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Abstract The goal of this paper is to provide insight
about the effect of acceleration saturation in the car-
following model. In this contribution, we consider a
heterogeneous, mixed-traffic scenario which contains
both human-driven and autonomous vehicles subjected
to time delays. Corresponding stability charts are pro-
vided from which one can tune the control parame-
ters of the automated vehicles to achieve smooth traffic
flow. By taking into account the acceleration satura-
tion, it modifies the global behaviour of the system and
reduces the range of the optimal technological param-
eters. On a demonstrative example, we highlight the
complex dynamical phenomenon induced by the satu-
ration and we attempt to connect these nonlinear inves-
tigations to the engineering practice and point out their
relevance.
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1 Introduction

Recent years have seen a major change in the trans-
port and mobility industry. The ever-growing techno-
logical knowledge, skills and the spread of digitalisa-
tion have brought a huge potential for development. In
addition, it is influenced by economic stimulus instru-
ments and regulations. The environmental awareness,
economic benefits and the need for safer travel lead
to the penetration of more advanced driving aid tech-
nologies, connected and automated vehicles. Contrary
to earlier expectations, realising fully automated trans-
port is still decades away [1]. For this reason, investigat-
ing mixed-traffic situations, when automated vehicles
AVs and human-driven vehicles HVs drive together, is
essential [2–4].

Driving aid systems, such as cruise control CC, date
back for decades and it is still in the interest of engi-
neers. Nowadays the adaptive cruise control ACC [5,6]
is widely available for consumer vehicles. These vehi-
cles are equippedwith various sensors, such as cameras
and radar, and make decisions based on the collected
data. More recently, the connected cruise control CCC
[1] and connected adaptive cruise control CACC [7]
is under development which may be common in the
near future. It can utilise vehicle-to-vehicle V2V [8]
communication or vehicle-to-everythingV2X [9] com-
munication in a network with other road participants
to obtain information even beyond the line of sight .
Theoretical controller designs [10,11] and experiments
have already demonstrated [2,12–14] that even a small
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number of AVs in a mixed-traffic situation can reduce
traffic congestion and improve traffic flow. This tech-
nology not only helps to reduce journey times and fuel
consumption [15,16], but also filters human error real-
ising safer traffic, when safety guaranteed control is
applied [4,17–20]. All these factors may lead to sig-
nificant economic and life quality improvements at the
social and economical scale. The trend of transforma-
tion appears to be accelerating and it is likely that in the
near future there will be a major breakthrough in these
areas. However, these systems are based on dynamical
modelswhich require in-depth research and deepmath-
ematical analysis. A comprehensive literature review
of the CCC can be found in [21] and all the references
therein.

The so-called car-following model was first intro-
duced to understand highway traffic and to model the
attitude of human drivers [22,23]. Later it has become
a standard model for CC and connected autonomous
vehicles CAVs [3]. In this model, time delay is usu-
ally considered with the intention to describe the traf-
fic behaviour accurately [24]. In reality, delay appears
due to reaction time for the HVs [25], data process-
ing for the AVs and data transmission and commu-
nication for CAVs [26,27]. The car-following model
is widely applied in the literature with the concept of
ring road configuration, where N vehicles circulate on
a ring [22,23]. If N → ∞ or practically N is a big
enough number, this model can describe the behaviour
of a straight road traffic flow. Comprehensive litera-
ture about ring configuration can be found in [28] and
the related field tests and measurements in [13,29,30]
which validate the theoretical findings. Furthermore,
stability analysis considering the penetration ratio of
AV on ring road configuration is analysed in [31].

Due to physical constraints, saturation is naturally
involved in most of the engineering applications. It is
often considered in the control law [32,33] for more
precisely modelling the system (e.g. power limit of
actuators and engines). Since saturation is highly non-
linear (in some cases it is modelled as a non-smooth
effect), it is frequently neglected in the analytical anal-
ysis and only considered in numerical simulations. In
the car-following model, acceleration saturation (or
input saturation) constraints the performance [34–36].
It characterises more realistically the acceleration and
deceleration capabilities of the vehicles that are the con-
sequence of the capacity limit of the engines, the quality
of the tyres and the condition of the road surface.

In our previous work [37], we investigated a sys-
tem of CAVs where saturation was included in the
model. Although the purpose of that research was not
to expose the effect of saturation, it was concluded that
badly chosen parameters resulted in a so-called isola
causing bistability, where multiple solutions coexist,
which could be improved by connectivity. In this case,
depending on the amount of perturbation (braking)
either smooth traffic flow or congestion may develop.
Isola is a special, isolated and closed solution to non-
linear problems, which is detailed in the scientific lit-
erature [38–40] and appears in a variety of disciplines
[41,42]. Detecting and finding an isola in a system is
not straightforward and requires advanced analytical
[43,44] or numerical techniques [45–48]. On this basis,
it is substantial for engineers in practice to be aware of
this phenomenon and to have knowledge about isola,
and understand its nonlinear dynamics.

