgkinson's results as to rupture strength : see our Arts. 243*-4*,
176 and 951.

We may note that the authors appear to have had no conception of

shear or slide. They take (S. 65) the Drehungsmodel (sic /) always f
of the stretch-modulus without any mention of aeolotropy or multi-

constancy. Further their views on torsion and the resulting formulae
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uru completely eiTujic-ous (S. 12-13 and the footnote (!)); and, notwith-

standing their assumption of uni-constancy, they treat all elastic bodies

'iilt-up of * fibres' (S. 2). Lastly they give copious values for the

moments of inertia of various cross-sections. I have not tested all

these, but some of them are certainly wrong and others inconsistent

\\ith tip given }>y later writers (e.g. xvm. S. 23).

[876.] In the year 1853 was published the fifth volume of

M< MiiTs Lecons de m&anique ]>/<>( i<jtie,
the first volume of which

had appeared in 1846. This fifth volume forms the first edition

of the well-known Resistance des mate'riaiix, a work which in several

editions extruding over a long course of years has had great in-

fluence as a book of reference for students of technical elasticity
1

.

A note giving an account of this work by Morin himself, will be

found in the '

raidus, Tome xxxvi., pp. 284-7. Paris, ls.":i.

Morin states that his work is not intended as a complete treatise

on the strength of materials; it is only the text of lectn

1. livered by him in the Conservatoire des A rts et Metiers during
the years 1851-2. His object in the work has been to remove

doubts which have arisen with regard to the ordinary theory of

elasticity owing to its extension to problems lying outside its

proper limits. Those limits, however, contain, he maintains,

iviilly all that is needful for most practical constructions: for it

is not the absolute but the elastic strength of a material which

ought to determine the proportions of any piece of it.

A second edition of Morin 's Resistance des materiaiuc appeared
in 1856, and a note by Morin on its presentation to the Academic
will be found in the Comptes rendus, Tome XLIIL, pp. 939-41.

Paris, 1856. It is therein remarked that the additions mad<

the volume tend further to demonstrate the applicability of the

ordinary theory to small strains. Thus by very careful measure-

iin-nts on the flexure of wooden, wrought-iron and cast-in MI

beams, Morin states, that he has demonstrated that the resistances

to stretch and squeeze are "within the elastic limit" equal, i.e.

the stretch- and squeeze-moduli are initially equal :

however, our Arts. 1411* and 793. The difficulty here is to grasp
tli- exact meaning of the term "elastic limit." Morin uses in

one place (p. 940) the phrase "premieres flexions et cclles que
Ton peut sans danger admettre dans les constructions," but tin's

seems equally vague.
1 The third Million in two volumes appeared in 1862.
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[877.] We cannot analyse all the separate editions of Morin's

work and must content ourselves therefore with some remarks on

the first edition and a notice of additions in the last edition at a

later stage of our history. A German translation of the first

edition under the title : Die Widerstandsfdhiglceit der Baumater-

ialien will be found on S. 196-264, Jahrgang xvin., and S.

194-343, Jahrgang xix., of Forsters Allgemeine Bauzeitmig, Wien,
1853 and 1854. The first part of this concludes with a biblio-

graphy of earlier works on elasticity and the strength of materials,

having special reference to technical researches
;
most of the works

referred to will be found quite sufficiently dealt with in our first

volume.

[878.] The Premiere Partie of Morin's work is entitled :

Extension, and occupies pp. 1-60. This section is very charac-

teristic of his methods. While G. H. Love (see our Arts. 894-905)

exaggerates the discrepancies between theory and practice and

would reduce elasticity to an empirical science, Morin on the

other hand seems to me to disguise the real difficulties which

occur, and so to some extent his book tends to check that develop-
ment of theory which invariably follows when any discordance with

experience is clearly recognised. He endeavours to reconcile

the insufficient theory of Navier and Poncelet with the experi-
mental conclusions of Hodgkinson, Fairbairn and others.

Thus he assumes : (i) that for every given material the limits

of elasticity are absolute and not relative to the working; (ii) that

perfect elasticity necessarily ceases with the proportionality of

stress and strain (pp. 2-3); (iii) that the limit of safe stress for

practical purposes is this elastic limit (pp. 3 and 7). On p. 48 we
have a table of absolute limits of elasticity and the corresponding
safe charges for a great variety of materials. Now to-day we are

certain that the limit of elasticity is relative to the working and

previous loading of the individual specimen, and further does not

necessarily connote proportionality of stress and strain (see our

Vol. I. Note D, p. 891 and Art. 796). Hence it is difficult to

consider Morin's treatment of safe-loading as satisfactory. Indeed

he himself remarks that further experiments on the elastic limit

are needed and proposes to fall back on 1/10 of the rupture stress

for wood, stones and cements, and 1/6 of the rupture stress for
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metals as the safe permanent stress. He gives tables of stresses

thus calculated on pp. 54-6.

[879.] We may briefly note one or two other points in this first

part.

(a) On pp. 5-17 the results of experiments by Bornet, Ardant and

Hodgkinson for wrought- and cast-iron are given and stress-strain

(stretch-traction) curves are plotted out (Plate I.). These are very
valuable and suggestive for the comparison of various types of hard

:in<l M.t't in. ii, and their relative technical advantages. Compare our

Arts. 817*, 983*-4* and 1408* et seq.

(b) On pp. 17-28 various elementary theoretical and empiriral
formulae are given for cylindrical and spherical shells subjected to

internal pressure. These are applied to numerical examples in the case

of hollers and hydraulic presses. Notably it is shown that the pn
used to raise the tubes of the Britannia bridge were dangerously weak

M-7)i

(r) We may note here the formula adopted at that dat<- l>y

the French Government for the thickness r of boilers of plate iron

of internal diameter d, subjected to N atmospheres of internal pr-s>ure :

d and r being measured in metres.

Here O03 is a constant introduced to allow for the wear of the

material, and the safe tractive stress for plate iron is taken to be

3,000,000 kilogs. per sq. metre. As the rapture traction of plate
in ni equals about 30,000,000 kilogs. per sq. metre, and according to

M'.iin we ought to take 1/6 of this for safe loading, the formula leaves

a considerable margin of safety. We refer to this formula here as it

recurs in many French and even in German books of this period : see,

for example, our Art. 1126.

(d) On pp. 28-31 the experiments of Fairbairn and Clarke on plate
in ni are considered. Morin seems to hold that Fairbairn's results are

really correct for the better kind of plates, but this should be compan d

with our Arts. 1497* and 902. He then passes to FairhairnV

periments on rivets and cites his result that absolute tractive and

shearing strengths are practically equal : see our Arts. 1480*
(ii)

ami
1499*-1500*. He compares it with that of Gouin et Cie

1

,
who found

for iron rivets the tractive and shearing strengths al>out 4000
3200 kilogs. per sq. centimetre respectively, or very nearly in th-

ratio of 5/4, which is what the theory of unicoustant isotropy would

give for the ratio of the corresponding fail limits in traction and
nhear: see our Arts. 5

(e), 185, and Vol. I., p. 877.

a details of Oouin et Cie'H experiments were given in th, .l/,-//,,,//vx <l, /,/

ingfnifur* civil*, Annee 1852, pp. 156-7, Paris, 1852: see our Art. 1108.
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(e) After a resume of experiments on wood (see Wood, Index,
Vol. i.) Morin gives some details of experiments 011 the strength of

iron cables by which it would appear that the French navy at that

date had cables considerably stronger than those of the English navy
(pp. 42-7). I may note one point which seems to me suggestive. In
the experiments of Captain Brown the absolute strength of the iron

employed to make the links of the chain cables was about 40 kilogs.

per sq. mm., but the strength of the chain cable was only 34 kilogs.

per sq. mm. or the ratio of the two = J(l jV), or nearly 5/4. But
this by the preceding paragraph is the ratio of the shearing to the

tractive strength in wrought-iron. Hence it appears to me that

Brown's cables were possibly destroyed by shearing and not tensile

stress : see our Art. 641.

(f) On p. 49 Morin, reasoning, however, only from Wertheim's

experiments on wires, states that annealing does not effect the elasticity
of iron and steel, but does that of copper, gold, platinum and silver.

He suggests, however, that this would not hold true for larger masses of

iron, as for example axles, kept at a moderately high temperature for a

long period. He believes that such masses would change from a soft

and fibrous to a crystalline condition, and he cites an experiment of

his own, where moderate and continuous annealing during five months
and twelve days produced this effect. Hence he concludes that it is

not advisable to anneal axles and other large pieces of metal : see

our Arts. 1295*, 1463*-4*, 891 (d), and 1070.

(g) On pp. 57-60 Poncelet's results for elastic and absolute

resilience are reproduced (see our Arts. 981*, 988*-92*). These
resiliences are the areas of the corresponding parts of the stress-

strain curves. It does not, however, seem to me true that be-

cause the rupture resilience of soft iron is greater than that of hard

iron, the former ought to be employed for bodies like iron-cables, etc.

subjected to impulses. Repeated impulses with less resilience than
the elastic resilience of a hard iron bar, but greater resilience than that

of a soft iron bar, would leave the former undamaged but wear the
latter out. It is only when the resilience of the impulse is likely to

be greater than the elastic resilience of both hard and soft iron, that

it is advantageous to use the latter. See on this point Cavalli's remarks
cited in our Arts. 1085-9.

Further I must note that Morin's method of equating the kinetic

energy of a falling body to the total resilience of a bar does not seem
to me to give a true limit to the height from which the body may fall

on the bar without destroying it. It has first to be shown that the
kinetic energy of the falling body will not be absorbed by one element
of the bar, but be distributed throughout its volume. This Morin has
not attempted to do. The complete solution of any problem of resili-

ence is one of great complexity: see our Arts. 362-71, 401-7 and
410-14.
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[880.1 The Deuxieme Partie of the work is entitled : Resistance des

corj)8 soRdes d, la compression and occupies pp. 61-123. We may note

briefly one or two points :

(a) Pp. 61-76 deal with the resistance of wood. Moiin compares
the results obtained experimentally by Rondelet and Hodgkinson.
Rondelet in his Trniti de Fart de bdtir (see our Art. 696*) does not

seem to have distinguished between rupture by pure compression and

rupture by buckling. He gives a table of the following kind for

wooden columns :

Ratio of height to least dimen-
sion of cross-section

Crashing Strengths

12 ! 24

5/6 1/2

36

1/3

48

1/6

60

1/12

72

1/24

This is a purely empirical table and it would not be necessary to

refer to it here, had not a recent writer apparently adopted these
miinlu-rs for the crushing strengths of apparently all kinds of material 1

.

Obviously a different kind of strain appears the moment the block
becomes long enough to buckle, and these numbers are at best only
approximately true for the particular type of wood upon which
Rondelet was experimenting.

Hodgkinson on the other hand found for short blocks (height double
the diameter) that the crushing load P was proportional to the area of

cross-section, while for wooden struts (see our Art. 965*) of length I

and rectangular cross-section axb(b<a) he adopted a formula of the type
P^KaPjP, where K is a constant depending on the material. Morin
adopts Hodgkinson's results in preference to Rondelet's and givrs tin-

following values for A', when a and b are measured in centimetres, and
/in decimetres:

Strong oak : 2565.

Weak oak: 1800.

Red and strong white deal and resinous pine : 2142.

Weak white deal and yellow pine : 1600.

For safe loading 1/10 of P may be taken (pp. 68 and 73).

Obviously 100 K= crushing strength of a cube of the material of
one centum-tit- -id., or K equals crushing strength in kilogram im->

per sq. decimetre of such cubical blocks. The numbers we have cit 1

only 1.. treated as roughly approximate, for the crushing strength va>

greatly with tin- decree of moisture, age, etc. of the wood: see our
Arte. 1312*-4*

-rhaeh in th of the E
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(b) Pp. 76-89 give details of the experimental results of Roiidelet,

Clark and Vicat on the crushing strengths of stone, mortar, cement
and brick: see our Arts. 696*, 1478* and 724*-30*. Morin after

citing at length Vicat's results on the compression of cylinders and

spheres between parallel tangent planes, and the pyramidal or conical

surface of rupture remarks :

Les nombreuses observations que nous avons recueillies k Metz, M. Piobert

et moi, sur la rupture des projectiles brises par le choc, ont montre que dans
ce cas la rupture se fait d'ime maniere analogue, avec cette difference que le

point cheque est le plus ordinairement le sommet deprime d'une pyramide h

cinq faces quand la vitesse du choc n'est pas tres-considerable, et qu'aux
grandes vitesses cette pyramide se change en un c6ne a generatrice curviligne,

qui est presque toujours multiple ou forme de plusieurs autres c6nes conaxi-

ques, et dont 1'axe diminue de longueur k mesure que la vitesse du choc

augments (p. 81).

Supposing we assume that the rupture surfaces are practically in

close agreement with the surfaces of maximum elastic stretch. I think

an explanation of these extremely interesting conical and pyramidal

rupture surfaces, to which I have frequently had to refer (see our

Arts. 730*, 949* 1414* and 1446*), might be deduced by Hertz's

method of investigation (CreUe's Journal, Bd. 92, 1882, S. 156-71).

(c) Pp. 90-100 deal with Hodgkinson's experiments on cast-iron :

see our Arts. 1410*-5*. Morin adopts a mean value for the squeeze-

modulus, which does not seem to me justified by Hodgkinson's results :

see our Art. 1411*. Pp. 100-105 deal with wrought-iron and a com-

parison of its action under compression with that of cast-iron. Morin

gives graphical representations of Hodgkinson's results. Then follows

a discussion of Hodgkinson's experiments on cast-iron pillars (see our
Arts. 954* 65*), which are represented by numerical tables (pp.

108-9), more easy to work from than Hodgkinson's formulae, and also

graphically by curves on Plates II. figs. 4 and 5, III. figs. 1 and 2.

Pp. 115-23 deal by approximate methods with the compression in

arched ribs. Here a circular rib is treated as a parabolic arch and

supposed to be loaded uniformly per foot-run of the horizontal chord,

although Morin (p. 116) speaks of the load as being often in great

part due to the weight of the arch. Thus Morin really only deals

with a part of the complete expression as worked out by Bresse :

see our Art. 525. A table on pp. 118-9 gives the compressive stress

in a number of existing arches and viaducts in France on these

assumptions.

[881.] Tlie.Troisieme Partie on Flexion occupies pp. 124-431, or

embraces the bulk of the volume.

(a) After some general remarks on the experiments of Duhamel
du Monceaux, Dupin, Duleau, Hodgkinson, etc., which he holds tend
to confirm the customary axioms of the Bernoulli-Eulerian theory,
Morin proceeds with a slight historical preface (pp. 140-4) to develope

T. E. ii. 39
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that theory in tin- usual manner. The usual problems are solved and

the fail-limit or safe load for a beam is deduced from the formula for

tlu- IM Muling moment (see our Art. 173).

where T
9

is taken as a quantity to be determined by flexure < \peri-
nii-nts and not to be assumed from pure tensile results. Morin gives a

table of its values for different materials on p. 169, but he does not

note that it is part of the 'paradox in the theory of brains' that it

s from one form of section to another : see our Arts. 173 and

Besides the fact that in a great variety of special cases the deflection of

Dimple beams is worked out, there is nothing calling for special notice

in the whole of these pages (pp. 138-232).

(6) Moiin next proceeds to apply these theoretical results to the

experimental determinations of the elasticity and strength of wood
made by Barlow (see our Art. 188*), and of cast-iron made by several

Jish Engineers for the Report of the IronrCommissioners (see our

Art. 1406*). In the latter case Morin concludes that tin- flexure of

cast-iron for all practical purposes obeys closely enough the laws of

the Bernoulli-Eulerian theory (p. 268), but I hardly think the f

warrant this conclusion. He next deals with rolled and plate iron

u'irders, considering especially a great variety of T and double-T beams

(jl>. 269-90). Next we have a long account of the theory and con-

struction of tubular bridges in plate-iron, with details of Fail Nairn's

experiments (pp. 290-322): see our Arts. 1465* et ^7. Thru follow

i-iptions of a girder in plate-iron designed by Brunei, of the

p. riments of James and Galton on travelling loads, and remarks on
the alteration of structure in axles by Marcoux 1 and Arnoux- : see our
Arts. 1417* and 1463*-4*.

(c) The remaining portion of the Troisieme Partie, namely pp.

354-431, is devoted to a discussion of roof trusses (cfuirpentes) in

wood and iron. The theory employed is analytical, and appeals only to

the elementary principles of statics combined with the Bernoulli-

Eulerian theory of beams. Morin cites Ardant's results (p. .".fil .

A'/'lenda to our Vol. i., pp. 5-10), and gives formulae and tables

which might possibly be still of service in the design of roof tru

The only articles which call for special notices are
.

:;_'! c, which
deal with the first experiments ever made, 1 Relieve, to test the

stresses calculated for the members of a frame. In these expei-im-
Morin was assisted l.\ Tresca and Kauh-k. The tie rods to be tested

1 Marcoux considered that axles were weakened by prolonged vibration, but that

they did not change their structure from fibrous to crystalline (p.
* Arnoux considered that axles were weakened by prolonged service and that

there was a stmrtunil .
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were replaced by chains containing dynamometers, and the chains were

carefully screwed up to the original length of the replaced tie rod.

The stresses measured by the dynamometers agreed with the results

of calculation to a degree sufficiently accurate for practical purposes,
in all cases but one with less than 6 p.c. difference and often with

considerably less (pp. 396-400).

[882.] The Quatrieme Partie is entitled Torsion and occupies

pp. 432-53. The statement on pp. 432-3, that the absolute dis-

placements are proportional to the distances of the displaced elements

from the axis of the prism under torsion, is only true for prisms of

circular cross-section, and the application of Coulomb's theory to bars of

rectangular cross-section (p. 438) is of course incorrect. Some experi-
ments on the resistance of cast-iron shafting to torsion made at

Mulhausen and some others made by Carillion in Paris are cited on

pp. 444-51, but the theory given of rupture by torsion (p. 448) seems

to me obscure if not erroneous, and this portion of the work is not

satisfactory.

Considering the date at which the work was published, it was ex-

tremely good of its kind, although Love's book is in many points
of more practical service. It has in later editions progressed with

the advance of technical elasticity and we shall have occasion to refer

to it again.

[883.] H. Tellkampf: Die Theorie der Hangebrucken mil

besonderer Rucksicht aufderen Amvendung. Hannover, 185G. This

is a useful resume in 120 pages of the theory of suspension bridges
from the practical side. Attention may be drawn to the Sechstes

Kapitel entitled : Oscillationen der Hdngebrucken, S. 99-114,
which developes various, not absolutely rigid, theories of impact.
We may note especially 49 (S. 107-12), which applies a theory
of impact similar to that of Hodgkinson, Cox and Saint-Venant

to the case of a weight falling on the centre of a suspension
chain. This may be taken as an example of a theory, which if

somewhat hypothetical still gives results probably accurate enough
in practice : see our Arts. 943*, 1434*, and compare with Arts.

366-71.

[884.] We are justified in asserting that the period with which

we are dealing in this chapter marks a great improvement in the

type of text-books for practical technologists and students. Notably
in this respect we owe much to J. Weisbach, Morin and J. M. Ran-

kine. The first edition of Weisbach's Ingenieur-MecJiamk appeared
in 1846, the second in 1850, the third and fourth in 1856 and

392
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1863 respectively. Polish, Swedish, Russian, English and American

translation^ IM\. appeared. E. B. Coxe's translation of the fourth

edition (Triilmer, 1877) is the form most accessible to English

readers. Section iv. and the Appendix deal with a number of

clastic problems and profess in the fourth edition to incorporate the

then recent hook of Lame', Rankine and Bresse. An interesting

sign of the progress of our science is the continual remodelling of

these portions of the book in successive editions. While the work

shows greater advance over the earlier text-books on the strength
of materials and while some points of it might even be of service

to-day, it must nevertheless be read with caution. In the English
edition of 1877 we still find an unsatisfactory and even erroneous

treatment of flexure, torsion and of the theory of struts, while

the theory of combined stress exhibits the same errors as

Weisbach's earlier memoir on that subject: see our Art. 1377*-8*.

Further, contrary to Weisbach's opinion, Kupffer's experiments
show that the stretch-modulus can be found with some degree of

accuracy from transverse vibrations by means of the formula

in 5 of the Appendix. The book so far as our subject is con-

ei -rin <] is entirely replaced on the theoretical side by Grashof's

text-book
;
neither of them can, however, be considered satisfactory

from the physico-technical side. An account of Weisbach's labours

'ii by Riihlmann : Vortrdge uber Geschichte der terlun'*rlien

M,-/, flll ik
t 1885, S. 41524.

Other German text-books of this period, to which I have found

frequent reference in memoirs dealing with the strength of

materials, are discussed in the three following articles.

[885.] G. Rebhann : Theorie der Holz- und Eisen-Construttionen

mil besonderer Rucksiclti auf das Bauwesen. Wien, 1856. This is a
textrbook of technical elasticity and bridge-construction containing
xiv + 602 pages. It was probably a serviceable students' work at tin-

nine it was written but it embraces nothing, 1 think, of permanent or

historical importance.

[886.] H. Scheffler: Theorie der '
. FuUormatotr*

einernen Briicken. Braunschweig, l'
s

-">7 M"l pa^'s and \viii. plates).

So far as this work deals with ma.v.nry stnu-tures it may be considered
to lit- 1-ntiivly outside our field as it does not appeal to any elastic

any relation between stress and .strain. S. 37

deal with the Th.nri* /, / riscni'ii JiriiA . The} <)'. bo

nl\ ed uitli >t rai-jlit girders, and with a fe\\ .f con-
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tinuous beams. They present no particular grace of method and no

originality of result, at least, so far as a cursory examination of this and

a more thorough acquaintance with other writings of the same engineer
allow me to judge.

[887.] Fr. Laissle and Ad. Schiibler: Der Bau der Briickentrdger
mit wissenschaftlicher Begrilndung der gegebenen Regeln und mit

besonderer Rilcksicht auf die neuesten Ausfuhrungen. Stuttgart, 1857.

I have been unable to find a copy of a second edition of this work,
but there appears to have been an edition or issue of a somewhat similar-

work by these authors published in 1869 and 1870, of which I have

seen a French translation entitled : Calcul et Construction des ponts

metalliques, Bruxelles, (1871?). The later work is very much more
extensive than that of 1857, involving about 600 pages in two volumes

with numerous plates, while the former has only 156 pages and four

plates.

[888.] The authors in their preface state that the ordinary theory
of beams due to Navier has not proved itself incorrect but rather in-

complete, and that their object is to supplement rather than replace
it wir haben hiebei streng den Gang der Wissenschaft beibehalten.

They refer especially to the work of Schwedler (see our Arts. 1004-5) as

having been of special service to them. They also mention the works
of Rebhann and Scheffler (see our Arts. 885-6) as having appeared
while their work was in course of preparation.

[889.] There is little deserving of note in the present day in the

book. The statement on S. 7 is of course erroneous; the moment of the

tractions in the longitudinal fibres of a beam about the neutral axis, as

well as the total shear in a cross-section, were certainly not first

introduced by Schwedler in 1851, although he may have been the first

to use the symbols 5 (Xy) and 2(1^) for them. Nor was Schwedler, I

think, the first to show that the slope of the bending moment curve is

the total shear Ji.e. in symbols -k =^(Y)[ ,
or that points of zero

total shear are points of maximum bending moment; but our authors

seem to think so on S. 9.

The discussions on shearing stress and the resolution of stresses on
S. 18-25 are all old work, and the former only a rough approximation
at best. The treatment of the buckling load of struts on S. 25-7
follows Schwarz's work and is as obscure as the original : see our Art.

956. The general discussions on simple and continuous beams, and on

plate and lattice girders are reproductions of the results published in

various articles in the Civilingenieur, Erbkams Zeitschrift and the

journals of the German and the Austrian Ingenieur-Vereine to which
we have drawn elsewhere sufficient attention. The book denotes pro-

gress in Germany in the theory of bridges, but it is in no way superior
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to tlif w..rk> of l',r. .-, .Morin or Lo\e, published about the same time

in I
. ...in-al.lv reviewed by Grashof in the Zeitsckrift

,312-21.

[890.] L. Molinos and 0. Pronnier : Trait-' tl,;>n-'t
<i>i,>

<f i"'" 1'"^^ de

la construction d ///<7'////V/aes, Paris, 1857. The text is in

|uarto and contains viii -f 340 pages ;
there is also an atlas of

j.l.

in folio. This is an extremely well ^..l-up work dealing with the

practical .-ide f bridge structure. The early chapters, containing <
i x-

p.
rimental details and theoretical investigations of flexure and bending

moment in simple and continuous beams, are chiefly based on tin-

researches of llodirkinson, Kairbairn, tlie Iron-Commission, Clape-yron
and r.-'l;tn'_'er. The practical labours of Stcphenson, Brunei and

as well as the numerous English and French researches on

meting receive ample attention. Indeed the book presents th" best

historical picture of the state of bridge construction in 1857, both from

the mechanical and theoretical sides, that I have come across. A number
of cases of continuous beams will be found worked out with practical

applications on pp. 253-78, and the comparative criticism of the various

ivj.es of metal bridges with which the work closes might possibly be

still of service. The book is certainly pleasant reading after tin-

laboriously written and poorly printed treatises to which we have re-

ferred in the immediately preceding articles.

[891.] The Useful Metals and their Alloys : Orr's Circle of tlie

Industrial Arts, London, 1857. This book is the joint production of .1.

Scoffern, W. Fairbairn, W. Truran and others. Chapters X I I.-XX 1 1 1.

deal with iron and steel and structures made from them, and present a

fairly complete picture of the current knowledge with regard to them at

that time. We may note a few points of the work :

(a) Chapter XII. entitled : TJie strength and other propertl
Cast Iron (pp. 210-19) gives details of the various influences which
alter the tenacity of cast-iron. Thus the tenacities of cast-iron prepared
with cold and hot blast respectively are nearly as 1 : '8

;
remdr

increasing the density will increase the tensile strength 2 to 3 times;
maintaining the iron in fusion, which has much the same influence,
will also nearly double the tensile strength (p. 215); casting 'under
a head,' rapidity of cooling, etc. which increase tin- density, produce
inrroase of strength.

(I.) Chapter XIII. (pp. 220-251) and Chapter XIV. (pp. 252-G9)
giving accounts of the preparation of wrought-iron and of '

I

patented p -fining processes' (notably the I! be si ill

i with interest, especially by those who wish to understand how it

,'ossible for the processes of working to produce such totally dill'.-

al characteristics as occur in the various types of iron.

(c) Chapter XV. is entitled: .!/</<//> ////;//< ,,//oy ,////,
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270-309) j
it is devoted rather to their chemical constitution than to

their elastic properties.

(d) Chapter XVI. is entitled : On wrought iron in large masses

(pp. 310-33), and is principally occupied with the effect of various

methods of working on the tenacity and ductility of wrought-iron
intended for ordnance: see our Arts. 879 (/), and 1065-7. Chapter
XIX. deals with the subject of cast-iron for ordnance (pp. 385-397).

(e) Chapters XVII. (Steel manufacture) and XVIII. (Application

of steel... \ pp. 334-84, discuss the processes of making steel (including
the then recently introduced patent processes of Heath, Bessemer,
Uchatius, etc.) and especially treat of the varying physical character-

istics due to difference of chemical constitution or to working.

(/) Chapters XXI.-XXIII. deal with the application of cast-

and wrought-iron to various types of structures. Pp. 410-33 form a

practical treatise on the strength of various types of beams
\ pp. 433-41

deal with iron floors and roofs with considerable detail as to strength
and cost; pp. 442-66 treat of girders and bridges for railways, etc.

with a resume of the experiments of Fairbairn, Hodgkinson and others

on tubular bridges as well as details of strength ; pp. 467-78 are

occupied with the application of iron to shipbuilding, and give a resume
of Fairbairn's experiments on rivets and plates.

It will be seen from this brief account of the contents that the book
is calculated to give the reader a very fair knowledge of the condition

of applied elasticity in 1857. Novelty in results is of course not to be

expected in a work of this kind.

[892.] A work by E. Iloffiaen entitled : Traite theorique et

pratique sur la resistance des materiaux, 1858, might possibly contain

some contribution to our subject from the technical side, but I have
been unable to find a copy : see however our Art. 925.

[893.] J. B. Belanger: Theorie de la Resistance et de la Flexion plane
des Solides. Paris, 1858. The first edition of this book, a reprint of
lectures at the Jficole centrale des Arts, contains 104 pages. The second
issued in 1862 and somewhat augmented and modified contains xii +
148 pages. My references will be to the pages of the second edition as

the more accessible.

Chapters I. and II. of the book deal with pure traction and torsion,
the latter by the old erroneous theory, and offer nothing of note.

Chapters III. to VI. are occupied with the discussion of flexure on the
Bernoulli-Eulerian hypothesis. In the last of these Chapters various

cases of continuous beams are worked out with some detail, and on p. 67

Clapeyron's Theorem of the three moments is given for the case of
uniform loading, the two spans having unequal flexural rigidity and the
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MipporU nut being on the same le\.-l. In the nutation of our Art. 607

the theorem thru take* the form

|S

where Cj AVoiKj'-' and .j-JK.M.,K.f are the ilexural rigidities and //^ v/,,

y3 the heights of the three points of support corresponding to the two

i Dimple and continuous beams are dealt with analytically, and

th-ir tivatinrnt presents no novelty of method. Very simple _

metrical pro..: on Molir's theorem might be given for most of the

j >ages.

Chapter VII. modifies the previously given theory of ilexure by

introducing Jim ravski's treatment of slide (see our Art. 183 (a)). Chapter
VIII. deals on the old lines with solids of equal resistance and ( 'hapter
IX. dtMQMWl .-truto without throwing any new light on that dillii-ult

subj- ( t. rhapter X. treats some simple cases of beams braced by
rods; Chapter XI. contains a very insufficient treatment of arched

iil, \vhih- tin- la.^t Cliaptrr XII. after an elementary treatment of the

problem of tin; indefinitely thin right cylindrical shell, practically

reproduces Bresse's treatment of a slightly elliptic Hue: see our

Art. 537.

It is somewhat remarkable that a book certainly not stand i-

the level of then existing knowledge should have reached a second

edition; still more noteworthy that reference to it should be met with

at the present day.

G. H. Love : Des diversea Resistances et autres 1
'

de la Fonte, dti Fer et de VAcier et de I'emploi de ces -nnfam.'- dans

les constructions, Paris, 1859. This work contains xxxi + :

pages. It contributed largely in its day to a knowledge of the

physical properties of cast-iron and steel, and forms the opp<>

|H,!J iu technical literature to Morin's book published in I

Alorin attempted to show that the Bernoulli-Eulei uin theory
>u fliers in practical elasticity, Love tried to discredit it altogether.

mean of these views is probably nearer the truth
;
there

many phenomena of great practical importance, which cannot be

explained by existing mathematical thmru-s, while on the other

liaiil tl, W ii'ith PI-I,(-I- li'iiti'tntioHs are capable >t' l>ein^

made of great D directions not hitherto considered. I

those wbn \\ish to ascertain the exact results of the trelmk-al

nents condueteil in tlie preceding decade, Love's book will

still be of great service and suggestiveness.
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[895.] After a copious Table des Matieres (pp. v-xxiii), the

book opens with an Introduction (pp. xxv-xxxi) in which the

author refers to a first publication of his work in 1852 \ and

explains why at that time he depended upon English experi-
ments for so much of his data. In the present volume he takes

due account of recent French work. He pays, however, a high

compliment to Hodgkinson on pp. xxvi-xxvii :

Aussi longtemps que 1'emploi du fer flit restraint aux anciens usages,
on que 1'industrie n'eprouva qu'un mouvement graduel et modere,

personne lie songea a constater l'insuffisance des anciennes donnees

pratiques et a verifier le plus on moins d'exactitude des formules
fouruies par la Theorie. Mais a peine 1'industrie des chemins de fer

prenait-elle naissance en donnant une grande extension a Temploi de la

fonte, que M. Hodgkinson cominenga ses essais sur cet utile metal.

Experimentateur consciencieux, il rejeta toute idee precoiigue, comine
celle de la limite delasticite, de nature a limiter le cadre de ses

experiences, et, par suite, a donner des notions incompletes ou inexactes

sur les proprietes de la fonte. II pensa, sans doute, clans sa probite

scieiitifique, qu'il n'avait pas le droit de presenter des experiences

tronquees comine celles que nous avaient leguees la plupart de ses

predecesseurs, pour venir en aide a la Theorie. Son but, plus sage, plus
utile, etait de faire connaitre les proprietes du metal aussi completement
que possible; ce a quoi il ne pouvait arriver evidemment qu'en poussant,
dans tons les cas, ses essais jusqu'a la rupture, au lieu de les arreter,
comine les autres experimentateurs, en des points variant avec 1'ima-

gination ou la fantaisie particuliere de chacun. Le resultat le plus
saillant de ces essais faits sur une tres-grande echelle et jusques en ces

derniers temps, fut uii dementi donne a la limite de Velasticite. M.
Hodgkinson demontra, en effet, qu'il n'existait, pour la fonte, aucun

point fixe ou 1'elasticite commengait a s'alterer
; que cette alteration se

produisait sous les plus petites charges, pour le fer comme pour la fonte.

This paragraph expresses concisely Love's view and the nature

of his attack on the theorists. If there be no limit of elasticity,

there can be no truth in the ordinary theory, he argues, and thus

elasticity becomes a purely empirical science.

[896.] Livre Premier of the work is entitled : Du fer, de la fonte,
et de I'acier soumis a des efforts de traction, and its first chapter is

devoted to the extension of these metals (pp. 1-67). In this chapter
(pp. 2-3) Love states the general conclusions of the old theory, perhaps

1 I suppose this to refer to the memoir : Resistance du fer et de la fonte basee

principalement sur les recherches experimentales les plus recentes faites en Angleterre,
or possibly to a reprint of it. It was published in the Ale"moires...de la Societe des

Lifjenieurs civils, Aunee 1851, pp. 163-272. Paris, 1851.
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a lilll: too unfaxoiirably, and thru formulates the following proposi-
tions in opposition to them, j)ropositions which give the key-note to his

hook (pp. 3-5) :

(i) La proportionalite cutrc 1'allongcnient et la charge n 'exist.

-nee fl'une manicrc ahsolue, et pour lefer doux cette loi no pent s'atlirnicr

en general que i>our les charges comprises entre zero ct la moitie dc celle qni
;irait la nipture instantande.

Does Love here mean (a) that cast-iron cannot be reduced to a
<f ease, or (b) that if it can be, there is not direct proportionality of
stress and strain ? Would a cast-iron tuning fork give no note 1

(ii) l"n allongenicnt permanent sc manifesto sous les plus petites ch.

et le point ou l<\s allon^enients croissent beaucoup plus vitc quc ces charges
est tivs v. trial dans les fers de niuinc provenaiu-e. Par oona^q
la limitc d'ebusticitc, en taut qu'elle existe, n'a pas le caractcre dclini qu'on
lui a attribue, et perd forcemcnt toute importance aux yeux du pratieirn.

The state of ease would here again be an important factor.

(iii) Sous la memo charge la fonte s'allonge beaucoup plus que le fer.

This is stated because certain engineers had held the reverse to )><

tun-'; Jx)ve's statement would certainly follow for the state of ease
from the greater value of the stretch-modulus of wrought-iron.

(iv) Les ecarts considerables de resistance observes sur les echaiitillons

de fer on de fonte de memo calibre, mais dc provena noes diverse*, nc

l>cnnettcnt en auciinc fayon dc compter sur unc moyenne </' resistance. 11 en
,!tc que lors(ju

!

on ne connait }>as la resistance partictilierc dtt metal d>nt
on dispose, la prudence conscillc d'adopter le taux mininnim du r

i'ourni
p.-ir Tobservation.

This is only an argument in favour of establishing testing labora-

tories independent of the manufacturers, possibly as governn.
institutions.

(v) IAS fer et la fonte, soustraits aux chocs ou aux vibrations,
imlt tinimcnt les charges les plus voisines de cellos capables de produire la

nrfe.

That this is highly questionable follows from the experiments
of \V.,hler and others: see our Arts. 991, 992 and 997, etc. Most
ordnance makers and users would certainly be glad if it wer< tr

M) Les fun... es dp la theoric en vigucur ne j>cuveiit etrc
's avec quelque sccurite .pfapre> avoir subi lies transformations

importantes.

The legitimate aj.]
.1 i<-at ion depends entirely on the limits within

\\hich tin* formulae are applied and on various modifications \\hich

may be made in the definitions of the quantities involved.

I writes: L'opinion contraire s'est g6nralement accredit^ chez les

praticiens (ftn. p. 2). He does not, however, cite examples.
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[897.] The major part of this first chapter is occupied with details

of the experiments of Hodgkinsoii (see our Arts. 969*, 1411*-! 2*,

1419*, etc.), of Bornet (see our Art. 817*), of Vicat (see our Arts.

721*-36*), of Leblanc (see our Art. 936*), and of the more recent

French experimenters on steel, Gouin and Lavalley, Jackson, Petiii and

Gaudet, and Tenbrinck, whose results appear to be published in Love's

work for the first time.

Love adopts Hodgkinson's formula for cast-iron: see our Art. 1411*.

He admits a proportionality of stress and strain for a first stage of the

elastic life of wrought-iron and steel, and he gives a formula for iron

wire or cable (pp. 61-3) which is based upon the fact that such a wire

only becomes straight under a definite load, the wire or cable itself

always being manufactured under an initial traction. This practically
consists in adding to the stretch-modulus the constant traction under
which the cable was manufactured (see, however, our Art. 241). It

seems to me that this traction would form an indefinitely small part of

the stretch-modulus
(i.e.

300 to 1158240 in the example on p. 62!)
and might well be neglected. The real point, I think, to be noted
is that no stretch-traction relation would hold till the applied traction

reached the constant traction under which the cable had been manu-
factured.

[898.] Noting the discordance between various observers' results

on extension Love remarks :

quo, dans 1'etat actucl des choscs, ce que 1'on possede stir I'allongemeiit
des nietaux tisuels laisse enorniement a desirer et quc des renscigneiiicnts

plus precis seront dimcilcs a obtenir. Tandis, qu'ati contraire, les faits dc

rupture prcscntent tine Constance stir laquelle on peut se reposer avcc
securite

; qti'ils ne peuvent, dans leur interpretation, laiaser dc prise a
1'invention ou a imagination conime les allongements. Car il est evident

que si deux experimentateurs peuvent differer stir la question de savoir si,

a un moment donne, tine barre a atteint, sous une certaine charge, son degre
definitif d'allongement, il est impossible qti'ils ne toinbent pas d'accord
immediatement sur un fait aussi tranche, atissi brutal que celtii de rupture.
D'ailleurs les experiences sur la rupture etant les plus simples et plus faciles,
tout fait une loi de fixer cette phase de la resistance des solides, conime le

point de depart, la setile base de toute formule pratique de resistance

(pp. 58-59).

To the last sentence we can only put a very large query, but the
first sentences express a very real and oft neglected experimental
difficulty.

[899.] Chapter II. (pp. 68-93) of Love's work is devoted to the
absolute strength of cast-iron. The author commences by citing Tred-

gold's extraordinary statements on the absolute strength of cast-iron

(Practical Essay on the Strength of Cast-iron..., p. 252, Edn. 4) due to the

'paradox in the theory' (see our Arts. 999* and 178), and then proceeds
to analyse the early experiments of Minard and Desormes and of Hodg-
kinson (see our Arts. 940*, 966* and 1408*). These are followed
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by details of <

-xj> -riineiits on French cast-iron, in most cases here

published for tin: first time. Love repudiates any mean value for the

lute strength of cast-iron (p. 74), and considers that it must be

determined de novo for each particular sort.

[900.] Chapter III. (pp. 94-135) deals with various cast-iron

structures, as tubes, cylinders, hydraulic presses etc., in which Love

supposes tin- principal stress to be tractive. Love gives an interest

resume of the various empirical formulae for cast-iron pipes. He
objects to such formulae on the ground that they do not allow

sufficient play for the variation in strength of the metal employed, but
com-ludcf, by adding a new formula of his own. Let T be the thick i

in centimetres of the pipe, N the number of atmospheres of internal

pressure, T the absolute strength in kilogs. per sq. centimetre, D the

diameter in centimetres; then Love puts (p. 102) :

Mori n in hi.-> lletsistance des materiaux puts :

T =-85+ -00238JVZ).

It might seem that Love's formula must be better than Morin's
which takes no account of possible differences in the value of T, but

as Love determines his constant term (?) for a particular kind of iron

from the Fourchambault foundry the advantage is not so obvious.

His formula gives far less thicknesses in all cases than any of the

other formulae then in use, and thus certainly does not err on the side

of safety : see the Table of comparative results p. 103. The reason

of this divergence is that Love takes for his formula a less factor of

safety (about 6), and allows less (-7 instead of -85 or even 1) for tin-

wear and tear of the surfaces of the pipe.

Pp. 113-7 of this section of the work are devoted to tubes as used

tor the foundations (piers) of bridges.
For the cylinders of steam-engines Love retains the above formula,

increasing, however, the constant term '7 to 1-5 centimetres, as he

considers there is greater wear. He compares results calculated from

this formula with those given by other formulae (pp. 117-20).

[901.] The remainder of the chapter is devoted to the discussion of

hydraulic presses.

adopts again the same formula as for pipes, only, having
regard to the thicknesses with which we have to deal in such

now neglects the constant '7. He cites also formulae of P.ailow and
Recltcnbaeher <pp. 121-2). It is strange that these formulae, based on

no theory whatever, should have retained their places in the t. \t Looks
so long after Lamp's investigation, (see OUT Arts. 1013* and 103S*).
Love discusses at some length the hydraulic presses used for rai
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the tubes of the Britannia Bridge (see our Art. 1474'6

) and the

dimensions and presumed strength of various other presses in practical
use (pp. 123-37).

[902.] Chapter IV. (pp. 138-87) is entitled: Resistance finale a
la rupture par traction du fer et de racier. It cites the experiments on
bars of iron of Rondelet, Duleau, Martin, Brunei, Tenbrinck, etc. (see
our Arts. 696*, 226*, 817*), and gives in a fairly concise form their

results as to absolute strength, final stretch, stricture, temperature of

the section of rupture and the nature of the rupture-surface (pp. 138-

50). The experiments of Seguin, Leblanc and Dufour on iron wire (see
our Arts. 984*, 936* and 692*) are then discussed (pp. 150-9). Love
shows that if the absolute strength be plotted up to the area of the

cross-section we obtain a curve with several maxima of strength, which
maxima themselves appear to lie on a regular curve. Such a curve

would probably depend very much on the preparation of the wire, and
Love himself is compelled to conclude that the tenacity of each special
make of wire ought to be independently determined (p. 157).

He then turns to iron plate and cites the experiments of Navier

(see our Art. 275*), Clark and of Lavalley, those of the latter being
here published for the first time. Finally we have a brief reference

to Fairbairn's results (see our Art. 1497*). Love considers that these

only show that iron plate can be prepared by special processes to be

equally strong in and across the direction of the rolling
1

,
but they do

not invalidate the conclusion of other experimenters that the absolute

strength and the ultimate extension are considerably less perpendicular
than parallel to the 'fibres.' After some few pages on the absolute

strength of various special kinds of iron Love discusses the resistance

of steel to traction (pp. 176-87). He publishes for the first time

experimental results due to Tenbrinck and Lavalley. The discussion

is solely of practical value and has special reference to the kind of steel

produced at that date.

[903.] Chapter V. (pp. 188-212) is entitled: De la resistance a
la rupture par traction de la idle assemblee par des rivets et acces-

soirement de la resistance des rivets au cisaillement. Love cites the

experiments made for the tubular bridges (see our Arts. 1480*-2*)
on the proportion of riveting strength due to shearing strength and
friction respectively, and considers the amount of confirmation Clark's

results receive from experiments made for MM. Gouin et Cie. Both
sets of experiments go to show that the additional strength due to the

friction produced on the cooling of the rivet is from 1200 to 1300 kilog.

per sq. centimetre of the section of the rivet (p. 191). On the other
hand while Clark found the absolute shearing strength of rivet-iron

only 2/3 the absolute tractive strength, Lavalley determined it at 3/4.

1 II suffirait, parait-il, de croiser les mises du paquet au lieu de les placer dans
le meme sens (p. 171).
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Love adopts Clark's value ;
if we suppose uniconstant linear elasticity

to hold ' .ture we should have the ratio equal to 4/5 : see our

Vol. 77. Tin- remainder of the chapter forms an interesting

practical diseussion on the various modes of riveting and the resulting

theoretical and -\\
ri mental strengths.

[904.] Chapter VI. (pp. 213-338) is entitled : Application d>

ct de Fader sous leurs diverges formes aux appareils et constructions

usites dans Vindustrie. Tliis chapter consists entirely of practical

applications, and the small amount of theory applied is often of a rather

(1 1 1 hious character (e.g. pp. 214, 217 etc.). The topics dealt with are:

riveted hoilers (pp. 213-25), water pipes of plate iron
(]>]>.

225

irs of plate iron
(|>|>.

