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1. INTRODUCTION

Safety considerations in modern control systems are in-
creasingly important and extensively researched. A wide
range of application areas can be listed, from self-driving
autonomous vehicles, through robotic systems and human-
robot collaboration, to biological applications and epi-
demiological models. In these applications, safety plays a
key role for reliable autonomy or sustainable operation.
Safety requires keeping the state of these systems within
prescribed bounds for all time. Specifically, one can define
a safe set over the state space, and define safety by means
of the forward invariance of that set. An elegant way to
achieve set invariance is to apply the theory of control bar-
rier functions (CBFs) that allows safety-critical controller
synthesis (Ames et al., 2017).
While most works in safety-critical control are applied to
delay-free systems, time delay arises in many engineering
applications. Time delays may compromise safety, thus
their effects need to be taken into account to safely control
delayed systems. Thereby, the goal of this research is to
extend the CBF framework to control systems with state
delay. Building on the concept of safety functionals that
has been proposed to certify the safety of autonomous time
delay systems (Orosz and Ames, 2019; Kiss et al., 2021),
we extend CBFs to control barrier functionals to enforce
safety in control systems with state delays.
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the auspices of the Ministry for Innovation and Technology. This
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2. CONTROL BARRIER FUNCTIONALS

Let us consider the following control-affine system with
state delay

ẋ(t) = F(xt) + G(xt)u(t), (1)
where x ∈ Rn is the state and xt represents the history
of the state over a delay interval [−τ, 0] with τ > 0. It is
defined by the shift xt(ϑ) = x(t+ ϑ), ϑ ∈ [−τ, 0], that is
an element of the Banach space B = C1([−τ, 0],Rn) of con-
tinuously differentiable functions over [−τ, 0]. The control
input is u ∈ Rm, while F : B → Rn and G : B → Rn×m are
vector-valued and matrix-valued locally Lipschitz contin-
uous functionals that act on the elements of the Banach
space, respectively.
We consider the system safe if its state is contained within
a safe set S ⊂ B for all time. Accordingly, we frame safety-
critical control as rendering set S forward invariant under
dynamics (1): the controller needs to ensure for all initial
conditions x0 ∈ S that xt ∈ S, ∀t ≥ 0 for the solutions of
the corresponding closed loop system (assuming they exist
∀t ≥ 0). Specifically, we define S as the 0-superlevel set of a
continuously Fréchet differentiable functional H : B → R:

S = {xt ∈ B : H(xt) ≥ 0}, (2)
where the selection of H is application-driven.
Designing a control input that guarantees the system to be
safe motivates the following definition. Given the set S, the
corresponding H is called a control barrier functional
(CBFal), if there exists an extended class K function α
such that ∀xt ∈ B

sup
u∈Rm

Ḣ(xt, ẋt, u) > −α
(
H(xt)

)
, (3)
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where Ḣ is the derivative of H along (1) that depends on
xt, ẋt and u (see further discussion about it below).
With this definition we state our main result that ensures
safety for systems with state delay. If H is a CBFal
for (1), then any locally Lipschitz continuous controller
K : B × B → Rm, u = K(xt, ẋt) satisfying

Ḣ(xt, ẋt,K(xt, ẋt)) ≥ −α
(
H(xt)

)
, (4)

∀xt ∈ S renders S forward invariant. Similar to CBFs,
this result allows safety-critical controller synthesis using
CBFals, for example, by solving optimization problems to
find the nearest safe action to a nominal but potentially
unsafe control input (Ames et al., 2017).
In (3) and (4), the left hand side is the time derivative
of H that characterizes how its value changes over time
along the solution xt of (1). In finite dimensional delay-
free systems, this time derivative is usually referred to
as the directional derivative (or Lie derivative) of the
CBF along the solution. In the presence of time delay
and infinite dimensional dynamics, this derivative has an
intricate representation which we break down below.