Although our recent work [37] shares some of the
ideas presented in this paper, here, we establish a com-
prehensive in-depth study that is not covered by pre-
vious works, including the acceleration saturation and
putting more emphasis on its effect on the complex
dynamical behaviour. To the best of our knowledge,
despite that the application of saturation in control the-
ory is quite widespread [49–52], its global effect on the
dynamics of CAVs has not yet been fully addressed in
detail.

Therefore, in this paper we intend to extend the lit-
erature by studying the saturation effect on the local
and global behaviour of the car-following model. In
Sect. 2, the car-following model is revisited and the
governing equations are presented. Section 3 details the
theory and derivation of the equations for the stability
analysis. First, in Sect. 3.1 the linear stability analy-
sis is presented; then, Sect. 3.2 details the theory of
the nonlinear analysis, whereas in Sect. 3.3 the possi-
ble numerical and analytical methods are collected. In
Sect. 4, a demonstrative example is presented in details.
In Sect. 4.1, the used parameters are collected and the
particular models shown, Sect. 4.2 provides the linear
stability analysis and the corresponding linear stabil-
ity charts, Sect. 4.3 shows the nonlinear calculation
extending the stability diagrams by the global stability
information and Sect. 4.4 details the evolution of isola
and its relation to acceleration saturation. Finally, in
Sect. 5 a conclusions is drawn.
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Fig. 1 Schematic figure of the model, where N individual vehi-
cles are following each other on a ring-shaped road. Each vehi-
cle have two state variables, the headway hi and the velocity vi ,
i = 1 . . . N

2 Model and equations

This section revisits the standard car-following model
placed on a ring road which is commonly used in the
literature to model highway traffic shown in Fig. 1.
The system can be generally given as a nonlinear delay
differential equations DDEs in the following form:

ẋ(t) = f(x(t), x(t − τi ), ..), f : X × X × . . .
︸ ︷︷ ︸

(N+1) times

→ R
2N−1, (1)

with the state vector

x = [

v1 . . . vN h1 . . . hN−1
]� ∈ X ⊆ R

2N−1, (2)

where N is the number of vehicles, τi is the time delay
of the i th car, vi is the velocity and hi is the headway
(following distance), the bumper-to-bumper distance,
between car i th and its predecessor i + 1th. The equa-
tion for each i th vehicle can be given as

ẋi (t) = v̇i (t) = sat

(

αi

(

Vi
(

hi (t − τi )
) − vi (t − τi )

)

+ βi

(

vi+1(t − τi ) − vi (t − τi )
)
)

,

(3)

ẋi+N (t) = ḣi (t) = vi+1(t) − vi (t), (4)

where i = 1, . . . , (N − 1). Note that the headway of
the N th vehicle can be calculated from all the other

headways and the length of the ring L such as

hN (t − τN ) = L −
N−1
∑

i=1

hi (t − τN ). (5)

With this, the acceleration of the N th vehicle can be
given as

v̇N (t) = sat

(

αN

(

VN

(

L −
N−1
∑

i=1

hi (t − τN )

)

− vN (t − τN )

)

+ βN

(

v1(t − τN ) − vN (t − τN )

))

. (6)

The parameters αi and βi of the i th car are the con-
trol parameters of the vehicles. The function Vi (h) is
the so-called range policy, which describes the desired
speed related to the headway for each vehicle (see, for
example, in Fig. 2 panel a). It characterises the driving
behaviour of human drivers or autonomous vehicles;
for example, the more sparse the traffic is, the faster
the vehicles want to travel. It can be described gen-
erally by the nonlinear continuous piecewise function
as

V (h) =
⎧

⎨

⎩

0 if h ≤ hst,
F(h) if hst < h < hgo,
vmax if h ≥ hgo.

(7)

The lower limit hst is the critical headway value under
which the vehicle tends to stop, and the upper limit
hgo is the headway value over which the vehicle wants
to travel by the maximum possible speed which is the
speed limit on the road. Between these limits, the char-
acteristic is described by the F(h) function, which can
be different to each vehicle. Engineers are free to use
whatever relation is optimal. In the literature, different
characteristics are often used such as linear, cubic and
tangent functions. In favour of modelling more real-
istically the acceleration and deceleration capabilities
of the vehicles, the acceleration saturation is taken into
account in themodel by the piecewise continuous func-
tion sat, as shown in Fig. 2 panel b. It can be described
by the following formula

sat(a)=
⎧

⎨

⎩

amin if a ≤ amin,

a if amin ≤ a ≤ amax,

amax if a ≥ amax,

(8)

where amin and amax describe the lower and upper
acceleration limits, respectively.Note thatmore sophis-

123



K. Martinovich, A. K. Kiss

(a) (b)

Fig. 2 Nonlinear functions Two nonlinear functions are used
in the model: panel a shows the range policy that describes the
chosen velocity based on the headway, while panel b visualises
the acceleration saturation that describes the capabilities of the
engines, drive train, tyres, road conditions, etc.

ticated saturation function canbe found [36]which con-
siders the power train capabilities, however, those are
more typical for heavy-duty vehicles and is out of the
scope of this paper.