*J3l' 42), iron chain-cables (invented by

Captain Brown 1 and first used by him on board the /V//,7,yyr, isll), tin-

link for chains and the few details known of their strength

(pp. -12 7"). and lastly the cables of iron wire and bar-iron for suspen-

bridues with a lengthy discussion of the various applications of

i bridges, the strength of their various parts, their advani

and dangers (pp. 275-3S8)
8
.

[905.]
The final chapter (pp. 339-57) of Love's work is entitled :

De certaines resistances du fer et de la fonte se rapprocliant plus j>r-
ticuHeretiient de la resistance a la rupture par traction. This is devoted

ieli Mibjocts as the strength of screws under a traction which dues

nt turn them (pp. 340-3), so that rupture is produced by shearing
off the thread, on punching (pp. 343-5), on the resistance of iron and

1 to torsion (pp. 345-51), and on the strength of railway axles ami
their journals <

pp. -">">l-7). Several of these matters are treated with

greater detail and more exact theory in other works of this period :

our Arts. 966-7, 1043, 1049, 957-9 and 988-1003.
The work concludes with an appendix giving sheets prepared with

blank columns for various details on the local preparation and strei

of the different kinds of metals: these were to be filled in by experi-
menters and returned to the author.

In eonelusion wi may remark that the book was distinctly the be.st

practical treatise on the strength of iron and steel prodm-ed in the years
1

< Hi. and that even to the present day it may be consulted on some

points with advantage.

W. Fairbairn : Useful Information fr Ki The

first edition of the First Series appeared in IS.").") and ;i tilth edition

"f i
; ries in 1ST 1, the first edition of the Second Series in 1>

i the history of chain cables : see Tr of the Institution oj
Archil,, ft, Vol. i.

f pp. 16070. London, 1860.
* The first suspension bridge was built in Aimricu by James Finley at Jacob's

Creek in thr V<-Jir IT'.ni ; the I ntuin \vus dlM to Suinu. -f Un.wu and
erotscd the Tweed at II. r\\i<-k, IM-UIM built in t)ir y-;ir Isl'.i; uiid tin- fn 4 in l-'i

was doe to Seguin uitu' and duU-H from 1
-
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and a second edition in 1867, the first edition of the Third Series

in 1866. Our references will be in each case to the pages of

the last edition mentioned. The work consists of reprints of

Fairbairn's original researches, and of more popular articles and

lectures by him. It has played a considerable part in developing
a more rational scientific education for engineers.

[907.] In the First Series, Lecture II. deals in a popular manner
with the strength of boilers (pp. 28-53) and Lectures VI. (pp. 127-153)
and VII. (pp. 154-7) have further details of the strength of the

materials used in boiler construction. Lecture X. is a popular account

of the strength of the material used in iron-ship building. In the

Appendix is a reprint of Fairbairn's Royal Society paper on the strength
of wrought-iron plates : see our Arts. 1495^-1503*.

[908.] The only other part of this Series which needs notice is the

second portion of the Appendix entitled : Experimental Researches to

determine the Strength of Locomotive Boilers, and the causes which lead

to Explosion (pp. 321-40). This paper originally appeared in The
Civil Engineer and Architect's Journal, Vol. 17, 1854, pp. 219-223.

See also the Mechanic's Magazine, Vol. 60, pp. 393-5. A series of

experiments was first made on the absolute strength of the fire box
and exterior shell of a locomotive boiler (pp. 325-8). This was
followed by an attempt to find relations between the temperature of

the steam, the time and the pressure in a boiler when the safety valve

is screwed down and the fire kept going. It is shown that under these

circumstances a boiler will burst in from about 20 to 40 minutes

(pp. 328-331). Fairbairn next deals with the strength of the flat

surfaces or sides of a fire box and with the strength of the stays

(pp. 331-7). Two experiments were made in which two pair of

parallel plates one of copper (-5" thick) and the other of iron (-375"

thick) were stayed together with one stay to the 25a" and one stay
to the 16n" respectively. Fairbairn says that the weakest part of the

box was not in the copper but in the iron plates which gave way by
stripping or tearing asunder the threads or screws in the part of the

iron plate at the end of a stay. In the first experiment, however, the

head of one of the stays was drawn through the copper plate. The

pressures at which the fire boxes gave way were respectively 815 and
1625 Ibs. per square inch and thus immensely greater than what could
be borne by any other part of the boiler. It is not easy to see theo-

retically why the strengths should be nearly as 1 : 2 in the two cases

of one stay to the 25 and one stay to the 16 sq. inches respectively.
The paper concludes with Experiments to determine the Ultimate

Strength of Iron and Copper Stays generally used in uniting the Flat

Surfaces of Locomotive Boilers (pp. 338-40). Here iron and copper
stays were screwed and riveted into iron and copper plates. Fairbairn
concludes that :
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the iron stay and cop]>er plate (not riveted) have little more than one-

half the strength of those where both are of iron
;
that iron

stays,
screwed

and rivf tee, are to iron stays screwed and riveted into

copper plates as 1000 :856 ;
and that copjwr stays, screwed and riveted into

cojijxT platr>. f the >aino dimensions, have only about one half the strength
of those where both the stays and plates are of iron (p. 340).

Hence so far as regards strength iron is much superior to copper
as a stay, but its inferior conducting powers and probably inferior

durability have still to be taken into account.

[909.] In the Second Series we may note as popular lectures

involving only elementary theorems in the strength of materials:

/.-'fnres V. and VI. (pp. 100-37) on the Strength of Iron X////x .-

iu of flu- Institution of Naval Architects, Vol. I., pp. 71

97, London, 1860. This is a subject on which Fairbairn had, as one of

tin- earliest eonstructors of iron-vessels, a great right to be heard and
these lectures are thus of considerable interest from the standpoint of

tin- history of technical elasticity. Lecture VII. (pp. 138-56): On

Wrought Iron Tubular Cranes with experiments on their deflection and

set, and a theory of their strength by Tate, is also of interest : see our
Ait. 960. Lecture VIII. (pp. 157-73) returns to the old subject of

boiler-strength, appealing, however, to the then recently published
memoir on the strength of flues: see our Art. 980.

In the second part of this volume entitled : Experimental Researcfas

we have reprints of the memoirs on cylindrical vessels of wrought-iron
our Art. 980), on glass globes and cylinders (see our Arts. 853-6),

on the tensile strength of wrought-iron at various temperatures (see our

Art. 11 ID)
1

,
and on the resistance to compression of various kinds

of stone (see our Art. 1182). On pp. 328-9 will be found some

cxp -riments on Irish Basalt or Whinstone to be added to the results

iiis memoir. The specimens of this stone "fractured by vertical

fissures splitting up into thin prisms, wedge-shaped usually at one end."

[910.1 The Third Series contains the following papers dealing more
or less closely with our subject: Lecture VI. (pp. 98-124) entitled :

Iron and its Appliances, which returns again to the strength of boil

a paper on the Construction of Iron Roofs (pp. 204-43), this
gj

U of the trusses of large iron roofs and the calculation of the

ses in their members; a paper On tJie mechanical properties of (/

.ld (pp. L'76-89), this is a reprint from the /,'</"<// of tk
British Association, 1864, pp. 408-15, and gives details of the absolute

tches and ultimate elongations of a great variety of

cables as well as of their several parts, central core, covering wires
ami Ljutta jx-rcha

sheath
; finally a reprint (pp. 290-316) of Fairbai

memoir of 1864* (/'//</. 7V////X. pp. 311-25) on the effect

of impact and rej>eated loading on wrought-iron girders. The exj

1 Sec also j,p. 227-8, an-1 />/;/,//,/> /'/,//,>,///,/>,/* Ji>uni,il,
Bd. 150, 1858, 8. 105-8 and 3. 288-95.
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merits embraced in this paper had formed the subject of a communica-
tion to the British Association in 1860 (see our Art. 1035) and various

accounts of them had appeared in the technical journals
1

. We defer

our full analysis of the memoir and criticism of the methods of ex-

periment until we come to deal with the technical memoirs of the

decade 1860-70.

[911.] The titles of two other books by Fairbaim may be just
noted here :

(a) On the Application of Cast and Wrought Iron to Building

Purposes. London, 1854. The third edition has added to it a section

on Wrought Iron Bridges. A fourth edition appeared in 1870.

(b) Treatise on Iron Ship Building, its History and Progress, as

comprised in a Series of Experimental Researches on the Laws of Strain;
the Strengths, Forms and other Conditions of the Material, etc. London,
1865.

[912.] Another technical text-book, the contents and method
of which are much like those of this decade is A. Hitter's

Lehrbuch der technischen Mechanik. The first edition was pub-
lished in 1865, and the third edition which I have used ap-

peared at Hannover in 1874. The Funfter AbscTinitt entitled :

Statik elastischer Korper (S. 479-563), and the Sechster AbscJmitt

(S. 564-616) : Dynamik elastischer Korper, belong to our subject.

The work in its third edition is still a fairly useful text-book for

the engineering student. The part on elasticity and the strength
of materials contains one or two points, to which I may refer as

interesting, and one or two grievous errors, against which the

student should be warned.

[913.] Let us assume that it is legitimate to apply the Bernoulli-

Eulerian theory of beams to a cantilever, which has a constant

thickness (h) in the vertical plane of flexure, but in a horizontal plane

perpendicular to the plane of flexure, is in the form of an isosceles

triangle of base b and height I. Then, if Ijp be the curvature at

distance x from the free end of the cantilever under load P and
Ewic be the flexural rigidity, we have :

xb tf
= Ah - - = Px,

p I \2p

1
E.g. The Artizan, 1860, pp. 219-21, and 1861, pp. 228-31.

T. E. II. 40
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Tli us the cantilever has uniform curvature. Further if f be the

t- rminal deflection, then / equals P/(2p) very nearly, or

<:

'*
W.I- (n ''

If S br tin- maximum traction to which the material ought to be

Sllbjri
'

S==
2p h*o

'

wliirli <,'i\rs for tlir minimum requisite breadth b at the built-in end :

b=^ (
Hi

)-

Such formula* ran at most bo supposed to hold only when the

triangular c.mtilrvrr changes its cross section very gradually, i.e. \vhrn

A / is very small.

Ilittrr m.\v builds up a spring formed of several laminae by cutting

Plan

of

Cantilever.

Hun

?
Elevation

of

Spring,



014] HITTER. 627

up the triangular cantilever and replacing the several parts as indicated

in the accompanying figures. He thus gets the half of a laminated

spring of the ordinary form, and one which has besides a very easy

theory. He supposes the pointed end of each lamina to press on the

lamina above with a force equal to P, the load at the end of the spring.
The result is that the triangular part of each lamina supports as a

cantilever a load P at its apex, which causes it to take the curvature

given in
(i),

while the rectangular part of each lamina is acted upon
by a couple P//4 which will also be found to give it the curvature

determined by (i).
Thus each lamina is bent in exactly the same way

as if it were a part of the triangular cantilever discussed above, while

the spring itself is a solid of equal resistance, whose deflection is given

by (ii) and whose proper breadth can be determined by (iii).
For this

special case the result appears to agree with that of Phillips : see Eqn.

(xxv) of our Art. 496. Ritter does not, however, demonstrate clearly
how and why the action of the apex of one lamina on the lamina above
must equal P.

[914.] On S. 521-6, we have another added to the already
numerous methods of calculating the maximum safe loading for a strut.

Suppose the strut bent to a central deflectionft
its ends being pivoted.

Then if o>K
2 be as usual the moment of inertia of the cross-section and

h the diameter of the section in the plane of flexure, it is easy to see

that the maximum compressive stress T due to a longitudinal load

P is (see our Art. 832*) :

Now, Ritter argues thatjf cannot bo as great as it would bo in the

case of a circular flexure, when

/=P/(8p), nearly,

if I be the length of the strut and l/p its uniform curvature. But if 8

be the stretch (or squeeze) due solely to the bending at the central

section

S = A/(2P),

and thus the maximum ofy/i =
2

S/4, whence we find on this hypothesis:

If T be the maximum safe compressive stress; this will give a
minimum limit for the safe maximum load P, supposing the safety to
be rendered doubtful by compression before extension. So far there
is no ground for much criticism. But what is 8 to be taken as?
Ritter says it is to be put equal to das Verkiirzungsverkaltniss, welches
</cr KItixti<'it,t'itx-(',

1

ri'nzt'. entepricht (S. 524). This would be at least

402
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something greater than its real value which is solely due to the bending
and therefore the tendency would be to err on the side of safety.
1 liner would thus make 8 = T/!, where T is the maximum conipressive

stress, although he does not express himself in this manner. We thus
obtain finally :

+ 812
This result agrees with that which I have obtained by a very different

method in Eqn. (x). Art. 650, if it be remembered that C and p(i
of

that article = T and irE^j^ of this respectively.
Hence it seems extremely probable that (a) may be considered as

a fairly efficient measure of the safe load for struts, although the
]>i

by which 1 Jittor deduces it is extremely questionable.
The application on S. 528 to the case of an eccentric load upon a

strut seems to me quite illegitimate.

[915.] (a) On S. 528-33 we have a wholly inadmissible theory
of shear, which leads to the slide-modulus being always one-half of
the stretch-modulus. This is applied to deduce an erroneous theory
of torsion on S. 533-6.

(6) The following sections deal very fully with stresses in a great
variety of roof trusses and bridge frames. These stresses are deduced

by taking a section cutting three bars only, and by equating the moment
of the stress in one bar about the intersection of the other two to the

bending moment of the girder at the section. This valuable method,

cially useful in testing graphical work, is now generally termed
Ififths Method (S. 537-55). The following pages (S. 555-63) deal

wiih frame arches having a pin-joint, and therefore zero bending
moment, at the crown. These important frames have been largely

1 in German engineering practice. For a still more complete
discussion of the application of Hitter's Method to the stresses in

various types of frames, we must refer the reader to his El
Th'-nrie und Berechnung eiserner Dock- und Briicken-Cowtructioiien,
Hannover, 1862 (Second edition, 1873 1

).

[916.] (a) In the Sechster Abschnitt, Ritter turns in the iir>t

place to problems of resilience. Thus he calculates in the usual

elementary m.-mner (S. r>(J7) that the total longitudinal resilim. ,

a bar = 1
( volume) x T*jEt

where T is the maximum traction allowable.
I iut like most elementary writers he equates this result to the kinetic

energy of the impulse-giving body, (|iiite forgetting that it does not
follow that such a body will communicate its kinetic energy to the
ii-hnle. bar uniformly and not expend it in producing strain indie

j

only. That it is not distributed / in the case of either transv-

1 An English translation by H. B. Sankey appeared in 1879 (London, Spon).
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or longitudinal impact is shown in our Arts. 361-71 and 401-7, and

the same remark holds good for torsional impulse.

(b) On S. 567-8 there is a paragraph entitled : Einfluss der

Fehlstellen, in which the author remarks :

Es ergiebt sich also das bemerkenswerthe Resultat: dass die Widerstands-

fahigkeit ernes Korpers gegen mechanische Arbeit, oder gegen lebendige Kraft

bewegter Classen, durch Vermiiiderung der Materialmenge unter Umstande

vergrossert werden kann.

This paradox is easily accounted for by a flaw in Ritter's argument,
which it is surprising should have survived a third edition.

(c) The erroneous theory of torsion and a consequently wrong

expression for torsional resilience reappear on S. 571-3. The theory
of the torsional pendulum on S. 573-5 is also incorrect.

(d) Capitel XXV. (S. 575-608) involves little more than the

usual theory of impact of particles and of uniplanar bodies. The
method by which the problem on S. 589-91 is treated seems to me

very doubtful indeed. Ritter endeavours to ascertain what the velocity
of a cylindrical shot must be in order that the shot may penetrate
an iron plate of a given thickness, and he obtains a solution by equating
the kinetic energy of the shot to the product of the maximum total

shearing resistance of the hole punched in the plate into the semi-length
of the shot. It seems to me that a better result would have been

obtained by equating the kinetic energy of the shot to the work of

punching, or to

where S is the absolute shearing strength, d the diameter of the shot,

T the thickness of the plate and
//,

the slide-modulus. This of course

supposes elasticity to hold up to rupture, which is an approximation
for some sorts of steel only. Ritter supposes the work done by the

total shear (Srwd) in flattening the shot to be the total shear into the

semi-length of the shot, but I do not understand this, nor his method
of deducing Equation (823).

(e) Capitel XXVI. (S. 608-16) deals in an elementary fashion,
but not always correctly, with the stresses produced in elastic bodies

owing to the relative accelerations of their parts. For example, if a

thin ring of radius a and uniform density p be rotating with spin a

about an axis perpendicular to its plane it is easy to show that the

maximum stress =p(aa}
2

(S. 613), but when Ritter attempts to apply
a similar theory to a rotating circular disc he goes hopelessly wrong,
for he assumes the stress uniform across the whole length of a diameter.

There are other parts of this chapter which seem to me very doubtful,
but it is impossible to devote further space to their discussion.
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[917.] A third edition of Riihlmanu's Grundziige <lvr Mechmiik

ubliublished at Leip/.ig in I860, but I have not examined this work,
us the number of technical text-books is too great to be examined

individually. So far as my experience goes they rarely contain any

novelty in the domain of elasticity beyond an occasional theoretical

heresy.

GROUP B.

denliny with the Application of the Ttieory of

Elasticity to special Technical Problems.

[

(

Jl<S.] F. Fink: Versuche iiber die Tragfahigkeit yespannter
< nti',- lluh.i'i; /'olytechnisc/tes Centralblatt, Jahrgang 1851, Cols.

1485-8, Leipzig. (Extracted from the Gewerbeblatt f. d. '//v.W*.

/lessen, 1851, S. _'."> 7.) This paper does not appear to contain more
than the statement of the fact that a wooden liar subjected to transverse

load supports more when its ends are built-in than when they are

simply supported. In the actual case the ends were not built-in but

subjected to tractive load. Fink does not work out the theory of this

. but it obviously approximates roughly to built-in ends; the

breaking loads were, however, in general more than double their values

for simply supported ends.

[010.] A. Wohlcr : Xotiz uber die Berechnuny der Durchbieyuny
elastischer Korper. Erbkanis Zeitschriftfur Baawesen, Jahrgang
in.. S. !:>:>

I), Berlin, 1853. In tins paper Wohler enquires what

the unstrained form of the central line of a cantilever must be in

order that when it is loaded at its free end with a weight P the

( - 11 iral line may become straight.

F<>r a cantilever of uniform cross-section it seems to me we
the unstrained form of the central line given by :

\vli !<
;i

is measured vertically upwards from the strain* 1 position
of tin- tvntml line and the origin is at the free end.

If the section be not uniform, we have on the Bernoulli-

Kulrrian hypothesis an equation of the form

ofy_ Pa

ErJES?
to integrate \vln-n- ',Y

J
is \\ function ( ,t
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For ' beams of equal resistance
' we must have

PX/(COK?)
= TJz,

where T^ is the uniform traction in the fibre at maximum
distance z from the neutral axis. Hence

^/_T 1

da?
~
E z

'

orifTJE=n,
d?y/da?

=
njz,

which we can integrate as soon as z is given. None of these

results agree with Wohler's, who obtains differential equations of

the first order only, and integrates them for a number of special

cases, which the reader can easily construct for himself, (e.g.

if
l+l

=px
m

, etc.)

[920.] C. R. Bornemann : Ueber relative Festigkeit: PolytecJi-

nisches Centralblatt, Jahrgang 1853, Cols. 1297-1308. (Extracted from
Der Civilinyenieur, Bd. I., S. 18.) The author notes the discrepancies
which occur in the text-book formulae for the strength of beams (in

great part due to the '

paradox
'

: see our Art. 930), and proposes
to use a stretch-limit instead of a stress-limit in the ' extreme fibre '.

He is, I think, right in preferring a strain- to a stress-limit, but

otherwise the paper only contributes what must, 1 think, be regarded
as empirical formulae for relative strength.

[921.] C. R. Bornemann: Graphische Tabelle uber die relative

Festigkeit. Der Givilingenieur, Neue Folge, Bd. i., S. 18-25.

Freiberg, 1854.

Bornemann by means of logarithmic scales, or what Lalanne

would term an abaque (see Annales des ^>onts et chanssees, T. XL,

1846, pp. 1-69), represents by a system of parallel straight lines

the families of curves given by the formula :

2

Bending Moment = T x -=
,

for the flexure of beams 1
. Here T is the safe limit to tractive

1 The idea of applying the method of logarithmic coordinates to the graphical

representation of the strength of materials, as well as the method itself is due to

Lalanne. See his : Memoire sur les tables yraphiques et sur la geometric ana-

morphique. Annales des ponts et ciiaussees, T. xi., pp. 1-69, 1846; also his book
Methodes graphiques pour I'expression des lots empiriques ou mathematiques a trois

variables, Paris, 1878. Louvel gave abac diagrams for the resistance of iron bars in

double-T in the Portefeuille des conducteura des ponts et chaussees, 4 Serie, Nos. 6

and 7. Phillips' formulae for springs (see our Arts. 483-508) have been reduced to
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stress, wtc'
2
is the moment of inertia of the cross-section about the

ii' utial axis" and IL is the distance of the "extreme fibre
"
from

that axis. For example for a beam of rectangular cross-section

(6 x 2/t) we have

2T
Bending Moment = -

r x b x hz
.

o

There would thus be three entries into the graphic table, i.e.

1> nding moment, breadth and height of beam, supposing T a

definite constant. Bornemann after some rather lengthy discussion

chooses values of the constant T for wrought-iron, cast-iron and

wood, and his table contains the system of lines for rectangular

beams, with some few lines at a different slope for beams of

circular, hollow circular, square and X sections. The method is

of real worth for considering the relative strength of beams of

diverse cross-sections. But I think Bornemann's example of the

method is of small value, since T varies greatly with the ditfeivnt

kinds of iron and wood and further varies with the shape of tin-

cross-section. The first entry ought not to be M the binding

moment, but M/T, in which case the same set of lines answer for

all materials. The method has been further discussed by Vogler:

Anleitung zum Entwerfen graphischer Tafeln, S. 37, Berlin, 1S77.

I have for some time used a table constructed like Bornemanii s,

but with MIT as the variable, for calculating beams with eitlu-r a

uniform load or an isolated central load. The body of Bonn-maim 's

paper is taken up by details as to the best practical values for the

constants in formulae for absolute and relative strength, and to

this part of it we have briefly referred in the preceding article.

[922.] 0. Ortmann: Zur Theorie der WiderstandsfaJtigkeit der

inaterialien. Forsters Allgemeine Bauzeitung, Jahrgang xx., S. l' !"

Wim, 1855.

Ortinann in the Jahrgang vin. (1843) of this journal (S. 408-40,
umlrr tin- till* T/teorie des Widerstandes fester elastisclw Korper) had

graphical abac representation by L6vy-Lamb 1 1 in the Annal*-* </<.- ]>ont* et

*<?<*, T. xx., 1880, 2 Semestre, pp. 69-65, while (luiy 1ms ^h,
diagrams for the strength of beams of wood, iron, etc. of the principal forn

use in the I'l-ntiijin' </< t </'* innt>'ri<ut.r dai

iates 7 to 24. An interesting discussion of the im-ti n ly
1 !.::;] in i.i 1 rench translation of Favaro's Calcul tintphitjuc, i'aris, 188-V

208-2'Ji, \vitli very coj'id'. .Iso Lolanne's 1>> ic dc

Val i 1845 and 1851, English translation, London, 1846.
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drawn attention to the fact that in many cases of flexure there is a

normal thrust on the cross-sections of a beam and therefore that in

such cases the 'neutral axis' does not pass through the centroids of the

cross-sections. He says in the later memoir that Morin and Rebhann

(see our Arts. 876 and 885) have neglected this fact
1

. There does

not, however, seem any real novelty in Ortmann'a own investigations.
He attempts to take into account the effect of impulsive stress, but

certainly does not get further than, if as far as, Poncelet had done

many years previously (see our Art. 988*). Some of the results

obtained seem also very questionable both in hypothesis and in method
of analysis, and the paper does not seem to require from us more than a

note of caution.

[923.] With: Ueber den Widerstand der Baumaterialien. Organ fiir

die Fortschritte des Eisenbahnwesens, Bd. 8, S. 200. Wiesbaden, 1853.

This paper contains a general resume of the theory of the strength of

materials combined with a statement of supposed experimental facts.

It appears to be based chiefly on Morin's work : see our Art. 876, and
contains assertions with regard to the proportionality of stretch and
traction in cast-iron which are certainly incorrect. It has no present
value.

[924.] A long paper : Ueber zusammengesetzte Festigkeit was read

by Grashof to the Berliner Bezirksverein of German engineers 011

March 7, 1858. It is printed in extenso on S. 183-225 of the Zeit-

schrift des Vereins deutscher Ingenieure, Jahrgang in., 1859. It

follows very much the lines of Weisbach (see our Art. 1377*) and
contains nothing of intrinsic importance. We shall refer to Grashof's

methods later when dealing with his well known treatise on elasticity.

[925.] F. Roffiaen : Widerstandsfdhigkeit der Baumaterialien.

Praktische Beispielefur die Stdrkebestimmungen der verschiedenen

Verbandstilcke der Holz- und Eisenkonstrukzionen nebst Bemer-

kungen uber Bauten, die aus diesen Materialien ausgefuhrt sind.

Forsters Allgemeine Bauzeitung, Jahrgang xxiv., S. 257-320.

Wien, 1859. I presume this is a translation of the work referred

to in my Art. 892, but which was inacessible to me in the original

French. There is, however, no statement that it is a translation.

The first part applies the ordinary theory of elasticity to frames

built-up of straight wooden beams, the second to curved wooden arches.

In both cases the author appeals to Ardant, see the Addenda to our

Vol. I., pp. 4-10. The third part deals with iron-structures, giving
numerical examples for cases of wrought, cast and plate iron girders,

1 This is hardly correct : see p. 151 of the first edition (1853) of Morin's work.
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and later tin- author passes to structures combining wood and iron

i I). Then- does not seem to me any special novelty in these

portions of the work, nor any special permanent technical value in the

numerical examples worked out. In an An/tariff (S. 304-20) the author

j.s
a new theory of flexure and applies it to several examples.

'1'h is theory as detailed on S. 304-5 is very obscure, but it seems to

amount to taking the stretch- and squeeze-moduli different, and on this

supposition calculating the position of the 'neutral axis' which no longer

pa.-> tli rough the centroid of the cross-section. The ultimate resistances

to tension and compression are also taken to be in the ratio of these

moduli. The application by Roffiacn, however, of the theory seems

ly arbitrary. Thus his (v) and (xi) S. 305 are quite erroneous,
I do not grasp the meaning of (vi) S. 304, nor its application in

paragraph 2 of S. 306. Indeed, what is new in the invest i_

seems to me wrong. The hypothesis itself is at least as old as 1822 :

see our Arts. 234*-40*.

[926.] Klose : Ueber die Festigkeit und die zweckmcitasigste Form
ei#ent> ''erisc/te Bauzeituny (Architecten- u. Iny>

Ferem), Hannover, 1854, S. 523.

The author at rather needless length of analysis based on Na\i r

theory of ribs (see our Art. 257*), shows that a cantilever in t In-

form of a circular arc if loaded at the free end perpendicular to the

tangent at the built-in end is no stronger than a straight cantilever of

the same cross-section and of length equal to half the chord of double

the arc of the circular cantilever. This result is only true when the

radius of the cantilever is great as compared with the linear dimensions

of the cross-section (see our Arts. 519 and 621). Klose tested this

theoretical result for four rods six feet long and with cross-serf i"n>

squares of one inch, supported at their ends and centrally loaded. The
details of the experiments show a remarkable agreement between the

deflections of the rods for the same weights whether they were of

straight or circular central line and this agreement lasted up to rupture,
which also occurred at the same load for both types. The circular

rib therefore has no advantage 'as a cantilever over the straight beam,
an<l further has the disadvantage of considerable lateral yielding, the

values of which are tabulated in the exi>eriment8.

[927.] The second part of the paper deals with the comparative
th of cast-iron beams of two special cross-sections. The first is

a T in which the web is trapezoidal, and th. ieOQfid a J. akin to

Hodgkinsoi ^est section (see our Art iMJ*). The beam-
14' between the points of support, but not, as I think they ought to

have been, of the same height, the former being 8J" ami the latter 1" :

the areas of the cross-sectious were practically equal. Klose found the

J. much the stronger section. Hut it is remarkable that he found
the theoretical value of th-- itreM in the 'extreme film-' at iiipture
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was the same for both cross-sections. He does not state whether this

stress was also equal to the absolute tensile strength of his cast-iron.

He applies without hesitation the Bernoulli-Eulerian theory of flexure

to find the conditions of rupture.

[928.] A. Junge : Ueber die Tragkraft yesprengter Balken. Poly-
technisches Centralblatt, 1855, Cols. 844-54. (Extracted from Der

Civilingenieur, Neue Folge, Bd. 2, S. 79. Freiberg, 1855.)

Der gesprengtc Balken besteht aus zwei liber einander licgcndcn Theilen,
welche an ihren Eiidcn fast vcrbundcn sind, iibrigens aber durch dazwischen

gcstcllte Spreizen auscinander gehalten werden (Col. 844).

The present paper investigates whether such a girder, which has

initial strain, is theoretically stronger than one in which the two booms
are united so as to form a simple girder. Junge supposes the two
booms exactly equal. He shows by means of tables for wood and

wrought-iroii that the limits within which the split beam is stronger
are rather narrow :

Die Gefahr die gtin.stig.ste Spannung zu iiberschrcitcn licgt also sehr nahe

(Col. 854).

Several such girders had had to be removed after a short period of

use, and they appear now to have gone out of fashion. They were
introduced by Laves of Hannover in a work entitled : Ueber die

Anwendung und den Nutzen eines neuen Constructions-Systems nebst

erlciuternder Beschreibung desselben, 1839.

I have not verified Junge's analysis ; he assumes that the curvature
of the initially strained booms is circular (Col. 851).

[929.] Baumgarten : Note sur la valeur du coefficient d'elasticite de

lafonte a Uappui du rapport de MM. Collet-Meygret et Desplaces sur le

via/due de Tarascon. Annales desponts et chaussees, l
er
Semestre, 1855, pp.

225-233. Paris, 1855. This paper gives some results on the flexure of

beams of considerable size, the cross-sections being T and J. the beams
had a varying cross-section from middle to end, and might be conceived
of as parabolic or as 'solids of equal resistance.' Baumgarten supposes
a beam of length 21 divided into 2m parts of equal length, and the

cross-section in each of these parts to be uniform for the part, then
he gives the following formula for the deflection / under a central

load 2P :

J
3P (3(m-l)m + l 3(w-2)(m-l) + l

3^n_--S) (m -
2) + 1

* ~
ZElrf \ (Oj/Cj

2
(02K2

2

W;JK,-

3(m-n)(m-n + l)+ 1 3.1.2 + 1 1
+ + +
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uli.it .-.*- i.- tin- luumrni of iiu.-rtia of the cross-section of the nth

part about its central axis.

By means of this formula he finds different values of E for the two

s <n whirl, hi- )i.-i.s ( \i" rimented, and both values differ largely

from tli.it usually adopted for cast-iron.

Attempt to explain the 'beam paradox' (pp. 231-3), with which

Baumgarten concludes liis memoir, falls into the old fallacy of sup-

iioeing the proportionality of stress and strain to last up to rupture :

see our Arts. 173, 507, 930-8 and 1053.

[!).W] William Henry Barlow. On the existence of an element

of Mrci'ftfh in Be<nns subjected to Transverse Strain, arising fm,,,

the Lateral Action of the fibres or particles on each other, and

>cd l\j the author the "Resistance of Flexure." Phil Trans.

I B55, pp. 225-242. This paper was received on February 23 and

.vad March 2'. Is:.:..

It deals with the "old beam paradox :" see our Arts 173, 507

and 542. Barlow expresses it thus :

"
the strength of a bar of cast

iron subjected to transverse strain cannot be reconciled with the

results obtained tnnn experiments on direct tension, if the neutral

axis is in the centre of the bar
"

(p. 225). By a series of experi-

ments (pp. 225-8) Barlow shows (as many previous experimenters:
see our Arts. 998*, 1463* (e) and 876) that the neutral line within

tin- limits of experimental error coincides with the central line.

He then endeavours to explain by
'

lateral adhesion,' i.e. shearing

stress, the increased absolute strength. We must here note one or

two points: (i) the formula adopted by Barlow from the Bernoulli-

Eulerian theory of beams supposes the material to remain elastic

up to rupture, this is certainly not true
; (ii) it assumes the elas-

ticity also linear, this again is hardly true for cast-iron
; (iii) even

if with Saint-Venant we introduce the proper slide terms into the

formula they would make no sensible difference except for very

short beams; (iv) to account for the 'paradox* we must suppose
stress-strain relations other than linear to hold in the neighbour-

hood of rupture, i.e. such relations as those suggested in our A
I H I

* and 17s. It is to such relations, giving us results c/<
;

//</// on the moment of inertia of the cross-section, but <

fjeif ^"tjte, that we must look for light on the so-called

Barlow gives (p. 231) an empirical formula for the breaking

strength I dmibly ribbed open beams'. The cross-si eti..]i.
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not of sufficient variety to give any evidence that the quantity he

terms ' resistance to flexure
'

is really independent of the shape of

the cross-section.

[931.] W. H. Barlow. On an Element of Strength in Beams

subjected to Transverse Strain, named ~by the author "The Resistance

of Flexure" Second Paper. Phil. Trans., 1857, pp. 463-88. This

paper was received March 12 and read March 26, 1857. It is a

continuation of the subject dealt with in the memoir referred to in

the preceding article.

Let T be the breaking tensile stress, W the breaking load,

EWK? the flexural rigidity of the beam, h the distance from the

neutral axis, of the 'fibre' furthest removed, I the length of the

beam, and l/p the curvature at the mid-point. The beam is

supposed weightless, doubly supported and centrally loaded. Then

we have, assuming the correctness of the Bernoulli-Eulerian theory

up to rupture :

T=Eh/P) Ecofc
2

/p
= lWl,

or W=4iT<Dit/hl........................... (i).

Now in his first memoir Barlow assumes that T consists of two

parts, the first T
l
due to tensile strength and the second T

2
to

what he terms '

resistance to flexure
'

produced by
'

lateral

adhesion.' The former part he holds to be constant, the latter to

vary when the beam is hollow as the '

depth of metal into the

deflection/ This value of T
2
seems curious, but as an empirical

expression we may perhaps allow it to stand, however little it

may have to do with '

lateral adhesion.'

[932.] In the second memoir, however, Barlow goes much further,
he expresses his traction JJ at distance x from the neutral axis by the

formula (p. 472)

He then proceeds to take the moment of these tractions at the middle
of the beam round the neutral axis, and equates them to the bending
moment, or we have :

At first sight it would appear that the second term ought to vanish,
but Barlow evidently intends that T2 shall change sign on crossing the
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neutral axis so that if o>lt w,, \>e the areas of cross-section above and

below th- neutral axis and 7,, x, the nuwe-rical distances of their

ids from this axis we have :

or for a section symmetrical about the neutral axis :

For a rectangle (26 x 2a), ( JT", + J^) 4a&2 =
J IF/,

for a circle (1,) (
T

}

+ * T b3 = \Wl.

From these and similar results Barlow seeks to find the values of 7\
and T. and to ascertain whether they are constant.

[933.] We must now inquire whether there is any ground for tin*

formula (ii).

Since the total longitudinal load is zero, we must have :

ll< nee we see that unless w,
= w2 the neutral line will not coincide with

the rentral line. \V. H. Barlow himself has only dealt with sym-
metrical sections, but Peter Barlow in an appendix to the paper.

pp. 483-8, treats of the non-coincidence of the neutral and central

lines in the case of JL sections. There is no experimental investigation
of whether this non-coincidence, a clear result of the theory n

is real or not.

Barlow (p. 472) defines T
9
as " the resistance of flexure acting

force evenly spread over the surface of the section." He has previous! \ .

by a reasoning which I fail to follow, deduced that this 'resistant

of flexure' is due to lateral cohesion (p. 472). Now whatever l>e

the experimental value of a formula such as (ii) I think we may safely

say: (a) that the quantity 7\ can have nothing whatever to do with

shearing strength, (6) that the formula gives a discontinuous cha

of tractive stress at the neutral line, i.e. suddenly from T
%
to -

(c) that the constancy of the value T, as a term in the traction, ill

face and whether the traction is negative or p.Mti\,

exceedingly improbable.

[934.] But we may still inquire whether there may not 1..

approximation to the truth in Barlow's formula. The first term T&jp
miirht be a portion of the traction due to elasticity, the second /

'-nstant, a portion due to plasticity. Now before rupture it doe*

lean impn.l.ul.lr that a part of the beam may IK-
pi,,
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another elastic, although it is perhaps hardly likely that these two

stages occur at the same time in all fibres. The outer fibres will be

enervated and their tractions more nearly constant, the inner especially
in the neighbourhood of the neutral axis will still remain elastic. Thus
as a mean result for the ivhole cross-section Barlow's expression for the

traction does not appear so unreasonable as when we associate it, as

its author has done, with any idea of '

lateral cohesion.'

[935.] The chief value of the memoir however lies in the tabulation

of the results of experiments on the absolute strength of beams of

diverse section under flexure. We reproduce some of these results as

they cannot fail to be of value to any one investigating a theory of

rupture by flexure. So far as the cast-iron beams are concerned, it

may be questioned whether an allowance ought not to be made for

the * defect in Hooke's law,' even if we use Barlow's plastico-elastic
formula. This allowance will probably account for most of the

difference : see our Art. 1053.

[936.] Cast Iron Beams. (Barlow's 'open girders' are omitted.)

Form
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(ii) The values of T
t
and T

t
are by no means constant, but the

values re much more nearly that of the tensile strength of the

material.

(iii) irge bars are relatively weaker than the small : see our

Arts. 1' '-*. 1 1*1* and 169
(<?)

and (f). Barlow takes as mean values :

TV = 1 6,573 Ibs. and TJ^ = '847.

The mean value of T.2 is computed from those given in the above

tablr and from tin- mean results of six series of experiments on 'open

gird.

[937.] Barlow then proceeds to investigate how far other experi-

ntirinatoiy results. He considers :

(a) llodijkinson's Kxperiments : Iron Commissioners' Report. (See
\.t. 1 n:i.)
Mean ratio of T^ to 7T

,
= >853. This average compares well with

17. l.ut tlie \alues of TJTt range from -516 to M85, or the

ratio must be held to vary with each quality of metal. No information

as to variety of cross-section is given.

(b) Wade's Experiments. American Report on Canon Metal. (See
rt. 1043.)

1 1 -re the cross-sections of the cast-iron bars were square and circular,

and the breaking load under flexure and the tensile strength are given.
From the former Barlow calculates by his formula the value of 71

,,
it

agrees with Wade's determination of the tensile strength pretty closely.
I suppose, although Barlow does not state it distinctly, that he has

taken TJT = -9.

Tin- following remarks of Barlow following on these experiments
may be cited (pp. 479-80) :

If t! v<-re homogeneous and the elasticity perfect, it is probable
that the re> flexure would }>c precisely equal to the tensile pea
instead of bearing the ratio of nine-tenths as found by ex}>eriment. It is

r,
that it varies in different qualities of metal, and that the

tensile resistance does not bear a constant ratio to the trans\( r>e strength.

Barlow, after showing from Wade's experiments that a decrea
the absolute tensile strength may be accompanied by an increase in the

absolute flexural strength, continues :

cany to c<>! tianoe to flexure inight be supposed
D nearly th- MOM pro] Motion to the tensile e in bodies

dlino substances, vet groat variation

expected to occur between cry>t.-dlinc and malleable and fibrous

ii why it should be probable that 7' 7'.

g8H6OUS Mid perfectly rlastie bod
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(c) Peter Barlow's Experiments on Wrought-Iron (pp. 480-3).

Here we find W. H. Barlow no longer treating of absolute strength
but of stresses "just sufficient to overcome the elasticity" which seems to

me a very different matter. He remarks that he has done this because

the material yields by bending and not by fracture. The mean result

is very nearly T^T.2 = 2. I see, however, no reason for applying
formula (ii) to this case, and W. H. Barlow himself admits that the ex-

periments are insufficient. On p. 481 he gives experiments confirming
the coincidence of neutral and central lines in the case of wrought-iron.

(d) Further results of Hodgkinson's Experiments on Cast-Iron

taken from the Manchester Memoirs, Vol. v. : see our Art. 237*. These

are given in the form of an appendix by Peter Barlow (pp. 483 8); the

experiments in question are those on the cross-section of greatest
absolute strength. Peter Barlow takes T

l
= T.2 owing to the difficulty

of finding a mean value for Tr This leads to a series of values for

Ti varying from 14,000 to 16,000 Ibs., values not varying more among
each other than those for the tensile strengths of 50 square cast-iron

bars given on p. 9 of the Iron Commissioners' Report: see our Art. 1408*.

For large iron castings owing to their relative weakness, Barlow remarks,

7\ ought to be taken much less, probably not more than 10,000 Ibs.

[9*38.] We may conclude then that :

(i) There is no theoretical basis of sufficient validity for

Barlow's formula, also that the term containing T
9
cannot arise

from "lateral adhesion," and that the name "resistance of flexure"

is thoroughly bad
; but,

(ii) there is sufficient evidence to show that for a considerable

range of cast-iron beams of varied cross-section the formula gives

results for the absolute flexural strength accurate enough in

practice.

[939.] Jouravski : Sur la resistance d'un corps prismatique et

d'une piece composee en bois ou en tole de fer d une force perpen-
diculaire d leur longueur. Annales des ponts et chaussees, Memoires,

1856, 2e
Sernestre, pp. 328-51. Paris, 1856. This is an extract

from a work in three volumes 4to. on bridges built on Howe's

or the American system.

The memoir is an attempt to improve the old Bernoulli-

Eulerian theory of flexure by introducing the consideration of the

lateral adhesion of the fibres. Jouravski remarks that given a rect-

angular beam its strength will be diminished by dividing it into

two equal beams by a horizontal plane ;
hence there is an element

T. E. ii. 41
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of strength in the beam due to the lateral adhesion of the fibres,

or in our own words there is shearing-stress along the neutral axis

of a beam which in itself forms an element of strength. Jouravski's

inv.-st Ration, suggestive as it is, is not, however, correct, for he

supposes this shearing stress to be uniform all along the

axis of a cross-section. This of course, as Saint-Venant

has shown, is not the case, and the full treatment of the problem
has been given by him in his memoir on flexure : see our Art.

G9. At the same time Saint-Venant has praised Jouravski's idea

and in his Lemons de Navier (see our Art. 183 (a) and his p. 390)

adapted it to the case of a rectangular beam, the dimensions of

which ii the plane of flexure are much greater than those perpen-
dinihir t< that plane. The memoir applies this incomplete theory
<>t the >lide-element in flexure to various numerical cases to which,

I think, no importance can be attached. See my remarks on the

similar investigations of Winkler and Airy in Arts. GG1-6.

[940.] J. Dupuit : Note sur la poussee des pieces droites employees
< I?.* constructions. Comptes rendu*, T. XLV., pp. 881-2. Paris,

1

v
~>7 . Tin- liricf extract given here of the memoir does not enable us

to judi(f of its contents. The author apparently finds fault with the

ordinary theory of t>eams, because it does not take account of the fact

that the '
fibres

'

cannot slip over the points of support and states that

this produces a great side thrust on the points of support. Further
tin- reactions themselves modify the points of support and therefore

their resistance. There is no hint in the paper of how the author

proposed to allow for these sources of error and I do not think the jiajM-r

was ever published in full.

[941.] Fabre : Sur la resistance des corps fibreux. Comptes rendus,
T. XIAI., p. r,L>4. Paris, 1858. A memoir under this title was present. -.1

to the Academy in 1858. The author had concluded from very line

measurements that the ordinary theory of beams is incorrect, the

central line being always compressed or elongated. I cannot find th:it

tin memoir was ever published.

1942.] (i. Rebhann: Relative Widerstandsfdhigkeit eines an beiden

'tltenen prismatisclien Trdgers. Forsters Allgemeine ]>

Jahrgan^' xvin., S. 130-7. Wien, 1853. This is ;m apj.li. -a-

tion rnoulli Kulerian theory of beams to ascertain the inn. ,

i-th obtained by building-in the terminals of a beam. There is no

novelty to record : see our Arts. 571-3 and 9435.

[943.] F. (Irashof: Ueber ein im Princip einfaches Y> rftili,. eft

nf relative Fextiyktit in Anspruch yenommenen
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prismatischen Balkens wesentlich zu vergrossern. Zeitschrift des Vereins

deutscher Ingenieure, Jahrgang i., pp. 75-80. Berlin, 1857. Grashof,

having seen Lamarle's results (see our Art. 571) without his analysis,

gives an investigation of some special cases where the strength of

simple beams would be increased by fixing their terminals at definite

slopes.