2.1 Time Derivative of the Control Barrier Functional H

Consider the system (1) and let H : B → R be a continu-
ously Fréchet differentiable functional. Then there exists a
unique η : B × R → Rn that is of bounded variation in its
second argument such that the time derivative of H along
the system can be expressed as

Ḣ(xt, ẋt, u) =

∫ 0

−τ

dϑη(xt, ϑ)ẋt(ϑ), (5)

with

ẋt(ϑ) =

{
F(xt) + G(xt)u if ϑ = 0,

ẋ(t+ ϑ) if ϑ ∈ [−τ, 0).
(6)

The integral in (5) is a so-called Stieltjes type.
For example, when the CBFal H involves multiple dis-
crete (point) delays τk ∈ [−τ, 0], k ∈ {0, . . . , l} (including
τ0 = 0) and a continuous (distributed) delay described by
a bounded kernel over [−σ1,−σ2] ⊆ [−τ, 0], the bounded
variation η is illustrated in Fig. 1 for l = 1 discrete delay
and has the form

η(xt, ϑ) = w0(xt)θ(ϑ) +

l∑
k=1

wk(xt)θ̂(ϑ+ τk) + ηd(xt, ϑ),

(7)
where

ηd(xt, ϑ) =


0 if ϑ < −σ1,∫ ϑ

−σ1
wd(xt, s) ds if − σ1 ≤ ϑ ≤ −σ2,∫ −σ2

−σ1
wd(xt, s) ds if − σ2 < ϑ.

(8)
Here the weights wk : B → Rn and wd : B × R → Rn are
(potentially complicated nonlinear) functionals of xt that
depend on the specific form of H (see an example below).
Furthermore, θ and θ̂ denote the right and left continuous
Heaviside step functions, respectively.

Then Ḣ can be written in an affine form of u as
Ḣ(xt, ẋt, u) = LFH(xt, ẋt) + LGH(xt)u, (9)

discrete
delay

continuous
delay

headpoint

Fig. 1. Illustration of the bounded variation function η.
where the directional derivatives read

LFH(xt, ẋt) =w0(xt)F(xt) +

l∑
k=1

wk(xt)ẋt(−τk)

+

∫ −σ2

−σ1

wd(xt, ϑ)ẋt(ϑ) dϑ,

LGH(xt) =w0(xt)G(xt).
(10)

The calculation of these expressions is demonstrated for an
example below. Substituting (9) into (4) yields an affine
constraint for the control input. This constraint can be
used to synthesize safe-critical controllers, for example, by
incorporating it into optimization problems.

2.2 Example

Consider the system (1) with the CBFal H that contains
a point delay τ and a distributed delay over [−σ1,−σ2],
defined as

H(xt) = h

(
xt(0), xt(−τ),

∫ −σ2

−σ1

ρ(ϑ)κ
(
xt(ϑ)

)
dϑ

)
. (11)

Here h : Rn × Rn × Rn → R and κ : Rn → Rn are continu-
ously differentiable, while ρ ∈ C1([−σ1,−σ2],Rn×n) is the
kernel function of the distributed delay that takes into
account the states between time moments t−σ1 and t−σ2.
One may directly take the time derivative of (11) as
Ḣ(xt, ẋt, u) =∇0h(.)︸ ︷︷ ︸

w0(xt)

·
(
F(xt) + G(xt)u

)
+∇1h(.)︸ ︷︷ ︸

w1(xt)

·ẋt(−τ)

+

∫ −σ2

−σ1

∇2h(.)ρ(ϑ)∇κ
(
xt(ϑ)

)︸ ︷︷ ︸
wd(xt,ϑ)

·ẋt(ϑ) dϑ

(12)
where ∇ denotes gradient, ∇k is the gradient with respect
to the kth argument of a function, and (.) is a shorthand
notation for evaluation at the argument of h as in (11).
This provides the necessary expressions to calculate (9)
and (10) and find safe control inputs by (4).
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