3 Stability analysis

In this section, we briefly describe the investigation
methods for the local and global behaviour of the car-
following system by means of linear and nonlinear sta-
bility analysis. The equilibrium is the state when all
the vehicles travel with the same velocity keeping a
constant headway distance determined by the range
policies. In the case of unstable equilibrium, even the
smallest perturbations (braking) get amplified result-
ing in stop-and-go waves (of velocity and headway)
travelling backwards along the ring [29,53], whereas,
if the stable equilibrium is perturbed after the transient
vibrations, the smooth traffic flow will be restored, in
which the system is intended to operate, since it is ideal
for safety reasons, fuel consumption and comfort.

3.1 Linear stability analysis

In the present section, the linear stability analysis is
explained. This calculation is crucial to find the stable
and unstable equilibria in the parameter space, hence
choosing the desired control parameters. The system
has its equilibrium when all the variables are constant,
which can be determined by set ẋ(t) = 0 in (1) as

0 = f(x∗, x∗, . . . ), (9)

where the equilibrium vector x∗ ∈ R
2N−1 is con-

structed such as

x∗ = [v∗ . . . v∗ h∗ . . . h∗]�. (10)

Solving (9), the so-called uniform equilibrium flow can
be given by

vi (t) ≡ v∗ = Vi (h
∗
i ), hi (t) ≡ h∗

i . (11)

In the case of equilibrium, all the vehicles travel with
the same velocity v∗

i while keeping different headways
h∗
i due to the different range policies Vi .
To analyse the local behaviour of the equilibrium,

the system is linearised around it. It is accomplished
by introducing a small perturbation x̃(t) = x(t) − x∗
around the equilibrium that leads to

x(t) = x∗ + x̃(t),

x(t − τi ) = x∗ + x̃(t − τi ),

ẋ(t) = 0 + ˙̃x(t).
(12)

Substituting these into the (1) leads to

ẋ(t) = ˙̃x(t) = f
(

x∗ + x̃(t), x∗ + x̃(t − τi ), . . .
)

, (13)

which is linearised by expanding it into Taylor series
and cancelling the higher-order terms

f(x∗ + x̃(t), x∗ + x̃(t − τi ), . . . )

≈ f(x∗, x∗, . . . ) + L̃x(t) +
N

∑

i=1

Ri x̃(t − τi ).
(14)

Here,L andRi are 2N −1×2N −1 Jacobian matrices
corresponding to non-delayed and the i th time delay
terms, respectively, defined as

L =

⎡

⎢

⎢

⎣

∂ f1
∂v1(t)

. . .
∂ f1

∂hN-1(t)
...

. . .
...

∂ f2N−1
∂v1(t)

. . .
∂ f2N−1
∂hN-1(t)

⎤

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

x∗

(15)

and

Ri =

⎡

⎢

⎢

⎣

∂ f1
∂v1(t−τi )

. . .
∂ f1

∂hN-1(t−τi )
...

. . .
...

∂ f2N−1
∂v1(t−τi )

. . .
∂ f2N−1

∂hN-1(t−τi )

⎤

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

x∗

. (16)

Note that during the linearisation, the chain rule must
be applied for the derivation as

∂sat
(

fi
(

xi (t)
)
)

∂xi (t)

∣

∣

∣

∣

∣

∣

x∗
= sat′

(

fi (x
∗)

)

f ′
i (x

∗) = f ′
i
(

x∗)

,

(17)

therefore one can omit the saturation function in (3),
due to the fact that sat′(0) = 1 around the equilibrium.
This implies that the saturation does not affect linear
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stability properties. Recently, a similar observation has
been found in [33]. Finally, the so-called variational
system forms

˙̃x(t) = L̃x(t) +
N

∑

i=1

Ri x̃(t − τi ). (18)

The stability is determined by introducing the non-
trivial trial functions x̃(t) = ceλt , where λ is called the
characteristic exponent and vector c ∈ R

2N−1. Substi-
tuting this trial function into (18) leads to
(

λI − L −
N

∑

i=1

Re−τiλ

)

ceλt = 0, (19)

where I is the 2N − 1 × 2N − 1 identity matrix. The
eλt > 0 term is always fulfilled, and we are interested
in non-trivial solution c = 0, which determines the
so-called characteristic equation in the following form

det

(

λI − L −
N

∑

i=1

Re−τiλ

)

= 0. (20)

This is a transcendent equation since λ has infinitely
many solutions which leads to computational chal-
lenges. In particular, the infinitely many characteristic
exponents can be approximated by finite ones applying
discretisation techniques, such as the so-called semi-
discretisation method [54]. The equilibrium is linearly
stable if the rightmost characteristic exponent has neg-
ative real part.

One elegant way to produce the stability chart
and draw the exact stability curve of systems in the
form of (20) is the so-called D-subdivision method
[55,56]. The curves are determined where the num-
ber of unstable exponents changes. That is substitut-
ing λcrit = iω into the characteristic equation (20)
and separate into real and imaginary parts. To compute
these curves efficiently, the multi-dimensional bisec-
tion method (MDBM) can be applied [57]. Another
but not so efficient way is to map the parameter space
in discrete points by using brute force calculation.
Finally, one can use numerical continuation methods
[46,58,59] to calculate the stability boundaries, which
are more sophisticated and accurate.