[944.] F. Grashof: Ueber die relative Festigkeit mit Riicksicht auf
deren r/wglichste Vergrosserung durch angemessene Unterstutzung und

Einmauerung der Trdger bei constantem Querschnitt derselben. Zeit-

schrift des Vereins deutscher Ingenieure, Jahrgang n., S. 22-31, and

Jahrgang HI., S. 23-8, 45-8, 155-160. Berlin, 1858 and 1859. This

memoir starts with a criticism of Schemer's work referred to in the

next article. It then proceeds to a consideration of the following

problem : Suppose a simple beam uniformly loaded and having a

concentrated load at any one point of it, at what angles must the ends

be built-in in order to ensure the maximum of strength
1

? It will be

observed that this is little more than the simpler case of Lamarle's

memoir (see our Arts. 571-3). Grashof however works out a very great
number of special cases, as when the isolated load is at the centre, the

terminals are built-in horizontally, etc., etc. There seems to be no

novelty of method or result in the paper, and its technical importance
is minimised by the difficulty we have already referred to of practically

building-in the terminals of a beam at a required angle : see our

Art. 573.

In the last part of the memoir Grashof deals with continuous beams

passing over points of support at different heights, but as he takes here

only the case of continuous loading, his analysis is not more general
than Lamarle's and is in no way superior to it.

[945.] H. Scheffler : Ueber die Versuchung der Tragfdhigkeit der

Briickentrdger durch angemessene Bestimmung der Hohe und Entfernung
der Stiitzpunkte. Organ filr die FortscJiritte des Eisenbahnwesens, Bd. xn.
S. 97. Wiesbaden, 1857. Further: Ueber die Tragfdhigkeit der Balken
mit eingemauerten Enden, Ibid. Bd. xiu. S. 51, 1858.

The first of these papers only deals with a very special case of what
Lamarle and afterwards Grashof have treated generally, and in addition

the analysis is very cumbersome. The second paper is controversial, a

poor reply to Grashofs perfectly legitimate criticism.

[946.] H. Festigkeits und Biegungsverlidltnisse eines iiber mehrere

Stiitzpunkte fortlaufenden Trdgers. Der Civilingenieur, Neue Folge,
Bd. iv., S. 62-73. Freiberg, 1858.

A continuous beam is supported on (n + 1) points of support not on
the same level and forming n equal spans. The beam weighs p Ibs.

per foot-run, and a live load of p Ibs. per foot-run together with an
isolated load Q cross the beam and occupy successively each span.
The author finds the deflections and bending moments with great length

412
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of analysis. He considers in particular the case of five spans, and

applies his results to various special numerical cases.

[947.] H. Continuirlicke Briidcentrager. Der Civilingeni&ir,

Newe Folge, Bd. rv., 8. 142-6. Freiberg, 1858. This memoir deals

fully with the case of a beam of uniform cross-section resting on

of support, when tin- mill-point of support is lower than

the terminals and tin- live load covers one or both spans. Many
numerical details are given for this case for variations of the ratio of

li\ e to dead loads, etc.

[948.] H. Continuirliche Briicktntr&ger. D< r Civilingenieur,
Neue Folge, Bd. vi., S. 129-202. Freiberg, 1860. This papei
a continuation of the paj>er referred to under the same title in

"ii r Art 947. The writer now supposes three unequal spans, the

mid span U-ing longer than the two equal external spans and the

mid-point* of support lower than the terminals. There is a uniform

dead load, and a uniform live load which may cover: (i)
the two

outside spans, (ii) the mid span, (iii)
all the spans, (iv) one outside

the mid-span and one outside span. All these separate t-a

' <1 i ut \vith great detail and then more than 30 pages of

nuiiM-rie;il values are gi\rn for the reactions and maximum mom.
in these fi\e dill'erent eases of loading for various ratios: (u) of the

lengths of the spans, (It)
of the live to the dead load, and for various

amounts (e) by which the middle points of support may be supposed to

lie sunk bel.nv the terminals. Supposing these portentous tables to

be correct we have here the most complete treatment the three-span
continuous beam has ever received or is likely to receive.

K Winkler: Beitrdge zur Theorie der
1).,- riri/Inynii'iir, Neue Folge, Bd. vin., S. 1:?;!- 1S

Efoiberg; 1 *;_'. This paper may be noted here as it belongs essentially
i" the same group as those referred to above. It opens with an

'i^atii'ii of results similar to those of Clapeyron, Heppel, etc., and
then proceeds to discuss the effect of loading only the rth out of //

pans. Winkler presents his results in the form of continued fractions.
"' then iaks the case of equal spans and calculates reactions, delle,-

etc. (S. 1 17-GO). Next he passes to the investigation of the n

dangerous load system, and then turns to tables of numerical detail for

types of loading. Then he deals by aid of copious tables

M'h the case of a continuous beam of four spans. Thus
.. th:it b.-t'.in- IM'IL', the complete analytical theory of con

tiniioiiH In-ams of any number of spans and complete numerical details

.ilns up to four spans had been published
1

.

[950.] S. Huifhe-: .\ i,
Inijii'tri/ into //<> N//-. /////// <>/' ]'><<tin* <nnl

"f all Descriptions, from th> ,,,,,st nimjJc. ,! - le t ,\ ///f/y//

1 For further investigations with regard to continuous beams belonging to this

decade tee our Art*. 685, 571-7, 598-Co 7 >, and 893.
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up to the Complex Arrangements which obtain in Girder Bridges of

Wrought- and Cast-Iron. T/M Artisan: Vol. xv., pp. 145-50, 170-3,

194-8, 217-20, 244-47, (255), 267-71, Vol. xvi., pp. 3-6, 27-31,

(44-5), 79-84, 129-133, 158-160, London, 1857 and 1858. These

papers contain a practical treatise on bridge making, involving very
little theory, but citing the experimental results of Hodgkinson,
Fairbairn and others, and applying them to the details of various

girders, beams and bridges. They do not appear, however, to demand

any close analysis in our History at the present day.

[951.] W. R. R. Notiz iiber die besten Querschnittsform eiserner

Trager. Zeitschrift des Vereins deutscher Ingenieure, Jahrgang n., S.

310. Berlin, 1858. The writer of this note criticises Hodgkinson's and
Davis' beams of strongest section (see our Arts. 244* and 1023), saying
that in practice we do not want to have the beam strongest at rupture,
but strongest at receiving set. He supposes that the elastic limit of

cast-iron in tension is half that in compression and that both elastic

limits are equal for wrought-iron. How he reaches these numbers I

do not know. A footnote by Grashof questions their accuracy, but

does not seem to notice the relative nature of the elastic limit in

general. Compare our Art. 875.

[952.] Albaret : Nouvelles Annales de la Construction, Juin, 1859.

I have only seen an extract of this paper entitled : Festigkeit von

Metaltrdgern in the Hannoverische Bauzeitung, 1860, S. 523. The
author discusses by a method, which is not very intelligible in the

extract, the form of the girder which containing a minimum of material

can yet safely carry a given load. The paper does not appear to be

of any importance.

[953.] Callcott Reilly : On the Longitudinal Stress of the Wrought-
iron Plate Girder. This was a paper read before the British Associa-

tion in 1860. It is published in the Civil Engineer and Architect's

Journal, Vol. XXIIL, pp. 261-4 and 294-5
\

also in The Artisan, Vol.

XVIIL, pp. 209-12 and 220-1. London, 1860. The author supposes
the limits of safe tensile and compressive stress to be different, taking
for wrought-iron 5 and 3J (to 4) tons per square inch respectively (pp.
262 and 294).

He assumes that these safe limits are reached in compression and
tension under the same bending moment. He further supposes the

stress to be proportional to the strain and the stretch- and squeeze-
moduli equal (p. 262). This fixes the neutral axis, and therefore, if

there be no thrust, the position of the centroid of the cross-section.

For a given bending-moment and X section of given total height and

given thickness of web, we then have enough equations to determine
the areas of the flanges, if their breadths be given : or for thin flanges,
the areas even without the breadths. Reilly concludes his paper with
a calculation of the girders for a bridge actually built from designs
based on his theory.
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L. Mit^au: Ueber die relative Tragfahiykeit guss- n,,,l

ticde-eiserner Trdger mit Rfaksicht auf deren Verv>n<lu-n<j zu

baulLchen Zwech /////> /'//> Bauhandwerker, Jahrgang 1860,
S. 121-7, BiMunx -hweig. This paper is of no importance for us, tin-

greater portion of it being occupied with the calculation of the mom
i of T and X sections.

[955.] Blacher : Aj>/>/i<-fion du calcul des ressorts. M-'mnires et

Compte-remiu des travaux de la Societe des fngeniews civifo. Aimn-
1850,

j.j..
1 1.5-52. Paris, 1850.

This MMmoir may be considered as quite replaced by that of Phillips

(see our Art. 483), for it only treats a very special case of tin- latt< i

memoir. The formulae for springs cited on pp. 147-9 are due to

Clapeyron who had given them to Shintz (#ic, Schinz?) from whom
Blacher obtained them. The assumption from which the memoir
starts ("Soit une seYie de lames d'egale epaisseur ct d'egalc lar^-ur

sui>erposees de maniere que Tune repose sur les extrcmites de 1'autre

>re de petits tasseaux" p. 144) is by no mean

general or satisfactory as that of Phillips.

[956.] Schwarz: Von dei* rilckwirkenden Festiykeit der K<

Erlkanis Zeitschrift fur Bauwesen, Jahrgang iv., S. 518-30.

Berlin, ls:.4.

This memoir after some general remarks on cohesion and

elasticity proceeds to deduce a formula for the buckling ]<a<l ]>

of doubly pivoted struts in the following manner. If EWK* bo tin-

flexural rigidity of the strut supposed of length /, then as in

Euler's theory (see our Art. 67*):

If there were compression without buckling, we should lia\

the value for /'

P = a>C ................................. (ii),

wli. re C is the safe compressive stress.

Now if 8 be the limiting elastic squeeze and (7' the corre-

sponding compressive stress C' = E8,

v Schwarz argues that the strut has to withstand buckling
and compression at the same time, hence we must h

+ j;
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less than the greatest safe compressive stress, say C . Thus he

finds

P < C o> I ( 1 -\

/ \ TT'K

This formula is in fact akin to the empirical formula, of

Gordon, Rankine and Scheffler, but the above process by which

Schwarz deduces it remains a mystery to me.

[957.] A. C. Benoit-Duportail : Calcnl des essieiix pour les

chemins de fer. Le Technologiste, 1856, pp. 315-25. Paris, 1856.

Translated in the Polytecknisclies Centralblatt, 1856, Cols. 705-14.

This paper appears to be theoretically correct and is of considerable

technical value.

Suppose 2P to be the load on the axle, b the distance from the

mid-point of the wheel to the mid-point of the journal on which the

load rests, then the bending moment throughout the axle is uniform
and equal to Pb. If r be the radius of the axle and T the safe

tractive strength of its material, then on the Bernoulli-Eulerian

theory

This formula holds whether the journals are placed inside or outside

the wheels, the flexure in the two cases being, however, in opposite
senses.

According to Benoit-Duportail the value of b lies between -2 and

3, metres, and T varies from 600 to 400 kilogs. per sq. centimetre.

He thus finds for r in centimetres :

r = -35 yp, for b = '2m. and T= 600 kilogs.

= -40 yp, ... = -25m. and ^=500
-457 yP, ... :: -3m.andr-400
- -40 *fP, ... := -2 m. and T= 400

The values of r are then tabulated for various loads P (pp. 316-7).

[958.] The flexure is next calculated, as before 011 the assumption
that the axle has a uniform cross-section. Since the flexure is circular

this is easily done and for such axles as are in common use the

amount is found to be 1*7 5 mm., which throws the top of the wheel
from 3 to 4 millimetres out of the perpendicular (p. 317).

II eat evident que lorsque 1'essieu tourne, la flexion change de position et

que 1'essieu prend un mouvement de flexion oscillatoire, analogue h celui

qu'on opere pour faciliter la rupture des barres de fer on des morceaux de

bois, qui tend a alterer la qualite du fer. Mais il est a remarquer que
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' "Ha- il faut un ccrt'iin temps pour quo la

l.miplitude iK- o-i-illatinns cst d'autant moindre quo la
'

vitesse CKt pliw grandc* et lew cffcts d'alteration qui se produisent sont

beaucoup motns destructif* qu'on nc ixwrrait le cramdre au premier abord

;T).

This seems to me to disregard the possibility of an accumulation of

see our ArU 970 and 992.

[959.1 The jounial has to 1x5 treated somewhat differently from the

a In the first place it may l>e considered as a cantilever

of length / and thus we have for its radius :

th- radius required at the wheel-end or place of maximum
stress, the journal h< -in^ supposed outside the wheel.

a Hi it In ! point to be considered, namely, the friction of

the load, which produces heat. It is found that for an axle that has

been some tim< the frictional surface is about one-third of the

nee. Hence the area of friction = HTJT/. Or, if j> be the mean

pressure, we have, according to our author, P^px 2rl about, that is

("i).

This reasoning is not, I think, satisfactory; p is normal to tin

journal surface at each point and we ought rather to have

P=p x -Irl N/3/2 =p x I'frl about.

From (ii) and (iii) we find for the dimensions of the journal (p. 3lN :

V'VJv
(iv).

Benoit tfll that
t
t = 25 kilogs. per sq. centimetre is found by

I'-nce to be about the maximum mean pressure which will not

hernt the journal. Putting 3^ = 600 kilogs., he then find- :

r= -08 N/7
7
in centimetres, and J=3-125r

(v).

M -iven by this formula would then be retained for the
the \alur of / would only be valid alter there had b.-.-n a

wearing away dm- to use. The value of r therefore must
"iii 1/10 to 1/12 of its value (p. :UU).

f we had supposed, bowerer, th- load .listrii.ut.-d uniforml\
the length of 1)1. I1M | ,,,,t all acting at one end as in the extreme

W Should lm\r liad instead of (ii) tli.-
.,,

nation

., r,.
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which with
(iii)

leads us when T = 600 and p = 25 kilogs. to :

^=068^ and ^1
= 4-3^ ............... (vii),

instead of (v).

On the Chemin de fer du Nord for certain wagons P equals 3250

kilogs. This gives, correcting Benoit-Duportail's arithmetic :

T-J
= 3-9 centimetres, and ^ = 16 '7 centimetres.

A dding to i\ a tenth of its value we have

rj
= 4-29 and ^=16-7,

the values actually taken being 7^=4 and =17. Thus the theory
leads to results in fair agreement with practice.

For engines and locomotives whose springs are much stiffer, T ought
not to be taken so large, but = 400 kilogs., say, and p ought also to be

reduced. We then have from
(iii)

and (iv) (p. 319) :

for |?
= 20 kilogs., d=2r= '16 JP, l=M,
= 15 kilogs., d=2r='injP, l = 2-3d,

=--10kilogs., rf=2r=-189^P, l=2'8d.

Benoit-Duportail gives a table of the values of d and I for loads ('2P)

from 500 to 12000 kilogs. (pp. 320). Then follows with tables an

investigation similar to the above for the case when the journals are

inside the wheels (pp. 322-3). The memoir concludes with a discussion

of the effect of wedging (calage) the wheels on to the axle (pp. 324-5).

[960.] W. Fairbairn : Tubular Wrought-Iron Crams. Institution

of Mechanical Engineers. Proceedings, 1857, pp. 87-98. This paper
contains details as to the strength and deflection of these cranes : see

our Art. 909.

[961.] Gallon : Rapport a la commission centrale des machines ci

vapeur sur la reponse des diverses commissions de surveillance des bateaux
a vapeur aux questions posees par la circulaire ministerielle du 15 juillet
1853. Annales des ponts et cliaussees. Memoires 1856, 2 e

semestre, pp.
71-102. Paris, 1856. I only refer to this memoir because in a Note,

pp. 90-102, it seems to me to give a very doubtful and, I think,
erroneous theory of the safe limit for the thickness of the walls of

cylindrical boilers. I do not see how the theory of beams can be

applied to this case, and if it be applicable I do not understand how
(dyjdxf could be neglected as it is on p. 92 : see my remarks in Art.

537 on a like treameiit of the problem due to Bresse.

[962.] F. Gray : Tredgold's Formula for the Thickness of Cast-Iron

Cylinders. The Artizan, Vol. xvn. pp. 289-90, London, 1859. Tred-

gold On the Steam-Engine, 518-20, gives a formula for the proper
thickness of cast-iron cylinders and pipes subjected to strain arising from
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unequal expansion Tim, I..- ^upposes one-half of a cylinder to be

300* I than the oth'-r half. Tredgold's formula and his method

are both very questionable <lray points out a slip in his algebraical

work and gives a corrected formula based on the same hypothesis. The

whole procedure seems to me so questionable that I place no faith in

Gray's corrected version of Tredgold's formula. Winkler has attempted
l.ir pn.l-h-m, in a mamiiT which I think inadmissible also, but

certainly better than Tredgold's: see our Art 645. The problem is

of some importance and ought, I think, to admit of a solution by accurate

UHly*,

[963.] M.ihi-Mc: M>'n>ire sur le limitex des vitesse* qu'on pent

impri 'rains des '->ir & craiiulre In rupture

de* rail*. Compte* rervl"^ T. UIT., pp. 610-13. Pans, 1857.

This |ij rring to the Portsmouth experiments on the

flexure of railway rails under a travelling load (see our Art. 1417*),

proceeds to develop a formula for the maximum load which can cross

with given velocity a doubly built-in rail without destroying its elastic

efficiency. Mahistre treats the railway rails as built-in at the sleepers,

and finds by a process which does not seem to me free from doubtful

hypotheses the following formula for the maximum load which can

travel with velocity V along the rail :

(r

/' \
*

-?.-*)
when _/ U tin- length of the rail, b its vertical diameter, EWK- its

flexure! rigidity, /* the height of the centre of gravity of the travel-

ling load above the rail, 1\ the limit to elastic tractive stress, E the

stretch modulus of the material of the rail, and 4P the part of the

weight of the locomotive which rests on the most charged pair of

be small compared with E/T, as I think it would generally

be, this formula reduces to

This may be compared with a formula for P which I have de.|u--d from
Saint-Venant's result (xiii'') for a doubly */'/>/><>,/>

</ beam given in our
:.". 1 'utt ing the (j of that article = 2/', I

h- difference occurs in the factor 4/3 of the term 1

Mahistre neglects the inertia of tie rail
;
he assumes it at each

instant under the transit of the load to take the statical form \vhieh

'/' r
would U- produced 1 rce 'IT

~ '

, where r is the radi

<J r
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curvature of the curve described by the centre of gravity of the load
;

and he further appears to assume that the centres of curvature of the

path of the load and of the curve of deflection of the rail at the point
of contact with the wheel must coincide at each instant.

I do not think either the first equation of his (1) or his equation

(3) holds for a doubly built-in rail. They apply rather to one simply

supported, and this on the assumption that the cross-section has its

centroid in the mid-point of the vertical axis of symmetry. Further
I do not follow the argument by which it is shown that the envelope
of the successive curves of deflection is a circle

;
nor if it be a circle do

I understand why equation (4) for the deflection and curvature of the

strained form at any instant must hold. My surprise is rather that the

author comes so close to the right result than that he differs from the

formula of Phillips and Saint-Tenant.

[964.] Robert Mallet : On the increased Deflection of Girders or

Bridges exposed to the Transverse Strain of a rapidly passing Load.

This paper was read at the Institution of Civil Engineers of Ireland

and will be found printed in The Civil Engineer and Architect's Journal,
Vol. xxin. pp. 109-110. London, 1860. Mallet refers to the labours of

Willis and to the experiments of James and Galton, and then adopts
Morin's formula for the deflection, which is really due to Cox :

see our Arts. 1417*-24*, 1433* and 881(6). It supposes the beam
to take its greatest deflection when the travelling load is at the centre

and the deflection then to be that which would be due to a central load

equal to the weight of the travelling load, together with a load equal
to the instantaneous 'centrifugal force' of the travelling load. If the

load statically placed at the centre of the beam would produce a bend-

ing moment Ms there, then I find on this theory that the bending
moment MD ,

when it is travelling with velocity V, is

where Ewx? is as usual the flexurai rigidity of the beam. Hence if

be the safe bending moment, we must have

But if w be the weight of the travelling load and '21 the length of the

beam, Ms = \wl^ or,

2MJI
w
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If J/ =7>K2

//*,
we have

T V2
'

1 +

Mallet does not reduce Morin s result to this simple form, but savs

rather vaguely that it accords with James and Galton's experiments.
Tin- above result will be found to agree with that of Mahistre's cited

in the previous article, if we remember that w = '2P, h ^b of the

latter's notation : see also our Art. 663. The conclusions, however, of

Mahistre and Mallet are erroneous, being founded on u method con-

demned at a much earlier date by Stokes: see our Art. 1433*. Mallet
in a footnote notices Phillips' memoir (see our Art. 552), and commends
it strongly to the reader, but does not seem to have noticed that

n -Milts contradict those he cites. He considers Willis and Stokes' work
as excellent, but "past the usual range of practical men." There is

nothing of further importance in the paper.

[965.] Lemoyne : Note sur I'evaluation du poids equivalent <> MM
calwt en ce qui concerne la resistance d'une poutre de pont ; ou plus

generaleitient : Determination de la diarye tranquille equlvalente, <??'"///

a la flexion d'une piece elastique reposant, par ses extremites, sur deux

ttpptlM de niveaUj au choc d'une masse determinee tombant d'une
hauteur connue sur le milieu de cette piece. Annales des pouts et

cliaussees. Memoires, 1859, l
er

semestre, pp. 326-33.

The method of this paper is not very satisfactory, and the whole
matter has since been thoroughly discussed by Saint-Venant (see our
Arts. 362-71 and 413).

Lemoyne argues as follows : Let the weight Q dropped from the

height h produce the same deflection y*as the weight P statically pla<
< <l

upon a bar, then to get a superior limit for the value of P we may
suppose the work done in bending the bar in the two cases equal or :

C (A +/) = />/,

but /- '/Y(48.W), where I is the length of the bar and EUK
flexural rigidity, hence we find :

(").

II est k remarquer de plus, quo la relation (a) fournirait sciuVment. <lan-> la

pratique, une limite t&gSnOQtt du poids & determiner; car cctte c.\|>ivs>imi

n'cst vraie, th6oriquement, quo i>oiir lo OM impossible dedeux r..r]>- ]>arfaito-

mont ('-liistiques, ce cas etant le scul oil il n'y ait p;is une porte de pui>
vive i>ar le fait mC-me du choc (p. 329).

To obtain an inferior limit Lemoyne determines tin- kinetic energy
absorbed in the elastic deformation. Let V be the joint velocity n
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impact and W the weight of the bar, then if both W and Q were free

we should have by the principle of momentum

Putting: Pf= -+

we find for an inferior limit of P (p. 330) :

/
V-2\ V

Lemoyne's reasoning seems to me very doubtful ;
in particular with

his definitions of P and / I think JP/ and not Pf is the work

corresponding to P. He gives an example of these limits, and he

finds that for a certain case P must lie between 13,260 and 3,210

kilogs., when Q = 3,000 kilogs. and the drop is -08 metres. A
further assumption leads him to limits of 11,000 and 5,142 kilogs.

In neither case do the limits seem to me sufficiently close to be of

much practical value.

[966.] F. Grashof: Ueber die Berechnung der Festigkeit der

Schraubengewinde. Zeitschrift des Vereins deutscher Ingenieure. Jahr-

gang iv., S. 289-92. Berlin, 1860.

The author commences with a short historical account of the

discussions which had taken place in Germany on the strength of

screws. At a meeting in March, 1860, of the Hannoverian Arc/ii-

tekten- u. Ingenieur-Verein Wittstein had given a formula for the

strength of screws based on the assumption that the thread is a

beam under flexure
(!).

Let a be the width and c the depth of

the thread, b the circumference of the screw multiplied by the number
of turns of the screw in the matrix, then Wittstein supposed that the

tractive strength P of the screw is given by

P = mbc*/a ................................ (i),

where m is a constant to be deduced by experiments on the rupture of

screws and not from pure traction experiments on its material. This

formula led to a discussion in which Riihlmann, Karmarsch, Kirchweger
and others took part. Karmarsch, from experiments made by himself

twenty years previously, concluded that the resistance of wooden screws

was due to the shearing and not to the bending strength of the thread.

Thus if $ be the absolute shearing strength of the material, we ought
to have instead of

(i)

P = SJ>c ............................... .-(ii).

Riihlmann (Zeitschrift des Architekten- u. Ingenieur-Vereins f. d.

Konigreich Hannover, Bd. vi. Heft 2 u. 3, where the details of the
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discussions will be found, a periodical unfortunately inaccessible to

me) considers that formulae (i) or (ii) will be true according as the

thread does not or does accurately fit the matrix. He then proposes
to use a formula given by Navier, in 154 of his Lec

(ons, for combined
flexure and shear. This formula is erroneous, so that no weight can be
laid on Ruhlrnann's results. In the course of his paper he refers to

certain experiments on wrought-iron made in 1834, the details of which
are published on S. 228 of the Mittheilungen des Gewerbe- Vereins f. d.

l\i'mitjren-li Hannover, 1835, showing that the absolute shearing strength
of wrought-iron is from 68 to 80 per cent, of its absolute tractive

strength, a result not very far from the i obtained by extending the

results of uniconstant isotropic elasticity to the phenomena of cohesion :

see our Arts. 879 (d) and 903.

[967.] Such was the state of the problem when Grashof took it up.
He considers (ii) to be the correct formula for tightly fitting screws,

and that it is impossible to apply (i) to the case of a beam the height of

whose cross-section is of the same dimensions as its length. It is

necessary, he holds, in the case of a metal screw, which does not fit

so closely as a wooden one, to take into account both the flexure and
shear of the thread. He supposes the pressure P to be distributed

on a cylinder round the spindle of the screw, the radius of which is

slightly greater than the mean between the radii of the spindle and
the thread. I hardly see that he justifies this assumption (S. 290).
He then, after demonstrating at some length the error of Navier's

formula, a fact long before known from Saint-Venant's researches

proceeds to apply Saint-Venant's formula for combined flexure and sln-.-ir

to the case of the thread of a screw. He attributes this formula to

Poncelet and says he first found a rational treatment of combined
flexure and shear in Laissle and Scliiibler's work (see our Art. 889)!
He then gives a numerical table showing the influence of shear and
flexure respectively on short beams. This table is similar to one which
had been previously given by Saint-Venant and which we have alivady
cited in a later form (see our Art. 321 (d)). Grashof concludes from
his formula, into which, however, he has not introduced the differ-

ences between the stretch and slide moduli, and between the absolute

tractive and shearing strengths, that if a screw thread is not to L

way by flexure we must have

P<&bcT (iii),

where T is the absolute tractive strength, and if it is not to give way
by shear we must have :

l'<llT. (h).

Thus a slightly loose screw would give way sooner than a tight one.

Better results than these would be obtained on the same hypothesis
i.e. that of the thread as a beam, from the conclusions of our Art.

321 (d).

I question, however, wln-tlnT this hypothesis in the least ajjro\i
matrs to tin- facts nf lli \\Viv tin- thread cut through in sr\cral



968969] MINOR MEMOIRS. 655

places parallel to the axis of the screw, would not its strength be

weakened 1 Further, if it is to be treated as a beam, surely in practice
its cross-section is not uniform and equal to be 1 Lastly if we may
suppose these assumptions to make no difference, would not better

results be obtained by treating the thread as a very narrow plate built-in

at one edge and loaded near the parallel edge ? In this case we should

not obtain a formula like
(iii)

in which TQ is the absolute tractive

strength. We should have to deal with a plate incapable of contracting
in its own plane and the results would be again different.

GROUP C.

Experimental Researches on Shaped Material and Structures.

[968.] The remarks we have made on the papers of the two

great engineering Institutions for the earlier period see our (Art.

1464*) hold in a slightly modified degree for much of the technical

literature of the period 1850-60. The scientist stands aghast at

the great mechanical results which have been obtained often by a

defective, sometimes by a false theory. Perhaps it is only a

consciousness of the large 'factor of safety' used which makes a

railway journey endurable for a scientist after a perusal of some of

the technical papers published in this decade !

[9 09.] The following papers in the Proceedings of the Institution

of Mechanical Engineers may be just noted :

(a) 1850-1, January, pp. 19-31. On Railway Carriage and

Waggon Springs by W. A. Adams, with an additional paper by
the same author, April, pp. 14-26. These papers are interesting
as giving an account of the various buffing and bearing springs
then in use. There are details of experiments on the deflection,
set and absolute strength of some of these springs. Several of them

might be made the subject of interesting theoretical investigations.

(b) 1853, pp. 45-56. On Improved India-Rubber Springs for
Railway Engines, Carriages, etc. by W. G. Craig. Similar remarks

apply to this paper.

(c) 1857, pp. 219-226. Description ofa New convex-plate laminated

Spring by J. Wilson. The flat plates of the ordinary spring are replaced
in this new spring by

"
grooved or trough plates." Details of deflection

and set in springs will be found on p. 223.

(d) 1858, pp. 160-5. On a new construction of Railway Springs,

by T. Hunt. This gives details of deflection and set.
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[970.] On the Fatigue and consequent Fracture ofMetals. F. Braith-

waite. Institution of Civil Engineers. Minutes of Proceedings, Yol . x 1 1 1 .

1853-4, pp. 463-7 (Discussion pp. 467-75). The word 'fatigue' is at-

tributed by Braithwaite to Field (p. 473) and is used by him to denote

a progressire destmctive action arising from repeated loading. The

paper is in very general language and the only evidence brought forward

is drawn from numerous " unaccountable
"
accidents which the author

attributes to a wearing-out of material due to repeated stress. Fair-

bairn in the discussion supported the old view that the variations

in stress produce a change in the molecular structure, thus "
wrought -

iron assuming a crystalline instead of a fibrous arrangement
"

(p. 469) :

see our Arts. 1463*-1464* and 881 (b). Sewell held "that fractuivs

were frequently owing to the arrest of the longitudinal wave of vibration

by a transverse check." He believed that this would account for tin-

action of fatigue at shoulders and angles (p. 471). This is really a true

view although obscurely expressed, the wave of stress is reflected by su<-h

'checks,' and the stress tends to double if not further multiply its* If

at such points
1
. This accumulation of vibratory stress owing to reflec-

tion can be easily demonstrated theoretically in the case of longitudinal
and torsional vibrations, and I believe is the real reason why a vibrating

body appears to give way under a stress less than the statical rupture
stress. Thus *

fatigue' would only express the constantly increasing set

due to an accumulated stress which exceeded the elastic limits. The

vague way in which the latter term is used by Hawksley in the dis.

sion is characteristic ;
he does not seem to have in the least grasped that

the vibratory strain under a certain loading may be twice, or even n.

times, as great as the strain produced by the same load under stati -al

conditions. It is accordingly the maximum vibratory strain and not

the statical strain which must be less than the elastic limit, but the

vibratory strain can only be deduced from the load by theoretical

calculations, which are occasionally of a rather complex character.

[971.] C. R. Bornemann : Festigkeitsversuclie mit dreieckigen St

Der Cimlingenieur, Neue Folge, Bd. I., S. 186-195. Freiberg, l<s.M.

This is an attempt by means of experiments on wooden and cast-iron

bars of triangular cross-section to ascertain whether the stretch- and

squeeze-moduli of such materials are equal. The bars were of equilateral

cross-section, and in the case of wood were of deal with the fibres ap-

parently in t/te plane of the cross-section and parallel to a median /

The experiments with the wooden bars were made with the cross section

in three- different positions relative to the plane of the load supp.
\ert leal. i.e. (i) with the vertex upwards, (ii) with it downwards, in both

cases one side being hori/ontal, and (iii) with a side vertical. K\j
men' then made in which elastic flexure, set and ultimately
flexural strength were m asured. Similar bars of cast-iron with their

1 The papers of Thorneycroft and McConnell referred to in our Art.

both draw attention to the fact that axles almost invariably break at the \vl

mull attriliutes this portion of the fracture to "the sudden stoppage or

reaction of th vibratory wave at that place."
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cross-sections in the same three positions relative to the load plane
were experimented on. The details of both sets of experiments will be

found on S. 187-92.

Bornemann finds that the relative strength of both wooden and
cast-iron beams, calculated by extending the Bernoulli-Eulerian theory
to rupture, would depend on the position of the cross-section relative

to the plane of the load. Further that the elastic flexures in these

positions require us to suppose that for cast-iron at least the stretch-

and squeeze-moduli are unequal. He works out a theory of flexure

on this hypothesis on S. 192-3, which is very similar to that of

Hodgkinson : see our Arts. 234* and 925. His general conclusions

stated on S. 195 are as follows. His experiments

(1) Die bei friiheren Festigkeitsversuchen gemachten Beobachtungen
bestatigen, namlich die Proportionality der Zunahme der Einbiegungen
mit den Gewichtslagern, innerhalb gewisser Grenzen

;
dann die starkere

Zunahme der Einbiegungen bei hoheren Belastungen, das Auftreten per-
manenter Einbiegungen bereits bei sehr geringen Belastungen (z. B. fur Holz
bei 1/57 der Bruchlast, flir Gusseisen bei weniger als 1/20 derselben) oder

bei sehr unbedeutenden Ausdehnungen der extremiten Fasern (fur Holz
bei einer Ausdehnung= '00032, und fiir Gusseisen bei der Ausdehnung
= 00086), die starkere Zunahme der permanenten Einbiegungen in der
Nahe der Bruchbelastung, das plb'tzliche Eintreten des Bruches bei guss-
eisernen Barren und unter Bildung eigenthiimlicher keilfb'rmiger Hervor-

ragungen an der Seite der comprimirten Fasern, endlich die Abnahme
des Elasticitatsmodulus mit wachsenden Einbiegungen ;

(2) Scheint sich aus diesen Versuchen ein Unterschied zwischen dem
Elasticitatsmodulus der comprimirten und demjenigeu der ausgedehnten
Fasern herauszustellen, welcher aber fiir Holz wo die entsprechenden Werthe
sich wie 1'054 : 1 verhielten nur sehr unbedeutend sein kann, fiir Gusseisen

dagegen, wo die Elasticitatsmodeln sich wie 1 -4939 : 1 verhielten, nicht

iibersehen werden konnte, sondern die Annahme einer andern Lage der
neutralen Axe und die Einfiihrung anderer Biegungsmanente nothig machen
wiirde. Als Elasticitatsmodulus der ausgedehnten Fasern ergab sich fiir

Gusseisen im Mittel 9562500000 Kilogr. [per sq. metre], fiir Holz 1531955000

Kilogr. [per sq. metre].

(3) Gleichzeitig ergiebt sich aber auch eine Veranderlichkeit der neutralen
Axe mit steigenden Belastungen, indem sie sich immer mehr dem Schwer-

punkte zu nahern scheint.

(4) Die gewohnliche Berechnungsweise der Festigkeit wird durch die

Versuche nicht bestatigt, es scheint vielmehr, als ob zwischen den Festig-
keitsmodeln der dem Druck und der dem Zuge ausgesetzten Fasern dieselbe

Ungleichheit bestiinde, welche zwischen den betreffenden Elasticitatsmodeln

gefunden wurde.

The fourth result is of course the old * beam paradox
'

: see our Arts.

173, 178 and 930-8. The possibility of obtaining satisfactory results

by making the stretch- and squeeze-moduli for cast-iron different, is,

I think, doubtful, since the chief peculiarity of cast-iron is the non-

linearity of its stress-strain curve from the very outset : see our

Arts. 1411* and 793.

T. E. II. 42
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[972.] Eaton Hodgkinson : Experimental Researches on the

Strength of Pillars of Cast Iron from various Parts of the King-
dom. Phil Trans. 1857, pp. 851-899 with three plates. London,
1858.

This memoir may be treated as a supplement to that of 1840

considered in our Arts. 954*-965*. From the theoretical point

of view it does not contribute much additional information, and

from the practical it must be looked upon chiefly as modifying the

constants obtained in the earlier investigations.

[973.] The pillars in the present researches were upwards of

10 ft. long and from 2*5 to 4 inches in diameter, partly solid and

partly hollow. The material was cast-iron and the iron was of a

variety of well-known qualities. A description of the testing
machine will be found on pp. 851-2 (with plate xxxi); the

experiments, made at University College, London, were at tl it-

joint cost of the Royal Society and Mr Robert Stephenaoa.

Hodgkinson being unable to determine any point which could In-

described as that of incipient flexure, confined his attention to

rupture loads.

The rupture load of a solid pillar of diameter d and length /,

according to Hodgkinson's investigations of 1840 varied as d** /' '.

In the present experiments he gives for Low Moor Iron the ruj. tint-

load w in tons of a hollow pillar of internal and external cli;un<-t< -r

and d inches, I feet long (p. 862):

,73-5 ,/ 3-5

w- 42-347^-^,
while in the researches of 1840 he gave (see our Art. 961*) :

It is obvious that there is a very considerable difference between

these results, and we are compelled to put even less faith in the formula

than \ve might hoj>e to do, when we notice that the powers of the

diameters vary from ."ri'l'J to 3'G79, and the powers of the lengths from

r."L'.'>'J to HiT'Jl in the "liU'erent sets of experiments; still other \alm-s

of the powers would have arisen, if the results of the experiments of

1840 had l>een taken into account. Further these emj.irieal formulae

are, we are told, to be limited to pillars of cast-iron, \vh<e length-

at least 30 times their diameter (|]>. SG4-6). It may !> questioned
whether the (Joidon Kankine formula or ' -me of its numerous < I. rman
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equivalents would not give equally good, perhaps better, results : see

our Arts. 469, 650 and 956.

For the different kinds of cast-iron Hodgkinson. gives on p. 872 a

summary of the values of m, where in tons w =m . d*'
5

/
1
1

'

63 for solid

pillars, m, for d in inches and I in feet, varies from 33*6 up to 49-94.

This summary may have value for practical purposes, but we can only
afford space to refer to it here.

[974.] We may note one or two points of the memoir which have

possibly a theoretical bearing :

(a) The relative strength of pillars with flat or bedded ends to

those with rounded ends was found to be as 3'107 to 1 (p. 855 and

compare p. 854, 5). The theoretical incipient flexure loads are as 4 : 1.

Probably a certain amount of strength was gained by the flattening of

the rounded ends under the pressure. With one end flat and one
rounded the ratio was as 2:1, which agrees with that given by incipient
flexure very fairly : see our Art. 959* and Corrigenda to Vol. i. p. 2.

(b) Hodgkinson gives a theory of these ratios (pp. 855-58), but it

is not very novel or sufficient. His remarks on the points of rupture

(p. 858) seem to suggest that rupture ultimately takes place at the

points of maximum elastic stress as given by Euler's theory. These
are the points referred to in our Art. 959*.

(c) On pp. 861-2 the great loss of strength due to removing the

external crust is referred to. Hodgkinson thus notes "that to ornament
a pillar it would not be prudent to plane it". Further: "In experi-
ments upon hollow pillars it is frequently found that the metal on one
side is much thinner than on the other, but this does not produce so

great a diminution in the strength as might be expected, for the thinner

part of a casting is much harder than the thicker, and this usually
becomes the compressed side

"
(p. 862).

The considerable differences between the crushing strength of iron

at the core and towards the periphery of the casting are again referred

to on pp. 866-870. Thus if R, R be the resistances to crushing per
7? /v

square inch at the periphery and the core respectively, then
^y

= the

defect of resistance at the core, the resistance towards the periphery

being taken to be unity. Hence if d be the diameter of the weaker

core, dl of the pillar, Hodgkinson supposes (see our Art. 169, (e)) :

7? 7?' 1

where
ft

is a constant. For Low Moor iron = j nearly, and from
xt

d= 25dl to d = '8dly we see that w will vary from

998^*0.8866^
422
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Thus the weakness of the core may have considerable effect. The

reasoning by which Hodgkinson reaches the above formula is not

very satisfactory, but it probably roughly expresses the effect of the

variation of the strength of the material across the section. The

point has been considered in other applications by Saint-Venant and
Bresse : see our Arts. 169 (e)-(f) and 515.

Experiments showing the decrease of strength from the periphery to

the core of castings are given on pp. 889-92, and might be useful for

comparison with further theoretical investigation on this subject, al-

though in many cases the evidence only proves irregularity in tin-

casting ;
in one case even the greatest strength was near the centre.

(</)
In the Appendix to the memoir, pp. 8939, we have some

experiments on six cast-iron columns of circular, square and triangular
cross sections. From the few results obtained it would appear that for

the same quality of metal, the same weight and length, the circular,

square and equilateral triangular cross-sections give loads varying as

55299, 51537, and 61056 respectively, or the triangular is distinctly
the strongest and the square the weakest. In these cases the ends were

flat ; Hodgkinson seems to hold that this would not be true if the ends

were rounded, but the experiment on a cruciform pillar, made in 1M<>,
on which he bases his conclusion does not seem very satisfactory. The
ratio of the corresponding buckling loads is on Euler's theory
9 : 3?r : 3'4647r, which makes the load for the triangle the greatest, and
with roughly about the same ratio to that for the square as Hodgkinson
gives for the rupture loads. But this theory applied to rupture makes
the square stronger than the circle, which is the reverse of Hodgkinson's

experience.
The rupture surfaces of the pillars experimented on are figured. Tin-

(It-tails of some experiments on wrought-iron columns and timber balks

referred to on pp. 852-3 were not, so far as I know, ever published.

[975.] This is the last memoir of Hodgkinson's that we liavc

to note. He died on June 28, 1861, after some years of bad

health. An account of his life will be found in the Memoires et

compte rendu des travaux de la Societe des Inytnieurs civils,

Annee 18G1, pp. 505-10. Paris, 1861. Of this society he was

an honorary member. The account is a translation by Love of

a notice of the veteran technical elastician which appeared in the

Manchester Courier, but on what date I do not know.

[976.] D. Treadwell : On the Strength of Cast-Iron Pillars,

ceedings of the American Academy, Vol. iv., pp. 366-73. Boston, 1860.

This paper is a mere resume and criticism of earlier work. It

to the labours of Euler, Rennie, Tredgold and Hodgkinsmi (s. our

Arts. 65*, 74*, 185*, 196*, 833*, and 954*-65*). It points out that

formulae ou^lit not to be trusted Ix-yond tin- limits of lii>
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experiments, careful as the latter were. Treadwell further remarks
that no practical directions founded upon Hodgkinson's experiments
have been given in any engineering work 1

,
and that American architects

are governed by Tredgold's formula, which leads to different and in

many cases quite incongruous results. At Treadwell's suggestion a
committee was appointed to draw up rules which should be consistent
with the laws of strength for small as well as for large pillars. I am
unaware whether this committee ever published any report.

[977.] B. B. Stoney: On the Strength of Long Pillars. Proceedings
of the Royal Irish Academy, Yol. VIIL, pp. 191-4. Dublin, 1864. This

gives a very insufficient and unsatisfactory method of deducing a
formula for the 'deflecting weight' of long struts. It practically

only reaches Euler's result in an incomplete form : see our Art. 74*.

[978.] G. H. Love : A memoir by this writer may be noted

although it belongs to a year outside the present decade. It

is entitled : Sur la loi de Resistance des piliers d'acier dedaite

de ^experience pour servir au calcul des tiges de piston, bielles, etc.

Memoires et compte rendu des travaux de la Socie'te des Ingenieurs

civils, Annee 1861, pp. 119-66. Paris, 1861.

The memoir commences by noting the want of experiments on the

strength of steel columns, and proposes to rectify this by experiments
on three columns of steel with rounded ends of one centimetre diameter
and of lengths 10, 20 and 30 centimetres respectively. From results

obtained for these three columns only, and by a process which is not

very intelligible to me, Love obtains the following empirical formula for

the total crushing load P of a steel column :

where C = the crushing strength of a small block of steel,

(o = the cross-section of the column, supposed circular,

I = its length and d its diameter.

Presumably this formula only holds when P < (7w or when ljd> 6 -82,
and this only for steel like that of the experiments having an absolute

strength not less than 7600 kilogs. per sq. centimetre.

For columns with flat ends Love gives the formula :

P=~ ,28
35

1 This seems to me incorrect, as Hodgkinson's formulae got at once into the
text-books and have unfortunately remained there till to-day.
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Kor column^ of .-v|iiare cros.-. section Love multiplies (In- resiil
1

and (ii) by 1'53 ; -T in analogy with Hodgkinson's results for

cast-iron .

The.-,.. formulae may I." eon, pared with the empirical e m for

P in the case of columns of wrought-iron of circular 01 >n \\lrn h

Love gives on p. 136. They are the following:

For flat ends: ^' =
! .55 + -0005

(W
For rounded ends: ^=.0012 (;,-,' ,,,,,

Such formulae may hold fairly closely for ;i limit. .1 ran

riments, hut there ought to In- mtA '-aution in applying them

heyond tli;it i their extreme diversity of form sliows that they
have no theoretical justification. J draw attention to them here ,,nly

lie.cause such formulae are still frequently <|iioted in practical
on bridge design often without the nr-c.-s-,ary note .f cantif.n : for

njile in It'-;d's /'O///N
,|///'////Y//./-X, 1'aris, lSS.")

} j. \'l. Love's insist-

ence (p. 142 footnote) on the generality of his formulae do. -, not

seem to me warranted.

[979]. The remainder of the memoir consist* !' pi.u

applications of these formulae and of a criticism of Kul< i

sion for the buckling load of struts (see our Arts. 7-t* and (IHh,

which liad l)oon dogmatically applied to rupture.

Love concludes with throwing down the gauntlet to tin

theoretical elasticians in the following words :

Au reste, je reviendrai sur cette question dans un eerit aiujuel je

met! n ce moment la derniere main, ct (jui trait e de rintluen. .1. ///

nietliode speculative en general, et de la nictitation i,i<if//>''in>r/i</n.

2>nrticuller wr le progres des sciences d>

aj>iilt><i
i i '>ii ; ( t j'esnere monti.i

que cette rnethode, qui, en Fi-anee, trone eiic-.re dans tout.es le

et qui empeche 1'avi nement de la methode laconienn. .
<ontinue

r le plU8 grand Obstacle ail.X pro^res des >< -iences et de 1

(p. 163).

William Fairbairn : On the Resistance of Tubes to

Collajm. Phil. Trans., 1S5.S, pp. :W)-4i:j, with two plates.

London, 1859. This memoir was read on May 20, 1

The experim<'iit- iveorded in the memoir wen- und rtak n

at the joint re.piest of the Royal Society and the liritish Associa-

tion. The author thus d :m:

1
I tind by Art. U, if w= pP*IP** ai .-..l.mins of

circular and squar. cm--, .,r-tion rr,|H.ctivr]y, tln.-n fm I-\'2,1 HIM! not I
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Their ohje.r.l is to determine, the IJINVS wliicli ^overn (Jic strength of

cylindrical vessels exposed to a uniform external foree, and tlieir

immediate practical application in proportioning more accurately tin;

Hues of Itoilers for raising steam, which have hitherto been constructed

on merely empirical data (p. 389).

After referring to the great increase in the number of boiler-

explosions owing to the rise of working pressure from 10 to r>()

and even 150 Ibs. per sq. inch, Fairbairn goes on to remark that,

it is impossible to treat fines, the ends of which arc supported by

rigid rings or securely fastened frames, as cylindrical tubes of

indefinite length, or as tubes whose strength is unaffected by
their length. He states that practical engineers have supposed
boiler-Hues to be equally strong at all parts of their length not-

withstanding their built-in terminals, but that this is very far

indeed, from the fact. Thus flues 35 feet long were found to be

distorted under considerably less force than those 25 feet long

(p. 300).

Pp. 300-2 describe the apparatus by whieh a large external

pressure was applied to a tube. 'The air inside, the tube was

maintained at the atmospheric pressure; by means of a small

connecting pipe which also allowed the air to rush out on the

collapse of the tube.

[OS1.] The tubes to be experimented on were composed of

single thin pbites bent to the required form on a mandril and then

riveted. They were also brazed to prevent leakage into the interior.

The tubes were closed by cast-iron terminals, to which they were

securely riveted and bra/ed. They were supported at one end by
a rod from the cast-iron terminal of the tube to the lower cover

of the hydraulic cylinder, and the other terminal was united by a

pipe to the upper cover of the cylinder. Fairbairn seems to think

that this rod and pipe screwed tightly up to the covers hindered

the buckling action of the pressure on the cast-iron terminals

of the tube, but the great increase of strength in one experiment
in which an iron rod was placed inside the tube between the

cast-iron terminals so as to prevent their approach appeal's to me 1

to indicate that the pressure on those terminals may in some cases

have acted as a buckling force, and the collapse may not have

been entirely due to the lateral pressure on the tube (cf. Fairbairn's

1 Fairbairn regards the increase as due to a tin ring left in by mistfi
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experiment M. and second ftn. p. 393). This buckling action of

the pressure would not occur in ordinary boiler flues.

[982.] The first series of experiments were on tubes of 4, 6, 8, 10

and 12 inch diameters, and from 19 to 60 inches in length (pp. 392-6).
The general conclusion is that the '

pressure of collapse
'

varies in-

versely as the length. The tubes appear in these cases to have been

lap-jointed (?) and made of plates of '043 inches thickness. The forms

of the collapsed tubes together with their cross-sections at positions of

greatest collapse are depicted. The latter are generally star-shaped
and of surprising regularity (up to even five angles).

The two tubes treated next were made of equal shape and size, but

the one with a butt-joint and the other with a lap-joint. The one with

a lap-joint showed more than
-J

less strength than that with a butt-joint,

proving how much a slight deviation from the true circular form

reduces the strength (pp. 396-7), and therefore how important it is

to adhere to that form.

Fairbairn, as I have remarked, considered that his arrangement
maintained a constant distance between the cast-iron ends of his tubes.

He now gives some experiments in which the ends were left free to

approach ;
in these no internal rod was placed inside the tube, nor

were its ends connected with the covers of the enclosing cylinder.
In these cases the pressure of collapse did not vaiy so exactly with

the inverse of the length as in the previous results (pp. 397-8).
The experiments we have referred to up to this point were on tubes

made of thin wrought-iron plates. The next three were on steel and iron

tubes of somewhat different forms, and in each case with an internal

longitudinal stay between the ends (pp. 399-400). These do not appear
to be very conclusive. They were followed by two on elliptic tubes,

which showed a great weakness as compared with circular tubes of like

construction and size. Thus the strength was found to be less by one-

half when a tube of circular section 60" in length, 12" diameter, and

043" thickness of plate was compared with one of the same length ami

thickness, but of elliptic cross-section 14"xlOJ". The expcrin

were, however, too few to be really of theoretical value.

[983.] Fairbairn next turned to experiments on the strength of

tubes subjected to internal pressure. The results are not very u
factory for the data were too few. He concluded, however, that the

strength was in this case, for lengths greater than one to two feet, nearly

independent of the length for wrought-iron tubes ; the <liflieult y ai

from the fact that the tubes invariably gave way at the riveted joint

was not overcome. The conclusion as to the bursting pressure !

independent of the length was confirmed by experiments on leaden pipes

(pp. 401-3).

[984.] Pp. 403-10 are entitled : Generalise!? Results of the

Experiments. Fairbairn states that T. Tate and W. Unwin assi
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him iii this matter. He assumes the following purely empirical formula

for tubes collapsing under external pressure :

p = Crn

/(ld),

where p = pressure in Ibs. per sq. inch at collapse, T = thickness of plate

of tube in inches, d its diameter in inches (whether internal or external

not stated, but the difference is a small percentage), and I its length in

feet, C and n being constants to be determined from the experimental
data (p. 404). f

For sheet-iron tubes Fairbairn gives as the mean of his experiments :

C = 808,300 and w = 2-19.

Approximately therefore we may take in practice :

p = 806,300 r>/(ld).

Fairbairn considers that I ought to be limited in the more exact formula

to values between 1'5 and 10 feet.

For very thin tubes of 12" diameter, the divergence, however, is

considerable, and Fairbairn accordingly gives the following formula as a

closer approximation to the results of his experiments (p. 408) :

T2
'

19 d
2?
= 806,300: --002*.

Here the second term on the right is negligible for all but very thin tubes.

It may well be doubted whether the experiments made by Fairbairn

really permit of the generalisations involved in these formulae, and
I feel inclined to lay still less stress on the formulae suggested for

elliptic tubes, for riveted tubes subjected to internal pressure and for

lead pipes given on pp. 409-10. These are all based on the result of

only two or three experiments, which cannot be considered as sufficing
in such difficult and delicate matters.

[985.] On pp. 410-13 Fairbairn states the practical conclusions

as to boiler construction which may be drawn from his experiments.
He points out that boiler flues are generally dangerously weak as

compared with the outer shell of the boiler. Both have to resist the
same pressure, but the rupture pressure of the former is given by

p = 806,300 r-
19

/(^),

and that of the latter by p' = 60,000 r/d. Hence we have for tubes of

the same thickness and diameter

I

p

So that the maximum internal pressure p is greater than the maximum
external pressure p, whenever (I in feet and T in inches)

l> 13-44 rri9.

In order to equalise the strengths of the shell and flues, Fairbairn

suggests : (1) that butt-joints with longitudinal covering plates should
be used, and

(ii)
that strong angle-iron ribs in the form of rings
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should be placed round the flues, two such ribs would increase the

strength nearly three times by practically reducing the length to .! of

itself. This result was confirmed by Fairbairn in an experiment :

see Experiment F. p. 392.

[986.] F. Grashof: W. Fairbairm Versuclie iiber den Widerst.i.,,1

von Rohren gegen Zusammendriickung. Zeitschrift des Vereitt* dvutscher

Ingenieure, Jahrgang iii., S. 234-43. Berlin, 1S51. Grashof commei
with a resume of Fairbairn's experiments, and then attempts to draw
a more accurate empirical formula from them than had been given by
Fairbairn himself. If I be the length of the cylinder, d its diaim

T its thickness, all now in inches, and p the collapsing pressure in 11 s.

per sq. inch, then Fairbairn found (see our Art. 984) :

p = 9,675,600T
2 '19

/(^).

Grashof by a more careful selection of experiments and using tin- method
of least squares concludes that for the whole range of Fairbairn 's tubes

p = 24,469,500 ^"/(Id
1

) (i).

He then considers in like manner an empirical formula for the tubes

which had a thickness of \" or more, which is the thickness usual in

practice ;
he finds

p =
l,035,000 T2

'
081

/^
364^889

) (ii),

a formula which is totally different in character from (i), p now varying

nearly as l~^ and not as l~
l
. It seems to me to be very difficult to

attach any weight, even practically, to formulae of this character.

Grashof concludes his memoir by an attempt at the theoretical investi-

gation of a formula for a tube of slightly elliptic cross-section. His

method is very similar to that of Bresse (see our Art. 537), and seems to

me to confuse in like manner the plate and bar elastic moduli. If C
be the highest safe compressive stress in the material, the ellipticity,

and d the diameter of a circular tube having the same circumference as

the ellipse, (1 rashof finds for the limiting pressure :

_

This may be deduced at once from our Art. 537
(ft).

For very small we get the ordinary formula for the limiting

re in a tube of circular >eetion. For e so large that the first term

of the denominator may be neglected as compared with the second,

(irashof now supposes this formula to apply to all circular flues, faults

of e. instruction really causing them to be slightly elliptic. As ti

no obvious way of determining f for such flues in general, this formula

really leads nowhere. To a "frettich sehr gewagte Betrachtuug
"
gjven

in a footnote, we do not suppose Grashof intends to give any



987 989] G. H. LOVE. 667

According to the author the Prussian Government had adopted for

circular flues a formula of the type :

p = Constant x r
3

/d
3
,

but its theoretical or empirical origin appears to be unknown.

[987.] G. H. Love : Sur la resistance ties conduits interieurs a

fumee dans les chaudieres a vapeur. Memoires et compte rendu des

travaux de la Societe des Ingenieurs civils, Ann.ee 1859, pp. 471500.

Paris, 1859.

In this memoir Love gives a resume of the experiments of Faii-bairn

on the collapse of tubes: see our Arts. 980-5. On pp. 471-9 Fairbairn's

experimental details are reproduced. On pp. 480-8 his conclusions are

discussed and criticised. Love in particular rejects Fairbairn's idea

that the manner in which the ends of the tube are fixed really causes

the variation of the resistance with the change of length : see pp. 393-5

of Fairbairn's memoir. He believes the effect noted by Fairbairn to be

solely due to the closing discs, which do not permit of the walls of the

tube in their neighbourhood collapsing so easily laterally : see our Art.

981. His remedy, however, would agree with Fairbairn's, namely,

riveting rings of JL-shaped iron round the tube at suitable intervals.

Love rejects Fairbairn's empirical formula, which he remarks does

not give results sufficiently accurate even for practical purposes, and
after considerable discussion (pp. 488-95) suggests the following

empirical formula for the collapsing external pressure :

where p is the pressure in kilogrammes per square centimetre,

T is the thickness of the tube, I its length and d its diameter

in centimetres,

C is the crushing strength in kilogrammes per sq. centimetre

of the material of the walls of the tube.

This formula gives closer values than Fairbairn's for the rupture

pressures, but it does not seem to me very satisfactory, especially as the

pressures calculated from it are occasionally greater than those obtained

experimentally. The remainder of the memoir (pp. 496-500) deals with
the practical application of the above formula to boiler tubes.

[988.] J. E. McConnell : On Hollow Railway Axles. Proceedings

of the Institution of Mechanical Engineers, 1853, pp. 87-100. This

paper contains some interesting experiments on the comparative strength
of solid and hollow axles, together with other experiments on axle

journals. The writer finds that the hollow axle has nearly double the

strength of what he terms the *

corresponding solid axle.'

[989.] W. Bender : Mittheilungen iiber Versuche mit MacConndV-
schen Hohlaxen. Polytechnisches Centralhlatt, Jahrgang 1856, Cols.

713721 (Extract from the Zeitschrift des osterr. Ingenieur-Vereins,
1856, Jahrgang viii.). This paper gives details of some not very
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conclusive experiments on the relative resistances to impact by a falling

mass, to blows from a hammer and to torsion of hollow and solid railway

wagon axles.

[990.] Kaumann : Versuche iiber die DurMiegung und die Elas-

ticitdtsgrenze filr Axen der Eisenbahnfahrzeuge. Erbkains Zeitsclirift

far Jiauwesen, Jahrgang v., S. 412. Berlin, 1855. Polytechnisclies

CentraMatt, Jahrgang 1855, Cols. 1 107-1 110. The axles were clamped
at any chosen cross-section and loaded as cantilevers. The flexures

and the elastic limits were then noted. The paper contains nothing of

permanent value.

[991.] A. von Burg: Ueber die von dem Givil-Ingenieur

Hrn. Kohn angestellten Versuche, um den Einfluss oft wieder-

holter Torsionen auf den Molekularzustand des Schmiedeisens

auszumitteln. Wiener Sitzungsberichte. Bd. VI., S. 149-52. Wien,
1851. This paper contains a very brief and insufficient account

of Kohn's experiments on repeated small torsions. Another

account is given in the Zeitsclirift des osterr. Ingenieur-Vereins,

Jahrgang iii., 1851, S. 35. But the most satisfactory description

of the experiments and apparatus will be found in the memoir

discussed in the following article.

[992.] A. Schrotter : 1st die krystallinische Textur des Eisens

von Einfluss auf sein Vermogen magnetisch zu werden ? Wiener

Sitzungsberichte. Bd. XXIIL, S. 472-81. Wien, 1857.

This paper gives a very good account of the manner in

which Kohn's experiments were made. In the first series a

rotating wheel had three teeth, each producing a small torsion in

the bar or spindle under test and then suddenly releasing it from

all load. In the second series the wheel was replaced by an

eccentric, and thus the torsion was gradually imposed and removed.

More than 32,000 torsions were given in the course of an hour,

that is to say as many as nine a second. It seems to me, tln-n,

very probable that there may have been an 'accumulation of

strain,' i.e. it does not follow that because each individual total

torsion gave a mean torsion which was below tin- clastic limit, that

the bar or spindle was never subjected at any one point to strain

beyond the elastic limit
1
. Waves of torsioual strain would u.

1 I have calculated the value of this accumulation of strain, which can easily
amount to two or three times that due to the individual total torsions supposing
them to be applied statically. My results were communicated to the Cambridge

Society in 1888, but have not hitherto bcvn
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backwards and forwards along the bar and would hardly become

insignificant in 1/9 of a second. Seven bars were first experi-

mented on and then broken at different stages by a hydraulic

press after the loading had been repeated from 32,000 up to over

128,000,000 times. Each bar was bent into a right-angular form

ABC ; A was built-in, B was embraced by a socket which allowed

free rotation of the bar, AB was the vertical part of the bar

receiving torsion by means of the horizontal bar BC, which was

acted upon at C by the toothed wheel or eccentric. The cross-

sections after rupture were examined with a lens. The seven bars

gave the following results with the toothed wheel :

(i) After 32,400 torsions no change was observable in either AB
or BC.

(ii) After 129,600 torsions no change was visible to the naked eye,
but in AB the lens showed the fibrous structure already broken and as

ein Aggregat von feinen Nadeln.

(iii).
After 388,800 torsions the change in AB was visible to the

naked eye and the rupture surface was grobkomig.
(iv) After 3,888,000 torsions, the whole length of AB was affected,

especially at the middle section, which we are told is the place of greatest
torsion. But why it should be so, is not shown, and it does not seem

theoretically probable.

(v) After 23,328,000 torsions the rupture surfaces in AB were
sehr grobkornig but showed still no Bldttchen.

In all these cases the horizontal arm BC had shown no change in

its rupture surfaces owing to the nexural vibrations it was subjected to.

(vi) After 78,732,000 torsions the bar AB showed, especially when
ruptured at its central cross-section, a remarkable change, the rupture-
surfaces were similar to those of cast zinc, and at the same time the
horizontal arm BC began to alter its structure.

(vii) After 128,309,000 repeated torsions (occupying thirteen

months) the bar AB showed no further change at its centre, only
sections nearer to the ends began also to be grossblattriger. The
horizontal arm BC also advanced in its structural changes.

Similar results were obtained with the eccentric, only the

number of torsions had to be greater to produce the same changes.

[993.] Schrotter concludes from these results :

(i)
That repeated torsions can change the structure of a bar from

fibrous to crystalline and then to blciUrig, and that the absolute strength
decreases during these changes.

(ii)
That the number of torsions required depends upon their

magnitude. (He deduces this from the fact that the changes occur
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first at the centre of the bar AB, according to him the place of maximum
torsion, but if we do not accept this hypothesis, the statement is still

doubtless true.)

(iii) Impacts increase the effect of torsion, or without torsion

produce ultimately the same structural changes.

(iv) The changes were due to mechanical action and not to the

influence of variations in temperature.

The general conclusion then to be drawn from tbese results is

the gradual destruction of wrought-iron by change of structure

due to rapidly repeated loading or repeated vibratory impacts.

[094.] Schrotter applied to the k. k. Handelsministerium with a

view to the institution of experiments to ascertain whether the magi

properties of a bar of iron were changed by several million repented
torsions. If they were so, a ready means would have been found for

testing the loss of strength due to such loading. These experiments
were ultimately undertaken by Militzer on five bars which had been

subjected respectively to no strain, and in round numbers to 4, 23, i".

and 79 million repeated torsions, and an account of these experiments
is given on S. 477-80. The conclusions to be drawn from these

experiments supposing we adopt the theory that repeated loading

changes iron from fibrous to crystalline are :

That this important molecular change corresponds to no marked
alteration in the capacity of the bar either : (i) to be magnetised by an

electric current, or, (ii)
to retain magnetism on the cessation of the

current.

Militzer's field appears to have been a high one. A frw torsions

certainly change magnetic properties in a weak field and this without

appreciable change of the mechanical properties: see our Arts. 714,

(12)-(14), and 811-4.

[995.] Ueber Gussstahl-Aclisen. Dinglers Polytechnisches Journal,
Bd. 146, S. 65-8. Stuttgart, 1857. This paper gives the details of

experiments made at the Gussstahlfabrik des Bochumer Vereins

Berybau und Gussstahlfabrication on cast-steel railway axles. A weight
of 1403 pounds was dropped from heights of from 3 to 36 feet upon
the axles supported at points 3 feet apart. The fiexural sets were

noted, and after each few blows the top and bottom fibres of the axle

were reversed. With this reversal 5 or 6 blows from 36 feet destroyed
the axles tested.

[996.] H. Resal : Note sur les formules // '

-////*/y*r dans les epreuves
des essieux de VartWerie. Annales des mines, Tonic; xin., pp. 497-503.

Paris, 1858.

The uxle-, were tested by dropping a given weight upon them while

the\- were simply supported at their ends. !! a iheory of

this sort of impact, but as his theory <1 "h-ly >" the prim-iple
of work ami on Cox'fl hypothesis ih.it the beam retains under eentral
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impact the statical form of the elastic line, it is not very satisfactory.

The whole matter has been more thoroughly investigated by Saint-

Venant: see our Arts. 362-71 and 410.

[997.] Wohler : Bericht uber die Versuche, welche auf der

Konigl. Niederschlesisch-Mdrkischen Eisenbalm mit Apparaten zum
Messen der Biegung und Verdrehung von Eisenbahnwagen-Achsen

wahrend der Fahrt, angestellt wurden. Erbkams Zeitschrift fur
Bauwesen, Jahrgang viii., S. 642-52. Berlin, 1858.

This paper describes the first investigations of Wohler on the

repeated loading of railway axles, and not only is of historical

interest as leading up to his later more important researches, but

contains in itself much that is of considerable value. It should be

read in conjunction with the memoir on the theory of axles referred

to in our Arts. 957-9.

[998.] Wohler designed two pieces of apparatus to measure

respectively the flexure and torsion of the axles of railway

wagons performing their usual service. The first apparatus, de-

signed to measure flexure, recorded automatically the maximum

approach and separation of two opposite points on the wheels, and

by halving this it is obviously easy, supposing the flexure of the

wheels insensible, to calculate the maximum flexure of the axle.

The amount through which the point on each wheel was shifted

was measured by a separate instrument, which recorded the shift

by a needle scratching a slip of zinc. Wohler remarks :

Beide Apparate zum Messen der Biegung sind so constmirt, dass

1 Zoll Zeiger-Ausschlag wahrend der Fahrt einer Bewegung ac am
Umfange des Rades von -^ Zoll odor

einer Abweichung am von der normalen

Lage von -^ Zoll entspricht.
Die Seitenkraft, welche am Umfange

des Rades angebracht werden muss, urn

eine gleiche Biegung der Achse, also einen

einseitigen Zeiger-Ausschlag von J Zoll

hervorzubringen, ist fur die Achsen von

3| Zoll Durchmesser in der Nabe, mit
Radern von 36J Zoll Durchmesser, = 23J
Centner 1

,
nnd fur die Achsen von 5 Zoll

Durchmesser in der Nabe, mit Radern von

36f Zoll Durchmesser, = 70J Centner. (S. 641.)

1 The Centner= one hundredweight, or presumably 100 Prussian lbs. =
English Ibs.
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This Seitenkraft was ascertained by connecting opposite points
on the rims of the wheels by a chain containing a dynamometer
and then pulling them together. This does not seem to me an

entirely satisfactory process. In the first place the axle is really

bent by a couple on either journal. This couple changes, owing
to unevenness in the permanent way, jolting, etc. during the

journey. The ordinary load produces a certain flexure in the axle

when the wagon is at rest
;
the same load applied, as it is, in

alternate directions during the rapid rotation of the axle, we
should expect to produce at least twice the flexure of the statical

couple even if the way were perfectly level. Wohler does not

distinguish between the flexure produced by the ordinary load

applied in alternate directions and the flexure which may arise by

way of variation due to unevenness in the way, etc. Further, his

dynamometer did not act as a couple applied to the journals would

have done, but it would include in the shifts measured by his

apparatus the flexure of the wheels themselves. Thus while it

would measure the load corresponding to flexure produced by side

pressure on the flanges of the wheels, it does not seem to me to

have suitably recorded the flexure of the axle due to statical

dead load or to variations in the journal couples due to motion.

Indeed Wohler appears to neglect the flexure due to statical

dead-load, otherwise he ought surely to have stated whether

the dynamometer was applied while the dead-load was on the

journals and in what plane it was applied, as it might tend

to increase or decrease the dead-load flexure according to the

position of that plane. If the flexure due to dead-load was

negligible, as compared with the vibratory flexure, then this

ought certainly to have been stated. Was there no motion

of the recording needle on the zinc when the axle was slowly

turned round ?

[999.] The apparatus for torsion measured only what might
be termed the integral torsion of the axle, i.e. the angle one wheel

had been rotated relative to the other. But if the inertia of the

axle itself be taken into account, and this might be necessary with

an axle of 5 inch diameter, then any impulsive couple applied

simultaneously to both wheels would produce a torsion in the axle

relative to the central cross-section, which would not be m< -.\<\\n <!
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by Wohler's apparatus
1

. It ought to have been shown that this

torsion was in itself negligible. As first one wheel and then the

other may lag, Wohler's apparatus records twice the maximum

integral torsion.

Der Apparat an der Achse von 3| Zoll Durchmesser ist so construirt

dass 1 Zoll Zeiger-Ausschlag einer Bewegtmg von -321 Zoll am Umfange
des Rades von 36J Zoll Durchmesser entspricht ; gegen die normale Lage
des Rades betragt also die Grb'sse der Bogen-Abweichung '160 Zoll,

oder der Torsionswinkel 30 Miiiuten.

Zu einer solchen Verdrehung ist eine am Umfange des Rades

wirkende Kraft von 18j Centner erforderlich.

Bei dem Apparat der Achsen von 5 Zoll Durchmesser in der Nabe,
deren Ra'der 36f Zoll Durchmesser haben, ist auf 1 Zoll Zeiger-Aus-

schlag die Bewegung am Umfange des Rades = '228 Zoll, die Abwei-

chimg gegen die iiorniale Lage also '114 Zoll, und der Torsionswinkel
= 21 Minuten. Um eine solche Verdrehung hervorzubringen, ist eine

am Umfange des Rades wirkeiide Kraft von 44 Centner erforderlich

(S. 642).

[1000.] Wohler, having now measured the motion of his re-

cording needles in terms of the force applied to the rim of the

wheels, is able at once to reduce their half-maximum records to

equivalent loads, and then to calculate from these loads the stresses

in the axles. The journeys were made from Breslau, chiefly to

Berlin and back, but also to Liegnitz, Lissa and Frankfurt. The

wagons were four- and six-wheeled coal and covered goods wagons,
and with two exceptions ran with goods trains. The axles were

3f" steel and 5" iron axles. The wagons were not reversed before

the return journey so that the axle experimented on was some-

times a fore- and sometimes a hind-axle. The weight of the

wagons, their loads and dimensions are all recorded.

Wohler gives no details of the calculations by which he deduces the

flexural stress ('Faserspammng') from the equivalent load. Thus he

says that a rim-load of 72 centners on the wheel of 36J" diameter for

an axle of 3f
"
diameter produces a maximum stress of 252 centners per

square inch. This can be easily verified if it be noted that T the

tractive stress is connected with C the rim-load by the formula

1 I have calculated the numerical value of this torsion in the paper referred to
in the footnote of our p. 669. It is there shown to be practically small, but the
torsional differences noted by Wohler were also small.

T. E. II. 43
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where A is the diameter of the axle and d of the wheel, the longitudinal
stress due to C being neglected. For the torsion of the same wheel,
"NViJhler says a rim-load of 29i| centners produces a *

Spanuung der
iiussersten Fasern

'

of 52 centners.

Now if S be the sliear and not the traction at the * outer fibre
'

I

find

and has the value 52 centners.

So that there is a radical difference between the two stresses of

and 52 centners both of which Wohler speaks of as Faserspanmt/H/.
He proceeds as follows :

Die Moglichkeit des Falles vorausgesetzt, dass die grossten Kriiftn auf

Biegung und auf Verdrehung gleichzeitig wirkten, istdunn n.u-h den vorstohend
ennittelten Zahlen die grosste aus diesem Zusammenwirken resultiren.lr

Faserspannung der Achse =*J*2~>-2- +~>2- =257 Centner pro n Zoll (S. (J44).

I do not understand why the maximum stress at any point should

be the square root of the sum of the squares of the maximum traction

and shear.

The maximum stretch 8 is, I think, given by

and therefore tho maximum traction, which is not of coin-so in tin-

direction of the * fibre
', by

or, for uniconstant isotropy,

In Wohler's results the smallness of 8 as compared with T enables

us practically to neglect its effect on the maximum stress.

Wohler remarks that the maximum stress of 257 centners in

cast-steel axles of 3J" diameter would have produced set in iron ax

the elastic limit of which he takes at 180 centners per D''.

The above results were for four-wheeled wagons. For six \\ 1

wagons he found that these stresses were increased in the rati

6:5; while for covered four-wheeled as compared \\ ith open f. in-

wheeled wagons they were increased as 10 : 9.

For the 5" diameter axle the maximum traction was 156 cen

and the maximum shear 35 centners, so that the result appears ratlin

close to the elastic limit of iron as stated by Wi.hl.-i al.ov.-. Furtlirr,

with these axles the maximum stress seems to have been often repeated
\Vohler reduces tl o peivriitages of the total load of wagon
and rar.L'o (S.
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[1001.] The number of repetitions of the maximum stress does

not, Wohler considers, exceed one per German mile
1

,
and he reckons

the life of an axle at 200,000 miles. Hence he reduces his problem
to the following one : To how great recurring positive and negative
stresses can an axle of given dimensions be subjected 200,000

times without its breaking ? He describes (S. 647-8) the method

by which he proposes to answer experimentally this problem.
Thus we see the origin of his later experiments on repeated load-

ing. Two points are to be noticed in the problem as Wohler states

it. First, he supposes that all loads less than the maximum (and
therefore unrecorded by his apparatus) do not contribute to the

destruction of the axle. Secondly, he takes no account of the

rapidity with which the loads are repeated. Would 200,000

loadings and reloadings of an axle in a day represent the same

wear as 200,000 like maximum loadings occurring while the axle

was running 200,000 miles, that is, spread out over its whole life ?

I believe not. A load repeated many times a minute may lead

to a vibratory accumulation of stress
;

this accumulation is im-

possible if the same load recurs only at long intervals. For both

these reasons Wohler's latter experiments do not seem to me so

useful as they might otherwise have been.

The memoir concludes with tables of the numerical details of

the experiments (S. 647-52).

[1002.] Wohler : Versuche zur Ermittelung der aitf die Eisen-

bahmuagen-Achsen einwirkenden Krdfte und der Widerstands-

fdhigkeit der Wagen-Achsen. Erbkams ZeitscJirift fur Bauwesen,

Jahrgang x., S. 583-616. Berlin, 1860. The first portion of this

memoir (S. 583-6) is entitled : Versuche zur Ermittelung der auf
die Wagen-Achsen einwirkenden Krafte, and it details experiments
made with a slightly modified form of the apparatus referred to

in our Arts. 998-1000, necessitated by its application to the

carriages of passenger trains moving at a greater speed. Only
flexure experiments were made, as it was considered that the first

set of experiments had demonstrated that the torsional stress was
of small account. In the case of the axles of passenger carriages
the maximum stress in a 4*5" iron axle was found to be 173

centners per D", and it was reckoned that the mean stress was
from 80 to 110 centners.

1 About five English miles.

432
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Eiii Durchiuesser der Achse von 4 '5 Zoll in der Nabe darf daher

bei Wagen der Art, wie der benutzte, fiir vollkommen ausreichend

erachtet werden (S. 586).

The details of the experiments on the axles of passenger

carriages are given on S. 603-4. Further experiments, confir-

matory of the previous ones, on the 3J" steel and 5" iron axles of

goods wagons are given on S. 601-2.

[1003.] The second part of the paper is entitled:

zur Ermittelung der Widerstandsfahigkeit der Wagen-Achsen (S.

586-600 with tables of results S. 605-16).

These are Wohler's first series of experiments on repeated

loading, and we postpone their consideration for the present, in

order to deal with his complete researches in the decade 1860-70.

The present experiments are on repeated flexure and the stress

changed from zero to its maximum positive value through zero to

its maximum negative value, and then back to zero again, once in

about every four seconds (S. 586). Other matters in the memoir,
not exactly bearing on repeated loading, are the erroneous

treatment of the stretch-squeeze ratio on S. 592 where it

is assumed that the volume of a bar under flexure does not

change, the deduction of the form of the strained cross-section,

and a not very lucid discussion of the relation of set to elastic

strain. Wohler holds that elastic strain is always in linear

proportion to stress, and is in itself quite independent of the

amount of set (S. 600).

GROUP D.

Memoirs relating more especially to Bridge Structure.

[1004.] F. W. Schwedler: Thearie der Briickenbalkensysteme.
Krbkams Zeitschrift fur Bauweseii, Jahrgang i., S. 114-123, !;'_' 17.'..

265-278. Berlin, 1851.

The first part of this paper is purely theoretical, but does not

present any novelty ;
the second deals with braced girders in general ;

:ind tin; third applies th- rather complex formulae obtained to special

systems (N< \ill-'s and Town's girders, and to Stephenson's and I

bairn's tubes). There are no numerical examples, and I doubt soin

tin- statements ma.li- (o.^. S. i'77) and RPP little advantage in nth-
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[1005.] A series of papers also by Schwedler on the analytical
calculation of stress in the members of latticed girders (gitterformige

Trdger) will be found in Zeitschrift des Vereins deutscher Inyenieure,

Jahrgang in., S. 37, 96, 135, 233, 297 (Berlin, 1859), but they have

little real bearing on the theories of elasticity or of the strength of

materials.

[1006.] Baensch : Zur Theorie der Briickenbalkensysteme. Erb-

kams Zeitschrift fur Bauwesen, Jahrgang VIL, S. 35-50, 145-156,
289308. Berlin, 1857. This memoir professes to be a continuation

of F. W. Schwecller's paper in the volume for 1851 of the same

Zeitschrift : see our Art. 1004. It applies the Bernoulli-Eulerian

theory of beams to various cases of simple beams, to a few continuous

beams, and to some cases of braced girders. There is a great deal of

analysis in the paper, but from the theoretical standpoint no novelty.
It may well be questioned whether practically it would not be easier

to work out ab initio the theory of any given girder than to endeavour

to apply formulae obtained in a memoir of this type for a great variety
of special cases, none of which may really fit the exact type of girder
it is required to construct.

[1007.] Institution of Civil Engineers. Minutes of Proceedings.
Vol. XL, pp. 227-232, 1851-52. Appendix to a paper by A. S. Jee

entitled: Description of an Iron Viaduct erected at Manchester....

This Appendix gives the details of experiments on cast-iron girders
of varying cross-section so far as deflection and set are concerned

these were of 1 section
;
also the details of experiments on wrought-

iron tubular girders these latter might be described as X girders in

which the upper flange was replaced by a tube of circular section to

prevent buckling.
Further experiments by J. Hawkshaw on the absolute strength,

deflection, etc. of other X cast-iron girders will be found on pp. 242-3.

[1008.] British Association, 1852, Belfast Meeting, Transactions,

pp. 126-7. T. M. Gladstone gave some notes on the superior safety
of malleable to cast-iron girders. He considered the reduction in

weight compensated for the difference in price. He also treated of

the proper relation between depth and span for a particular X-section,

apparently however for the case of a special load.

[1009.] Poncelet : Examen critique et historique des principales

theories ou solutions concernant Vequilibre des votites. Comptes

rendus, T. xxxv., pp. 494-502, pp. 531-540, and pp. 577-587.

Paris, 1852.

This is a very valuable criticism of the various theories of the

arch propounded up to 1852, and is of peculiar interest as noting
the extent to which these theories had applied the principles
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of elasticity to this very important but very difficult practical

problem. The paper forms a most interesting historical resume of

the subject.

We may note that Navier seems to have been the first to

apply the mathematical theory of elasticity to the calculation of

arches (p. 532). He seems to have been the first also to state the

rule of the 'middle third' a result which follows at once from

the core of any rectangular block subjected to loading on two

opposite faces (p. 533). Mery in a memoir in the A males des /

et chamsees (l
cr

Semestre, 1840, p. 50. Paris, 1840) follows Navier

in applying the theory of elasticity to arches, but his memoir

would hardly satisfy the more rigorous theorist whatever practical

value it may have (p. 539). He makes use also of a graphical

construction for the line of pressure, first introduced by Moseley,
whose researches on this point were continued by ScherhYr i

pp. 583-4). Most of the papers to which Poncelet refers do not

appeal to the theory of elastic solids, but he insists that the tli

of arches is really inseparable from this :

On comprend, en effet, d'apres tout ce qui precede, que Irs dmx
questions de 1'cquilibre des voutes et de la resistance clastitjuc d-s sol;

sout liees eutre elles de la maniere la plus intiinc, toutes Ics foi.s
<|iir

Ton pretend sortir de Thypothese abstraite ou Ton suppose aux vouss<.ii>

une continuite, ne invariabilite de forme absolue. L'analogie nu m
telle, que Ton pent dire, sans trop s'avancer, que la thcoii- dee

voutes et celle des solides elastiques courbes naturel lenient n'en con>ti-

tuent, en realite, qu'une seule, considered dans des conditions ct s< >u> dr>

aspects differents (p. 586).

That the whole theory of arches would be revolutionised if we

could solve the problem of the strains in a right six-face subjected

to equal and opposite load systems on two parallel faces, seems to

be Poncelet's view of the subject.

[1010.] tt. Bertot : Construction des ponts en )<. M,'moires et

compte-rendu des travaux de la Societe des Ingenieur* ('in'/., A nun-

185.^, pp. -J'JS-303. Paris, 1858. This contains only an dement
statical method of finding the total stress across any cross-section <( a

douhly pivoted arched rib. The method is analytical but is of n>

importsince.

[1011.] T. F. Clmppe : Account of E.> /*////--
J,v///x. 1 iisfitntinH of Civil /;'</</

''>> />-, Minutes of I

<

"lings, Vol. CVIII., pp. il!
1

.' :',ii> (with dis.-iission). London,
Thr experiments were made on model arches of considerable size, hut
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the method of experimenting and the castings appear to have been

very inferior. The results obtained cannot therefore be taken as a
true measure of the strength of cast-iron elliptical arches.

[1012.] J. Cubitt : A Description of the Newark Dyke Bridge.
Institution of Civil Engineers, Minutes of Proceedings, Vol. xn.,

pp. 601-611. London, 1852-3. This contains some experiments on
the deflection of Warren girders either partially or totally loaded.

[1013.] J. Poiree : Observations sur la repartition de la pression
dans la section transversale des arcs des ponts en fonte. Annales des

ponts et cJiaussees, l
er

Semestre, pp. 374-95. Paris, 1854.

This article is of value for the details it gives of a number of

experiments on the deflections of arched ribs due to temperature,
to rapidly moving live-loads (railway engines and carriages, vehicles

drawn at a trot, cavalry, etc.) and to sudden impacts. For a rapidly

moving load the author considers his results confirm those of Willis and
Stokes (p. 390): see our Arts. 1418*-22* and 1276*-91*.

[1014.] Further experiments on the deflection of arches due to

slow and rapid live-loads will be found on pp. 1-7 of the volume for

1854, 2e
Semestre, and on pp. 192-8 of that for 1855, l

cr Semestre.

There are also numerous papers in the volumes of this Journal for

1850-60 describing individual metal bridges, or dealing with the theory
of the stability of arches, of which our space will not even permit us

to cite the titles. They are of more interest from the standpoint of the

historian of engineering, than from that of the historian of elasticity.

[1015.] H. Haupt : Resistance of the Vertical Plates of Tubular

Bridges. The Civil Engineer and Architect's Journal, Vol. xvn., pp.
26-7. London, 1854. This is of no value for our purposes.

H. Cox : On the Strength of Compound Girders, Ibid., pp. 122125.
This contains some interesting remarks on the theory of Trussed Cast-

Iron Girders, with reference to Fairbairn's experimental results.

[1016.] J. Barton : On the Economic Distribution of Material in

the Sides, or Vertical Portion, of Wrought-Iron Beams. Institution of
Civil Engineers, Minutes of Proceedings, Vol. xiv., pp. 443-490 (with

discussion). London, 1854-5. This paper propounds very obscure

notions as to the stress in beams (e.g. p. 445
!),

which can only be

paralleled by certain observations put forward in the discussion. Thus
one speaker

*

altogether denied '

that different forms of beams under
flexure require 'different mathematical reasonings.' The vague use of

the expression
' strains travelling in this or that direction

'

will produce
despair in the mind of the scientific elastician. Indeed the whole

problem, which engaged the minds of the practical men present, as

to whether the strains in the web of a girder are horizontal or inclined

at 45, seems to point to a painful want of theoretical knowledge
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in the English engineers of that day. As a sample of the sort of

obscurity to be found in the discussion I may cite the following :

Mr W. H. Barlow after referring to his untenable theory of a new
element of strength in beams (see our Arts. 9301) remarks :

Mathematicians had applied the axiom, "ut tensio, sic vis," in the ca

tr;m>v<T>p strains, in which continuous fibre* were unequally strained, without
< "nsidering the lateral action arising from the cohesion of the particles ;

this

axiom, therefore, required modification (p. 480).

Perhaps pp. 485-6 containing remarks by Messrs R. Stephens.. n.

\V. H. and P. W. Barlow on the ' neutral axis
' and absence or non-

absence of strain there, showing as they do a want of any due

appreciation of the difference between shearing and tractive stress, are

the most remarkable picture that I have come across of the state of

technical elasticity in 1854.

I may note that doubt was thrown by Mr Doyne on the accur.-n

Hodgkinson's results for the beam of strongest section : see our Arts.

2-11*, 1131*, 875 and 1023.

[1017.] Wohler: Ttieorie rechteckiger eiserner Brilckenlulken

mit Gitterwdnden uud mit Blechwdndeu. Erbktimx Zeitschrift /"/

JJ'intcesen, Jahrgang v., S. 122-161. Berlin, 1855.

This memoir may be considered as consisting of three
]

In the first (S. 122-111) after some not very lucid remarks on

the method by which vertical load is transmitted by the bracing

bars from any point of a girder to the supports, Wohler deduces

the stresses in the bracing bars from purely statical considerations

and from hypotheses as to the reduction of systems of multiple

bracing to single bracing. In the next part of his paper he d

with the flexure of the booms and the stresses in the bracing bars

when the latter are supposed to be riveted to the boom and

not merely pin-jointed. He concludes (S. 150) that the riveting

has practically no influence on the strength of the girder. In a

girder of 100 feet span with bracing bars 4 inches broad tin- r.

of increase of strength would be only 1/230. His conclusions as

to the radii of the bent bracing bars in terms of the radius of the

brut girder are similar to those of De Clercq and C. Winkler :

our Arts. 1026 and 1028. The memoir concludes with a lengthy

discussion on girders with plate-iron webs (S. 154-61). This takes

into account the shear in the web. The investigation is not

particularly clear, and the simplicity of the problem (when once

tli. hypotheses are accepted) by no means seems to warrant

tin- great display of analysis. In the comparison of plate and
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lattice girders, with which Wohler concludes his memoir, he

attempts to show that there are within the limits of practical

construction certain great spans possible in which the plate web

girder would be superior to the lattice. In coming to this

conclusion Wohler takes into account the relative deflections of

the two kinds of girders.

[1018.] J. M. Heppel : On the Relative Proportions of Top, Bottom
and Middle Webs of Iron Girders and Tubes. Institution of Civil

Engineers, Minutes of Proceedings, Vol. xv., pp. 155-194, London,
1855-6.

This paper is a fitting sequel to that of our Art. 1016, which indeed

appears to have called it into being. The author remarks that in order

to deal with the effect produced by forces on an elastic plate we must
settle between two hypotheses which present themselves, viz. :

(i)
That a force applied in a given direction causes no change

in the dimensions of the material perpendicular to that direction.

(ii)
That the application of force in any direction causes no

change in the volume of the material.

The author remarks that " the simplicity alone of the former of

these suppositions entitles it to preference." It is perhaps needless to

remark that both are absolutely wrong. The paper itself leads to

results, which if true, would be more easily obtained by the ordinary

theory of elasticity, but the final assumption on p. 164 seems to me
quite untenable, and indeed the results do not agree with Saint-

Venant's theory for the case of a web without flanges or of a beam of

rectangular cross-section.

[1019.] H. Lohse : Versuche ilber das Zerknicken der Eisen-

stdbe in Gittertrayern, Erbkams Zeitschrift filr Bauwesen, Jahr-

gang vii., S. 573-580. Berlin, 1857.

This paper contains, I think, the details of the first experiments
on a point which innumerable writers had been theorising about

(see our Arts. 1017 and 1026-30). They were made in view of the

construction with lattice girders of the Rheinbrucke at Coin. The

experiments were made on lattice girders treated as cantilevers,

the bracing was single, double, triple and fourfold, the bars being
riveted to each other. The load at which the bracing bars received

a permanent set was in some cases noted, as well as the load at

which they buckled (zerknickteri), by which I think Lohse means
total collapse. In one case three of the bars in tension were

ruptured. It is noteworthy that in several cases the bracing bars

bent elastically into an approximate $-form
;
a result which neither
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De Clercq, Winkler, nor Wohlcr take into account in their analysis

(see our Arts. 1017, 1026 and 1028). In all cases the theoretical

stresses in the bracing bars are calculated and tabulated. The

experiments show the great increase of strength due to multiple-

bracing and to the riveting together of the bracing bars. Lohse

does not consider his experiments numerous enough for him to

propound any general formula, but the numerical details and

the general results are perhaps more likely to be of practical

service than the lengthy analytical investigations to which we

have previously referred.

[1020]. G. Wolters : Resume des resultats obtenus dans A

de quelques ponts en fer. Annales des travail publics <! /!<
/>/!>/ >\

Tome xv., pp. 1-15-75. Bruxelles, 1856-7. This is translated into

(MTinan under the title Bericlit iiher die Ergebnisse der Selasfatngsproben
//////'/ r/'x. ///, / 1'n-iicL-i'n in the Zeitschrift des osierreichiscJien Ingenieur-

Vereins, Jahrgang x., S. 185-195. Wien, 1858. It gives details of

experimental determinations of the deflection of various railway bridges
in Flanders. The girders of the bridges were chiefly of cast-iron with

openings in the web
;
there was one of plate-iron. The results do not

n to have any permanent theoretical importance.

[1021.] In the same volume of the Annales is an article by Houbotte
entitled : Experiences sur la resistance des longerons en idle (pp. 403
It is translated into German in the same volume of the Zeitschrift, S.