Note that linear stability theory implies that in the
case of an unstable system the amplitude of the aris-
ing oscillations goes to infinity. However, in the case
of large amplitude vibrations, nonlinear behaviour and
acceleration saturation come to play a role. Therefore,
it is important to consider the nonlinearities in the sys-
tem.

3.2 Theoretical background

The linear stability analysis shows the behaviour of
the system in the vicinity of the equilibrium. In reality,
sudden acceleration, braking, lane change, etc. can hap-
pen introducing large perturbations. Since the original
DDE system in (1) is nonlinear, the global behaviour
may deviate from the linear one causing complicated
dynamics. To have information about the system fur-
ther from the equilibrium, it is necessary to perform
nonlinear analysis.

The critical roots of the characteristic (20) often
form complex conjugate root pairs in time delay sys-
tems [56]. At the stability boundary, a root pair loses
its stability simultaneously: Re λ1,2 = 0 and Im λ1 =
Im λ2. It is a dynamical stability loss, calledHopf bifur-
cation, from which a periodic orbit arises [60,61]. A
periodic solution implies that the system has a steady-
state oscillating solution. If a stable periodic orbit is
over the unstable equilibrium, then it is called super-
critical Hopf bifurcation as illustrated in Fig. 3 in panel
a. It is undesirable to operate in this state due to the
unstable equilibrium. Its counterpart is the so-called
subcritical Hopf bifurcation, when an unstable peri-
odic orbit rises over the stable equilibrium, as demon-
strated in Fig. 3 panel b. This case may seem safe to
operate, since an oscillation caused by a small pertur-
bation (e.g. gentle braking) settles down. However, if
perturbation pushes the state outside of the unstable
periodic orbit, the amplitude of the oscillationwill keep
increasing. Note that theoretically it goes to infinite, but
another stable periodic orbit might be over the unstable
one, limiting the vibrations. Taking this into account, in
engineering applications the subcritical bifurcation can
be generally considered more dangerous than a super-
critical one.

In Sect. 3.1, it was already shown that the satu-
ration does not affect the linear stability boundaries.
Presumably, the acceleration saturation does not affect
the criticality of the bifurcation either, since only the
larger amplitudes are limited and the periodic orbit
arises starting with an infinitely small amplitude oscil-
lation. This was also proved by analytical calculation
in a dynamically analogous system of a delayed posi-
tion regulation in [33]. In that system, the saturation
occurred in the actuator due to the limit of maximum
torque and force which is feasible in reality. In the case
of the car-followingmodel, the same characteristics are
to be expected.
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(a) (b)

Fig. 3 The bifurcation diagrams show the amplitude of the peri-
odic orbit (steady-state oscillation) as a function of the bifurca-
tion parameter. Stable and unstable states are denoted by green
and red, respectively. The periodic orbit arises from the Hopf
point denoted by blue dots. Panel a shows a supercritical bifur-
cation, where a stable periodic orbit is over an unstable equilib-
rium, while panel b shows a subcritical case, where an unstable
periodic orbit bends over the stable equilibrium

3.3 Methods for nonlinear analysis

There are several methods available for performing
nonlinear analysis, each having certain advantages.
One of the most straightforward is the brute force
numerical simulation. The differential equation system
(3) can be directly solvedwith various initial conditions
mapped in the parameter set of interest. This method
does not require further mathematical calculus and it
is easy to do in many software with built-in differen-
tial equation solvers. However, its disadvantages are
being time-consuming and it is hard to draw a conclu-
sion based on the resulting signals of the vibrations,
especially at the stability boundaries.

By applying the theory of Hopf bifurcation analysis
for DDEs, one can obtain the second-order analytical
approximation of the amplitude of the periodic orbit
[60], which is illustrated by a dashed parabolic curve
in Fig. 3. To do so, (13) has to be expanded into Taylor
series up to the third order. Thereafter, via the infinite-
dimensional centre manifold reduction [33,62–66], the
infinite-dimensional system is reduced into two dimen-
sions, called the direction of main (slow) dynamics
which correspond to the complex conjugate root pairs
at the Hopf bifurcation point. The other dimensions can
bedetached, since the vibrations corresponding to those
settle down faster [43]; hence, it does not influences the
steady-state solution.

Tohave a better understanding of the dynamics in the
infinite-dimensional state space, the three-dimensional
qualitative representation of the centre manifold reduc-

tion is shown in Fig. 4 around the vicinity of a Hopf
bifurcation point. The two slow directions are ξ1 and ξ2
corresponding to the long-term dynamicswhile ξi illus-
trates the other infinitely many dimensions. By lineari-
sation, the slowest spectral subspace is approximated
by a tangent plane at the equilibrium spanned by the
directions of ξ1 and ξ2. Furthermore, the above referred
nonlinear analytical calculation provides the second-
order approximation of the so-called centre manifold
as a surface, on which the long-term dynamics can be
characterised by periodic orbits.