195-201. The girders were of plate-iron, and the object of the experi-
ments described was to test the best relative dimensions for the flai

and web in the case of girders of JL section. The span of the model

girders was from 1'5 m. to 3 m. and their heights varied from '2 to

49 m. The load upon them was gradually increased up to rupture

during a period amounting in some cases to several weeks; the duration

of load, the elastic and set deflections were all noted. There is also

one set of experiments on a girder in which the web was replaced ly
1

tracing. Houbotte concludes from this experiment that the bracin_

more efficient than the plate-web. The rupture occurred in the plate

girders by buckling of the web. Houbotte endeavours to construct a

formula which will give the proper strength for the web of such a

girder, but neither the range of experiments nor his method of obtaining
hia formula seems very satisfactory.

[1022.] A number of articles by J. Langer on wooden and iron

lattice girders, the latter in the form of arches with braced ribs, etc. will

!) found in the /f//V.W//-//> /Ax ,,*t, />> <W//.W/' ,/ lngc\
.lalu-an- .x., S. 11.",, 1 .",:,, 152. Wien, 1858-9. Jain

127. . IS.')!). These -ive a lengthy theory of the

l-rae.-d :i i-.-h. Kurther projects for braced arches will be found in

.lahrgang xii., S. 29, 91, 125 and 193. In several of these proj
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graphical methods might now be usefully employed. Tlie designs would
form very good exercises in the calculation of stresses for advanced

engineering students even at the present day.

[1023.] Thomas Davies: Wrought and Cast Iron Beams. The Civil

Engineer and Architect's Journal, Vol. xx., pp. 20-23, and pp. 41-44.

London, 1857. This paper was read at a meeting of the Architectural

Institute in Edinburgh, February, 1856.

It commences with some account of the want of confidence felt in

cast-iron beams, and of the superiority of malleable-iron beams owing to

their lightness and sensible yielding before rupture. Fairbairn having
given in his work on cast- and wrought-iron only one experiment on
a "plate beam" (one of X section?) Davies proposes to supply this

want of information with regard to the strength and elastic properties
of wrought-iron beams, in order that they may be more generally
understood and adopted.

The experiments given in the first part of the paper may have

technical, but they hardly have theoretical or physical value
;
the load

was applied over as much as J of the length of the beam, and was

brought into play by putting on the top flange iron railway bars

"requiring two men at each end to lift them." The author agrees
with Tate that the upper and lower flanges of a wrought-iron beam
should have practically equal areas (p. 23).

The second portion of the paper criticises the results of Hodgkinson's
experiments on the beam of greatest strength : see our Arts. 244*, 875
and 1016. The writer contends that the ratio of the sectional area of

the flanges ought to be as 3 -5 or 3 to 1 and not 6 to 1 as suggested by
Hodgkinsou. He enters into no theoretical investigation of the strength
of such beams, nor does he adduce any experimental evidence beyond
Hodgkinson's. He considers Hodgkinson's results erroneous because

the latter left out of account the difference in the thicknesses of the

webs of his individual beams when deducing conclusions from his

experiments. It seems to me that Hodgkinson was right and quite

justified in doing this, as the web added little to the flexural strength
of the beam. Thus the ratio of the areas of the flanges ought to be

nearly that of the compressive to the tensile strength of cast-iron, i.e.

according to Hodgkinson about 6:1.

[1024.] Decomble : Sur les meilleures formes a donner aux poutres
droites enfonte. Annales desponts et ckaussees, 2 e

Semestre, pp. 257-319.

Paris, 1857.

This is a long memoir investigating a theory of the solid of greatest

resistance, when the tensile and compressive strengths of the material

are supposed different, and the solid is designed so that the ruptures of

the stretched and squeezed 'fibres' occur at the same load. Apart
from the assumption involved in applying the theory of elasticity
to the phenomena of rupture, the discussion seems in several points

very doubtful, and all that can be reached of value by a theory of this
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kind has been better given by Saint-Venant in his Lemons de Nat

pp. 102, 142-56, and our Arts. 176, 177, (b). There are, however, a

number of interesting experiments on the rupture of cast-iron beams
of various shapes and cross-sections, which may possibly have practical
value still. The editors of the Annales remark in a note appended to

the memoir :

Quoique la partie theorique du memoire precedent soit en opposition, sur

plusieurs points, ;tvcc les principes generaleinent adiuis, la commission <!<-

J i> n<il>.s- ;i cm devoir le publier tel qu'il a etc presente par 1'auteur, h, raison

des details interessants qu'il renferine sur les poutres en fonte ct sur le moulage
de la fonte en general (p. 319).

[102.1.] n,-iti*h Association. Report of Twenty-Seventh (Dublin)
Meeting, 1857.

The titles of two articles in this Report maybe noticed: C. Vignoles:
On the Adaption of Suspension Bridges to sustain the passage of /'</ ////,///

Trains, pp. 154-158. P. W. Barlow: On the Mechanical Effect of
'unihtinn'j Girders and Suspension CJiains, and a comparison of the

weight of Metal in Ordinary and Suspension Girders, to produce equal
deflections with a given load, pp. 238-48. Both these papers discuss tin-

adaption or modification of suspension bridges when built for the transit

of railway trains. They turn principally on stiffening the platform till

it becomes a girder, or on special arrangements of the suspending bars.

The bridges at Niagara and elsewhere built as girder suspension-bridges,
had gone far to destroy the old mistrust in suspension-bridges for

railway traffic; and the authors of the above papers endeavour to show
that equal strength may be obtained with far less material from a

suspension-girder than from a pure girder bridge.

[1026.] G. A. De Clercq : Note sur les phenomenes de Inflexion des

poutres en treillis. Annales des travaux publics de Belgique, T. xv., pp.
198-214. Bruxelles, 1856-7.

This is another of those memoirs which deal with the lattice-girders,
which were rapidly taking the place of the older double-T girders with a

solid web. The writer of the memoir supposes the bracing bars rigidly
attached to the booms, and deduces by what does not seem to me very con-

< Insive reasoning, that a bracing bar after flexure will take the t'>n

a spiral of Archimedes (p. 201). C. Wiukler (see our Art. 10:.'*) had,

I think, read De Clercq before writing the second part of his paper ;

he extends, however, the hitter's results. The present paper is clearly
written as compared with AVinkler's, but it deals with a simpler
At tin- s.iinc time to consider the special conclusions deduced by both

th<-s(> writers from their somewhat doubtful hypotheses would carry us

beyond our limits.

[1027.] C. Knoll: Zur Th^orie der Gitterbalh //.

Jahrgang .\vi., S. l:i :. Stuttgart, 1859. This i> an analytical
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calculation of the stresses in the bracing of lattice-girders with straight

parallel booms.

[1028.] C. Winkler : Theorie der eisernen Gittertrdger. Fdrsters

Allgemeine Bauzeitung. Jahrgang xxiv., S. 191-222. Wien, 1859.

This memoir on lattice-girders is divided into two parts. The first

deals with the stresses in the booms and bracing bars when the bracing
bars are not riveted to each other. In this case we have only to con-

sider the flexure of the booms, for the bracing bars are, if buckling be

excluded, in pure tensile or compressive stress. Winkler proceeds

analytically to the discussion of the stresses, and points out an error

of Schemer's (see our Art. 651). The treatment appears sound, and the

results, although having only special technical interest and application,

may still be of service (S. 191-9).
In the second part of the memoir the bracing bars are supposed

riveted or pinned where they cross each other, and the result is that

these bars are now subjected to flexure. The calculations, here of course

necessarily analytical, become more complex, and I confine myself to

referring to Winkler's analysis which I have not verified (S. 199-206).
How far his fundamental hypotheses similar to those of De Clercq

(see our Art. 1026), approach the truth, especially for the second case

stated on S. 199-200, I have no means of judging, they seem to me
somewhat bold, not to say dubious. The memoir concludes with the

application of the results obtained to a number of numerical cases of

lattice-girders (pp. 206-22). The exact treatment of these lattice-girders,

in which the frames have a great number of supernumerary bars, would

be an extremely difficult analytical problem.

[1029.] B. B. Stoney : On the Application of some new Formulae to

the Calculation of Strains in braced Girders. Proceedings of the Royal
Irish Academy, Vol. vii., pp. 165-172. Dublin, 1862. This paper was

read in 1859.

Pp. 165-9 deal by the simplest statical methods with the stresses in

the diagonal bracing of a Warren girder when some or all of the nodes

at the upper boom are loaded. There is nothing that calls for special
comment.

Pp. 169-72 treat of Lattice Girders and use only ordinary statical

processes. The discussion, however, seems to me obscure, especially
the final paragraph. It is in many cases impossible to find the exact

stresses in lattice-girders without appeal to the theory of elasticity, and
this point does not seem to have been recognised by Stoney.

[1030.] Another paper by B. B. Stoney may be just referred to

here : it is entitled : On the Relative Deflection of Lattice and Plate

Girders and is published in the Transactions of the Royal Academy, Vol.

xxiv., pp. 189-93 of Part I., Science. Dublin, 1871. The paper was
read June 23, 1862. It does not seem to contain anything of sufficient

theoretical interest or experimental value to require special notice.
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[1031.] J. G. Lyncle : Experiments on the Strength of Cast-iron

Girders. This paper was read before the Manchester Literary and

Philosophical Society. An abstract of it will be found in The Civil

Engineer and Architects Journal, Vol. xxn., pp. 386-7. London, 1859.

Lynde made experiments on 89 girders, cast on their sides, and of the

form recommended by Hodgkinson as that of strongest section (see our

Art. 244*). One girder only was tested up to rupture, and Lynde
remarks that no permanent set was visible up to that point (!).

The

girders were of large size (30 ft. 9 in. in span).

Hodgkinson (Experimental Researches on Cast-Iron, Art. 14G) had

given the following formula for W, the breaking central load in tons :

r-jg^w-p-iVfc
where : I = span in feet,

I = breadth of bottom flange in inches,

b' = thickness of web in inches,

d = whole depth in inches,

d' = depth from the top of the beam to the upper side of the

bottom flange in inches.

Lynde's single experiment on rupture would go to show that the

coefficient 2/3 is too large for a large beam and should be replaced by
625, as suggested by Hodgkinson himself in his Art. 147 for /

beams.

[1032.] Marqfoy : Memoire sur les essais des pouts en A*/

Velectricite. Annales des ponts et chaussees, 1859, 2e
Semestre, pp. 74-89.

Paris, 1859. This paper describes an apparatus for recording the deflec-

tion at various points of bridges under a rapidly moving load.

[1033.] Noyon : Notice sur la restauration et la consolidation de

la suspension du pout de la RocJie-Bernard. This paper is in tin- s: inn-

volume of the Annales, pp. 249-329. It gives an account of the

accident to this suspension bridge (see our Art. 936*) and also details

of numerous experiments on the absolute strength of iron win- and

cables.

[1034.] In the same periodical in the volume for 1860, 2e Senu

are two articles on bridges which touch the limits of our suhjivt. The
first by Jounivski, entitled, Kemarques sur les poutres en treillis c(

l>t,,it,->* i>l<
-i ni'8 en tole, pp. 113-34, dis< n in-ral terms the \ihra-

tions which occur in sneh bridges and their .strength; the semnd by

Mantiou, Etude de la partie mctallique </" imt ooflftrtitl .*"/' l> rami!

U Den**.., pp. H'l -"!, gives a very full theoretical determination

of the stresses etc. in all the different parts of a particular bridge.

[1035.] W. F;iii1aini : E.i-j>crunents to determine tic Effect of
\

r

il,,-'ifnri/ Action ninl inmi-rnnti ,nn-<l ('l,<in,n'x ,,/' /.,,,nl
///<,//
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Wrought-iron Girders, pp. 45-8. British Association, Report of
Thirtieth (Oxford) Meeting, I860.

The experiments were made on a double-T plate girder of

20 feet span, the flanges being built up of plates and angle-irons,

the total depth of section was 16" and the calculated breaking

weight 12 tons. The load was applied at the mid-section of the

girder in a gradual manner at the rate of about eight changes per
minute with the following results :

Load
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GROUP E.

Researches on the Strength of Cannon and of Materials for
Ordnance.

[1037.] Reports of Experiments on the Strength and other

rroperties of Metals for Cannon, with a Description of the Mud
for h'xtiii'j Mctnlx, and of the Classification of Cannon in Service,

by Officers of the Ordnance Department, U. S. Army. Philadelphia,
lS")(j. This folio volume of 428 pages is the first batch of a series

of valuable technical researches in elasticity due to the United

States Government. The more important portion of the present
work is due to Major W. \Vndi-, and it is sometimes cited as Wade:
On the Sti-cmjth of Metals for Cannon. A further group of re}

by Rodman will be dealt with in the period 1860-70. The value

for us of these reports lies not in their details as to cast-iron and

bronze ordnance, which probably have little more than historical

interest at the present day, but in the numerous experimental

investigations on the strength of materials which are embraced in

their pages. We can only afford space to note briefly some few of

the facts recorded.

[1038.] The first report deals with cast-iron, and particularly,

with the influence of the time of fusion and the number of

meltings upon the strength. We mark the following conclusion- .

(a) A prolonged exposure of liquid iron to intense heat augments
its absolute strength. The strength increases as the time of exposure

up to some not well ascertained limit between 3 and 4 hours
(?).

This

n-sult does not seem to be based on a sufficiently large range of \

inents. The experiments made were on 8 cast-iron guns tested up to

bursting (pp. 11-17).

(6) In experiments on the transverse strength of cast-iron bars it

was found that the absolute strength as deduced from bare of circular

cross-section was uniformly much higher than that from those of square
cross-section cast from the same kind of iron. This is part of the old

'paradox in the theory of beams.' Casting at a high temperature

greater strength than casting at a low one; a gradual imreas. .'

Dgtb evi-n uji t GO p.c. was found to result from i the
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time of fusion
;
this increase of strength was accompanied by a decrease

of set, the set being measured for a given load somewhat less than

the minimum breaking load (pp. 21-8). On p. 44 further evidence is

given of the increase in both tensile and transverse strength by increas-

ing the period of fusion. It is also shewn that rapid cooling increases

transverse strength in small castings, and slow cooling increases tensile

strength in large ones (p. 45).

(c) Some attempts will be found on pp. 77-88 to connect the

tensile strength of a bar, the hydrostatic rupture pressure in a cylinder
and the impulsive rupture pressure due to the discharge of powder in

the same cylinder with one another. As no theory is proposed for

this comparison, the experiments are rather vaguely directed and lead

to no very definite conclusions. Wade takes for the transverse strength
of a beam of length / and rectangular cross-section b x d, when centrally
loaded with w, the expression tvl/lbd

2 or 1/6 of the greatest traction in

the extreme fibre. He has for mean results on p. 80 : tensile

strength of cast-iron = 22,133, transverse strength of cast-iron 7370.

Thus we should have for the rupture stress in the extreme fibre 44,220
or almost double the tensile strength. This is a good example of the

so called 'paradox in the theory of beams.' The absolute strength
calculated from flexure experiments upon a rectangular beam is by this

misapplied theory double the tensile strength of the material : see our

Arts. 173, 178, 930, 1043, 1049-53, etc.

Wade's process of calculating the resistance of a circular cylinder
to hydrostatic pressure i.e. by multiplying the pressure per square inch

by the radius and dividing by the thickness of the cylinder can hardly
be considered satisfactory, when radius and thickness are commen-
surable. This is well brought out by the Table on p. 87, where the

ratio of this resistance to the tensile strength varies greatly with the

ratio of the thickness to the radius of the bore. But I doubt the

accuracy even of Wade's experimental numbers, for when the ratio of

the thickness to the radius of the bore remains constant, the internal

bursting pressure does not bear the same ratio to the tensile strength,
but varies from -329 to -602 !

Further details of experiments on the bursting of musket barrels by
hydrostatic pressure are given on pp. 92-107, but I have not been able

to apply any theory (e.g. the formula in the footnote of our Vol. i.

p. 550) to the numbers given because the proper details are not

recorded.

(d) Some experiments on the effect which slow cooling and casting
under atmospheric pressure have 011 the bursting strength of guns are

given on pp. 129-34. They are neither numerous nor scientific enough
to yield results of much value.

(e) A further report on the manufacture of 24-pounder iron cannon
does not throw more light on the influence of the times of melting and

fusion, pp. 145-8. For the proof bars of these castings the mean

T. E. II. 44
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ratio of rupture stress in 'extreme fibre' to tensile strength = 1'65, so

that it is considerably less than in the experiments considered under (c).

(/) The influence of height and bulk of the sinking head in bronze

gun-metal castings on both density and tenacity is referred to on pp.
152-5 and may be compared with the more definite results of a some-

what later British Report : see our Art. 1050.

(g) On pp. 183-221 we have some interesting details of the relative

durability of guns when cast solid and when cast hollow, in the latter

case the interior was cooled by a flow of cold water. The hollow cast

guns appear to have stood longer service than the solid cast guns, but

the tenacity of specimens taken from the body of the former after

bursting was not sensibly greater than that of specimens from the

latter. This fact led Wade to suppose the difference in endurance to

be due to differences in initial stress resulting from the different modes
of cooling. Rodman (pp. 209-13) gives a not very lucid theory of

initial stress deduced from an erroneous hypothesis of Barlow. The
most interesting part, however, of this report is perhaps embraced by
pp. 217-221, where Wade shows how experience and probability tend

to demonstrate that initial stress due to cooling ultimately subsides.

He cites a number of cases in which bodies held in a state of con-

straint obtain a gradually increasing set, apparently relieving them
from this state, and he tries to show that guns retained after manu-
facture for long periods before proof, sustain a far greater proof than

those tested directly. He accounts in this way for the hollow cast guns
having greater endurance than the solid cast guns. The process of

internal cooling he supposes produced less initial stress although no

greater tenacity. Some of the details he gives are of interest in thi-ir

bearing on elastic after-strain.

[1039.] The next portion of the volume (pp. 223-322) is entith-.l :

Report on the Strength and other Properties of Metals and on tJie Manu-

facture of Bro-aze and Iron Cannon, 1854. This is the final report
due to Major Wade. We proceed to note some points in it.

(a) The effect produced by remelting iron and by retaining it in

fusion exposed to an intense heat for a long time is very fully considered

on pp. 223-46. The quality of iron is as a rule very much improved
by remelting and long continued fusion, but the effects vary from one
kind of iron to another. The order of densities is almost invariably
the order of tenacities or at any rate up to a certain limit of density

1
.

As a sample of the sort of results reached, I cite the following

(p. 234) :

1 This limit of increase of tenacity with increase of density does not seem to

have been clearly proven. Thus on p. 244 it is supposed that Greenwood iron

attaii .ximum tenacity with a density of 7 "27, but it was found later

(pp. 246-7) that a density of 7 '307 gave even higher tenacities: see our Art. 1086.
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Tenacity in

Density. Ibs. per sq.
in.

Amenia pig iron, 1st fusion 6 -948 11420
Same iron, remelted, 6 hours in 2nd fusion 7*172 26310
Another parcel of Amenia iron, 2nd fusion 7'184 26237
Same iron remelted, 3rd fusion 7 -322 34728

Thus it was found that the mass per cubic foot could be increased

as much as 201bs. and the tenacity in the ratio of 2 '8 or even 3 to 1.

As a relation between small and large castings, Wade states that at

least for one kind of iron (Greenwood) the strength of proof bars at any
fusion may without material error be taken as an approximate measure
of the strength of gun heads made of the same iron at the next fusion

(p. 243).

(b) On pp. 248-9 we have a number of experimental details on
transverse strength. It is not easy to identify the bars which corre-

spond to those treated for tenacity. But it would seem as if the ratio

of rupture stress in
' the extreme fibre

'

to tenacity was as low as 1*6

or even less : see our Arts. 936, 1038 (c), 1043 and 1052-3.

(c) We have next a series of experiments on torsion (pp. 250-6).
So far as rupture is concerned what Wade records is really the value

of -fyvTs for bars of circular cross-section or the #3 of our Art. 1051
(c),

T.3 being the absolute shearing strength. Or, if Ts be taken = | the

tensile strength T.2 ,
he records what ought to equal 157087T

2 . If T\
be the value of T2 calculated from this, I find from Wade's summary
of results on pp. 241 and 251 by recalculating his numbers, that for

various kinds of cast-iron the ratio of T'2/T.2 varies from 1-6 to 1*8, the

mean value being very nearly !?. Or, with the notation of our Art.

1051, ASy&=-267 ;
this differs but slightly from the mean value ag

found from the British cast-iron torsion experiments : see our Art.

1053.

Besides the absolute torsional strength, the torsional elastic strain

and set were noted for a variety of loads as well as the load which

produced an angular set of | in a length of bar equal to about 8 times

the diameter. This appears to have been about T
7
^ of the rupture load.

Wade also made experiments on the torsional strength of wrought-

iron and bronze. His mean value for -^vT3 for wrought-iron is 5465
and for bronze 5511 Ibs. per sq. in.

(d) Then follow experiments on the torsional strain and rupture of

prisms of square, circular and circular-annulus cross-sections. The mean
results are given on p. 256. The mean strength of prisms of square
cross-section is about '811 times the mean strength of those of circular

cross-section of equal areas. If Samt-Venant's theory of the fail-

limit (see our Arts. 18 and 30) held up to rupture the ratio ought to

be '738. For the strength of a hollow circular cylinder, the ratio of

the internal diameter of which to the external diameter is
,
I find on

442
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1 + '

Coulomb's theory j==- times the strength of the solid cylinder of

\/l
*

equal area. This gives the ratios of the strengths for = J and as

1 -44 and 1 -7. Wade finds for the corresponding ratios in these cases

1*22 and 1'45, thus considerably less than the theory of the fail-limit

would give if extended to the rupture of cast-iron.

(e) On pp. 257-9 we have details of experiments on the crushing

strength of various cast-irons and steels. For cast-iron the ratio of the

mean crushing strength to the mean tensile strength is about 4-56. If

the theory of uni-constant elasticity be extended up to rupture then
the ratio should be 4. The cast-iron was in small cylinders the lengths
of which were generally two and a half times their diameters and
the fracture-surfaces made angles of 52 to 59 -6 with the bases.

Probably the ends were held in by the friction of the bed-plates and the

strength would thus appear to be increased. I expect the ratio of

crushing to tensile strength, if both could be ascertained accurately, is

not very far from 4 for cast-iron.

For cast-steel Wade gives (p. 258) the following values of the

crushing strength in Ibs. per sq. inch :

Not hardened 1 98,9 44

Hardened; low temper; chipping chisels 354,544

Hardened; mean temper ; turning tools 391,985
Hardened

; high temper; tools for turning hard steel 372,598

He does not give the tensile strength of these steels which were all

samples cut from the same bar.

[1040.] (/) Pp. 259-67 deal with the Hardness of Metals. These

pages were translated into French and published as a tract entitled :

Experiences sur la durete des metaux (Paris, Corre"ard, 1861), but
without the name of author or editor. Wade commences with the

following statement :

The comparative softness, or hardness of metals, is determined by the bulk
of the cavities or indentations, made by equal pressures ;

the softness being
as the bulk directly, and the hardness, as the bulk inversely (p. 259).

The form of the indenting instrument was a pyramid on a rhom-
boidal base. The longer diagonal of the base measured 1", the shorter

2", and the height of the pyramid -1". The planes of the sides inter-

sected at the penetrating edge (point ?) at an angle of 90. Such is

Wade's description of the instrument, but it seems to me that the real

height is about -098", the difference is perhaps in the angle and probably
within the limits of experimental error. According to the author the

appnratus would have been improved by making the longest diagonal
1-25" instead of 1", and causing the faces to meet at 60 instead of

90. Such a pyramid would make a longer indentation and mark
minute differences more accurately (p. 266). A cone with a vert

angle of 90 made a cavity about equal in bulk to that produced by the
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pyramid under an equal pressure
1

. Wade found that for the same
material the cavities made by his instrument under different pressures
were nearly as the pressures raised to the power of 3/2. The nearly
however neglects a divergence of about 17 per cent, for large pressures,

although the accuracy for small pressures is remarkable. This suggests
that the empirical law of Wade may be near the truth for indentations

only producing set, but becomes increasingly inaccurate as the loads

produce separation of the material. This want of distinction between
set and separation of the particles of the material Wade measures
in each case the indentation due to a pressure of 10,000 Ibs. seems to

me the most serious objection to the process. It has obvious advantages,
however, over the scratching methods (see our Arts. 836-44), and
if Wade's law of relation between the volume of the indentation and the

pressure were a correct one for set, we could obviously avoid such

pressures as produce separation and get a scientific measure of hardness.

The method does not, however, seem applicable to the variation of

hardness with direction in crystals, or again to what Hugueny has

termed tangential hardness.

Hertz's theory of hardness makes, I think, the depth of the inden-

tation which a sphere would make on a plane vary as the (pressure)
7

.

Hence for small indentations the volume would vary approximately

as the (pressure) s. This applied to Wade's numbers gives results more
discordant than his f ,

but this is natural as a pyramid obviously has

greater penetrating power than a sphere. Thus the general bearing
of Hertz's investigation seems to confirm Wade's mode of experi-

menting.

[1041.] Suppose I to be the length of indentation when the whole
volume V of the pyramid (F = 3'o cubic tenths of an inch, =10 tenths

of an inch with Wade's instrument) is sunk in a material under the given
pressure pQ) then if I' be the length of the indentation for any other

substance under p ,
Wade takes as a measure of the hardness of that

substance FZ3

/T
3

(p- 260). But this does not seem to me what he really

intended, although he actually calculates his hardnesses from it. For
he prints, I' being measured in tenths of an inch,

103
: bulk 3-333 :: P: bulk

and he defines, as we have seen, hardness to vary inversely as bulk
;
we

should thus have if H, H' be the two hardnesses :

1 03 . . . /'3 . JU 'H" t ' H"

*>=*..
But Wade taking hardness to be equal to the inverse of bulk, makes a

slip in inverting his ratio and really puts H=S', when it would seem
more natural to put it l/(3'3). He has thus chosen to term the hardness

1 This is Wade's statement, but it is I think hardly justified by the numbers in

his table on p. 266.
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of the material into which /> drives the whole volume of the pyramid 3 '3,

or, hardness varying inversely as bulk to take an arbitrary coefficient of

variation
=

(3-3)
2 =lH.

To add confusion to his numbers he remarks (p. 259) :

The maximum indentation of the instrument 3'3 cubic tenths, is therefore

assumed as the type of extreme softness ; and as the of hardness (!!).

Wade's numbers would, perhaps, be more intelligible if divided by
ll'l. This, however, would still leave them dependent on Wade's

particular pyramid. He suggests that a good standard of comparison

might be obtained by finding the hardness of the silver coin of some given

country and reducing all other hardnesses to this easily obtainable

standard.

[1042.] As samples of his numbers we quote from p. 265 the follow-

ing mean results :

Density. Hardness.

Cast-iron, proof-bars, 1st fusion 7'032

2nd 7-086

3rd 7-198

4th 7-301

(Seville ..

Brouze
(Boston 4-73

Wrought-iron 11-03

[1043.] For any one investigating the relations which hold

retically between density, tenacity, transverse strength, torsional

strength, compressive strength and hardness, the table on p. 267 for

upwards of 20 specimens of cast-iron would be invaluable. Want of

space, however, compels me to cite here only the results for groups of 4

specimens arranged according to their densities (p. 268); but the

inaccessibility
1

of these American Reports justifies at least this table in

which I have corrected some of the numbers

8-48

12-16

19-66

29-52

..5-18
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Here except for the tensile and torsional strengths of Group 5, all the

strengths and hardnesses increase with the density, although the laws

of increase are not obvious. The ratio of compressive to tensile strength

appears to decrease with the density till we corne to the last group,
where it suddenly increases. It must be remembered that Wade under-

stands by the transverse strength
i of the ' tension in the extreme

fibre' of a rectangular bar at rupture, and by the torsional strength

7T/16 of the shearing stress at the circumference of a bar of circular

cross-section at rupture : see our Arts. 104953.
Thus with the notation of our Art. 1051, we have:

SJSa =-2W, 3^,= -271,

numbers greater in the last two cases, but in the first case considerably
smaller than those of the British experiments.

[1044.] (g) Wade next records some experiments on the rupture
of hollow cylindrical rings. These rings were burst by applying force

to a conical frustum made of hardened cast steel inserted in them. By
means of a shield of cast steel cut into segments and internally tapered
to fit the frustum, the friction between the ring and the frustum was
reduced to a minimum (p. 269-70). Wade found that when the external

diameter was about double of the internal diameter the ratio of the

tenacity computed from what he terms the ' central force
' on the

frustum to the tenacity obtained by a pure tensile test was for both

cast-iron and bronze about as 4 : 1
;
when the ratio of the diameters was

as 21 to 16 then the ratio of these tenacities was about as 2'6 : 1.

Wade does not explain how he calculates the tenacity from the ' central

force,' and he remarks that the divergence in the values of the tenacities

is probably due to the friction. His theory is in general so weak, that

it very possibly has failed him in the reduction of his numbers. Lame's

formula (see our Art. 1013*, ftn.) cannot be applied, when as in this

case there is no longitudinal load on the cylinder. I find, however, that

for a cylinder of isotropic material of radii a and b subjected to an

internal pressure p, the maximum stretch s would occur at the inner

surface, r = a, and be given by

f

whence, if we put s = TJE, T
2 being the tensile strength, and assume

uniconstant isotropy, we have :

2 4

= 1-92^, if 6/a=2,

=
4-02;?, if b/a = 21/16.

It is, however, unlikely that Wade calculated the tenacity from the

internal pressure and then from the 'central force' by any such formula
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as this. His method of calculation being unknown, the numbers he

gives cannot be modified or used to test any theory.

(h) On pp. 272-4 will be found the details of experiments made
with this conical frustum to test Barlow's hypothesis that the area of

the cross-section of cylinders subjected to internal pressure does not

change. The experiments were far too crude to efficiently demonstrate

the erroneous nature of Barlow's assumption : see our Arts. 901, 1069
and 1076-7.

(i) We may note how Wade on pp. 274-5 draws attention to the

very considerable ranges of density, hardness, tensile and compres
strengths to be found for different kinds of the same metal, and there-

fore to the importance of testing in every case samples of the metals

which it is proposed to use for any given purpose.

[1045.] Wade after suggesting on pp. 278-80 chemical tests of

the various types of iron which possess owing to repeated meltings such

different elastic and cohesive properties, turns to the subject of bronze

guns to which he devotes pp. 281-304. In these pages a great deal of

information will be found as to the effect of position in the casting or

of the size of the casting on the tenacity and density ;
thus gun-head

samples have hardly half the strength of small bars cast with the guns,
and as a rule less strength than small bars cast in quite different

moulds. There is a good deal of interesting detail as to the exact effect

of various methods of casting, but we cannot afford the space needful

to discuss Wade's conclusions here.

[1046.] Pp. 305-22 contain a full account of Wade's testing machine
for tensile, compressive, transverse and torsional strains. The descrip-
tion is of considerable historical interest as the machine has been the

model of a good many others, even in this country. Following our

usual rule we refrain, however, from discussing apparatus and refer the

reader to the original paper, or to W. C. Unwin : The Testing of
Materials of Construction, p. 127. London, 1888.

[1047.] The remaining Reports of the volume may bi- brielly
noticed.

(a) On pp. 323-46 we have a report by Lieutenant Walbach on

the tensile strength and density of specimens taken from the mux/li-s

of nearly 3000 iron guns. He found that for metal of a high class with

a tenacity of nearly 30,000 Ibs. per sq. in. and a density of 7 "21 ti

was a colour, structure and fracture quite different from those of a

metal of a low class with tenacity of between 19,000 and 20,000 and
a density of about 7 -05. As a sample of the type of difference we

may take tin- fractuiv described in the first case as "close and even,
not hackly" and in the second as "rough, uneven and hackly" (p. 339).
Some remarks on p. 344 on the general relation between increased

density and increased strength are not without interest, but the whole

Report has not much jt/ii/nical importance.
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(b) This report is followed by one on the extreme proof by con-

tinuous firing of test guns (pp. 350-68) ;
its contents appear only of

interest for the art of gunnery.

(c) The volume concludes with three reports on the chemical

analysis of specimens of cast-iron gun metal (pp. 370-428). In the

first two reports by taking averages and classifying cast-iron into three

classes it is shown that with decreasing density and tensile strength
there is a decrease of combined carbon and an increase of siliciuni, and

various suggestions are made as to the relation between the physical

properties and chemical constitution of the metal (pp. 377 387).
The effect of hot and cold blast on these properties is also noted

(pp. 388-9) '. But in the Third Report (p. 394) the writers remark on
the discordance which exists between the laws suggested connecting

physical properties with chemical constitution and the results of their

more elaborate investigations. They go so far as to throw doubt on the

exactness of the physical investigations of density and tenacity and sum

up with the words :

the limited extent of our investigations prevents, at present, the establish-

ment of any laws as to the relation of chemical composition and physical
structure, in gun-metal (p. 394).

On p. 396 they give the chemical analysis of 32 specimens of cast-

iron, but as they now suppress all data of tenacity and density, the

results are not suggestive for further research on the relations between
chemical composition and physical structure.

[1048.] Cast-iron Experiments. Report relative to a Series of
Mechanical Experiments made under the direction of the Superin-

tendent, Royal Gun Factories, and of Chemical Analyses under the

Chemist to the War Department, upon various British Irons, Ores

etc., with a view to an Acquaintance, as far as possible, with the

most suitable Varieties for the Manufacture of Cast-Iron Ordnance;
with an Appendix, containing similar Examinations of several

Foreign and, other Irons, carried on by order of the Secretary of
State for War, dated 9 June, 1856. London, 1858.

This Report appears to have been returned in June, 1858,

although some of the experiments in the Appendix are dated as

late as February 3, 1859, and so perhaps were added while the

Report was being printed. The experiments were carried out

under the superintendence of Colonel F. Eardley Wilmot, R.A. by
the proofmaster Mr M'Kinlay. We need here only consider the

1 In the Table of Averages, p. 388 in the 4th column for the Total Carbon of the
Cold Blast read -0417 for -0407.
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mechanical experiments and not the chemical analyses of the

various irons and ores, which form the second part of the Report.
The Report is a folio volume consisting almost entirely of the

numerical results of experiments on a great variety of cast-irons

from all parts of the United Kingdom and some few foreign irons.

The experiments are fairly comprehensive, but appear to have

been made without any special regard to theory. They are thus

very inferior in value to those of the Iron Commissioners' Report
or of Kirkaldy on wrought-iron and steel.

A brief resume of the results to be drawn from these experi-

ments will be found in the Mechanics Magazine, New Series,

Vol. II., pp. 162-3, and another in the Civil Engineer and Archi-

tect's Journal, Vol. 22, pp. 397-8. Both, London, 1859.

[1049.] Experiments were made on the tensile, flexural, torsional

and crushing strengths of a great number of specimens and with a view
of testing the bearing of the results I cite the following table from p. 2 :

Xtrengtlis of Cast-Iron in Ibs. per sq. inch.
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No attempt was made to ascertain the result of mixing various

brands of iron nor the special treatment which would improve the

quality of any particular iron. Eighteen bars were cast of each iron,

22" long and of cross-section 2" square, nine were cast vertically and

nine horizontally, three of each of these sets of bars were covered

with sand to delay cooling as much as possible and kept in the mould

till thoroughly cooled, three were cast ' in the usual way,' three were

turned out of the mould as soon as set and exposed to currents of air.

These processes are described in the tables as '

slow,'
*

gradual
' and

'quick
'

casting. The results of these various modes of casting show a

distinct superiority of the bars cast horizontally over those cast verti-

cally, and in a less marked degree of those cooled quickly over those

cooled gradually or slowly.

It is to this rapid cooling and condensation that the superior strength of a

two-inch bar, cast from a portion of the metal of which a gun is made is due

(p. 4).

[1050.] Experiments were further made to show that the length of
1 dead-head

'

does not add to the resisting power of metal. These

experiments were made on cast-iron and 'on bronze or brass gun metal'.

In the former case a cylinder 26' long and 1" diameter was cast vertically,
and discs were cut from the top, centre and bottom, or at intervals of

about 12'; out of these discs tensile specimens were taken. In the case

of bronze there was 30" distance between the specimens as they stood

in the casting. The following results were obtained (p. 3) :

Cast-iron (mean results)
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We will briefly note how the experiments were made in order to

render the table in our Art. 1049 intelligible.

(a) Transverse Strength. The rectangular bars " were ground iu

the centre, so as to present a regular surface
;
this being necessary for

obtaining a correct measure of fracture". The area of fracture was
measured by taking the mean of three breadths, centre, top and
bottom of the section, and multiplying by the mean height found in the

same manner. When a load of 5000 Ibs. had been applied, it was
removed and the permanent set measured, and this repeated for each

additional 5000 Ibs. up to fracture
;
the deflections were also noted for

the same increments of load. If L be the length, B the breadth, D the

depth of the bar and W the central breaking weight, the report
tabulates

L I!'

as a measure of transverse strength. If T^ be the apparent tensile

strength in the 'extreme fibre' supposing the Euler-Bernoulli theory

applied up to rupture :

i.e. six times the quantity recorded in the table in our Art. 1049.

(6) Tensile Strength. The specimens here were unfortunately made
of varying diameter in order apparently to ensure breaking a

given central section : see our Art. 1146. Thus although the extensions

were measured after a stress of 15000 Ibs. at every additional 5000,
these are of no real value owing to the irregular form of the specimen,
and the results are only of value for the breaking load. If the rupt un-

stress be 3T2 ,
the tables of the Report record :

(c) Torsional Strength. The test pieces were cylindrical in the

centre and square at the ends for the purpose of fastening them,
end being "keyed to the standing part of the machine, the other to the

moveable levers" (p. 9). From this description it appears to me not

improbable that the pieces were subjected to both flexure and torsion,

in which case the measure of strength adopted would not give a sound

result. The tables tabulate : S3
= RWf(P, where R is the arm at which

the weight W is applied and d the diameter. If we apply the theory of

elastic torsion up to rupture, let T3 be the absolute shearing strength,
then by our Art. 18,

16 BW 16

(d) Crushing Strength. The specimens were -6" in diameter

1-3" in length and were taken from l>:irs which had been subje.
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to the torsion al test. It does not appear to have been noticed that this

previous strain nearly up to torsional rupture may probably have had
a sensible influence on the crushing strength. The squeeze of the

material at 15,000 Ibs. and the set at this load were noted and these

quantities measured again with every addition of 5000 Ibs. The rupture
surfaces correspond fairly closely to fig.

5 of the frontispiece to our first

volume. They show, however, that the bedded terminals were hindered

by the friction from expanding fully. The tables of the Report record

S4 ,
where $4

= T4 the ultimate crushing strength.
There are pictures of five samples of fracture-surfaces under the

above different kinds of stress on pp. 8-10, and the work concludes with

a number of diagrams representing, but not very clearly, the mean
results of the tables of experiments. Tables A and B (pp. 1546) give
a resume of the chief results for all the different kinds of cast-iron

employed.

[1052.] We may note a few theoretical considerations, which flow

from the formulae in the preceding article and from the table in our

Art. 1049.

If uniconstant isotropy could be supposed to hold for cast-iron up to

rupture, we should have the absolute shearing strength to the absolute

tensile strength as 4 : 5, or

T.~$Tt
Further 77

4 would be given by

and

whence we ought to find :

Of these results only the last is at all in accordance with the mean
results of the table, which gives

This confirms the statement often made in the course of our work that

for practical purposes the relation between the tensile and crushing-

strengths of cast-iron may be taken to be that deduced from supposing
uniconstant isotropic elasticity to hold up to rupture.

Instead of the first result the table gives

or

instead of Tl
= T2 . This is the so-called paradox in the theory of beams :

see our Arts. 930-1. Recent experiments have given the ratio of T
l/Ta
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for rectangular sections = 1-74, for circular sections = 2 '03, showing
that it varies with the form of the section.

If the result S3 -2QOS2 as given by the tables be correct, it shows
that the ordinary theory of torsion certainly cannot be applied to cast-

iron up to rupture, for there is little doubt that the shearing strength
of cast-iron does not differ largely from the tensile strength.

If we express the above ratios in terms of the crushing strength as

unity we have from data supplied in the Report :
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Thus we see : that for practical purposes, Saint-Venant's formulae

with the above values of the constants may be used, failing direct

experiments, to find fairly good mean results for the transverse strength
of cast-iron.

[1054.] Robert Mallet: On the Physical Conditions involved in

the Construction of Artillery, and on some hitherto unexplained

Causes of the Destruction of Cannon in Service. Transactions of

the Eoyal Irish Academy, Vol. XXIIL, Part L, Science, pp. 141-436.

Dublin, 1856. This paper was read on June 25, 1855. A review

and at the same time a criticism of the portions of Mallet's

memoir bearing on the strength of materials will be found in

Vol. xix., pp. 325, 366, 389, 401 and Vol. xx., pp. 29-31 of the

Civil Engineer and Architect's Journal. London, 1856-7.

This long memoir contains a great deal of interesting informa-

tion with regard to the physical properties of the metals,

notably iron. Some of the statements made, seem to me, wanting
in scientific precision, but it is quite possible that they may
be much more intelligible to one having a more intimate ac-

quaintance with the appearance and the rupture surfaces of large

masses of material. We shall note only one or two points referred

to by the writer in his earlier chapters.

[1055.] On the Bursting of Guns from internal Pressure. The
memoir notices that rupture invariably appears to have begun at some

point on the inside; the gun opening out along one half a longitudinal
section through this point, the opposite half being subjected in part to

traction and in part to contraction, this produces a characteristic point
of inflexion in this half of the surface of rupture (p. 146).

[1056.] Molecular Constitution of Crystalline Bodies.

It is a law (though one which I do not find noticed by writers on physics)
of the molecular aggregation of crystalline solids, that when their particles
consolidate under the influence of heat in motion, their crystals arrange and
group themselves with their principal axes, in lines perpendicular to the

cooling or heating surfaces of the solid
;
that is, in the lines of direction of

the heat wave in motion, which is the direction of least pressure within the
mass (p. 147).

Mallet lays considerable stress upon this law and discusses it at some

length in pp. 147-9 and Note E, pp. 353-57. If the law be true, it

obviously has a very great bearing on the influences of the various pro-
cesses of working on the strength of materials. It is not always quite
obvious what is meant by crystalline structure and its opposite fibrous
condition in the writings of technical elasticians, or whether they are
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distinctly related to molecular crystallisation. There is obviously a
distinction between an amorphic body or solid of confused crystallisation

(as expressed by Saint-Venant : see our Arts. 115 and 117 (c)) and a

body in a '

longitudinally fibrous
'

condition as produced by drawing or

rolling, but Mallet describes both as presenting no crystallisation (pp.

148-9). Thus he notes an experiment with a plate of rolled zinc

which is nearly "homogeneous in structure [isotropic in
structure?],

or, if not so, presents fibres and laminae in the plane of the plate."
This plate is laid upon a cast-iron plate which is then hoatod noarly

up to the melting point of the zinc. The zinc is then said to assume a
"
crystalline structure, the crystals now having their principal axes all

cutting perpendicularly through the plate from side to side
;
in other

words, the planes of internal structure being in this case absoluf'li/

turned round 180 of angular direction" I suppose the 180 to be a

slip for 90.
The words "internal structure" here seem to point as much to

crystalline as to elastic structure, and Mallet would seem to associate a

'fibrous condition' with crystalline axes in the direction of the til>re,

and a *

crystalline condition
'

with crystalline axes perpendicular to the

greatest dimension of a wire or plate. Now 'initial stress' due to

working may produce aeolotropy, but it does not seem necessary to

assume, that such stress really connotes an arrangement of crystalline
axes in or perpendicular to the lines of initial stress. Indeed I think

the identification of elastic aeolotropy having one or more planes of

symmetry with crystalline structure, which is assumed by some English
writers, is not without danger. That crystalline structure connotes a

certain elastic structure may be perfectly true, but I do not see why the

converse must necessarily hold. The passage of heat through a material,

perhaps, changes its tensile strength, when the temperature /x thereby
raised nearly tofusing point (words omitted in Mallet's statement of his

law, but which was apparently a condition of the experiments he quotes) :

see however our Arts. 692* (8), 876*, 953*, 968*, 1301*, and 1524*.

What Mallet adds to this statement is, that the direction in which the

heat is propagated through the metal affects the directions of grea
and least tensile strength and may interchange the two. At the same

time it is not improbable that a much smaller change of temperature will

produce a change in elastic structure, and alter the magnitude of t In-

elastic constants and the directions of the planes of elastic symmetry.
If Mallet's law be true it would follow that many processes of aunt -alin.Lc

so far from producing isotropy may merely change the nature of the

aeolotropy, and that further without very great precautions in tin-

process of annealing, the question of rari-constant isotropy cannot lie

tested by experiments on annealed bodies, originally of fibrous struc-

ture. Tlie process of annealing so far from producing S;tint -Tenant's

amorphic' condition in place of the 'fibrous,' may pr.>.lnee Ma

'crystalline structure.' Mallet asserts (pp. 117*) that a heat far

In-low that of fusion will change an ainm-phic into a crystalline l>ody,

and that whon a body K "tin- principal axes of the crystals will



1057 1058] MALLET 705

always be found arranged in lines perpendicular to the bounding planes
of the mass, that is to say, in the lines of direction in which the wave
of heat has passed outwards from the mass in the act of consolidation

(p. 147, 10)." He adds nothing as to the rate at which the cooling
is supposed to take place. The bearing of this remark, if true, on the

labours of those experimenters who discard rari- constant isotropy on
account of the evidence of multi-constancy found in annealed wires will

be obvious to the reader.

One word more as to certain expressions used by Mallet in the

statement of his law. He identifies the direction of the heat wave,
I presume he means heat flow, with that of " least pressure within the

mass" (pp. 147 and 353). I do not understand exactly what this

pressure denotes. In the second page cited Mallet speaks of it as the

"pressure...due to distortion or change of form by contraction or

expansion." But this does not make it much clearer. Does he mean
the direction of least initial traction ? Even then I do not understand

why the heat-flow always passes in this direction. According to the

mode in which we apply heat to the body, it seems to me we can

alter the direction of the heat-flow. If we could not, it is difficult to

understand how the heat-flow could change the direction (in Mallet's

phraseology) of the crystals, whose
*

principal,'
'

symmetric
'

or '

longest
'

axes are always in the direction in which the heat-flow has passed

(p. 353). By "consolidation of particles" Mallet refers not only to a

previously fused solid solidifying by cooling, but to the action of heat

applied to the external surfaces of a body raised to a temperature even
less than that of fusion (pp. 147-8).

[1057.] Chapter IV. of the memoir is entitled : Molecular Consti-

tution of Cast-Iron (pp. 149-152). Mallet, after remarking that

according to his previous law "the planes of crystallisation group
themselves perpendicularly to the surfaces of the external contour",

goes on to infer that when the contour presents either a re-entering

angle, or a sharp change in direction, then a plane exists in the neigh-
bourhood of the angle, in which there is confused crystallisation ;

this

confused crystallisation he considers a source of weakness, and he
terms the plane a plane of weakness.

Experiments seem to prove that such planes of weakness, ultimately
of rupture, do really exist where Mallet has placed them, but I much
doubt if they are due to " confused crystallisation." More probably
they connote an initial stress due to the peculiarity of the cooling in

these parts. Indeed if we followed Mallet's idea, as it appears ex-

emplified in an experiment on lead on p. 148
( 12), it would seem that

parallelism and not confusion of the directions of the crystalline axes

would be a source of decreased tensile strength in directions perpen-
dicular to the axes and so parallel to the surface of the casting.

[1058.] Chapter V. is termed: Physical conditions induced in

Moulding and Casting (pp. 152162). In this chapter Mallet points
out that the size of the '

crystal
'

in the casting (and therefore its weak-

T. E. II. 45
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ness) depends on the length of time the casting takes to cool. Hence
the temperature of the molten metal ought to be only just above that

requisite for fusion. He remarks also on the state of internal (initial)

stress produced in large castings due to the different rates of cooling of

adjacent parts. This points again rather to initial stress than to '
conf'i ;

crystallisation
'

as a source of weakness. He cites Savart's memoir of

1819 (see our Art. 332*) and a memoir by Bolley upon the molecular

properties of zinc (Annalen der Chemie und Pharmacie, Bd. xcv. S. 294)
in support of his views. As an example of the evil of a long period of

solidifying Mallet points out that a small bar which is part of a large

casting and thus cools slowly is found not to be so strong as a bar of

the same size cast alone under the same 'head' of metal (p. 162).

[1059.] We may note that on pp. 154-5 Mallet rejects Fairbairn's

theory that a certain number of repeated meltings increases the strength
of cast-iron (see our Art. 1098) :

Indeed, these experiments (Fairbairn's), rightly considered, only prove
what was well known before that by continually remelting and casting into

small pieces (i.e. imperfectly chilling) any cast-iron, we may gradually cause
all its suspended carbon (in the state of graphite) to exude, as Karsten long

ago proved, and so gradually convert the metal into an imperfect steel, with
increased hardness and cohesion, and diminished fusibility, but with proper-
ties altogether unworkable and useless. No such result can occur when the

metal is cast into large masses, nor any such improvement by repeated melt-

ings, but very much the contrary (p. 154).

[1060.] Chapter VI. on the Effects of Bulk and Fluid Pressure and

Chapter VII. on the Quality of Metal in reference to strength refer to

practical points of casting and need not detain us. We merely remark
that increase of bulk produces decrease, increase of * head '

or fluid

pressure produces increase of both density and strength, while British

irons show a tensile strength comparing favourably with foreign makes

(pp. 162-172).

Chapter X. on the effect which heating the inside of a cylinder has

in producing strain and ultimately rupture of the material is not very

satisfactory from the theoretical point of view. With the aid of a

somewhat more extended analysis more approximate results might I

think have been obtained.

[1061.] Chapter XVIII. is entitled : Tlw General Relations of Elas-

ticity to the Construction of Guns (pp. 194-220). So far as the theory
of elasticity is concerned this is not a very satisfactory chapter. Thus
on p. 194 ( 114) it is pointed out that 'linear' and 'cubic elasticity'
have not a constant ratio, while in the following section (ji 11")) tin-

relation between them, and on p. 216
( 144) the relation between

the slide- and stretch-moduli are given on the rari-constant hypothesis
without a word of qualification. Similarly the thermal statements at

the conclusion of 114 and in 116 Htrike me as very obscure. The

following pages (pp. 198-207) are occupied with a reproduction of

Poncelet's results on the cohesive and elastic resilience; of bars, taken
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from the Mecanique industrielle (see our Arts. 981*-2*, 988*-991*).
Mallet only reproduces those results which neglect the influence of the

inertia of the metal, and makes no statement that he has done so. His

application of these results for the longitudinal resilience of bars to the

case of the cylinder of a gun in 130, p. 208, seerns to me quite

unjustifiable. The elastic resilience of a massive hollow cylinder subject
to internal impulsive pressure presents no great difficulties of analysis,
but it certainly cannot be deduced from that of a bar without inertia,

by supposing the latter bent into a ring !

[1062.] On pp. 211-219 are tables of the elastic strength and the

coefficients of elastic and cohesive resilience of metals, chiefly extracted

from Poricelet's Mecanique industrielle. Mallet draws attention, as

Poncelet had already done to the importance of considering these co-

efficients of resilience rather than the cohesive strength of a material

when we are judging its suitability for ordnance. At the same time I

think he should have brought out more clearly that it is rather the

elastic than the cohesive resilience which must be taken as a measure of

suitability, otherwise the gun would rapidly lose its form and efficiency.
Had he done so the disproportion in the efficiencies of cast-steel and

wrought-iron of extreme ductility would not have appeared anything
like so great as exhibited in the areas of the curves on p. 213. Thus in

Table X., p. 219 'strong and rigid' wrought-iron bar has a greater
elastic resilience than wrought-iron of 'mean strength and ductility,'
while the cohesive resilience of the latter is much greater than that of

the former. Similarly gun-metal has a less elastic resilience than either

cast-iron or wrought-iron bar, but an immensely greater cohesive re-

silience. At the same time we must remark that Mallet's tables are

not quite in accord (e.g. the results in Tables VII. and X.) ;
this is

perhaps due to the assumption of uni-constant isotropy in the calcula-

tion of some of the results.

[1063.] Chapters XIX. and XX. of Mallet's memoir are devoted to

the physical properties of gun-metal or bronze (pp. 220-241). A table

on p. 222 giving the physical properties and in particular the tensile

strengths of various alloys of copper with zinc or tin is extracted from
the author's Second Report upon the action of Air and Water...upon
Cast-Iron, Wrought-iron and Steel 1

,
Transactions of the British Associa-

tion, Tenth (Glasgow) Meeting, 1840, pp. 221-308. London, 1841.

1 These reports (1838-43) escaped my notice in working up the material for

Vol. i., but only pp. 302-8 of the Second 'Report really concern us. On pp. 306-7
are the tables referred to (see also Proceedings of the Royal Irish Academy, Vol. n.,

pp. 95-6. Dublin, 1844). They give the specific gravity, tensile strength, hardness,
order of ductility, order of malleability at 60 F., order of fusibility (the author does
not state how these ' orders

' were determined), nature of the fracture and commercial

name, where known, of 21 alloys of copper and zinc and 14 of copper and tin, to-

gether with those of copper, zinc and tin themselves. On pp. 302-4 are details of the
fracture and specific gravity of various kinds of cast-iron ;

on p. 304, of increase

of density in cast-iron due to solidification under a considerable head of metal

(4 to 14 feet) ; on p. 305, of decrease of density with the increase in bulk of a

452
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[1064.] Chapter XXI. (pp. 242-3) deals with cast-steel. It con-

tains a reference to Ignaz von Mitis' experiments, but nothing of

importance for our present purposes : see our Art. 693*.

[1065.] Chapter XXII. is entitled: Molecular Constitution of
Wrought-iron, and the Law of Direction of its Crystals or Fibre (pp.

244-248). Here we have the same general statements as to crystalline
axes to which I have objected in Art. 1056. On p. 245 the general
law is Htated :

In wrought, as in cast iron, the principal axes of the crystals, tend to

assume the directions of least pressure throughout the mass while exposed to

pressure and heat in progress of manufacture.

It appears by the remarks upon this law, that Mallet understands

by the ' direction of least pressure
'

that in which the stress applied in

the process of working is least, i.e. the direction of the 'fibres' 1 in a

bar, plate or wire. Here again it seems to me that it would be safer to

talk of an aeolotropy symmetrical with regard to certain planes rather

than of the direction of the crystalline axes. Mallet notes (pp. 246-7)
that in the case of a bar of wrought-iron of large cross-section, heat as

well as working stress plays a part in determining the direction of the

crystalline (elastic ?) axes, and that the process of cooling tends to place
these in directions perpendicular to the surface of the bar.

[1066.] Chapters XXIII.-XXV. (pp. 248-256) deal principally
with the characteristics presented by large masses of forged iron. The
author speaks of these masses as possessing confused crystallisation, or in

other words being amorphic. He disputes the accuracy of Fairbairn's

results cited in our Art. 1497*
(ii),

and refers to some experiments of

Clarke's (The Britannia and Conway Tubular Bridges, Vol. i. p. 377)
which gave for the mean tensile strength per sq. inch : with the fibivs

20 tons, across the fibres 17 tons. Mallet holds that the tensile

strength of bars cut out of a large mass of forged iron in any direction

would also give a tensile strength of about 17 tons (pp. 249 and 253).

[1067.] Chapter XXVI. (pp. 256-260) deals with the point referred

to in our Arts. 1463*-4*, 881 (b) and 970, namely the possibility of a

change in wrought-iron from a 'fibrous to a crystalline state' lv

repeated loading or impacts. Mallet's general conclusion on this point
is given on p. 257. He holds that no strain or impact which does

not produce permanent change of form is capable of affecting any
molecular alteration however often repeated, but :

It docs appear certain from many well-observed
phenomena,

that in-

stantaneouH changes of molecular structure and reversals or transposition of

casting; on p. 308, of the specific gravity and fracture of a number of wrought-
irons and steels.

1
Mallet, p. 248, says: "I have used the term 'fibre' as being already long in

use, and conveying well the character of this particular form of crystallisation to
the eye ;

but it should be clearly understood that the fibre
'

of the toughest and
best iron is nothing more than the cryttalline arrangement of inorganic matter."
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the crystalline axes can be produced in wrought-iron at ordinary temperature,
by the violent application of mechanical force, producing suddenly change of

form at one or more points of the surface of the mass...

He instances the effect of the blacksmith's '

nicking
' with a blunt

chisel the side of a bar of the toughest iron, which can then be easily

broken, although without the 'nick,' it might have been sharply bent

double without fracture. There is an attempt to explain this on the

'theory of direction of crystalline axes': see our Art. 1056.

[1068.] Chapter XXVIL (pp. 260-266) is concerned with the

rupture of wrought-iron plates by impulses, such as the blow of a shot.

In 229 Mallet obtains a formula for the velocity V of the body which
will certainly produce fracture. If u be the '

velocity of force trans-

mission,' by which we are to understand the velocity of sound waves,
and sQ be the limit of safe stretch or squeeze, then if

V
'

u x s

there will certainly be rupture. This is a result of Young's for longi-
tudinal impact of beams (see his Lectures on Natural Philosophy, Vol.

i. p. 144), but I do not understand how it can be straightway

applied to the transverse impact of plates. Mallet applies it, however,

taking u= 13,000 ft. per second, *O = ^
I
T anc* deducing that V is only

one-third to one-fourth that of cannon-shot, so that the inevitable

destruction of the iron plate follows. It is needless to add that in

explaining the nature of the fracture of plates by shot he appeals to

his crystalline law (pp. 265-6) : see our Art. 1056. The subject of the

rupture velocity for transverse impact on plates has been treated by
Boussinesq in a memoir of 1882 (Gomptes rendus, Vol. xcv. 1882,

p. 123 : see also his Application des Potentiels . . . pp. 487-90), which we
shall consider in its proper place.

[1069.] After some chapters relating more closely to the construction

of artillery, Mallet in Chapter XXXIII. (pp. 280-296) returns to our

subject, dealing with the problem of constructing a gun by placing

cylindrical rings of wrought-iron over each other, each new ring being
shrunk on to the series of rings which form its core. It is well-known
that a hollow cylinder subject to internal pressure, if homogeneous and
without initial stress, will only sustain a certain definite pressure,
however its thickness may be increased : see our Arts. 1013* (with
footnote) and 1474*. Mallet proposes to raise this limiting pressure by
putting the material into an initial state of stress. The theory of this

initial state of stress is given in a Note by Dr Hart appended to the

memoir to which note we shall return.

On pp. 284-5 Mallet cites five different formulae for the relation

between thickness, safe tractive load and internal pressure. None of

these agree with that I have given on p. 550 of Vol. I.; still less do

they agree among themselves. Mallet makes no attempt to select any
one of them as the correct one. He states with Barlow (Transactions
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of Institution of Civil Engineers, Vol. I. p. 136) that there is no thick-

ness which will withstand an internal pressure equal to the safe tensile

load. Dr Hart's formula gives the same result. As a matter of fact

for uni-constant isotropy the thickness T for internal pressure p and

internal diameter (/ is given by :

_d~

whence we find p = TQ as the limiting possible pressure.

[1070.] Chapter XXXIV. (pp. 29G-9) is entitled : On the Relat',*,,,*

between Annealing and Tenacity. It is based principally on Baudri-

raont's results: see our Arts. 830*-1* and 1524*. But there is very
little evidence accessible on these points :

A rich reward awaits the physicist who, in a comprehensive manner,
first, experimentally, attack the question of the molecular changes produced

by hardening and annealing ;
it has been as yet almost imattenipted (p. 297).

[1071.] The memoir concludes with a long series of notes, partly
historical and partly statistical, of considerable general interest. I may
draw attention to the following :

(a) Note S. (pp. 392-396). Physical Constants of the Mat-rwl*/,,,-

Gun-founding. This note gives some tables of information with regard
to the ultimate strength of cast- and wrought-iron, cast-steel and bron/r

extracted from the Ordnance Reports, United States Army, 1856, and

on the compression of bronze gun-metal from some experiments of

Colonel F. E. Wilmot at Woolwich Arsenal made at Mallet's request

(April, 1856). See our Arts. 1037-47 and 1050.

(6) Note W. (pp. 399-406). This note by Dr Hart pro-
fesses to give the theory of the stress in a number of superposed metal

cylinders (see our Art. 1069), but I have been unable to follow the

analysis. If it be correct, which I very much doubt, at least the

author should have clearly stated the meanings of the symbols In-

employs. After saying that the cylinder may be conceived as split

up into '

cylindrical laminae,' he continues :

Let r be the radius of any of these cylinders, and 2/' the corresponding
force, the length of the cylinder being unity. Also let r+ u be the radi

the same cylinder when extended, then (according to the common theory) :

dP u

Tr~ 'r'

It would appear from what follows that the author means by the
4

corresponding force 2P' the expression which we should denote by
- 2r . and his equation then becomes

(/n- n- - ku/r __=- -r v.
or r

This obviously assumes that the meridional traction * is equal to Arw/r :

see our Art. 120.
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Similarly the second equation on p. 400 is

P = -*V*?
dr

^ 1t
du

or rr = k -j-.dr

Thus it would seem that the author has either supposed the

material to have no dilatation, or else assumed that the meridional

and radial tractions are each proportional solely to the stretches in

the same directions ! The error is exactly that of Schefner : see our

Art. 655.

[1072.] On the whole Mallet's memoir presents much of interest

and importance, but is painfully weak in analysis and even in elementary

dynamical notions (e.g. equation (58), p. 269).

[1073.] British Association. Report of Twenty-fifth (Glasgow)
Meeting. London, 1856. Provisional Report of the Committee...

appointed to institute an inquiry into the best means of ascertaining those

properties of metals and effects of various modes of treating them which
are of importance to the durability and efficiency of Artillery, pp. 1008.
This does not appear to contribute anything of theoretical or permanent
importance to the subject of our history, or to the science of gunnery.

[1074.] Experiences faites en 1856 avec deux canons a bombes...en

fonte de fer. Extrait du rapport fait sur ces experiences par M. von
Borries. Annales des travaux publics de Belgique, T. xv. pp. 42756.
Bruxelles, 18567. This is a translation of a portion of a report to

the Prussian Government on the strength of two Belgian cast-iron

cannon made at Liege. The cannon were tested to bursting. There
is nothing that calls for special notice in the report.

[1075.] D. Treadwell : On the Practicability of Constructing Cannon
of Great Caliber, capable of enduring long-continued Use under full
Charges. Memoirs of the American Academy, Vol. vi. Part I. pp. 119.
Cambridge and Boston, U.S., 1857. This memoir, after criticising the
current methods of constructing guns of large size, proposes to form
the caliber and breech of cast-iron, but to place outside these parts rings
or hoops in one, two or more layers of wrought-iron ;

"
every hoop

is formed with a screw or thread upon its inside, to fit to a

corresponding screw or thread formed upon the body of the gun
first, and afterwards upou each layer that is embraced by another

layer. These hoops are made a little, say y-oVo^h part of their

diameters less upon their insides than the parts they enclose", and
are placed on hot, being then allowed to shrink and compress. This
method of constructing cannon appears to have been first suggested
by Treadwell, and a process of building up guns by wrought-iron hoops
has been largely used: see our Arts. 1069, and 1076-82. The memoir

gives a few details of the relative strength of such cannon and of cast-
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iron cannon (pp. 13-16), and concludes by describing a process of

avoiding 'lodgment' (pp. 16-18), and with a condemnation of the

European process of 'piling or fagoting' for building up wrought-iron
cannon.

[1076.] James Atkinson Longridge : On tJie construction of
Artillery, and other Vessels to resist great Internal Pressure. Institu-

tion of Civil Engineers. Minutes of Proceedings. Vol. xix. pp. 283-
460 (with discussion). London, 1860. This is one of the numerous

practical papers on artillery which contain statements with a good deal

of bearing on physical and theoretical elasticity. There are frequent
references in the course of the paper to Mallet's researches : see our
Arts. 1054-72.

The author commences by saying that he intends to limit his

remarks to methods of making a gun
* which gunpowder cannot

burst.' He refers then to the difficulty of making the cylinders of

large hydraulic presses sufficiently strong to resist a pressure of 3

or 4 tons per square inch, and refers to what he terms the explanation
of this difficulty given by Professor Barlow,

" with the clearness which

distinguishes all the works of that accomplished mathematician." We
have had occasion to mentiou this matter once or twice : see our Arts.

655, 901 and 1069.

[1077.] Barlow's formula for the strength of hydraulic presses,
which at one time had worked its way into all hydraulic text-books

for practical engineers, depends on the assumption that the volume
of the cylinder does not change owing to pressure

1
. It was superseded

in Germany ultimately by a formula due to Brix, based on the assump-
tion that the thickness of the wall of the cylinder is not changed by
the pressure. These two formulae, equally absurd in theory, maintained
their places in the text-books long after Lam had given more correct

results
2

: see our Arts. 1012*-! 3* and footnote p. 550.

Our author proposes to make guns to withstand a very great
internal pressure by placing coils of metal round the inner cylinder of

the gun having initial stresses. Blakely, Sir William Armstrong and
Mallet had, unknown to the author, been working on the same lines.

[1078.] The memoir commences by pointing out the extreme

difficulty of making heavy guns of cast-iron, wrought-iron or si-

lt notices how initial stresses are produced by cooling when metal

is cast in large masses : see our Arts. 879 (/), 1039, 1056-8 and 1060.

Further the difficulties inherent in the construction of wrought-iron and

1 See Barlow's erroneous theory in a paper entitled : On the force e.iritetl by

Hydraulic Pressure in a Bramah Press. Institution of Civil Engineers, Transactions,
Vol. i., pp. 133-9. London, 1836.

a RuMmann in his Vortriige iiber Geschichte der technischen Mechanik, Bd. i.

S. 320, after remarking on the doubtful character of Barlow's formula, states that

Brix's 'deserves much more confidence,' apparently because it does not give a

limit to the pressure possible for an infinite thickness. This approval was
{.-

so late as 1885 !
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steel guns are noticed, especially difficulties of good welding and ham-

mering are referred to (pp. 287-96). The author then turns to the

processes of construction suggested by Mallet and Blakely, consisting
in putting on hoops of wrought-iron round the gun tube, which being

put on hot, give, when cool, an initial tension. He considers that these

processes of building up a gun are not satisfactory, because (i) they

really would require an infinite number of infinitely thin hoops, and
(ii)

there is great practical difficulty in constructing the hoops with just the

theoretically right radii. Longridge shows (pp. 301-3) that an error in

workmanship of only ~-^ of an inch in the radius of a hoop may make
a very serious difference in the stress in the material when the internal

pressure is applied. There is a mathematical theory of the proper
values of the radii of the successive hoops given in the Appendix (pp.

329-335) by C. H. Brooks to which we shall return later. In a

diagram on p. 297 curves of the stress across an axial section of a

hollow cylinder are given. These curves are plotted out for the

formulae of both Barlow and Hart (see our Arts. 1071 and 1077), so

that in both cases they must be considered erroneous. The real curve
would be obtained by plotting out, for values of r, the values of $, the
meridional traction, which can be deduced from the results of our Art.

120, or for isotropy from those of our Art. 1012*. Subtract the
ordinates of this curve from a constant traction equal to the maximum
to which we propose to subject the gun, and we have the initial tractions,
which each point of the cylinder ought to be subjected to on the theory
of Mallet and Longridge in order that we may have the strongest gun.
There are I think obvious objections to this theory, of which I need

only mention one, namely that it is not an equality of stress, but of

strain
(i.e. u/r : see our Art. 1080) that we ought to strive for, and that

the former does not connote the latter: see our Arts. 1567*, 5 (c) and
321.

In order to obtain the exact traction initially required Longridge
discards a finite and limited number of hoops, and proposes to use
coils of wire, which he holds can be put on with the exact stress

indicated by theory (p. 301). In the case of his experimental cylinders
he put on his coils of wire with an initial tension deduced from Barlow's

theory (p. 306). It is, therefore, difficult to believe that he constructed
the strongest possible cylinder, even if we assume that the results for

solid cylinders could be legitimately applied to wire coils, and that the
test for maximum strength is equality of stress, not of strain, across an
axial section.

Pp. 307-19 give details of the author's experiments on cylinders
and guns bound with coils of steel or iron wire. Pp. 319-21 give
the details of the construction of a small hydraulic press cylinder built

up in this manner and of experiments upon it.

[1079.] An Appendix to the paper (pp. 322 337) contains various
mathematical investigations. Thus on the "force of gunpowder,"
wherein it is shown that the pressure exerted can be 17 to 25 tons
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per square inch. Remembering that this is more or less of an impulsive
pressure applied to the inside of the cylinder, and therefore theoretically

might correspond in straining effect to a steady pressure of 34 to 50

tons, it would be little wonder if most guns ultimately burst by being
thus continually strained beyond their elastic limit. It would not
indeed much alter matters if the real impulsive pressure only reached
a moiety of the above large value.

[1080.] The next portion of the Appendix, which is of interest for

our present purpose is entitled : Conditions of Stress of a Cylinder built

up of Concentric Rings (pp. 329-35) by Mr C. H. Brooks.
This investigation starts from expressions for the inner and outer

meridian tractions in a hollow cylinder which agree with the values

obtained from Lame's formula (see our Art. 1012*). So far the theory
seems likely to be more complete than Hart's, but, alas ! the next stage
is entirely erroneous. Brooks makes the following statement, which I

cite with our notation :

Now if w> be the tension at any radius r, and E the modulus of extension,
then the extension of that radius is ^ . rjE (p. 330).

This is the error into which Scheffler, Hart, and Virgil e (see our
Arts. 122, 655 with ftn. and 1071 (b)) have all fallen, and which it

still seems impossible to root out of the mind of the technical elastician.

Lame's formula quoted by Brooks from Rankine involves a longi-
tudinal traction in the cylinder, and thus if u be the radial shift, and
the external and internal radii of the cylinder be r

l
and r

,
we easily

find (see our Art. 1012*):

Whence in order that u = 4 . rjE we must have E 3A. + 2/x
=

2/i,

au absurdity. Thus we need not inquire into the accuracy of the

remainder of Brooks' investigation.
In the discussion which followed the author refers to Lame's

formula as the basis of Dr Hart's and Mr Brooks' investigations but
he does not see how hopelessly the latter have misapplied it (p. 341).

[1081.] Pp. 338-460 are occupied by the discussion which was

extremely long and somewhat discursive. I may draw attention to the

remarks : p. 345, on the want of longitudinal strength in wire-bound

cylinders another obvious reason why Lamp's formula should not be

applied to them
; p. 358, on the difficulty of forging large masses without

flaw
; p. 360, that the pressure of gun-powder could reach 30 tons per

sq. inch
; p. 364, that there is less internal stress in lar^e castings after

they have been kept a long time, showing a very slow after-strain effect
;

pp. 385-7, on cooling hollow cast-iron cylinders from the inside an<
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obtaining an initial negative traction in the inner shells
; p. 388, on a

method of testing the pressure produced at various distances along the

bore of a gun on discharge and so calculating the strength of material

required at the corresponding sections
; p. 443 and footnote, on the

absolute tensile strength of cast-iron before and after remelting, also on

its general average (p. 444) ; pp. 444-5, on the apparently slight in-

fluence of chemical identity on the identity of mechanical properties 111

iron. The impression made on my mind after reading the paper is the

general want even so late as 1860 of theoretical training among practical

engineers. The apparently universal acceptance in the discussion with-

out the least enquiry of an erroneous theory is remarkable, and the

need that experiments on the strength of materials should be conducted

by those who have a real knowledge of the theory of the elasticity

becomes very obvious. For example, throughout 110 distinction seems

to have been drawn between impulsive external load and the resulting
maximum internal stress

;
thus the absolute tensile strength of the

material is spoken of as if it were the limit to be given to the internal

pressure, which is quite false, were we even to suppose the gun to be

elastic up to rupture, and its efficiency not destroyed by set.

[1082.] T. A. Blakely : A mode of constructing Cannon, whereby
the Strain produced by firing is distributed throughout the Mass of
Metal. This paper was printed in the Journal of the United Service

Institution, whence it was reprinted in the Civil Engineer and
Architect's Journal, Vol. 22, pp. 45-50, 81-3. London, 1859. Idem.

Strength of Guns and other Cylinders. Extract of a paper read at the

United Service Institution. Civil Engineer and Architect's Journal,
Vol. 22, pp. 245-7. London, 1859.

The first of these papers contributes but little to our knowledge of

stress in cylindrical bodies. The author quotes erroneous results of

Barlow's and notes that a press or gun will only stand a certain limit of

internal pressure, whatever its thickness. The whole theory of pressure
in cylindrical bodies had been some time previously correctly worked
out by Lame and it is not to the credit of our Ordnance Department at

that date, that its scientific knowledge should have extended no further

than the range exhibited in this paper. Blakely notes experiments

showing that cylinders subjected to internal pressure first rupture on
the inside. His object in the paper is to advocate that system of

building up guns which consists in putting on rings of metal of a

diameter slightly smaller than that of the inner cylinder or tube over

which they are placed. He suggests wrought-iron hoops over a cast-iron

tube. There is considerable reference to the investigations of Mallet

and Longridge : see our Arts. 1054 and 1076.

In the second paper Blakely cites results from the American

Reports of Experiments on Metals for Gannon in order to show that a

gun built-up of hoops shrunk over each other must be much stronger
than a solid cylinder. The experiments cited are those of the work
referred to in our Art. 1037.
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[1083.] J. Cavalli: Mdmoire sur la ihdorie de la resistance sta-

tique et dynamique des solides surtout aux impulsions comme celles

du tir des canons. Memorie della R. Accad. delle Scienze di Torino.

Serie II. T. xxn. pp. 157-233 with three plates. Torino, 1865.

The memoir was read on January 22, 1860.

This is one of several memoirs which were called forth by the

publicity given to the results of Hodgkinson's experiments in the

treatises of Love and others : see our Arts. 894, etc. The memoir

is not without value although it contains some rather doubtful

theoretical investigations. Considering the title of the paper and

the fact that the major portion of it is devoted to the discussion

of implements designed for the destruction of human life, it is a

curious sign of the perverseness of even the scientific mind in

1860 to find the preface closing with the following words :

La connaissance du calcul de ces vitesses, avec les principes lea plus
eldmentaires de la nie'caniqiie rationnelle et des sciences en gdndral, fourniront

aux constructeurs le seul guide infaillible pour re"ussir dans les grandes et

nouvelles constructions, que le Tout-Puissant ait donnd a 1'intelligence des
homines pour qu'ils sachent bien s'en servir dans les e'tudes et les travaux

auxquels tout mortel doit se livrer k 1'avantage de son espuce, fuyant
1'oisivete pour justifier son passage sur la terre (p. 168).

[1084.] Cavalli's memoir opens with a Preface whioh occupies pp.
157-168. It commences by quoting with approval certain principles
stated by Love. These principles are chiefly deduced from Hodgkinson's
experiments and may be summed up as follows :

(i) There is no exact proportionality between stress and strain for

cast-iron.

(ii)
Set begins for cast-iron with even the smallest loads, and the

term elastic limit has thus no real meaning.

(iii) Both cast- and wrought-iron subjected to impact or vibration

can support indefinitely loads very near to those capable of producing
immediate rupture (p. 159).

The third conclusion seems to me founded on very doubtful evidence,
the second is true only if the body has not been reduced to a state of

ease, while the first will probably now be generally admitted.

Cavalli next proposes to replace the elastic limit by what he terms

la limite de stabilite. This limit is, I think, what I have termed tin-

yield-point (see our Vol. i. p. 889). as the following words indicate :

Dans mes experiences h, la flexion des barreaux on recommit nett.

les flexions partagees en deux parties, retournantes les unes, rest

autres dus leur commencement jusqu'k la rupture, et que chaque partie suit

une loi diflfe>ente rnais re"gulit-re, des la plus petite charge jusqu'k celle

momentanee produisant la rupture. On dccouvre encore qu'il y a un terme



1084] CAVALLI.

interme'diaire de la serie de ces charges que les barreaux cessent de soutenir

d'une maniere stable, et ou un mouvement de lassitude tres-insensible d'abord

commence et s'accroit ensuite rapidement au fur et & mesure qu'on se rap-

proche . la charge de la rupture, quoique le temps de 1'essai soit tres-court

(p. 160).

Cavalli's experiments were made partly on flexure, partly on com-

pression, and stress-strain curves were traced automatically. After

each small increase of load the load was removed, and we thus have a

very accurate representation of the relations of elasticity and set to

increasing load. Cavalli's curves figured on Plates II. and III. are

extremely instructive and are I think the earliest of their kind. Plate

II. contains load-flexure diagrams for bronze, cast-iron and cast-steel
;

Plate III. contains compression diagrams for the same three materials.

Roughly speaking these diagrams bring out the following points :

(a) that both elastic strain and set follow laws the graphical repre-
sentations of which give extremely regular curves

; (b) that the state of

ease can be extended almost up to absolute strength ; (c) that the

elasticity remains practically the same throughout this extension;

(d) that there is a point at which set begins to increase with great

rapidity : see our Vol. I., pp. 887-9, (5)-(8). With regard to (d) we
note that for a considerable range of stresses the set curve is almost a

straight line close to and parallel to the stress-axis, then it begins to

slope more and more to this axis. The point at which this change
takes place Cavalli calls the 'limit of stability' and he considers it

ought to replace the ' elastic limit.' It seems to me that it is an

important limit the knowledge of which is essential, but that it does

not replace the ' elastic limit,' which notwithstanding Cavalli's state-

ments (e.g. p. 162) has a real existence, only every stress exceeding the

limit to the state of ease alters its value. In order to ascertain the

exact point at which the bar ceases to sustain its load stably,
Cavalli takes the limit of stability to be the point which is midway

1

between the point at which it is doubtful whether the curve of set has

ceased to be parallel to the stress-axis and the point at which there is

no doubt such parallelism has ceased (p. 181). He terms this point
the limit of stability, because he holds apparently that for any load

beyond this limit, the bar will continue to yield till after a longer or

shorter time it ruptures (p. 175). Thus he considers the limit of

stability to be the proper measure of strength for permanent loading,
while for impulsive loading, lasting only during a very brief interval,
it is allowable to pass this limit of stability, provided the stress still

remains sufficiently below the absolute strength (pp. 176-7). This of

course is the legitimate result of principle (iii) stated above, but that

principle itself seems to me doubtful. Owing to the above statements we
have associated Cavalli's 'limit of stability' with our yield-point although
in some respects it seems to be closer to the point half-way between B
and C on the diagrammatic stress-strain curve of our Vol. I., p. 890.

1 Cavalli has '
le point interm6diare le plus pres du second des dits points,' but

this is very indefinite.
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[1085.] Cavalli now notes that while in most cases the curve

giving the relation between the elastic stress and strain is practically

linear, that between the set strain and stress is represented by a curve
which although perfectly regular has yet to be determined analytically.
The sum of the areas of these stress-strain curves, however, gives the

work done on the bar up to any given load, and Cavalli accordingly
divides this work into two parts which we may term "elastic strain

energy
" and " ductile strain energy" (travail elastique et travail ductile).

The energy which the body can absorb of the former kind, increases as

the state of ease is extended
;
the energy of the latter kind is a definite

quantity and can only be used once, although it may be consumed in

parts on different occasions. Cavalli holds that the elastic and ductile

strain energies are the true measures of the practical strength of

materials; he expresses them in terms of the kinetic energy of a

particle, of mass equal to that of the material, moving with velocities V
(for the elastic strain energy) and W (for the united elastic and ductile

strain energies). The values of V and W (vitesses <fimpulsion) thus

measure the resilience of the material, and their values at the limits

of stability and rupture are tabulated on pp. 230-3 of the memoir i>

considerable number of bars of bronze, cast-iron and cast-steel (wrought
and unwrought), as ascertained by flexural and compressional experi-
ments.

The above sufficiently indicates the general lines of Cavalli's investi-

gations so far as they appear of real novelty or service, but a detailed

criticism of his rather lengthy theoretical statements may be of service

to other investigators, and I devote the next few articles to it.

[1086.] I. of the memoir (pp. 168-75) is entitled: De ^existence

de la limite de stabilite au lieu de la limite d'elasticite. This opens with a

statement of the old 'paradox in the theory of beams': see our Arts.

173, 507, 542, 930-8, 1043 and 1051-3. Given a beam of rectangular
cross-section of height h and breadth b, then if M be the breaking

bending-inoment, the absolute strength T (as deduced from an extension

of the Bernoulli-Eulerian theory to rupture) is given by

Now Hodgkinson found that for cast-iron bars the factor 6 must be

replaced by 2 -63, or if T
9
and T

}
be the absolute strengths as calculated

from traction and flexure respectively we have :

i
= '438, or (in the notation of Arts. 1051-3) SJSt

= -380.

But the American experiments on the metals for cannon (see our Art.

1043) show that the ratio of T
a
to T^ varies with tin- density of tin-

cast-iron, increasing up to a certain density and then rather strangely

decreasing. Cavalli holds this decrease to be a result of dt-rVctivr

rxpcriinental method (possible failure of exactly axial application of
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load which often occurs in pure traction experiments : see our Art.

1249* and Cavalli's memoir, pp. 169-70 and 160), and after rectifying

the results, he obtains values of the ratio increasing from -57 to -72 with

the density
l

. He uses this variation as a general argument against the

ordinary theory of beams and as in some way suggesting the importance
of his own investigations into the 'limit of stability,' because he

supposes it to show the inapplicability of the theory based on the ' limit

of elasticity'. He passes rather abruptly from this discussion to a

description of his testing machine and automatic apparatus for drawing
stress-strain diagrams (pp. 172-5).

[1087.] II. of the memoir (pp. 175-87) is entitled : Discussion des

nouveaux principes a admettre, et deduction de la mesure du travail

elastique et ductile, et de la vitesse d'impulsion que les solides peuvent

supporter. In this section the author first states and criticises the

conclusions of Love, Hodgkinson, Belanger and Morin, and then states

his own theory of resilience as the true test of resistance especially for

the case of impulsive loading. He qualifies his previous statements as

to the limit of rupture being the superior limit for impulsive stress (see
the principle (iii)

of our Art. 1084) by the rather vague reservation

that the impulses must not succeed each other too rapidly, nor last for

too long a time without interval of repose (p. 178). The following
remarks indicate Cavalli's standpoint and deserve quotation :

Lorsqu'une seule portion du travail ductile 1'epuiserait & chaque impulsion,
le nombre ou la somme de ces impulsions ne devra pas depasser la limite

du travail ductile total, de sorte que ce nombre d'impulsions que le prisme
pourra supporter a la limite prescrite se trouvera restreint.

Le choix entre les difFerents materiaux & employer dans les constructions

se trouva par ces conditions soumis & un calcul qu'il faut savoir faire. L'on
ne pourra pas dire d'avance qu'on doit dans telle sorte de construction

employer les materiaux plus ductiles qu'elastiques et vice versa dans telle

autre sorte de construction
;
on s'exposerait par un tel procede k bien des

meprises, comme 1'abus des constructions toutes en fonte a fait ressortir, et

comme il arriverait par Tabus de tout faire en fer forge (p. 179).

[1088.] To apply his theory Cavalli proceeds thus: Let F be

the load and x the elastic, y the ' ductile
'

deflection immediately under
the load, then the elastic strain energy = ^Fx, while the ductile strain

energy = ^Fry, where \-ry is the mean ordinate of the ductile stress-

strain (or really of the load- deflection) curve. Now Cavalli's experi-
ments were made on the flexure of a cantilever of length L and

rectangular cross-section b x h
; hence, if T be the maximum elastic

stress in the beam :

FL
x -

1 The mean of the American results as rectified by Cavalli gives
the ratio as deduced from the hypothesis proposed by the Editor in a paper on
the Flexure of Beams, Quarterly Journal of Mathematics, Vol. xxiv. p. 108, 1890,
is for the case of a rectangular section '667.
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or,

If D be the density of the material, Cavalli equates this to ^bhLD x

and so finds :

~
ED'

Thus Cavalli's V is at once determined by the density of the material

and the modulus of resilience : see our Art. 363.

If W be the velocity corresponding to both elastic and ductile

strain energies

whence we have

W =r*/]
where rand y/x have to be determined by experiment for each material.

According to Cavalli's results T decreases by about a half between the

limits of stability and rupture, so that Hodgkinson's experiments on
cast-iron which made y oc F* and give T = 2/3 cannot be accepted as

generally true : see pp. 185-6 of the memoir and our Arts. 969* and
1411*.

[1089.] The reason apparently why Cavalli takes TV^T2 instead

of \MVZ as suggested by his definition of F (see our Art. 1085), is that

he supposes ^MV* to be the resilience of longitudinal elasticity. \Fx in

JTi
this case is equal to \

-~ bhL and this is nine times the above value.

The following are Cavalli's mean results in metres per second
1

(p. 184) :

Material
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Cavalli in some rather obscure reasoning on p. 186 appears to state

that any portion of a body may receive a blow which gives it a velocity
V (or W as the case may be) without ultimate (or immediate) danger.
For example, the velocity given to the parts of the inner surface of a

cannon ought not to exceed the value W. But I am unable to follow

the argument, nor do I understand how the velocity, which if attributed

to the entire mass would give an amount of energy equivalent to the

strain-energy, is necessarily the velocity with which any part will

commence vibrating. It must be noted that throughout Cavalli neglects
the inertia of the vibrating parts, i.e. proceeds statically, and although
this may give the maximum total flexure or compression fairly correctly,
Saint-Venant has shown, that for the case of transverse impact at least

it is very far from giving the correct value of the maximum strain,

which depends on relative flexure or relative compression : see our

Arts. 371, 406 and 412.

[1090.] III. (pp. 187-96) is entitled: De la position des fibres
invariables dans les prismes soumis a la flexion. This section rejects

Hodgkinson's stress-strain relation for cast-iron, and asserts that the

neutral axis does not pass through the centroid of the section because the

stretch- and squeeze-moduli are unequal. This had in fact been previously
discussed by Hodgkinson (see our Art. 234*), and there is nothing new
or of real value in Cavalli's results. By taking P and Q as the resistances

per unit area to extension and compression respectively and supposing
the material perfectly elastic, Cavalli finds that the ratio Q/P must be
in some cases as much as 6, if the absolute strengths as given by
tractive and flexural experiments are to agree. He does not seem to

have noticed that with his definitions and on his hypotheses, this would
have made the squeeze-modulus six times the stretch-modulus (pp.

189-93) ! Morin's hypothesis, which our author condemns, i.e. that

the resistances to compression and extension only begin to vary after the

elastic limit is passed, is certainly more reasonable than this !

Cavalli quotes a formula due to Roffiaen for the strength of a prism
under flexure (see our Arts. 892 and 925), and applies his own results

to a prism of circular cross-section. The treatment in both cases is

obscure, not to say inadmissible.

[1091.] IV. of the memoir is entitled : Essai theorique de la

resistance vive elastique et ductile des prismes par la vitesse d'impulsion
des solides, suivi d'exemples pratiques (pp. 196-229).

This introduces Tredgold's modulus of resilience \T*-\E but
attributes it to Poncelet. The investigation of the longitudinal
resilience on p. 198 is obscure, because it is not obvious why Cavalli

concentrates the mass of the rod at the free end. The results for a

frustum of a cone on p. 199 seem to me still more doubtful. In treating
of the flexure of a cantilever Cavalli concentrates Jtalfita mass at the

free end (pp. 199-202) and applies his theory of the shifted neutral axis.

In all these cases the inertia of the bar is neglected, but it has, as I

T. E. II. 46
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have pointed out, the greatest influence on the maximum strain. On
pp. 204-5, there is an unsatisfactory attempt to determine the time over
which an impulse must be spread, in order that the whole and not a

part of the bar may sustain the work due to the impulse. Cavalli finds

that when the time of the maximum safe impulse is less than

7T*,
* IT 1

where x^ is the maximum shift of the free end and V the velocity
discussed in our Art. 1088, then even with this impulse the bar will be

injured at the part to which the blow is applied.

[1092.] Cavalli next passes to practical examples chiefly dealing
with problems in gunnery and with the penetration of shot into iron-

plates (p. 205 to the end).
As a sample of the somewhat loose style of reasoning as well as

of grammar adopted in these pages, I cite the following example, which
does not belong to the theory of gunnery :

Prenons a calculer un pont en poutres simples de fer sur un chemin de fer

pendant le passage des trains : ces poutres flechiront pour se redre>sor apr
passage. De mme que dans le calcul statique on ne considere que la nioitu-

de la charge concentree au milieu, 1'autre moitieS de la charge dtant porter
les cule"es, Ton pourra conside'rer aussi ici que la moitid de la masse totale du

pont et de la charge est concentric au milieu, et tombant de la hauteur de la

flexion entiere
;
soit pour plus de simplicity dans le calcul, que pour avoir

e*gard aux secousses que 1'irrdgularitd du mouvement du train causera au pont
(pp. 2156).

Considering the attention this problem had already received from

Willis, Stokes and Phillips (see our Arts. 1276*-91*, 1418*-22*,
378-82 and 552-60), Cavalli's treatment is somewhat antiquated.

Without entering into an analysis of these individual problems, we

may conclude our notice of Cavalli's memoir with citing a remark he

makes on the testing of cannon. After noting that every impulse
which exceeds the existing elastic limit uses up some of the reserve of

ductile strain-energy in the material, and that every successive impulse
uses up more of this surplus energy until either by raising the elastic

limit the elastic strain energy alone suffices, or the gun at last bui

he continues :

L'e"preuve des canons par des tirs surtout plus forts que ceux ordinaires,
outre u'e'tre embarrassante et tres-couteuse, prouve seulement qu'apres ces tirs

les canons qui 1'ont subie sont moins bons qu'auparavant, sans pouvoir, pour
plusieurs causes confirmees par 1'expeVience, nous rassurer d'apres leur

resistance sur celle des autres canons (p. 227).

To the memoir are affixed the tables of experimental results ref

to in our Art. 1085.
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GROUP F.

Strength of Iron and Steel.