In Fig. 4, typical behaviours are illustrated start-
ing with different initial conditions for super- and sub-
critical cases. Panel a illustrates the supercritical case,
where an unstable equilibrium (red) is in the origin and
a stable periodic orbit (green) exists on the centre man-
ifold. In case of small/large perturbation representing
by setting the initial conditions close/far to the equi-
librium, after the transient vibrations the trajectories
settle on the surface of the centre manifold and con-
verge towards the stable periodic orbit. By comparison,
the subcritical case is illustrated in panel b of Fig. 4.
Here, a stable equilibrium is in the origin and an unsta-
ble periodic orbit lies on the centre manifold. In this
case, there exist a manifold, which divides the infinite-
dimensional state space and determines the basin of
attraction, illustrated by red shaded surface. In the case
of the blues trajectory, the initial condition is close to
the equilibrium starting within the basin of attraction
and converges to the equilibrium. As it was pointed out
above, the subcritical case may be dangerous since it
looks like a stable, well operating system. However,
starting the initial condition outside of the region of
attraction (yellow trajectory), the solution converges to
the centre manifold, but it is repelled on it by the unsta-
ble periodic orbit and continues to oscillate with ever-
growing amplitude. Note that the approximation of the
basin of attraction for time delay systems is a challeng-
ing problem due to the infinite-dimensional state space
and out of the scope of this work, although there exist
some promising techniques in the literature [67–70].

In this paper, for further calculations, the DDE-
BIFTOOL continuation package [46,59] is used to cap-
ture the global dynamical behaviour of the system. It
allows to follow branches of equilibria and periodic
orbits while changing system parameters and can deter-
mines stability and bifurcation information of these
solutions.
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Fig. 4 Illustration of the
centre manifold
approximation of the system
in the vicinity of a Hopf
bifurcation point.
Trajectories correspond to
small and large perturbation
denoted by yellow and blue,
respectively. In panel a, a
supercritical bifurcation is
shown, and panel b
corresponds to subcritical
one

(a) (b)

4 Case study

4.1 The model and parameters

The above generally introduced theory is presented for
a particular case study. Due to the complexity of the
system, the model is kept as simple as possible while
keeping the core elements of the dynamic behaviour.
Therefore, N = 3 vehicles are used in Eqs. (3) and (4)
to investigate the fundamental effects of acceleration
saturation. Nevertheless, only a few vehicles on a ring
can give an insight on how a larger and more realis-
tic system will behave [28]. During this analysis, the
first vehicle is considered as an autonomous vehicle
and its control gain can be tuned α, but βa and τa are
fix. The other two are human-driven vehicles in which
parameters, such as αh, βh and τh, are assumed to be
identical.

For the range policy in (7), we apply the widely used
cosine function [1] for all the three vehicles, which
is differentiable infinitely many times and ensures C1

continuity at the boundaries, defined as follows

F(h) = vmax

2

(

1 − cos

(

π
h − hst
hgo − hst

))

. (21)

Again, for the sake of simplicity all three vehicles
have the same range policies and saturation function.
The acceleration saturation is taken into account in the
model by the piecewise smoothed continuous function
[37,71]

sat(a)=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

amin if a ≤ amin − c,

a + (amin−a+c)2

4c if amin − c < a < amin + c,
a if amin + c ≤ a ≤ amax − c,

a − (amax−a−c)2
4c if amax − c < a < amax + c,

amax if a ≥ amax + c,

(22)

where amin and amax describe the lower and upper
acceleration limits, respectively, and the smoothness
range is described by c. This smoothness is used to
avoid computational challenges during the numerical
calculations later. The system of equation reads as

⎡

⎢

⎢

⎢

⎢

⎣

v̇1(t)
v̇2(t)
v̇3(t)
ḣ1(t)
ḣ2(t)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sat
(

α
(

V
(

h1(t−τa)
) − v1(t−τa)

) + βa
(

v2(t−τa) − v1(t−τa)
)
)

sat
(

αh

(

V
(

h2(t−τh)
) − v2(t−τh)

) + βh
(

v3(t−τh) − v2(t−τh)
)
)

sat
(

αh

(

V
(

h3(t−τh)
) − v3(t−τh)

) + βh
(

v1(t−τh) − v3(t−τh)
)
)

v2(t) − v1(t)
v3(t) − v2(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)
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where the subscripts “a” and “h” stand for the auto-
mated and human vehicles, respectively. The headway
of the third vehicle is given by the geometry of the ring
arrangement

h3(t − τN ) = L − h1(t − τ3) − h2(t − τ3). (24)

The equilibrium of the system can be determined
based on (11) which reads

h(t) ≡ h∗ = L

3
, v(t) ≡ v∗ = V (h∗), (25)

meaning that all the vehicles travel with the same
headway and velocity. Here we fix all the parameters,
which are listed in Table 1, and we investigate the sys-
tem behaviour in the plane of the control parameter αa

and headway h∗.
First, linear stability analysis of this equilibrium is

determined based on Sect. 3.1

4.2 Linear analysis

The corresponding characteristic equation of (23)
based on (20) reads

det
(

λI − L − 2Rhe
−τhλ − Rae

−τaλ
) = 0, (26)

where the coefficient matrices based on Eqs. (15) and
(16) are the followings

L =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1 1 0 0 0
0 −1 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (27)

Rh =

⎡

⎢

⎢

⎢

⎢

⎣

−αh − βh βh 0 αhV
′(h∗) 0

0 −αh − βh βh 0 αhV
′(h∗)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (28)

Ra =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 0
βa 0 −α − βa −αV ′(h∗) −αV ′(h∗)

0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

By solving the characteristic equation, one can pro-
vide linear stability behaviour of the equilibrium,which
is visualised by the stability diagram in Fig. 5 in the
plane of α and h∗. The grey area corresponds to lin-
early stable equilibrium, while the white domain in the
middle indicates unstable behaviour. They are sepa-
rated by the blue curve, which refers to the dynamical
stability boundary, the branch of Hopf points. The sta-
bility diagram is symmetrical at h∗ = 30 m due to the

Table 1 Parameters used in the case study

Symbol Value

Number of vehicles N 3

Number of human drivers M 2

Human delay τh 1 s

Autonomous vehicles delay τa 0.5 s

Human gain αh 0.165 1/s

Human gain βh 0.3 1/s

Autonomous gain βa 0.3 1/s

Max speed vmax 30 m/s

Stop distance hst 5 m

Driving distance hgo 55 m

Smoothness range c 0.05 m/s2

Upper saturation limit amax 1 m/s2

Lower saturation limit amin = −2 amax −2m/s2

Fig. 5 Linear stability diagram of system in (23). In the parame-
ter space, grey represents linearly stable equilibrium,while white
shows unstable one. These are separated by Hopf bifurcations
points, denoted by blue curve. Note that the unstable region is
symmetric to h∗ = 30 m

point symmetric range policy function in (21). It can
be observed that for α < 0.25 and α > 0.6 the system
is linearly stable for any headway, while for parameter
domains h∗ < 25 and h∗ > 35 it is also stable for
any α value. The middle region of the parameter space
traffic becomes unstable. Note that as it is expected, the
acceleration saturation does not affect the linear stabil-
ity properties.

In order to demonstrate the effect of the saturation,
the system is numerically simulated for small and large
perturbations with parameters h∗ = 30 m and α = 1
1/s (corresponding to point B in Fig. 5 where the sys-
tem is linearly stable). The resulted acceleration time

123



Nonlinear effects of saturation

(a) (b)

(c) (d)

Fig. 6 Simulation results with and without saturation for small
and large perturbations

profiles are visualised in Fig. 6. The system is in stable
equilibrium flow for t < 0. For small perturbation, the
velocity of the first vehicle is decreased at t = 0 by 10
%, that is v1(0) = 0.9V (h∗), while for large perturba-
tion, the velocity is suddenly dropped to v1(0) = 0m/s.
Panel a shows the result of the small perturbation case,
without saturation. After a short transient oscillation,
the steady state is reached again. The same configura-
tion is subjected to large perturbation, as shown in panel
b. During the transient oscillation the vehicle reaches
high acceleration (amax = 25.51 m/s2), but the sys-
tem settles down to the equilibrium. Even thought, the
system is globally stable against small and large pertur-
bations at this point, the resulting acceleration values
are not feasible in traffic situations and are beyond the
capabilities of real vehicles. The same simulations are
carried out in panel c and d, but this time, consider-
ing acceleration saturation. For small perturbation, the
vibrations settle down to the stable equilibrium; how-
ever, it takes longer time due to the saturation. Finally,
panel d shows a case, when the breaking is too harsh
(large perturbation); then, the system gets into a state of
stable periodic vibrations which does not settle down
to the equilibrium. In this case, the vehicles behave in
an extreme way, as they are accelerating and suddenly
decelerating with saturation limits. This indicates that
the global stability behaviour is different from the lin-
ear one through the appearance of bistable phenomenon
when saturation is included in the model; hence, it is
necessary to carry out nonlinear analysis.

4.3 Nonlinear analysis

The resulting linear stability diagram in Fig. 5 can
be useful to choose the right control parameters for

(a)

(b)

Fig. 7 Bifurcation diagrams for α = 0.5 in Fig. 5 along param-
eter h∗. Panel a shows the velocity amplitude, while panel b
plots the acceleration amplitude over the unstable equilibrium.
The continuous and dashed line is with and without saturation,
respectively

the autonomous vehicle to avoid unstable operation.
However, it provides only information about local
behaviour, when the system is close to the uniform
traffic flow. If it is exposed to large perturbations (e.g.
large breaking in the traffic), it is necessary to analyse
the global behaviour by means of nonlinear investi-
gations. Note that nonlinearities appear in the system
due to both the range policy (see (21)) and the applied
acceleration saturation (see (22)).