[1093.] A Series of Experiments on the Comparative Strength of
Different Kinds of Cast-Iron, in their simple state as cast from the Pig,
and also in their compounded state as Mixtures ; made under the directions

of Robert Stephenson, Esq., with a view to the selection of the most
suitablefor the various purposes required in the construction of the High
Level Bridge. The experiments were made at Gateshead, September,
1846, to February, 1847, and the results are published in the Civil

Engineer and Architect's Journal, Vol. xin., pp. 194199. London,
1850. Only the numerical results consisting of the loads and deflec-

tions through a certain range up to the breaking load, together with
the initial series of sets are given. No general conclusions are drawn,
nor is there any graphical representation of results.

[1094.] ftapport d'une Commission nominee par le gouvernement
anglais, pour faire une enquete sur I'emploi du fer et de la fonte dans
les constructions dependant des chemins defer: Annales den pouts et

chaussees. Memoires, 1851, l
er

Semestre, pp. 193-220. Paris, 1851.

This is a translation by Busche of the report attached to the evidence
of the Iron-Commissioners : see our Art. 1406*.

[1095.] In the volume of the Annales des ponts et chaussees for

1855, Memoires, l
er

Semestre, pp. 1-127 will be found a French trans-

lation of E. Hodgkinson's Experimental Researches (see our Arts. 966*-

73*) by E. Pirel. Even at the present day the results of Hodgkinson's
experiments reduced to French measure are not without special value.

[1096.] Dehargne : Galvanisation du fer ; avantages de I'emploi des

fils galvanises dans les ponts suspendus. Annales des ponts et chaussees.

Memoires, 1851, l er
Semestre, pp. 255-88. Paris, 1851. On pp.

280-8 will be found details of experiments on the absolute strength of

iron wire before and after galvanisation, and it is shown that the

iron loses nothing of its strength or ductility by the process; some
of the experiments show indeed a great increase of strength owing
to galvanisation.

462
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[1097.] British Association, 1852, Belfast Meeting, Transactions,

p. 125. Notice of some experiments by Fairbairn then in progress
to test the effect of repeated meltings on the stn-ngth of metals

and further to test the effect of temperature on unwrought iron plates.

[1098.] The experiments on the effect of repeated meltings
referred to in the previous article form the subject of a paper
communicated to the British Association in 1853, and printed on

pp. 87-116 of the Report of the Hull Meeting for that year. The

paper is entitled : On the Mechanical Properties of Metals as

derived from repeated Meltings, exhibiting the Maximum Point of

Strength and the Causes of Deterioration.

Fairbairn commences by thus stating the object of his investi-

gation, undertaken at the request of the Association :

It is a generally acknowledged opinion, that iron is improved up to the

second, third and probably the fourth meltings ;
but that opinion, as far as

I know, has not been founded upon any well-grounded fact, but rather
deduced from observation, or from those appearances which indicate greater

purity and increased strength in the metal.

Those appearances have, in almost every instance, been satisfactory as

regards the strength ;
and the questions we have been called upon to solve in

this investigation, are, to what extent can these improvements be carried

without injury to the material ; and what are the conditions which bear
more directly upon the crystalline structure, and the forces of cohesion }>\

which they (sic) are united (p. 87).

[1099.] The first set of experiments were on the resistance of

rectangular bars (in all cases of nearly 1 inch square cross-section and
of 4 ft. 6 inches span) to a central transverse load. 18 successive

meltings were undertaken of which the 17th melting was a failure,

"the iron being too stiff to run into bars." Fairbairn reduces his

results to a standard beam of 1 inch square cross-section and 4 ft

6 in. span. He terms the product of the breaking load into the ultimate

deflection, the power of resisting impact. He considers it proportional
to the resilience, and it is entered in the table below as Proportional
Resilience. The experiments were made on "

Eglinton Iron, No. 3,

Hot-blast." After each melting the rupture-surfaces were micro-

scopically examined and presented interesting changes, in some cases

figured in the memoir. Their general appearance is descriU'd in

rather vague language, as: 'finely grained texture/ 'crystals of greatly
increased density,' 'fine frosty appearance,

'

etc. One noteworthy
change is the appearance of an internal core in the last meltings

differing much in structure from the rest of the metal.
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I reproduce the following summary of results (pp. 107-8) :

725

No. of Meltings.
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Up to the eighth inciting it will be observed that the ordinary power of

resistance to a crushing force, namely, about 40 tons to the square inch, is

indicated. Afterwards, as the metal increases in strength, from the eighth
to the thirteenth melting, a very considerable change has taken place, and we
have 60 instead of 40 tons as the crushing force. Subsequently, as the
hardness increases, but not the [transverse] strength, double the power is

required to produce [crushing] fracture (p. 115).

Plate 3 at the end of the B. A. Report figures the rupture surfaces

of the blocks crushed in the experiments.
The results are compared with those of Rennie, Rondelet and

Hodgkinson: see our Arts. 185V7*, 696*, and 948*-51*. The
memoir concludes with a chemical analysis of the iron after different

meltings by F. C. Calvert (pp. 115-116). From this analysis it appears
that silicium increases, while sulphur and carbon fluctuate in percentage
with the number of meltings.

[1101.] British Association, Report of Liverpool Meeting, 1854,

Transactions, pp. 151-152. Letter of William Hawkes : On the

Strength of Iron after repeated Meltings. The writer had made experi-
ments on "Corbyns Hall Iron, No. 1, Hot-blast" with 29 successive

meltings. His results do not present the regularity of change which
marks Fairbairn's experiments : see our Art. 1099. They do indeed give
a minimum and maximum of strength after the 6th and 12th meltings

respectively, but these are followed again by a minimum at the 14th,
a maximum at the 18th, a minimum at the 21st, and a maximum at

the 24th, while the strength at the 29th is greater than after the first

melting. There is thus no sign of deterioration following on any number
of meltings, such as was manifested in Fairbairn's results : see our Arts.

1059 and 1099.

[1102.1 F. C. Calvert: On the Increased Strength of Cast-Iron

produced by the use of improved Coke, with a Series of E.ij rim* tits by
W. Fairbairu, Institution of Civil Engineers, Minutes of Pr<

Vol. xii., pp. 352-381. London, 1853. Evidence is given in this

paper as to the amount of influence which the method of preparation
has on the elasticity, set and absolute strength of cast-iron.

[1103.] J.Jones: Table of Pressures necessary for I'/OK

Plate-Iron of various Thicknesses. The Practical Mechanics J<

nal, Vol. VI., p. 183. London and Glasgow, 1853-4. This table

contains numerical details of apparently very careful experiments
on punching plate-iron. It would still be of considerable service

to any investigator wishing to test a theory of absolute shear

strength : see our Art. 184 (6). No theory is attempted in the

paper itself.

[11*04.] C. R. Bornemann: Notiz uber John Jones' Ver^

'lt>n Kriiftltefliirf :>',,/ Lochen ><,/, h'esselblecheH. I)in<i
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Polytechnisches Journal, Bd. 140, S. 327-32. Stuttgart, 1856.

The details of Jones' experiments on punching holes of various

diameters in iron boiler-plates had been cited in the Polytech-
nisches Centralblatt for 1854 (see our Art. 1103). Bornemann

gives a resume of them, calculating the mean values, and he

suggests the following empirical formula:

P = 62725 -2S22'34a,

where P is the punching stress per unit-area of sheared surface

and a is the area of the sheared surface, P being measured in

pounds per sq. inch and a in sq. inches. For a circular hole of

diameter b in a plate of thickness r, the total load L = TT& x T x P
and a = ?r6 x T or

L = (62725
-

2822-347T&T) TT&T Ibs.,

= (197056 - 27856&T) 6r Ibs.

Bornemann obtains the numerical coefficients by means of the

method of least squares and he then compares the result with

earlier investigations on punching strength, e.g. those of E. Cresy

(Encyclopaedia of Civil Engineering, New Impression, Vol. II.,

pp. 1035 and 1708. London, 1861), which give considerably
smaller values for L, of Fairbairn (locus ?), of Gouin et Cie. (see

our Art. 1108). In round numbers we have for the punching

strength in kilogrammes per square millimetre: Jones, 42; Cresy,
31

; Fairbairn, 37
;
Gouin et Cie. 32. Bornemann concludes with

the following table for English plate-iron :

Resistance to punching 42 kilogrammes per sq. millimetre,

traction 40

shearing 32

crushing 25

The last number 25 I do not understand, as I should have ex-

pected the crushing strength to be greater than this.

[1105.] J. D. Morries Stirling: On Iron, and some Improvements
in its Manufacture. Institution of Mechanical Engineers, Proceedings,

1853, pp. 19-33. London, 1853. This paper contains experiments on
the transverse and tensile strengths of cast- and wrought-iron with the

details of some experiments by Owen on the comparative strength of

ordinary and '

toughened
'

cast-iron girders (p. 23 and Plate 4).
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[1106.] Brame : Note sur ^application de la tole a la construction

de quelques ponts du cJiemin de for de ceinture. Annales des ponts et

chaussees. Memoires, 1853, l
er

Semestre, pp. 78-111. Paris, 1853.

This contains some account of experiments by Brame on iron-plate
with references to those of Hodgkinson, Fairbairn, Gouin et Cie., etc.

see our Arts. 1477*, 1497* and 1108.

[1107.] Kirchweger : Ueber die Prilfung des Stdbeisens. Polytech-
nisches Centralblatt, 1854, Cols. 1110-6. Leipzig, 1854. (Extracted
from MittJieilungen des Cfewerbevereins fiir das Koniyreich Hannover,
1853, S. 240.) This paper gives details of German experiments on the

strength of English iron plates used for the girders of railway bridges.
The plates were tested by boring rivet holes in them, which were then
driven asunder by a conical steel wedge upon which a given weight was
allowed to fall repeatedly from a definite height. The number of blows

required for rupture was taken as a measure of the strength.

[1108.] Gouin et Cie. (Experiences sur la resistance a la traction

de toles de diversea provenances et sur celle des rivets). These ;uv

described in an article by Mathieu and Lavalley on the Pont de C7zW///
in the Memoires...de la Societe des Ingenieurs civils, Annee 1852, pp.
153-7. Paris, 1852. A German translation appeared in the PolytecJi-
niscJies Centralblatt, Jahrgang 1854, Cols. 525-6. The first part of the

experiments deals with the absolute tensile strength of iron-plate parallel
and perpendicular to the direction of the rolling. For charcoal raw iron

there was on the average a fall from 3313 to 3240 kilog. per sq. centi-

metre
; for coke raw iron a fall from 3657 to 2906. Hence the rolling

has far less influence when the iron is prepared in the former fashion :

see our Arts. 1497*, 879 (d) and 902.

The second part of the experiments deals with the absolute shearing

strength of iron rivets of 8 to 16 millimetres diameter. The shearing

strength averaged about 3200 kilogs. per sq. centimetre as compared
with about 4000 kilogs. tensile strength, or very nearly in the i ratio

obtained by extending uni-constant isotropy to the rupture of wrought-
iron.

[1109.] Collet-Meygret et Desplaces: Rapport sur les epreuves

faites d I'occasion de la reception du viaduc en fonte const /

le Rhone, entre Tarascon et Beaucaire, pour I<> /mxaiye du diemiH

'If fer, et sur les observations qui out servi a constater les mouve-

>ts des arches sous ^influence de la teinj'r'it"re et des charges,

so it permanentes, soit accidentelles ; suivi de considerations sur le

mode de resistance et sur l'emploi de la fonte dans les yru

travaux publics. Annales dex j><>nt* et chaussfos. Mernoires, 1854-,

l er
Semestre, pp. 257-367. Paris, 1854.

This memoir contains an account of the viaduct over the

Rhone at Tarascon, the arches of which were made of cast-iron.



1110] COLLET-MEYGRET AND DESPLACES. 729

The description is of interest, as these arches have been dealt with

theoretically by Bresse : see our Arts. 520 (a) and 527. It is also,

I think, the first bridge in which the strains due to changes of

temperature were carefully measured (pp. 274-291). The exact

deflections due to dead and live load were also very accurately
ascertained (p. 280 and pp. 292-307). The diminution of the

compressibility of the iron with the increase of the load, i.e. the

non-proportionality of stress and strain within the elastic limit,

seems to have been noted on the large scale of this bridge: see

our Arts. 1411* and 935.

[1110.] On pp. 307-19 we have a comparison of theory and ex-

periment. The authors give the following formula for the deflection f
(deduced in Note A, pp. 360-4) :

'000,004,855,

where p = the weight of the arch per unit run of the horizontal, r the
radius of its central axis, E its stretch-modulus and w/c

2 the usual
moment of inertia of the cross-section about the 'central axis.' The
values of f obtained from this formula were far from agreeing with
those found by direct experiment. The authors accordingly argue that
E ought only to be given one-half the value previously adopted for it

from traction-experiments (p. 320). It must be remarked, however,
that their theory of arched ribs is very far from satisfactory and that it

ought to be replaced by Bresse's investigation: see our Arts. 514-31.
This discrepancy in their theory leads the authors to consider the

details of a number of French and English experiments on cast-iron.

They show that its tensile strength varies with its quality and the
dimensions of the test-piece to a very wide extent, and hence they appear
to argue (p. 329) that its stretch-modulus can also have values varying
from 6,000,000,000 to 12,000,000,000 kilogrammes per sq. metre. This
does not seem very convincing, especially as the table (p. 327) of tensile

strengths has been deduced from flexure experiments : see our Art.
1052. A more satisfactory investigation by direct experiment of the
values of E follows on pp. 330-46. These values were found to vary
from less than 3,000,000,000 to more than 12,000,000,000 kilogrammes
per sq. metre, according to the material of the bar. The authors
conclude that :

1 les barreaux de fonte des diverses usines essayes dans les memes
circonstances donnent des valeurs de E peu differentes.

2 un barreau donne pour E des valeurs sensiblement differentes suivant

qu'il est pose k plat ou de champ.
3 les barreaux d'ime mme usiue donnent des valeurs de E tres-differentes

suivant les conditions des assemblages ; poses sur deux appuis et charges an
milieu, ils donnent des valeurs de E plus grandes que lorsque e*tant poses sur
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deux appuis ils sont charges a leurs extre'mite's, ou lorsqu'e'tant encastres par
un bout ils sont charge's k 1'autre bout, et, dans ce cas, ils donnent des
valeurs de E plus grandes que lorsqu'ils sont charge's debout, c'est-a-dire

comprimes dans le sens de leur longueur (p. 337).

As a result of these conclusions Collet-Meygret and Desplaces
consider that the best value of the stretch-modulus for the iron of the

Tarascon viaduct ought to be obtained by comparing direct experiment
on the bridge itself with the formula referred to above. They consider
that it is the manner in which the iron is employed in the structure

rather than its particular 'manufacture' which determines the value of

its stretch-modulus.

[1111.] They especially note the difference between the elasticity
of the core and periphery in the case of cast-iron bars and conclude :

1 que de deux pieces semblables de la meme fonte, la plus grosse donnera
la plus faible valeur de E.

2 qu'une meme piece charge'e de la meme maniere et sous les mmes
assemblages donnera, lorsqu'elle sera presentee sous differentes faces, des
valeurs de E differentes, ddpendantes du moment d'inertie de sa section,

compare* au moment d'inertie de son pdrimetre.

3 que dans une mdme pifcce de fonte on trouvera pour E une valeur
d'autant moindre que dans les joints d'assemblage et par le mode de charge-
ment, on laissera libre une plus grande portion du peri metre, de maniere

qu'une plus grande partie du metal exterieur, le moins elastique, soit en-

trainee par le metal interieur, le plus elastique, au lieu de le retenir (pp.

340-1).

The authors suppose the periphery to have a thickness of -005

metres, a stretch-modulus c and an absolute tractive strength r. Thou it'

E and T be the like quantities for the core, they tind from experiments
on cast-iron bars such as were used in the Rhone viaduct in kilogs. PIT

sq. metre,
T > 40,000,000, e > 12,000,000,000,

77 < 20,000,000, E< 3,000,000,000.

Their remarks on the experiments leading to these results and the

conclusions to be drawn from them are of considerable interest : see

their pp. 341-6 and our Arts. 169 ()-(/) and 974
(e).

Similar

differences probably hold for the temperature effect on the core and on

the periphery, but the authors remark that as various physicists give
values for the stretch per degree centigrade of iron, whether it be cast

or wrought, varying only between -000,011 and -000,013, it is safe to

neglect these differences and adopt the number -000,012,2 to represent
this stretch.

[1112.] With this value of the stretch or thermal coefficient and

with the modified value of tin- st i ten-modulus the authors (pp. 346-58)

analyse the various elements of flexure due to temperature, to live ami

to dead load. They sum up their conclusions on pp. 358-60. Their
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remark, that the values of the elastic constants found by physicists

experimenting on small bars of metal cannot be safely adopted for large
masses of the same metal such as occur in great engineering structures,

deserves from its obvious truth more attention than it has sometimes

received (p. 359). To the memoir are appended (pp. 360-7) various

notes which do not call for special mention here.

[1113.] G. Weber: Versuche uber die Cohdsions- und Torsions-

kraft des fur Geschiitze bestimmten Krupp'schen Gussstahls. Dinglers

Polytechnisches Journal, Bd. 135, S. 401-17. Stuttgart, 1855.

This memoir opens with some interesting details of the chemical

constitution of gun-metal used in 1663 and later, and shows how the

earlier metal would certainly not have stood the strength of modern
(?)

powder. Weber then proceeds to details of the tensile and the

torsioual strengths of steel (manufactured by Krupp, and in England,

Salzburg and the Tyrol) of wrought-iron and of bronze or gun-metal.
There is an interesting figure (Tab. vi., Fig. 2) giving a good picture
of the stricture of a bar of Krupp's cast-steel for guns. It shows

exceedingly well the relative amount of stricture at each cross-section

and the total change at rupture of each dimension of the bar. The
whole paper is an advertisement for Krupp, but probably a well-

deserved advertisement.

[1114.] Details of various experiments on the strength, and elas-

ticity of steel with reference to the peculiar difficulties of casting it so

that its quality is uniform throughout the piece, and with comparison
of results obtained for wrought-iron will be found in the Poly-
technisches Centralblatt, Jahrgang 1856, Cols. 12756, Jahrgang 1857,
Cols. 35-44 (Annales des Mines, T. VIIL, pp. 373-88, 1855) and

Jahrgang 1857, Cols. 1128-38. All these have special reference to steel

prepared by Uchatius' process. With, regard to the strength and
stricture of wrought-iron prepared by the Bessemer process an account

of some experiments made at Woolwich will be found in The Mechanic's

Magazine, 1856, p. 270.

[1115.] William Fairbairn : On the Tensile Strength of

Wrought-iron at various Temperatures. British Association,

Cheltenham Meeting, 1856, Report, pp. 405-422.

These experiments are of very considerable interest, as in

many structures of wrought-iron the material is subjected to very

high temperatures or to a considerable range of temperatures.
Fairbairn's first series are on the tensile strength of boiler plates

with and against the fibres. From to 395 Fahr. there seem

to be only very slight fluctuations in the strength in the direction

of the fibre, and these are not improbably due to experimental

errors, or to weaknesses in the individual pieces. Roughly the

strength fluctuates from 18 to 22 tons per sq. inch without any
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apparently regular variation with the temperature. I have little

doubt that some of the fluctuation is due to want of exactly
central pull in the arrangement adopted by Fairbairn. For tensile

strength across the fibre there is a rise from about 187 to 20 4

tons per sq. inch for a change of temperature from O
c
to 212, a

fall to 18-8 at 340 and to 15'3 at visible red heat, the latter result

being considered by Fairbairn as too high. Here again the only
safe conclusion seems to be that at "a dull red heat just per-

ceptible in day-light
"
the tensile strength is much reduced. At

what heat the maximum is reached is not rendered clear by the

experiments (pp. 413-4).

[1116.] The second series of experiments relate to the tensile

strength of rivet-iron. Here there was a more marked relation

between strength and temperature. The experiments were on

temperatures from 30 to 435 and at
' red heat.' There was an

increase here from 28'2 tons at - 30 to 37'5 at 325, and at least

a steady increase from 281 tons at 60 to 37'5 at 325
e

. After

this there was a slight diminution at 435, and a great drop to

161 tons (marked "too high") at red heat (p. 420).

The memoir concludes with a comparison of the increase in

strength due to rise of temperature with that due to repeated

fracture, and with some remarks on the stretch in bars of different

lengths, which do not seem to me of much scientific value : see

pp. 421-2 and our Art. 1503*.

[1117.] William Bell: On the Laws of the Strength of

Wrought- and Cast-iron, Institution of Civil Engineers, Minutes

of Proceedings, Vol. xvi., pp. 65-81. London, 1857. A ris>

of this paper will be found in the Mechanics Magazine, Vol. 65,

pp. 579-81. London, 1856. It is an endeavour to demonstrate

from the many experiments which have been made on cast- and

wrought-iron beams under flexure that theory and experiment are

after all not so discordant as some have supposed. We may sum

up the author's conclusions as follows :

(i)
For slight strains theory and experiment coincide.

(ii) The ordinary theory of rupture practically coincides with

experiment for wrought-iron beams, especially those of large size. [It
should only do this if Hooke's Law practically holds for wrought-iron

up to rupture.]
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(iii)
There is no reason for supposing the neutral axis shifts its

position to any extent worth noticing before rupture.

(iv) There is a divergence between theory and experiment in the

case of small cast-iron bars whose transverse strength is compared with

their direct tensile strength, but the coincidence between these strengths
for large girders is nearly exact.

I think the latter statement requires further demonstration. We
should not expect such equality because Hooke's Law does not hold

for cast-iron, even in the case of small strains, and certainly not up to

rupture.

(v) That one of the chief failures of the ordinary theory occurs for

cast-iron struts (rounded ends for length < 20 diameters, and flat ends
for length < 50 diameters, p. 67).

[1118.] The author remarks that according to Hodgkinson the

ratio of the tensile and compressive strengths of wrought-iron may for

practical purposes be taken as unity. In the case of cast-iron he

apparently prefers a traction-stretch relation of the form
(!)

m = q + E8a ,

where q is a constant, to Hodgkinson's

xx = asx - bsx
2

.

[1119.] In the discussion P. W. Barlow laid stress on W. H.
Barlow's '

explanation
'

of the paradox in the resistance of beams under
flexure (see our Art. 931), and W. T. Doyne on his modification of

Hodgkinson's rule for the section of the beam of maximum strength ;

see our Arts. 1016 and 1023. R. Sheppard communicated a method of

noting the permanent set due to flexure by drawing lines on the faces

of a beam of lead.

[1120.] On p. 83 ftn. of the same volume will be found some
details of the tensile, transverse and crushing strengths of some iron

manufactured in India.

[1121]. H. Wiebe : Ueber die Festigkeit der Bleche und der Verniet-

ungen. Zeitschrift des Vereins deutscher Ingenieure, Jahrgang i., S.

255-268. Berlin, 1857. This paper gives details of the experiments
of Fairbairn, Clark, and Gouin et Cie. on riveted iron-plates : see our

Arts. 1497*, 902, 1066 and 1108.

[1122.] B. Dahlmaim : Die absolute Festigkeit verschiedener Eisen-

und Stahlsorten des konigl. wiirttemb. Huttenwerks Friedrichsthal.

Dinglers Polytechnisches Journal, Bd. 143, S. 94-7. Stuttgart, 1857.

Details are given of the absolute strength of cast-iron and steel made
at a particular foundry, and as individual results they form only an
advertisement of the same foundry.
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[1123.] M. Meissner : Mittheilung von Versuchen, wekhe zur

Ermittelung del* absoluten Festigkeit von Eisen- u. Stahlsorten in April
1858 ausgefulirt warden sind. Polytechnisches Cen.tralblatt, Jahrgang
1858, Cols. 1195-9. Leipzig, 1858. (Extracted from the Zeitschri/t

d. osterr. Ingenieur-Vereins, 1858, S. 88.) This paper merely contains

details of the absolute tensile strength of various kinds of iron and

steel, which might be useful, as others of the same type, to anyone
writing a history of the gradual improvements in the preparation of

iron and steel, but the results are of no permanent practical value and
have no bearing on theory.

[1124.] Vergleichende Zerreissversuche init den Pohlmanrischen,

Webster-IIorsfalVschen und Miller'schen Clavier-Stahlseiten. Dingier*

Polytechnisches Journal, Bd. 147, S. 460-1. Stuttgart, 1858. (Extracted
from Verhandlungen des nieder-osterreichiscJien Gewerbevereins, Jahrgang
1858, S. 54.) This contains details of the comparative strength of the

steel pianoforte wires of different manufacturers, and is of no general
interest at the present time.

[1125.] C. E. Browning: On the Extension and Perin>n',,t Set of
Wronyht-Iron when strained tensibly. The Engineer, Vol. v. pp. 317
and 352. London, 1858. These two letters propound the thesis that

the strength of wrought-iron is increased by straining it to rupture.
The writer apparently considers that the density and strength are alike

increased by the drawing in of the cross-section in set, but the experi-
ments he cites are certainly not conclusive, as it might well be argued
that a bar would give way first at its weakest cross-section, and thus

we might expect a greater load at successive ruptures: see our Art.

1503*. The proposal in the second letter to subject all the bars of

braced girders and the cables of suspension bridges to a stress of

tons per square inch before using them, as a means of increasing their

strength and reducing the weight of structures would hardly meet with

favour, we think, from practical engineers.

[1126.] Volckers: Ueber Festigkeit der Bleche, Zeitscltri/f

Vereins deutscher Ingenieure. Jahrgang n., S. 17-20. Berlin, 1858.

This paper contains the details of some experiments on tin alolute
tensile strength of iron plate with and across the fibre, Volckers found

with the fibre 100, across 9T3, in the diagonal 93'2 to represent tin-

relative strengths of one kind of iron plate, aiid on the l>ss ..f strength
due to riveting. Volckers found the loss of strength due to punching
rivet holes to be as 59'4 to 100, while Fairhairn had ijivcn it as 56 : 100 :

see our Art. 1500*. The author also gives some account of experi-
ments on the loss of strength by heating. He concludes that tin T

little reduction of absolute strength up to about 300 C., but that

temperatures from 500 to 700 C. enormously reduce the strength, tin-

reduction amounting to one-half and even more. The memoir concludes

with a coinj'Mi ison of the formulae of the Prussian, French and Austrian
( lovernments for the thickness of cylindrical l>oil-rs. ff n \ e the number
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of atmospheres internal pressures, r the thickness in Prussian inches,
d the diameter in Prussian feet, these formulae were :

Prussian, T= -QlSd (n- 1) + '1

French, T = -Q2Ud(n- 1) + "113, (see our Art. 879 (c).)

Austrian, r=^ -0216eZ(n- 1) + '114.

Volckers compares these formulae with the results obtained by him
for the strength of riveted plates and concludes that even the Prussian
formula gives theoretically sevenfold safety (p. 20).

[1127.] Another series of experiments on plate-iron by C. Schbne-

mann will be found on S. 304-6 of the same Jahrgang of the Zeitschrift

(Resultate von Blech-Versucheri). The effects of temperature and of

rivet holes in reducing strength were considered. Numerical results

are given, but no general conclusions are drawn. Further experiments
by Krame of a like kind will be found on S. 173 of the Zeitschrift,

Jahrgang in., 1859.

[1128.] Robert Mallet : On the Coefficients Te and Tr of Elasticity
and of Rupture in Wrought-Iron, in relation to the Volume of the Metallic

Mass, its Metallurgic Treatment, and the Axial Direction of its con-

stituent Crystals. Institution of Civil Engineers, Minutes of Pro-

ceedings, Yol. xviii., pp. 296-348 (with discussion). London, 1859.

This is an interesting paper dealing principally with the influence of

the bulk of a forging on its elastic and cohesive properties. The author
on p. 298 states the three principal points of his inquiry as follows :

(i)
What difference does the same wrought-iron afford to forces of

tension and of compression, when prepared by rolling, or by hammering
under the steam-hammer, the bars being in both cases large ?

(ii) How much weaker, per unit of section, is the iron of very
massive hammer forgings than the original, or integrant iron, of which
the mass was made up ]

(iii)
What is the average, or safe measure of strength, per unit of

section of the iron composing such very massive forgings, as compared
with the acknowledged mean strength of good British bar-iron in

moderate market sizes 1

Mallet holds the proper measure of strength in a bar of iron to be
the " work done, whether by extension, compression, rupture, or crush-

ing, by any force applied to it." Thus his Te
= the elastic resilience of

the body = J Es*, where s is the limiting elastic stretch or squeeze,
= |s P ,

where PQ
= EsQ .

"The value of the coefficient Tr
" he continues, "is arrived at in the

same way by substituting the corresponding values for P and s
,
due to

the moment of crushing or of rupture" (p. 299). This seems to me to

suppose that the proportionality of stress and strain lasts up to rupture,
which is indeed far from true for many materials. It would seem
better to define Tr as the work done in rupturing a body, without

expressing it in terms of the final stress and strain.

I find that Mallet calculates his value of Tr from the assumption
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that its value is half the product of the final strain into the final stress

(see his Appendix, Tables I. and II., together with the remarks, p. 332).
Thus it cannot be taken as a basis for some of the conclusions he draws
from it. I think his own diagrams, pp. 318-19, should have shown him
his error in this respect.

Mallet attributes the introduction of these coefficients Tt and Tr to

Poncelet (see our Art. 982* and compare Art. 999* however) and re-

marks that for all crystalline substances, notably wrought-iron (see our
Art. 1065), their values will depend on the direction of the stress which

produces rupture.

[1129.] He compares the strength of bars cut in different directions

from massive forgings, and concludes generally that the latter are

weaker than the rolled bars of moderate size of which the heavy
forgings were built up. He likewise shows how the molecular arrange-
ment far more than the metallurgical constitution affects the elasticity
and strength of different kinds of iron.

Probably his resume of the elasticities and strengths of cast- and

wrought-irons, especially in regard to the longitudinal and transverse

elasticities and strengths of large forgings would be useful even to-day :

see Table V. of the Appendix. It is certainly of great interest to the

theoretical elastician to see how far the distribution of elasticity depends
on 'working,' and how widely the ordinary materials of construction

diverge from isotropy.

[1130.] A. R. von Burg: Untersuchungen uber die Festigkeit von

Stahlblechen, welche in dem Eisenwerke des Herrn Franz Mayr in Leoben

filr Dampfkessel erzeugt werden. Sitzungsberichte dtr mat1iemal<

naturwissenscJiaftlichen Classe d. k. Akademie der Wissemchaften, Bd.

35, S. 452-74. Wien, 1859.

This memoir busies itself
1 with the safe use of cast-steel as a material

then being adopted for boilers. Howell in England had introduced

a 'homogeneous patent iron' especially intended for boilers, and tin-

experiments detailed in this paper are on cast-steel plates (QututoM-
Meche) prepared by F. Mayr for a similar purpose and tested by tli-

Vienna Polytechnic Institute at the request of the Handelsminis-

terium. The experiments go to show that the tensile strength of

cast-steel plates is roundly double that of iron plates, both being of

Austrian manufacture, and these experiments are shown to be \v-ll

in accord with those of Fairbairn, Clark and Gouin et Cie. : see our

Arts. 1497*, 902, 1066, and 1108. They give a tensile strength in

the direction of the rolling (Langenrichtung, Richtung des Wcdzens)

1 v. Burg gives an interesting foot-note on 8. 454 on the difficulty of determining
the exact factors in iron and steel which cause their very different elastic propei
All this difference is not due to the quantity of carbon (varying from >_''> t. 1 '. p.c.),

but has probably much to do with the state of crystallisation < Pulton attribut* i

difference almost entirely to the latter). Fuchs supposes iron dimorphic, consisting
of a mixture of tessera! and rhombohedral crystals : wrought-iron is chiefly tessera),

raw-iron rhombohedral. He attributes the difference between tempered and un-

tempered steel to a transition from one form of crystallisation to the oth< r.

annealing with increasing heat the tesseral replaces the rhombohedral crystal list'
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slightly greater than in the direction transverse to it (Querrichtung) ;

this agrees with the results for iron-plates, of Clark, Gouin et Cie and
von Burg himself, but not with the rather doubtful conclusions of

Fairbairn as to Yorkshire and Staffordshire plates. The stricture was
also greater and rupture more gradual in the case of bars cut in the

direction of the rolling. Von Burg concludes his paper with some
remarks on the elastic limit for steel plates, which are not, however,
based on his own experiments. Ausglilhen for two hours over a charcoal

fire did not reduce on cooling the strength of steel more than 2 p.c.

(S. 463-6).

[1131.] K. Karmarsch : Ueber die absolute Festigkeit der Metall-

drahte. Polytechnisches Centralblatt, Jahrgang 1859, Cols. 1272-76.

Leipzig, 1859. (Extracted from the Mittheilungen d. Gewerbe-Vereins

f. d. Kbnigreich Hannover, 1859, S. 137.)
The writer begins by referring to his experiments of 1824 (see our

Art. 748*) in which he had shown that the process of drawing alters in

a remarkable manner the absolute strength of metal in the form of

wires :

Die Ursache der beriihrten Erscheinung liegt unstreitig in Folgendem :

Wenn ein Draht feiner und feiner gezogen wird, vermindert sich seine Festig-
keit d. h. die zum Abreissen desselben erforderliche Zugkraft nach Ver-
haltniss seiner Querschnittsflache oder des Quadrats seines Durchmessers.

Zugleich aber findet ein Zuwachs an Festigkeit dadurch statt, dass das
Metall zunachst an der Oberflache, vermb'ge des Drucks in den Ziehlochern

verdichtet, wohl in der Textur vortheilhaft verandert wird. Da diese Wir-

kung unmittelbar am Umkreise des Querschnitts vor sich geht, so steht ihre

Grosse im Verhaltniss dieses Umkreises oder, was eben so viel sagen will, des
Durchmessers.

Man darf sich daher die Festigkeit F eines Drahtes vom Durchmesser D
als aus zwei Theilen zusammengesetzt vorstellen, von welchen der eine von
dem Durchmesser, der andere von der zweiten Potenz des Durchmessers

abhangig ist
;

d. h. man kann

setzen, worin a und b aus der Erfahrung abgeleitete Coefficienten sind (Col.

1273).

Karmarsch then determines the constants a and b for a great variety
of metal wires, but his method of selecting the results from which a
and b are to be determined seems to me very unsatisfactory. He ought
to have proceeded by the method of least squares, but he calculates

a and b from a number of selected experiments by taking the arith-

metical means.
The process of annealing reduces the values of both a and b. The

coefficient b can amount in the case of ordinary iron or platinum wire

to as much as one half of a and sinks in the case of lead to zero, or to

an insensible quantity. The relation of the absolute strengths of

annealed and unannealed wires is not the same for the same metal,
but varies with the diameter of the wT

ire. Further for wires of the

T. E. II. 47
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same diameter but of different metals it varies from a maximum with

platinum to a minimum with iron.

[1132.] Admiralty Experiments on ///< Various Makes of Iron
Steel. Transactions of the Institution of JV"r/ Arr/n'frcf^. Vol. i.,

pp. 169-70. London, 1860. Also The M-Lni< '* Jftn/<i~.ine t
New

Series, Vol. in., pp. 156-7. London, 1860.

This paper records the results of a number of experiments on

and puddled steel and on cable iron in the form of bolts and links as

used for cables made at Woolwich Dockyard in 1859. "With a side

weld and 1^ in. chain the best puddled steel bore 39 to 41 tons, while

the best iron bore
41-]- to 43;

; tons. The difficulty of properly welding
the steel seems to have told against the strength of steel as compared
with iron cables in the experiments on links: see our Art. 1117.

The numerical details might still be of service to any one working out

a theory of the absolute strength of chain-cables : see our Art. 64 1 .

[1133.] F. Schnirch : Resultate einiger Versuche iibe-r /';////

des Schmiedeisens und einiger Steingattungen. Zeitschrift des Hsf- rr> /.//-

ischen Ingenieur-Vereins, Jahrgang xn., S. 2-3. Wien, I860. This

paper contains nothing of permanent value.

[1134.] H. Tresca: Proces-verbal des experiences faites Kin-

la resistance des toles en ader fondu pour chaudieres. A ///.

Mines, Memoires, T. xix.pp. 345-65. Paris, 1861. This is att;ieli.-d

to a Rapport by a Commission appointed to consider /ex n, mil-

lions spfoiales d'epaisseur pour les toles d'acier fondu ew]>!<>

dans la construction des chaudieres a vapeur, which occupies

pp. 311-44 of the same volume. The Commission consisted of

the engineers Cornbes, Lorieux and Couche, and they exprri-

mented on a boiler of cast steel plate presented by MM. Pt'tin

et Gaudet to the Exhibition of 1855. The experiments on tin-

material of this boiler and on plates of like material showed

that the ductility and absolute strength of a plate \\ere in

inverse ratio; they also exhibited the now well d phe-

nomenon of stricture. There are details (pp. 324 (!) <>t further

experiments on the strength and ductility of various kinds nf strrl

plates and the evidence of various engineers with r.-ard t< their

practical efficiency. At the request of the Commission further

experiments were made by Tresca on bars cut from p!

prepared by Pc'tin et Gaudet. These bars \\eiv tested for -\ten-

D and abeolul .all. and in \:iri.n> eoiiditi<ns a-
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tempering and annealing. Tresca gives (Plate vi.) stress-strain

diagrams, which show the rapid increase of stretch after the elastic

limit is passed. For an untempered bar this limit was reached at

a tensile stress T^ of about 2477 kilogs. per sq. centimetre, the

stretch-modulus being ^=19,674,000,000 kilogs. per sq. metre

and the elastic limit a stretch of ^ = '001259. Corresponding to

rupture we have a traction T
2
of about 4873, with a stretch of

5
2
= '05493. On the other hand after tempering and annealing

we find for another bar with the same units,

T
l
= 6528, 8l

= '00331, E= 19,722,000,000,

s = -00473.

Thus the elastic limit and the absolute strength are much raised

by the process, but the stretch-modulus remains practically con-

stant. Tresca was among the first to notice these facts and also

to give well-drawn traction-stretch diagrams showing the life-

history of individual material : see our Art. 1084 and Vol. I. p. 889.

Without entering more fully into the details of his individual

experiments we may briefly indicate his conclusions :

1 Maximum stretch before rupture :
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3 Tractions at elastic limit in kilogs. per sq. centimetre :

[1135

Before tempering

After tempering

Aciers <l<m\ Aciers vifs

2400 2532

7440 5066

4 Stretches at elastic limit :

Before tempering

After tempering

Aciers doux Aciers \it-

001,368 -001,230

003,767 -002,618

5 Elastic resilience (= area of elastic stress-strain diagram) :

Before tempering

After tempering

Aciers doux

1-641 kilogs. per sq. cm.

about nine times the above.

Aciers \ if-

1-565 kilogs. per sq. cm.

about four times the above.

6 Absolute strength, means in kilogs. per sq. cm. :

Aciers doux

Before tempering

After tempering

Aciers vifs

5318

7-':* 1

See TrOBCa'fl memoir
]>]>.

-'Ml ~>. Mini eoni|.;uv \\itli tin- results of

Brix and \\Yrtl.i-im rit.-d in our Arts. 848*-58* and L292 i:'.Ul*

[1135.] 'Lloyd's' Experiments >//>"
t / I,-*,,* J'fufrs <nl M<:

Rivet in;/ (iftjiliniltle
to tln> Conxf ruction <>f ,S

f

///y>.s-
: Trn nxm-tim.

the Institution of Xnntl Arrhitcrt*. \'..i. i.. pp. 99-104. Lnn<l.ii.
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This paper contains the details of a series of experiments
on riveted joints made for

'

Lloyd's
'

under the superintendence of

W. T. Mumford, surveyor, in 1857. The experiments were

arranged solely with a view to acquiring special information for

iron shipbuilders, and seem both from the mode of experimenting
and the comparative paucity of experiments, 22 in all, to be of

little theoretical or even permanent practical interest. With two

exceptions the joints were all butt-joints, the rivets were placed in

single and double rows, being spaced at three, four, and four and a

half diameters apart. In both lap- and butt-joints spacing the

back row exactly behind the front row gave better results

than spacing midway, and four diameters apart seems to have

been the best spacing. Lap-joint, double riveting, four diameters

apart, reduced the strength of the plate in the ratio of 69'5 to 100,

while butt-joint, double riveting four diameters apart, reduced the

strength in the ratio of 76*5 to 100, in both cases the back rows

were exactly behind the front-rows.

[1136.] J. Daglish: On the Strength of Wire-Ropes and Chains.

The Engineer, Vol. XL, pp. 51 and 67. London, 1861. This contains

the details of a paper read before the Northern Institute of Mining
Engineers with the discussion upon it. A further paper entitled : On
the cause of the Loss of Strength in Iron Wire when heated will also

be found on p. 67. These papers give some account of experiments
011 the absolute strength of wire ropes and iron chains. They show
the reduction in strength produced by heating, by splicing and by
ordinary socket joints in the case of wires. The experiments on

chains do not give details of the links (f inch wrought-iron chains bore

15 to 24 tons). They show, however, the remarkable result that chains

after being once tested and having borne a load of 18 to 22 tons may
afterwards break with a less load of 16 to 20 tons. This does not tend

to confirm the contention of Browning: see our Art. 1125. Daglish

supposes the considerable weakening effect of heating wire ropes to a

red heat as compared with the slight effect of the same treatment on

chains to be due to the fact that the former are cold and the latter hot

rolled. He does not believe, however, that the increased density due

to drawing is the real cause of this difference in strength, for this

difference in density he tries to show does not disappear on heating
either wire or cold rolled iron to red heat. Such a process changes the

density but sometimes increases, sometimes decreases it.

[1137.] David Kirkaldy: Experiments on the Comparative

Tensile Strength of Steel and Wrought-iron (made for Messrs
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Napier and Sons). These are published in the Transactions of
the Institution of Engineers in Scotland, Vol. n., 1859. A short

resume of Kirkaldy's results was also communicated to the

British Association and will be found in the Transactions of the

Twenty-Ninth (Aberdeen) Meeting, 1859, pp. 242-3. They were

reprinted in extenso in The Artizan, Vol. xvni., pp. 8-20 (pp.

9-20 are erroneously paged 321-332). London, 18GO. The
results are given in the above publications without comment
and consist almost entirely of tables of numerical data. The

experiments are some of the most comprehensive and thorough
ever made on steel and wrought-iron.

The object -sought in instituting the series of experiment.^ about to be

described \v;ts to ascertain the comparative strength of various kin<l

ami WfOUght-irOQ when subjected to n tensile strain, with the view of sub-

stituting homogeneous metal or steel for wrought-irou in the construction of

machinery, boilers, steam ships, etc.

Upwards of 540 specimens were tested and these were "indis-

criminately collected from engineers' or merchants' stores except
those marked samples which were obtained from the maker
The object of this precaution was to avoid especially prepared test

pieces. The experiments themselves made by perfectly reliable

and disinterested engineers for their own practical information

were among the first to give full details of stricture and fracture,

and are of as great theoretical as practical interest. We shall not,

however, attempt to analyse them in the above form, but note

that all these results as well as others were embodied by Kirkaldy

shortly afterwards in a work, the title of which is given in the

following article.

[1138.] David Kirkaldy : Results of an E.i'/n'riment'i!

into the Tensile Strength and other Properties of various /////

Wroaght-Iron and Steel. 1st edition, 18G2, 2nd edition, ]
v

Glasgow. This work, although falling a little outside our pivsnit

period, to a great extent embraces experiments conducted several

years previously and referred t<> in the preceding article. Our

references will be to the pages (1-227 and xvi plates) of the

1 An attempt was made to suppress the publication of the results on th> u
rr>uul

that the specimens had not been procured directly, and legal proceed;
threatened. That the attempt failed does not really affect the arguments in favour
of an independent Government testing house.
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second edition. The treatise may be said to do, and do in a

more thorough manner, for wrought-iron and steel what the

English and American experiments had already done for cast-iron:

see our Arts. 1406*, 1037 and 1048.

[1139.] Pp. 9-17 deal with the mode of collecting specimens (see
our Art. 1137), with the form of the testing-apparatus (see Plate I., it

was a somewhat primitive directly-loaded lever machine), with the

preparation of the specimens and the measurement of their extension

under stress (by a large pair of compasses with their points inserted in

marks made by a centre-punch in the bar) and with the method in

which the results are tabulated. The method of experimenting was

throughout based on the desire to reach broad technical conclusions,,

rather than to make delicate physical measurements, and the methods

adopted appear occasionally to have been rather rough and ready when

judged from the physical standpoint. The experiments were directed

to ascertain breaking stress, stricture, nature of rupture, rate of elonga-
tion under increasing stress, influence of treatment and of shape,

strength of welded joints, effect of gradual and sudden stress on steel

and iron in both bar and plate. Tables F-K give a summary of the

numerical results, Plates II. to V. give reproductions of the rupture
surfaces, and Plates VI. to XIII. represent the results graphically.
We proceed in the following articles to give a brief resume of some of

the results of Kirkaldy's experiments together with the inferences

which may be drawn from them.