With theDDE-BIFTOOLpackage, one can continue
the periodic solutions along various parameters and can
capture the global behaviour. As explained in Fig. 3, the
periodic orbits are arising from the Hopf points. The
bifurcation diagram in Fig. 7 showing the peak-to-peak
amplitude of the velocity and acceleration is plotted for
α = 0.5 1/s parameter (along the dashed black line in
Fig. 5). The dashed green curve denotes the amplitude
of the periodic orbit without acceleration saturation,
while the continuous one is with saturation. In panel b,
one can see that the acceleration amplitude is limited
at amax−amin

2 = 1.5 m/s. This effect is also visible in
the velocities amplitude in panel a as the magnitude of
the velocity amplitude is significantly decreased. (The
continuous curve is located lower than the dashed one.)
Note that the acceleration saturation does not influence
the criticality of the bifurcation points, however, it sig-
nificantlymodifies the amplitude of the arising periodic
orbits.

This is illustrated in Fig. 8 as well, plotting the time
profiles (panel a, b) and phase portraits (panel c, d),
for the same parameters corresponding to point A in
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(a) (b)

(c) (d)

Fig. 8 Time profile (panel a and c) and phase portrait (panel
b and d) representations of the system for parameter point A.
Continuous and dashed curves correspond to the model with and
without acceleration saturation, respectively

Fig. 7. Again, the continuous and dashed curves rep-
resent the results with and without saturation, respec-
tively. The unstable equilibrium (point A1) is marked
with red. Omitting saturation, vehicles may produce
unrealistically large acceleration (see panel b), but in
the presence of saturation, the oscillation is limited at
amax and amin denoted with dashed grey lines. In the
phase plane (panel c and d), the stable periodic orbits
are located around the unstable equilibrium with and
without saturation. In panel d, the effect of saturation
can also be seen as the acceleration is limited. Based
on these figure, saturation may seem beneficial causing
less extreme oscillation. However, it does not explain
the bistable phenomenon observed during the numer-
ical simulations in Fig. 6. Therefore, it is worth fur-
ther studying the dynamics and calculate the bifurca-
tion diagrams along parameter α at h∗ = 30 m.

Figure 9 contains the results of this investigation.
In panel b, the periodic orbits are continued along α.
Observe that in this case the bifurcation diagram and
the dynamics become more complicated. Stable and
unstable periodic orbits bend over the stable equilib-
rium resulting in bistable behaviour, where stable equi-
librium and stable periodic orbit coexist. Note that this
bistability is also observed by the numerical simula-
tions in Fig. 6. Here, the branches of stable and unstable
periodic orbits are separated by a fold bifurcation point,
marked by grey cross. This fold points is continued in
the plane of h∗ and α; hence, the above-introduced sta-
bility diagram is extended with the boundaries of the
bistable region, which can be seen in panel a of Fig. 9.

Another representative illustration of the bistable
behaviour is shown in Fig. 10 by phase portraits cor-

(a) (b)

(c)

Fig. 9 The global stability diagram is shown in panel a, where
the boundary of the bistable region marked with grey lines. In
panel b and c, the bifurcation diagrams are plotted at h∗ = 30
and α = 0.5, respectively. The continuous curves correspond
to the model with acceleration saturation and the dashed lines
without

(a) (b)

Fig. 10 Phase portrait (panel a and b) representations of the
system at point B in Fig. 9, where continuous and dashed curves
correspond to themodelwith andwithout acceleration saturation,
respectively

responding to parameter point B in Fig. 9. Here, B1

represents the stable equilibrium, B2 is the unstable
periodic orbit and B3 shows the stable periodic orbit. It
can be seen that both the stable and unstable periodic
orbits are saturated and resulted from its consideration.

According to the nonlinear analysis, the acceleration
saturation significantly changed the global behaviour of
the system. Therefore, it is worth investigating how the
value of saturation limit affects the system.

4.4 Effect of the acceleration saturation

In this section, similar nonlinear analysis is carried out
as it is presented in Sect. 4.3; meanwhile, we change
the parameter of the saturation limits. The limit values
of the saturation are changed to amin = −6 m/s and
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(a) (b) (d)

(c)

Fig. 11 Stability properties and bifurcation diagrams for the
modified saturation limits amin = −6 m/s and amax = 3 m/s.
Panel a shows the global stability diagram with bistable domain.
Panel b plots the bifurcation diagram at h∗ = 30 where stable
periodic orbit emerges over the unstable equilibrium together a

separated isola (that is responsible for the bistability). Panel c rep-
resents the bifurcation diagram at fix α = 0.5. Panel d visualises
a three-dimensional wire frame representation of the emerging
periodic orbits

amax = 3 m/s, and the corresponding results are plot-
ted in Fig. 11. The global stability diagram in panel a
shows that the bistable area is decreased compared to
the case in Fig. 9. Still, there is a stable branch of peri-
odic orbits over the unstable equilibrium in the middle
of the parameter space, but its amplitude is increased
and its shape is slightly deformed. Furthermore, unsta-
ble and stable periodic orbits are also appeared over the
linearly stable equilibrium leading to a smaller bistable
domain. One can observe that these periodic orbits are
not connected to those that emerging from the equi-
librium. Thus, a separated branch of periodic orbits
appear, which are also referred as isola. Notice that it is
challenging to discover its presence even with sophisti-
cated numerical continuation techniques since it cannot
be continued from a Hopf point. It is a matter of luck
to find it without aimed calculations using only brute
force methods and numerical simulations.