[1140.] Section vm. ( 29-70) deals with the tensile strength
and stricture of wrought-iron. It opens with an historical account

of the experiments on iron of Muschenbroeck, Lame, Telford,

Brunei, Fairbairn, Wade, Lloyd, etc. (see our Arts. 28* (S),

1001*-4*, 1494*-1503*, 1037, and 1135) and points out the great

divergence in the recorded results. This is attributed partly to

difference in quality and partly to difference in methods of experi-

menting and stating experimental results. Kirkaldy remarks of

these earlier researches :

In all former experiments the ultimate strength or breaking weight per

square inch of the specimen's original area alone is given, and the various

pieces are rated accordingly, the one that stands highest being considered

the best.

It seems most remarkable that an element of the highest importance
should have been so long overlooked, namely, the Contraction of the speci-
men's area [i.e. Stricture] when subjected to considerable strain [? stress], and
the still greater contraction, at the point of rupture, which takes place in a

greater or lesser degree as the material is soft or hard, and the consequent
influence this reduction must have on the amount of weight sustained by the
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specimen before breaking. The apparent mystery of a very inferior descrip-
tion of iron suspending, under a steady load, fully a third more than a very
superior kind, vanishes at once when we find that the former had tho benefit

of retaining to the last its original area only slightly decreased
; whilst the

latter on breaking was reduced to very nearly a fourth of its original ami
the one a hard and brittle iron, liable to snap suddenly under a jerk or blow,
the other very soft and tough, impossible to break otherwise than by tearing

slowly asunder (pp. 23-4).

Kirkaldy is of course quite right in drawing attention to tin-

importance of taking into account not only the absolute strength

per unit of original area, but also the elongation and stricture in

measuring the value of a certain class of metal, but the introduc-

tion of the words 'superior' and 'inferior' above would appear to

suggest some test of the superiority or inferiority of the metal not

relative to the purpose to which it is to be applied. In most cases

the element of ultimate resilience will of course be of considerable

importance : see our Arts. 1085 and 1128.

Kirkaldy following up the ideas suggested in the above quota-
tion gives for bars full details of their total elongation, their

general reduction of section other than at the section of fraetuie,

their reduction at the section of rupture (or the stricture), and al>>

of their absolute strength calculated to original, reduced and

rupture sections. Further, the nature of the rupture is recorded.

Similar details are then given for plates.

[1141.] Kirkaldy takes as his test of relative merit the absolute

strength conjointly with the stricture, and it becomes import a i

ascertain what influence different methods of working have on one or

both of these properties. He notes the following points :

(i)
The size of the bar in rolled iron has far more influence on the

absolute strength of ' inferior
'

iron than of iron of '

superior
'

quality.

(ii) Removing the skin does not alter the strength, or rough rolled

bars are not stronger than turned ones : see our Art. 858*.

(iii) Reducing rolled bars by forging slightly increases the absolute

strength, but decreases the stricture.

(iv) The absolute strength and stricture of iron-plates is greater in

the direction in which they are rolled than across it (pp. 26-30) :

our Arts. 1497*, 902 and 1108.

After dealing with rolled iron Kirkaldy turns to hammered iron

and criticises the loose use of the term scrap-iron. He shows among
other things, that the absolut- !i and stricture are greater in

miens cut lengthwise than in those cut crosswise from crank.^ha:
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[1142.] Section IX. (pp. 33-5) deals with steel, and Kirkaldy
insists on the same conjoint test (Art. 1141) of the value of different

parcels. He states that the absolute strength and stricture of puddled
steel plates are greater in the direction in which they are rolled, as in the

case of iron plates, while the converse holds for cast steel plates (p. 92).

[1143.] Section X. (pp. 35-60) discusses with a criticism of the

results of other writers the appearance of the rupture surfaces in iron.

Kirkaldy enters into the history of the controversy as to the change
from fibrous to crystalline structure by vibration : see our Arts. 1463*-4*,
881 (b) and 992. He cites the opinions of McCoimell, Thorneycroft
and Stephenson, as well as that of Roebling, the engineer of the

Brooklyn bridge, who does not appear to have believed in the change.

Kirkaldy himself considers that the nature of the rupture surface

depends largely on the mode of rupture, and not on previous vibration.

He holds that :

the appearance of the same bar may be completely changed from wholly
fibrous to wholly crystalline, without calling in the assistance of any of those

agents already referred to viz., vibration, percussion, heat, magnetism, etc.,

and that may be done in three different ways : 1st, by altering the shape of

the specimen so as to render it more liable to snap ; 2nd, by treatment

making it harder
;
and 3rd, by applying the strain [stress] so suddenly as to

render it more liable to snap from having less time to stretch (p. 53).

The act of breaking is really the determining cause and Kirkaldy's
best demonstration of this was the actual breaking of the same bar with

crystalline and fibrous fractures within a few inches of each other

(pp. 53-4). Kirkaldy considers however, that any process of working
that decreases the stricture of a specimen renders it more liable to

snap or to take a crystalline fracture
1

.

After considering the evidence brought forward by Kirkaldy and
others with regard to crystalline and fibrous fractures, I am inclined

to think that the difference really lies in the extent of the material

which is subjected to a stress equal or nearly equal to the rupture
stress. When only the material between two very close cross-sections

is subjected to such stress then we get a crystalline fracture such as

occurs in snapping ;
when a considerable extent of the material as in

pure tensile strain is subjected to this limiting stress then the rupture
is fibrous. This view would account for the crystalline fracture occur-

ring in cases of vibration, for in such cases there is generally an ' accu-

mulation of stress
' due to stress waves at some particular cross-sections

only. Almost the same result arises from the sudden blow of a hammer
which also leads to a crystalline fracture.

1 In this section Kirkaldy refers to the action of dilute hydrochloric acid in

removing the impurities from the surface of a specimen and exposing more clearly

to view the metallic portion and its texture. A like application to any planed
section of a specimen which has been subjected to large stresses producing set will

often bring to view the directions of maximum and minimum strain.
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Section XI. (pp. (il-li) is devoted to the appearance of the rupture
surfaces in steel. These are classified as yranular, yranular and cnjxlul-

line, crystalline andfibrous, yranular and fibrous, fibrous. The distinc-

tion between a fibrous and granular fracture is always due according
to Kirkaldy to the slowness or suddenness of the act of breaking.

[1144.] Section XII. (pp. G2-9) is entitled: Rate of Elon<jti<t,
under Increasing Strains

[1 Stresses]. Kirkaldy holds that a slow

application of load (i.e. one that leaves time to measure the stretches)

does not lessen the absolute strength. I think Kirkaldy cannot be

instituting a comparison with (p. 63) the sudden application of load, or

else its slow application would certainly be remarkable not for lessening
but iitcreasiny the apparent absolute strength : see our Arts. 9^8*, '.'

etc.

The sot and the ultimate stretches were measured, and Kirkaldy
remarks that most of the specimens extended uniformly along their

lengths nearly up to rupture just before which stricture began usually
at one, sometimes at two, and in a few exceptional cases at \\\

different places. The lateral dimensions of the specimens formed an

important element in determining the value of the ultimate stretdie-

(p. G9), i.e. in modifying the amount of stricture.

[1145.] Section XIII. (pp. 69-74) deals with the Influen
various Kinds of Treatment. Here Kirkaldy considers a number of

interesting and practically valuable methods of altering the absolute

strength and stricture of iron and steel. I remark that :

(i) The strength of steel is reduced by hardening in water, but is

greatly increased by hardening in oil. This increase varies from 1 is
to 79 per cent, as we pass from soft steels slightly heated to hard steel.-,

highly heated (p. 70). The higher the temperature at which the

'hardening' takes place, the greater the increase provided the steel is

not 'burnt.' Kirkaldy argues that the steel was also '

toughened'
because when under -Teat stresses it might be "repeatedly struck

[?
without breaking] with a rivet-hammer" (p. 70). 1 do not under-

stand exactly what Kirkaldy means by
'

toughened
'

here.

Further, steel plates hardened in oil and riveted are fully cijual in

strength to unriveted soft plates, or the hardening in oil more than

counterbalances the loss of strength by riveting (p. 71).

(ii)
In the course of the investigations on riveted steel plat- >, it i>

pointed out that the absolute shearing strength of steel rivets is about

:isile strength. According to the uni-constant th

extended to rupture the former should be ! of the latter. As a mean

from 17 rivets we find that the shearing is to the tensile strength
to 66,450 Ibs. per s.j. in., ! of the latter would have b

69,160 Ibs. (p. 71). Kirkaldy questions whether the u-ual rule |,,r

iron rivets that the diameter of the rivet should e(pial the combined

thicknesses of the two plate.-, to I.e joined is a 001*601
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(iii)
' Case hardened '

iron bolts have less absolute strength than

whole iron bolts. Iron highly heated and suddenly cooled in water has

a greater absolute strength than before, but it is more liable to snap,
i.e. exhibits less stricture. Iron like steel, when heated and slowly
cooled loses in absolute strength : see our Arts. 692*, 1301* and 1353*.

Cold-rolling increases the absolute strength but diminishes the stricture.

Kirkaldy holds
(cf. our Arts. 1136 and 1149) that the specific gravity

is not raised by cold-rolling. Galvanising or tinning iron plates did not

increase the strength of plates of the thickness (-375" to "186") experi-
mented 011 (pp. 73-4).

[1146.] Section XIV. (pp. 74-7) discusses the effect of altering
the shape of specimens. Kirkaldy states that we cannot compare the

strengths of metals as given by different experimenters as we do not

know the shape of their specimens, and instances Wilmot's Woolwich

experiments, which are cited in Fairbairn's treatise on Iron (see

our Art. 911), as diverging essentially from his own for Bessemer Steel

(Wilmot's mean value for the absolute strength is 153,677 Ibs. per sq.

inch., Kirkaldy's, 111,460 Ibs.). This divergence Kirkaldy shows to

have arisen from the fact that the minimum cross-section in the test-

pieces for the Woolwich machine occurred only at one point. He cites

experiments to prove that grooving increases the absolute strength
and decreases the stricture (see our Art. 1503*). This seems to me
probable as it is very unlikely that the groove would be formed at the

weakest cross-section, and the maximum stresses being confined to the

neighbourhood of the groove there will arise according to the view

expressed above (see our Art. 1143) a crystalline fracture, or at any
rate one with less stricture.

[1147.] Section XV. deals with the comparative strength of

screwed and chased bolts (pp. 77-80), and Section XVI. with the

strength of welded joints (pp. 80-2). In the first case the strength of

screwed bolts is found to be nearly proportional to their areas, with a

slight difference in favour of the smaller area. The strength of the

bolt is greater for a screw made with old than for one made with new
dies, a result attributed by Kirkaldy to the hardening effect of an old

and blunt die (p. 78). The loss in strength due to screwing is given
in Table Q (pp. 174-9), or varies from about 7 '5 p.c. for Govan bolts

with old dies (about 17'8 p.c. with new dies) to about 23 p.c. for

'Glasgow B. Best' with old dies (about 33 p.c. with new dies). The
results for the welding of iron are very inconclusive. In some cases

the welded joint bore nearly as much as the uncut bar, and in other

cases the strength was reduced fully one third (p. 80). Heating to the

welding point and then cooling slowly without hammering was found to

reduce the stricture very largely, but not the absolute strength. The

welding of steel bars owing to their liability of being burnt is difficult

and uncertain : see our Art. 1132.

[1148.] Section XVII. is concerned with Suddenly Applied Strains

(pp. 82-6). Kirkaldy arrives at the conclusion that the breaking
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stress is considerably less when the load is suddenly applied, "though
some have imagined that the reverse is the case

"
(p. 95). The deer*

is, however, only about 18*5 p.c. instead of 50 p.c., so I imagine
Kirkaldy's trigger apparatus clid not really apply the load instan-

taneously. Like other experimentalists he does not distinguish in the

of sudden loading between the real breaking stress and the apparent
load per unit area of cross-section.

He notes that the stricture is in the case of sudden application of

load much reduced (p. 84). Turning to the effect of frost we find that

the absolute strength is reduced when iron is frozen. Provided tin

stress be suddenly applied, there is a reduction of about 3'6 p.c. When
the stress is gradually applied there is little difference. Kirkaldy
attributes this to the warming of the iron by the drawing out of the

specimen (p. 86). The experiments were not, however, nearly sufficient

in number to be very conclusive. The difference between sudden and

gradual loadings may, perhaps, explain the divergence between tin-

conclusions reached by Joule and Kirkaldy : see our Art. 697 (c).

[1149.] Section XVIII. deals with the specific gravities of iron and
steel (pp. 87-91). Kirkaldy found that the specific gravity of iron

indicates generally its 'quality,' that it is decreased by wire drawing,
cold rolling, and for some kinds by hot rolling in the ordinary way :

see our Arts. 732 and 1136. It is also decreased by being drawn nut

by a severe tensile stress. In the case of steel, 'highly convert* -d steel

has not the greatest density. Cast steel is denser than puddled steel,

which is even less dense than some of the superior descriptions of

wrought-iron (pp. 91 and 95).

[1150.] Section XIX. (pp. 91-100) gives a summary of the con-

clusions contained in the volume, and some general remark's on their

practical application. Kirkaldy asserts that the truest measure of the

ipiality of iron or steel is the breaking stress per unit area of tin-

fractured surface
(i.e.

of the stricture) and appears to lay the greatest

importance on this mode of comparison.
On pp. 106-187 we have the tables of numerical results which it is

impossible to condense or analyse here; their importance has be -n

recognised by technical elasticians. For the absolute strength

wrought-iron we may, however, reproduce the mean results a

on p. 96 since they may be of service for later reference in our own work:

r>;nyth in Ibs. per square inch of or/y//<"/ on
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[1151.] In the Appendix will be found a series of extracts from
articles and letters in The Engineer and other papers, which are not

without interest as showing the general state of knowledge with regard
to the elasticity of iron and steel about 1860. The volume concludes

with plates of Kirkaldy's simple apparatus, and with more or less sug-

gestive diagrams of the surfaces of rupture, showing the reduction in

transverse diameter not only at the stricture, but also at other cross-

sections of the specimens. There are graphical representations of some
of the numerical results, and on Plate XIV. are given the distorted

forms (approximately elliptical) after strain of circles drawn on the

unstrained faces of a bar. These were obtained with a view of showing
the relative longitudinal stretch and lateral squeeze. I find just about

the strictured portion of a bar of cast steel from measurement of the

semi-diameter that the circle of I" diameter has been converted into an
oval of 1'125" longitudinal and of -889" lateral diameter. Hence the

longitudinal stretch is '125 and the lateral squeeze "111, or the stretch-

squeeze ratio
77

for the set of this bar equals '89, which is far from

agreeing with the '25 which the uni-constant theory gives for
77

in

the case of elastic strain.

GROUP G.

Strength of Materials, other than Iron and Steel.

[1152.] L. G. Perreaux : Apparatus for testing and ascertaining
the strength of yarn, thread, wire strings, or fabrics. London Journal

of Arts (Conjoined Series). Vol. 43, pp. 325-8. London, 1853. This

contains a description of a patent for a testing machine. In order to

prevent too great a shock upon the rupture of the material tested, one
of the clamps holding the material sets in motion a fly-wheel on the

release of the load and thus the shock is deadened.

[1153.] Houbotte. A testing machine invented by this engineer
will be found described on p. 432 of the Annales des travaux publics
de Belgique, T. xin., 18545, or Polytechnisches Centralblatt, Jahrgaiig
1855, Cols. 1237-40. Leipzig, 1855. The machine was designed to

ascertain the crushing strength of stone. Its peculiar novelty seems
to be the gradual application of load by filling slowly a reservoir of

water supported by the loading lever of the machine. Houbotte gives
the details of various experiments on the crushing of stone blocks. He
further made some few not very conclusive experiments on the increase

of strength due to lateral support.

[1154.] T. Dunn. On chain Cable and Timber Testing Machines.

Institution of Civil Engineers. Minutes of Proceedings, Vol. xvi.,

pp. 301308. London, 1857, This gives an account of a testing
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machine insult' by Messrs Dunn and of some experiments made with it

on bars and chains. This apparently was tin- first introduction into

general use of fairly cheap testing machines. We refer in our Art.

1158 to the use made of one of these machines by Captain Fowke in

the Paris Exhibition of 1855.

[1155.] W. Fairbairii : On the Density of var'nm* !><><

subjected to enormous compressing Forces. JJrifi#/t A.wH-iiit'nm, lleport
of Liverpool Meeting, 1854, Transactions, p. 56. The author si

that he has applied pressures of 90,000 Ibs. per sq. inch to various

substances. "Under this enormous pressure, clay and some other

substances had acquired all the density, consistency and haidm-
some of our hardest and densest rocks."

[1156.] W. Fairbaim: Solidification of Bodies un *ure :

The Civil Engineer and Architect's Journal, Vol. xvn., p. 394. London,
1854. The author gives further particulars of the experiments referred

to in our Art. 1155. The tensile and compressive strengths of sper-
maceti and tin were found to be much increased by solidification under

pressure.
Thus a bar of the former substance solidified under a pressure of

40,793 Ibs. per sq. inch carried 7 52 Ibs. per sq. inch more compressor
stress than when solidified under a pressure of 6421 Ibs. Tin- tensile

strength was again as 1 to 0'876 in favour of the more compressed liar.

Further three bars of tin were allowed to solidify, the first at the

pressure of the atmosphere, the second at 908 Ibs., and the third at

5698 Ibs. per sq. inch. Between the two last there was an increase <>\'

tensile strength in the ratio of -706 to 1, or an increase of about ?.

when solidified under six times the pressure.
Since the specific gravity of the metals increases at a less rate than

the strength Fairbairn hopes from compression to insure not only

greater strength but greater economy.

[1157.] Marcq : Experiences faites sur differentes pieces <

Tejj'et d'en determiner le coefficient d'efasticite. Annales des

publics de Belyique, Tome xiv., pp. 279-301. Bruxelles, 1855-6. This

paper gives details of experiments on the flexure of various kind

wood, such as may be bought in the market and not specially prepared
for the purpose of experiment in small Mocks as in tin- researches of

Wertheim and Clu vandier (set- our Art 1312*). Nothing is said about

the state of moisture of the wood, or the position of rings and lii

relative to the plane of flexure; presumably the latter were alv.

parallel to that plane, as the pieces were long. The author beli.

that he had found a real limit of elasticity up to which the HCM
were proportional to the load>. This limit of elasticity, as measured

by the load, bore to the rupture load the ratio *43 for oak to '3'
y

>

beech. After the limit of elasticity was passed the fli-XU!

more rapidly than the loads till the rupture load was approached, \\hen

this law was no longer true. For 1.earns of large 'ion the
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stretch modulus was less than for pieces of small section, where the

fibres are more continuous (p. 281). A load if removed and then

after a short interval re applied produced a greater flexure than on the

first application. This seems a rather doubtful statement especially as

it is not stated whether the load was above or below the elastic limit,

when originally applied.
Either a stretch of '0006 or a traction of 600,000 kilogs. per sq.

metre may be taken as a safe limit of loading for all kinds of wood,
even the poorest.

I do not cite here the values of the stretch-moduli for the various

kinds of wood (pp. 298-9) as the stretch-modulus of wood varies from

tree to tree and with the state of dryness of the wood.

[1158.] Francis Fowke: Results of a series of Experiments on

the Strength and Resistance of Various Woods. Reports on the

Paris Universal Exhibition, Presented to both Houses of Parliament

by Command of Her Majesty: Part I., pp. 402-525. London, 1856.

This report contains the details of a long series of experiments
on the specimens of various woods from Australia, British Guiana

and Jamaica exhibited at the exhibition. The experiments were

made with the aid of a hydraulic testing machine made by Dunn
of Manchester : see our Art. 1154. The experiments were directed

to ascertaining the following data : (i) the specific gravity of wood,

(ii) the rupture strength under flexure, (iii) the crushing load in

the direction of the fibre, (iv) the crushing load transverse to the

direction of the fibre. The deflections for various loads are given,
but as there is no reference to set, it is not certain that they give
the true values of the stretch-moduli. In many cases the deflections

are not proportional to the loads. Tables giving the final results

for upwards of 80 specimens of wood will be found on pp. 514-25,
and these might even now be useful for commercial purposes.

[1159.] Captain Fowke made further experiments on a much

greater variety of woods exhibited at the International Exhibition

of 1862. His results were published in 1867 by the Science and
Art Department in a work entitled : Tables of the Results of a
Series of Experiments on the Strength of British, Colonial and other

Woods. The Report of 1855 was reprinted at the conclusion of

this work.

Upwards of 3000 specimens were tested with a hydraulic
machine due to Messrs Hayward, Tyler and Co. Each specimen
was as nearly as possible 16 inches long and of square cross-
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section, 2" side. The bearings for flexure seem to have been 12"

apart. The same series of experiments were made as at Paris,

and an additional series was undertaken to ascertain the elasticity.

The woods came from a wider range of colonies and from some

European countries.

Table VIII. gives the deflection, divided into set and elastic

strain, at every 1,120 Ibs. (pp. 213-242). The stretch-moduli are

not actually reckoned out. The elastic strains were not propor-
tional to the loads, and it seems probable that elastic after-strain

was not recognised and allowed for.

The work contains the most extensive series of experiments
on wood hitherto made, and may for many purposes still be useful,

but the experiments were conducted in a manner rather calculated

to further commercial purposes than to put to the test any
theories of the distributions of elasticity in wood: see out Arts.

1229*, and 308-15.

[1160.] //. R. Storer: On Guttci Percha Tubes. Sillimaris A
can Journal of Science and Arts. Second Series, Vol. 21, pp. 445-6.

New Haven, 1856. (Extracted from the Proceedings Boston Society
Nat. Hist., Vol. v., p. 268.) This paper gives details of the bursting

strength of gutta percha tubes under water pressure. The tul.es varied

in diameter from 1" internal, If^" external, to
-J-" internal, -" external

diameter, and the bursting pressures varied from 266 Ibs. to 760 Ibs.

per square inch. The smaller tubes had the greater strength.

[1161.] C. F. Dietzel: Ueber die Elasticity des vulkanisirten

Kautschuks und Bemerkungen iiber die Elasticitdt fester Korper <>

liaupt. Polytechnisches Centralblatt, Jahrgang 1857, Cols. 689-94.

Leipzig, 1857. This paper commences by general remarks on the

influence of temperature, elastic after-strain etc. on elastic phenomena.
It then criticises Boileau's experiments (see our Art. 851) on the ground
that they left out of account the influence of after-strain. Diet /el

gives an account of two series of experiments of his own on a vulcani>-d

caoutchouc thread, in which lie carefully distinguished fore-strain. at't-r-

strain and set. The loads were gradually increased from 1 to

grammes, and 24 hours were allowed for the action of tin 1 ela>t

strain. He found roughly speaking that the elastic after-strains \

proportional to the loads, but that the elastic fore-strains were far from

being so, increasing in a much more rapid ratio than the loads. This

not due to the decrease in cross-section due to the increasing
-

Tin- elastic after-strain developed in iM hours decreased from about

|

of the fore strain down to about ^ as the loads increased from 1

to 2! grammes. l>iet/el remarks that Gentoei

806*) ilues not appear to hold for vulcanised caoutchouc.
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[1162.] A. von Burg : Versuche uber die Festigkeit des Aluminiums
und der Aluminiumbronze (Legirung von 90 proc. Kupfer und 10

proc. Aluminium). Polytechnisches Centralblatt, Jahrgang 1859, cols.

619-20. Leipzig, 1859. (Extracted from Mittheilungen d. nieder-osterr.

Gewerbe-Vereins, 1858, S. 530.)
Cast bars of aluminium gave an absolute strength of 10*96 kilo-

grammes per square-millimetre. Cold-hammered bars gave an absolute

strength of 20'26, or reduced to the section of stricture, 28*67 kilo-

grammes per square-millimetre. The aluminium bronze had an absolute

strength of 64*59 in one specimen and 49*62 in a second, the first being
hot-hammered and the second only cast. Thus the absolute strength
lies between those of iron and steel

!

.

[1163.] C. Fabian: Ueber die Dehnbarkeit des Aluminiums.

Dinglers Polytechnisches Journal, Bd. 154, S. 437-8. Stuttgart, 1860.
Demonstration of the extensibility of aluminium by beating it into

extremely fine leaves. See also the Repertoire de chimie appliquee,

1859, p. 435, where the discovery is attributed to the Parisian gold-
smith Degousse, who had beaten aluminium to leaves as thin as those
of gold or silver.

[1164.] Morin and Tresca : Determination du coefficient d'elasticite

de Valuminium. Annales des mines, T. xviu., pp. 636. Paris, 1860.

This is an extract from the Annales du Conservatoire des arts et metiers,
No. 2, presumably of the same year.

The authors after referring to the experiments of von Burg on the

absolute strength of aluminium and aluminium bronze consisting of

90 p.c. copper and 10 p.c. aluminium (see our Art. 1162) remark that

his results are not sufficient for the purposes of construction in the

former material. They have accordingly determined its stretch-

modulus. They find from flexure experiments that the stretch-modulus

may be taken as equal to 6,757,000,000 kilogs. per sq. mm. and that

the elastic limit was reached at about 8*16 kilogs. per sq. mm. For

good iron we have ^=20,000,000,000 and the traction at the elastic

limit 20 kilogs., while the density is about 7*7 as compared with the

2*5 of aluminium. Thus the comparative serviceability of the two
metals is indicated.

[1165.] William Fairbairn: Experiments to determine the Properties

of some mixtures of Cast-Iron and Nickel. Memoirs of the Literary
and Philosophical Society of Manchester 2

. Vol. xv., pp. 104-112.

Manchester, 1860. This memoir read March 2, 1858, gives the results

of experiments on the resistance to flexure of a mixture of cast-iron

and 2*5 p.c. of nickel. This investigation was undertaken owing to

1 Wertheim found for the absolute strength of steel wire 96 to 100 kilogs. per

sq. mm., and for iron wire 62 to 55 ;
thus the value for aluminium bronze, 64-59,

is a little less than that of very strong iron.
2 See also Repertory of Patent Inventions, London, Vol. 32, p. 156.

T. E. II. 48
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the fact that this percentage of nickel had been found in meteoric iron,
which is "above all other, the most ductile." The ingots prepared,

however, for these experiments were found to be widely different
;
for

their "power to resist impact" was nearly one half less than those

composed of pure iron. In this memoir the "
power to resist impact

"

is, as in that discussed in our Arts. 1098-9, measured by the product
of ultimate deflection and rupture load. The general result of two
series of experiments is that the admixture of nickel reduces the

strength of the cast-iron : see our Art. 1189.

[1 166.] W. M. Ellis: Results of Experiments on the Tensile Strength

of Copper, Iron, Gun Metal, Yellow Metal and Bolts. The Artizan,
Vol. xviii., p. 124. London, 1860. This is merely a table of the

numerical results of experiments made by Ellis for the United States

Government. The exact nature of the metals is not stated. As
mean results for tensile strength we find :

Copper 36,0001bs. per sq. inch,
Iron 52,250
Gun metal (9 copper, 1 tin) 1 7,400
Yellow metal (19 copper, 6 spelter)... 48,700

[1167.] Einige Bemerkungen zur Tragfdhigkeit holzerner Balken.

Zeitschrift fur Bauhandwerker, Jahrgang 1860, S. 161-5. This paper

gives some details of the best methods of cutting beams out of the tree,

having regard to the variation of strength with the direction of the

axis of the beam. It considers further the most advantageous forms of

simple wooden trusses, etc.

[1168.] Vicat : Memoire sur I'emploi des ciments eventes compares
aux ciments vifs suivi de quelques observations sur les ciments brules ou
cults jusqu'a ramollissement. Annales des ponts et chaussees, Memoires

1851, l
er

semestre, pp. 236-254. Paris, 1851. This paper gives some

interesting practical details of the cohesion, absolute strength, etc.,

of various kinds of cements before and after immersion in water for

various periods of time.

[1169.] J. M. Rendel : Experiments on the relative Resistance to

1

compression
'

of Portland and Roman Cement, etc. Institution of Civil

Engineers. Minutes of Proceedings, Vol. XL, pp. 497-502. London,
1851-2. This contains further experiments on the 'adhesive', 'cohesive',

and ' cross-strain
'

strengths of cement. The paper is printed as an

appendix to one by G. F. White on the subject of Portland cements.

It deals solely with the strength of these cements under various

kinds of stress, and has only practical value.

J1170.]
J. Manger: Untersuchungen uber die Fettt /<//,>-it ron r>

<l>mischten Cementen. Erbkams Zeitschriftfiir Bauwesen. Jahrgang
ix., S. 523-34. Berlin, 1859.

This paper gives details of the strengths of Medina and Portland
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cement. Specimens in the shape of small bars only 4" long between the

supports were tested by flexure. I doubt the possibility of calculating

by use of the Bernoulli-Eulerian formula the absolute strength from
flexure experiments in which the length of the bar was not even four

times the diameter, even if we suppose stress proportional to strain up
to rupture. For the rest Manger's numerical results have no perma-
nent interest. He concludes his memoir with a number of results as

to the time various kinds of cement take to become hard.

[1171.] Tacke : Versuche uber die Festigkeit thonerner Rohren

gegen inneren Wasserdruck. Hannoverische Bauzeitung (Archi-

tecten- u. Ingenieur-Verein) S. 308. Hannover, 1854.

Tbis is an interesting experimental paper on the internal

pressure at which earthenware pipes burst. The pipes were

tested by water pressure, either
'

dry ', that is without previous

soaking, or
' wet ', that is after soaking for four days in warm

water; they were from 2 to 3 feet long, 2 to 9 inches diameter

arid 1^ down to inch thickness. In the case of some materials

the strength of the pipes was enormously reduced by the process

of soaking, in others it did not appear to have much influence.

The following are some of the results :
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These results might be useful in testing how far the theory of our Arts.

1012*-1013*, footnote, may be applied to rupture. The writer concludes

that pipes of more than 6" diameter ought to be made of cast-iron.

[1172.] Kraft: Ueber die nothwendige Stdrke thonerner Wasser-

leitungsrbhren. Polytechnisches Centralblatt, Jahrgang 1859, Cols.

1445-6. Leipzig, 1859. (Extracted from the Gewerbeblatt an* H

temberg, 1859, Nr. 30.) This paper gives an empirical formula for the

thickness of the sides of pipes, which is said to be based on experiments
made in Ravensburg on pipes for the water supply. The formula,
which is accompanied by a numerical table, is the following:

where d is the thickness of the side of the pipe in lines (Linieri), w is

the internal diameter (Lichtweite) in inches (Zoll) and a is the internal

water pressure in inches.

[1173.] Institution of Civil Engineers, Minutes of Proceedings,
Yol. xix., p. 276. London, 1859-60. Some details of experiments on
the power of bricks to resist a crushing force will be found in an

Appendix to a paper on the Netherton Tunnel.

[1174.] Lateral Strength of Stone. The Civil Engineer and Archi-

tect's Journal, Vol. XIIL, pp. 269-270. London, 1850. Some account
of experiments made in 1848 for Chester Railway Station on the flexural

strength and ultimate deflection of slate and stone are here recorded.

Only unreduced numerical results are given.

[1175.] W. R. Johnson: Comparison of Experiments on American
and Foreign Building Stones to determine tJieir relative Strength and

Durability. Sillimaris American Journal of Science and Arts. Second

Series. Vol. XL, pp. 1-17. New Haven, 1851.

This memoir contains a general resume of European investigations
on the crushing strength of various kinds of stone together with

accounts of experiments by C. G. Page, Dougherty and R. Mills on
American stones. The American experiments were made on 2" cubes,

and the absolute crushing strengths as well as those relative to alum
sandstone taken as 100 are recorded. Good tables in English measure
are given of the results of Rennie (see our Arts. 185*-6*), Daniel

and Wheatstone, W. Wyatt in England; Rondelet (see our Art.

696*), Gauthey, Soufflot and Perronet (see our Art. 28* ()) in France.

See especially pp. 14-15 of the memoir. Noting the discordance of the

results obtained, Johnson concludes that the resistance to crushing
must be some function of the number of units in the base of the

column crushed, increasing with that number. He suggests the

following law :

That the crushing strength of a cube varies as the product of the area of

the babe into the cube root of that area.
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He tests this law by some ten cases, which he remarks do not

conclusively prove it, but afford "a pretty strong presumption in its

favor "(p- 17).

[1176.] Mohn : Versuche uber das Gleichgewicht und die riickwir-

kende Festigkeit von natilrlichen Bausteinen. Notizblatt des Architecten

und Ingenieur- Vereins, Bd. I., S. 360. Hannover, 1853.

This paper contains details of experiments on the crushing strength
of stone cubes, the sides of which were four Harmoverian inches long.
In order to test the stones in a frozen condition some were placed in

warm water and after becoming saturated submitted to a frost of 10 R.

for several days. In some cases the strength appears to have been

somewhat decreased by this freezing process, but no general law is

obvious. The numerical results are somewhat irregular and have little

more than local and temporal interest.

[1177.] Hodgkinson : On the Elasticity of Stone and Crystalline
Bodies. British Association, Report of Hull Meeting 1853, Transac-

tions, pp. 36-37. Hodgkinson refers again to the "defect of elasticity"
in stone and cast-iron. It is not quite obvious what he means by
"
defect," but it is I imagine 'set' and not perfect elasticity with

"defect of Hooke's Law." See our Arts. 969*, 1411* and Vol. i. p. 891.

He refers to Lame's "
profound work " and remarks that its results do

not apply to the bodies of which he is speaking some of which are of

primary technical importance.

[1178.] Strength and Density of Building Stone. TJie Edinburgh
New Philosophical Journal, Vol. LVIL, p. 371. Edinburgh, 1854. A
few numerical details of the crushing strengths of sandstones, marbles

and granites, extracted from a report on experiments made at Wash-

ington, U.S., are here published.

[1179.] Michelot : Recherches statistiques sur les materiaux de

construction employes dans le dejiartement de la /Seine. Annales des

ponts et chaussees, Memoires 1855, 2e
semestre, pp. 189-212. Paris,

1855. This is only a report by Belgrand on a long memoir by
Michelot, which as far as I am aware was never published. It refers

on p. 209 to some experiments on the crushing of stone.

[1180.] Henry : On the Mode of testing Building Materials and an
account of the Marble used in tJie Extension of the United States Capitol.
Sillimaris American Journal of Science and Arts, Vol. 22, pp. 3038.
New Haven, 1856. (Extracted from the Proceedings of the American
Association for the Advancement of Science, August, 1855, Providence

Meeting.} This paper describes the apparatus used by an American
Commission to test the marble iised in extending the Capitol. There is
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little that calls for general note here, except perhaps the statement on

p. 33 that in crushing cubes the manner in which the ends are bedded
is a fundamental factor in the apparent crushing strength. If the bases
of the cube are free to expand, as is approximately the case if they
be bedded on thin plates of lead, the crushing strength appears far

less than if they be bedded on steel.

For example, one of the cubes, precisely similar to another which
withstood a pressure of upwards of 60,000 Ibs. when placed in imme-
diate contact with the steel bed-plates, gave way at about 30,000 Ibs.

with lead interposed. This remarkable fact was verified in a series

of experiments, embracing samples of nearly all the marbles under trial,

and in no case did a single exception occur to vary the result.

Some remarks on cohesion and molecular attraction with which the

memoir closes do not seem very lucid (pp. 36-38).

[1181.] A. Brix : Zerdruckungs-Versuche zur Ermittelung der

ruckwirkenden Festigkeit verschiedener Bausteine. VerJiandlungen des

Vereins zur Beforderung den Gewerbfleisses in Preussen, 1855, Lief. 2.

Dinglers Polytechnisches Journal, Bd. 137, pp. 393-4. Stuttgart, 1855.

This paper gives details of the crushing strength of various kinds of

German stone. The loads at cracking and at crushing are given in

each case. Details of earlier experiments by Brix will be found in the

same VerJuindlungen 1853, S. 1, 137, 203, and in the Polytechnisches
Centralblatt 1853, Cols. 1308-9.

[1182.] W. Fairbairn : On the Comparative Value of various kinds

of Stone, as exhibited by tlieir Powers of Resisting Compression.
Memoirs of the MancJiester Literary and Philosophical Society, Vol. 1 4,

pp. 31-47. Manchester, 1857. This memoir was read April 1, 1856.

It contains numerical values for the crushing loads of various kinds

of granite, limestone and sandstone, and a comparison of these results

with those of Rennie for stone, Hodgkinson for stone and wood,
Latimer Clarke for brickwork, and Fairbairn himself for cast-iron: see

our Arts. 185*, 1445* and 953*.

There are three plates of rupture-surfaces. While the sandstones

ruptured in wedges, the limestones formed longitudinal cracks or

splinters. The strength of stone was about as "10 to 8 in favour

of the stone being crushed upon its bed to the same when crushed

in the line of cleavage." This applied to both sandstone and limestone

(p. 39).

[1183.] Knight: Strength of Building Stone. The Builder, Vol.

XVIIL, p. 579. London, 1860. Details are given in this paper of tin-

crushing strengths of various colonial building stones; they are taken

from a treatise by Knight, presumably published in Victoria. Some
account of experiments on the transverse strength of stone are also

given.
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[1184.] G. Cavalli : Memoria sul delineamento equilibrate degli

Archi in muratura e in armatura. Memorie deW Accademia di Torino,

Serie Seconda, Tomo xix., pp. 143-200. Turin, 1861. This memoir
was read in 1858. It contains on pp. 183-7 values of the crushing

strengths of a very great variety of Italian stones.

GROUP H.

Miscellaneous Minor Memoirs on topics related to the

Strength of Materials.

[1185.] Bolley : Ueber das Krystallinisch- und Sprddewerden des

Schmiedeisens durch fortgesetzte Erschiitterungen. Dinglers Polytech-
nisches Journal, Bd. 120, S. 75-7. Stuttgart, 1851. Extracted from

Schweizerisches Gewerbeblatt 1850, No. 5. This contains evidence in

favour of the change of wrought-iron from the fibrous to the crystal-

line (kornig) condition by repeated impacts.

[1186.] P. W. Brix: Ausdehnung des Gusseisens bei wiederholtem

Erhitzen. Mittheilungen des Gewerbe-Vereins fur das Konigreich

Hannover, Neue Folge, Jahrgang 1853, Cols. 214-5. Hannover, 1853.

This short extract from a work on fuel by Brix contains some

interesting statements with regard to the set produced in cast-iron

bars by heating them. The fact that cast-iron after heating does not

return to its old volume was first noted by Prinsep in the Edinburgh
Journal ofScience, Vol. x., pp. 356-7, 1829. Brix found that by continu-

ally heating a cast-iron bar there was after each heating more set, but in

decreasing increments. The thermal set appears in this to resemble

after-strain. Set produced by heating in a moderate fire 17 and more

days gave an extension of 2 to 3 p.c. This fact deserves further

investigation as its physical and practical consequences seem of much
interest.

[1187.] L. Dufour: Tenacite des fils tnetalliques qui ont ete par-
courus par des courants volta'iques. Bibliotheque universelle de Geneve ;

Archives des sciences physiques et naturelles, T. 27, pp. 1568. Geneve,
1854.

Wertheim had noted the change in the stretch-modulus produced

by sending an electric current through a loaded wire : see our Art.

1306*. Dufour proposes to investigate the changes in absolute

strength, if any, produced by passing a current for a long time
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through a wire. His results are not very conclusive. He finds a
loss of strength in copper and a slight gain of strength in iron wire,
the currents having run as loug as 19 days. A much greater number
of experiments would have to be undertaken to reach results of real
value.

[1188.] Florimond : Note sur les aimants defer defonte trempee et

sur la fragilite des fits de laiton exposes a Vair sous ^influence de
certaines variations de temperature, bulletin de VAcademic Royale de

Belgique, 2mc Serie, T. VIL, pp. 368-71. Bruxelles, 1859.
This paper merely puts on record that in 1848 "apres quelques jours

de gelee suivi d'un brouittard" the brass wires which bind the telegraph
wires ruptured and the pieces falling to the earth broke into small
bits of excessive fragility. In 1858 a similar phenomenon occurred
with the brass ropes which worked the bells at the church of St Pierre
in Louvain. Attempts to reproduce the phenomenon artificially failed.

Florimond inquires what may be the peculiar crystallisation or dis-

aggregation produced by these atmospherical changes in brass.

[1189.] Bri-Brachion
(1

Sir W. Armstrong): The Cause and Pre-
vention of the Deterioration of Wrought-Iron. The Chemical News,
Vol. IL, pp. 183-4. London, 1860.

The author cites the fact that iron crystallises in cubes or octa-

hedrons, and states his belief that such crystallisation takes place
without melting and slow cooling, namely by the influence of fre-

quently repeated vibrations. He quotes two French chemical writers

to this effect (Pelouze and Fremy) and refers to the stock examples
of railway axles and steam boilers. He then remarks that any
impurity tends to hinder crystallisation. Hence he considers pure
iron should not be used for structures subjected to frequent vibrations.

To test whether iron is pure or not, he suggests magnetisation, pure
iron losing immediately its magnetisation, but impure iron retaining it.

He has himself tried as '

impurities
'

carbon, manganese, cobalt, zinc,

chromium, tin and nickel, but his experiments lead him to believe that

nickel is the most efficient, as it is not removed in the puddling
furnace. As an example of the unsatisfactory nature of pure iron, he
cites an experiment with a pure iron bar which was successfully tested

with 80 Ibs. before being submitted to vibration, but after the vibratory

experiment it broke with a 'highly crystalline fracture' in three pieces
on simply falling to the ground. Compare our Art. 1165.

[1190.] W. Liiders: Ueber die Aeusserung der Elasticitdt an

statdartigen Eisenstdben und Stahhtaben und iiber eine beim Biegen
solcfter IStdbe beobachtete Molecularbewegung : Dinglers Polytechnisches

Journal, Bd. 155, S. 18. Stuttgart, 1860. PolytechniscJies Centmlhlatf,

Jahrgang 1860, Cols. 950-4. Leipzig, 1860. Liiders had noted that

on MMgdeepranger bar-iron and on various soft kinds of cast-st < -1 tin

surface after flexure is covered by a network of orthogonal systems
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of curves. These curves by means of a weak solution of nitric acid

could be etched, and this process even repeated after several tilings of

the surface. At the same time these lines only exhibit themselves at

places where the material has received great strain. Similar Luders*

Curves were shown to the Editor on J-bars of wrought iron a few years

ago
l

,
and apparently corresponded very nearly with the lines of strain

in beams under flexure as figured in the text-books. It would appear
then that if a bar be bent beyond the elastic limit mechanical changes
take place along the lines of strain and exhibit themselves in a system
of orthogonal curves on the scale at the surface of the beam, or even

further in, if the strain has been great, and acid be applied. Liiders

attributes these curves to a Molecularbewegung, but does not associate

them with the lines of strain. He had in one specimen found a

third system of curves diagonal to the rectangular elements of the

other two. He had observed these curves of strain after flexure in

bars of pure tin (tesserale Form).

[1191.] Summary. The decade with which we have been

dealing in this chapter is one of the most fruitful in the history of

elastic theory and practice. Besides the large number of memoirs

which have. been dealt with in the last five hundred pages, it

must be remembered that several of the most important publi-
cations of Lame, of Saint-Venant and of the older German

elasticians, considered in previous chapters or in the following

chapter of our History, really date from this period. Nor is the

advance confined to any one branch of our subject. There is to

be noted the beginnings of a real union between theory and

technical practice in France and Germany, which has continued

to bear fruit even to the present day, when its full value is also

being realised in England by the establishment of numerous

technical schools in which instruction in the strength of materials

is given and research is scientifically carried on. In the depart-
ment of physical elasticity we have to note that while great

progress was made in the collection of facts, there was still too

wide a divorce between theory and experiment. This is very
obvious in the elaborate physical researches of KupfFer and

Wertheirn. Yet while these and other investigators to some

extent failed to conduct their experimental inquiries in the

1 Still more recently Mr J. B. Hunter, M.I.C.E., has sent me some splendid

photographs and specimens of Liiders' curves produced by rust round holes punched
in the steel plates of dredger buckets : see frontispiece to Part II. I look forward to

these curves being used as a powerful mode of graphically analysing strain.

T. E. II. 49
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manner best calculated to advance scientific theory, they un-

doubtedly by their researches in such branches as thermo-

elasticity, after-strain, and magneto-elasticity gave a great impulse
to further theoretical and physical work. The development in

this period of our knowledge of the physical properties of elastic

materials showed the insufficiency of much of the accepted elastic

theory, but for the establishment of a truer and more comprehen-
sive theory we shall probably have to wait until we gain a wider

acquaintance with the nature of intermolecular action and the

part played by the ether in varying and adjusting that action.

In the technical researches of the period we find that the

special problems of bridge structure and gun-making, notably the

introduction of lattice-girders and composite cannon, largely
influenced the direction of investigation, and incidentally led to

the discovery of many important physical properties of iron and

steel. On the technical side the researches of Bresse, Phillips

and Kirkaldy form each in their peculiar fields models of what

investigation in technical elasticity should be, and emphasise the

special merits of the French and English systems of engineering

training. In the sphere of terminology a great service was

rendered by Rankine owing to his introduction or precise defini-

tion of a number of useful names for important elastic coefficients

or conceptions. On the whole while the number of memoirs

published was alarmingly great, the proportion which may be

classified as absolutely worthless is extremely small. In many
cases they contain important facts which have been forgotten in

after decades only in order to be rediscovered in recent times.

This is largely owing to the want of any easily accessible record.
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