Our method to find the isola and to generate the
diagrams are the following. Note that in the higher-
dimensional parameter space, the isola is still con-
nected to the equilibrium along different parameters,
hence, it is still possible to use numerical following
techniques. First, a point is chosen along the periodic
orbits corresponding to amax = 1 m/s in Fig. 9 (e.g. B2

or B3). Then, the parameter h∗ is fixed and the periodic
orbit is continued along amax (considering the satura-
tion as a parameter). The second step is to chose the

Fig. 12 Bifurcation diagram at a section of an isola at α = 1.24
1/s, with amin = −6 m/s and amax = 3 m/s. Green represents
stable, red unstable states. A stable and unstable periodic orbit
attracts and repels the solution, respectively. The equilibrium is
locally stable in the whole parameter set

point with the desired saturation value (amax = 3 m/s)
and continue the periodic orbit in the direction of h∗
or α, as intended. Finally, the bistable domain can also
be characterised by means of the same technique as
presented in Sect. 4.3.

The real danger of the isola can be understood better
in Fig. 12 for parameters α = 1.24 1/s, amin = −6 m/s
and amax = 3m/s. Isolated stable and unstable periodic
orbits are located over the locally stable equilibrium;
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(a) (b)

Fig. 13 Evolutionof isola, concluded frommultiple simulations,
is illustrated in the bifurcation diagram in panel a, showing as
the saturation limit is increased the isola gets separated from the
equilibrium. Panel b shows the global stability diagram, show-

ing the effect of the saturation limit on the bistable regions as the
bistable region decreases. The isola fold points are connected
with a yellow curve

hence, the parameter space along h∗ can be divided into
3 zones. Left and right domains are globally stable,
where oscillations due to any perturbation will settle
down to the equilibrium after the transient. However,
the middle zone under the isola is bistable. A large
enough perturbation will cause the system to jump to
the stable periodic orbitwith high-amplitudeoscillation
which results in traffic jams. Therefore, an isola can
be considered as an even more dangerous state than a
subcritical bifurcation, because it can cause similarly
complex behaviour, but it is more challenging to find.

To analyse the evolution of the isola, the periodic
orbits are calculated for several saturation values, as
illustrated by the bifurcation diagram in the panel a
of Fig. 13 for h∗ = 30 m. As the acceleration limit
is increased, the velocity amplitude in the bifurcation
diagram is increased as well. Note that once the satu-
ration limit is larger than amax = 5 m/s2, the resulting
periodic orbits coincide with the ones without accel-
eration saturation. In this case, even large amplitude
vibrations donot reach the effect limit.Additionally,we
observed that the isola and the corresponding bistable
region disappear once amax = 5 is exceeded. The same
phenomenon is illustrated in the global stability dia-
gram in panel b. As the saturation limit increases, the
bistable region shrinks leading to a safer system with
larger globally stable regions. The lowest point of this
bistable region (where the isola appears) can be found
as the minimum of the fold points for each satura-
tion value. We call these as the isola endpoints, con-
nected by yellow curve in Fig. 13 panel b. We plot

Fig. 14 Relation of isola fold points and saturation limit. The
isola endpoints are marked with the yellow curve. For a given
acceleration saturation limit value, the corresponding α control
parameter value can be selected to avoid bistability

these points in the plane of α and amax, as illustrated
in Fig. 14. Over the yellow curve, the system is condi-
tionally bistable since it also depends on h∗ parameter
value. This graph can be use to chose the right α control
parameter considering the capabilities of the particular
autonomous vehicle to avoid the bistable behaviour and
ensure smooth traffic flow.

5 Conclusion

In this paper, we have investigated the effect of the
acceleration saturation on the local and the global
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dynamical behaviour of the car-following model sub-
jected to time delay. First, we have presented stabil-
ity analysis for general heterogeneous car-following
system. Then further analysis has been expanded by
a demonstrating case study consisting a mixed-traffic
scenario of two human-driven vehicle and one auto-
mated vehicle.

We have shown that the saturation limit has no effect
on the linear stability properties. However, we have
broken down how the acceleration saturation affects
the global dynamics by the appearance of separated
isolas and bistable parameter zones, when the smooth
traffic flow may occur together with congested traffic
flow depending on perturbations that can trigger traf-
fic jams. We have also explained how the presented
method can be used to find these isolated periodic
orbits. Then, we have extended the linear stability chart
with these bistable parameter domains. With the intro-
duced global stability diagrams, it is possible to choose
the desired control parameters of the driving aid sys-
tem and autonomous vehicles to ensure global stabil-
ity, considering the acceleration limits of the particu-
lar vehicles. We have also provided how the bistable
domains decrease by increasing the saturation limit
(having more capable vehicles).

These analysis may open ways for efficient parame-
ter optimisation strategies crossing the border towards
reliable and safe autonomousvehicle design.Our future
goals are to extend the system considering more vehi-
cles and to perform experiments to support the theoret-
ical results.
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