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Abstract— In this paper, we consider the safety of continuous
time control systems with input delays. Safety functionals are
constructed that define safety sets in the infinite-dimensional
state space. Time-discretization is used in order to compute
safety sets in finite dimensions and it is shown that these sets
approach an infinite-dimensional safety set as the time step is
decreased. A simple example of a nonlinear scalar system is
used to demonstrate the convergence of the proposed methods.

I. INTRODUCTION

In recent years there has been an increasing interest in the
safety of control systems, with applications ranging from
connected automated vehicles [1] to robotic systems [2].
Formally, safety means keeping the state of the system within
a given set for all time by ensuring the forward invariance of
this set under the closed loop dynamics. It is often achieved
with the help of safety functions for which barrier functions
provide a canonical example [3], [4].

Recently these concepts have been extended to time delay
systems [5], [6], [7]. Discrete-time linear systems with input
delay are discussed in [8], [9] and in [5], [10] using model
reduction. Controllers with zero-order hold are analyzed in
[11] without computing control invariant sets. Methods for
computing invariant sets of autonomous systems in discrete
and continuous-time are given in [12], [13]. In particular,
one may utilize safety functionals (or barrier functionals) to
ensure the forward invariance of safety sets in the infinite-
dimensional state space [6]. However, to the best of our
knowledge, there exists no systematic method to construct
such functionals and compute the corresponding safety set.

In what follows, we compute safety sets for time delay sys-
tems. We approximate the system with a discrete-time map
via discretization, and compute forward invariant sets in the
corresponding finite-dimensional state space. We prove that
by decreasing the discretization step the finite-dimensional
safety sets approximate their infinite-dimensional counter-
part. We demonstrate the proposed approach on a case study.

The rest of the paper is organized as follows. The problem
is formally stated in Sec. II. Forward invariance theorems are
listed in Sec. III for continuous-time control systems with
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delay and discrete-time systems. In Sec. IV safety functionals
are constructed and computational tools are developed for the
time-discretized system. The methods are applied to a simple
example in Sec. V and the results are concluded in Sec. VI.

II. PROBLEM STATEMENT

Let us consider the control system

ẋ(t) = F
(
x(t), u(t)

)
, (1)

where x ∈ Rn and u ∈ Rm represent the state variables and
control inputs, and F : Rn × Rm → Rn. Formally, the safety
of this system can be defined by keeping its state within a
desired safe set Sdes ⊂ Rn, assumed to be the 0-superlevel
set of a function hdes : Rn → R such that

Sdes = {x ∈ Rn : hdes(x) ≥ 0}, (2)

where the choice of hdes and Sdes depends on the application.
Using the results in [3], [4], one can design feedback laws

of the form u = k(x) with k : Rn → Rm that ensure safety
under the closed loop dynamics

ẋ(t) = F
(
x(t), k(x(t))

)
= G

(
x(t)

)
, (3)

G : Rn → Rn. Safety requires the forward invariance of Sdes

under (3), i.e., if x(0) ∈ Sdes then x(t) ∈ Sdes for all t > 0.
With input delay τ , the control system (1) becomes

ẋ(t) = F
(
x(t), u(t− τ)

)
. (4)

Substituting the same feedback law u = k(x) we obtain the
delay differential equation (DDE)

ẋ(t) = F
(
x(t), k(x(t− τ))

)
= f

(
x(t), x(t− τ)

)
,

x(θ) = x0(θ), θ ∈ [−τ, 0],
(5)

where f : Rn × Rn → Rn is assumed locally Lipschitz con-
tinuous in both arguments and the initial conditions are given
by x0 ∈ C([−τ, 0],Rn) that lead to a unique solution x(t).

Safety can be extended to the time delay system (5)
by requiring that if x(θ) ∈ Sdes for all θ ∈ [−τ, 0] then
x(t+ θ) ∈ Sdes for all t > 0 and θ ∈ [−τ, 0]. This condition
can be reformulated by defining the state

xt(θ) = x(t+ θ), θ ∈ [−τ, 0], (6)

that is an element of the Banach space B = C([−τ, 0],Rn)
as illustrated in Fig. 1. Note that considering the state as a
function over the delay interval is a well-established concept
for time delay systems [14], [15].

Safety is then equivalent to the forward invariance of a set
Sdes ⊂ B defined over the Banach space, that is, if x0 ∈ Sdes
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then xt ∈ Sdes for all t > 0. To formally define the desired
safety set Sdes we use the functional Hdes : B→ R given by

Hdes(xt) = inf
θ∈[−τ,0]

hdes(x(t+ θ)), (7)

and require

Sdes = {φ ∈ B : Hdes(φ) ≥ 0}. (8)

However, safety for τ = 0, i.e., the invariance of Sdes,
does not imply safety for τ > 0, i.e., the invariance of Sdes,
since k did not account for the delay. As of now, there
exist no constructive method to design such “delay-resistant”
controller. Thus, we intend to tackle the following problem.

Problem Statement 1: Find the set S ⊂ Sdes ⊂ B that is
invariant under the delayed dynamics (5) when the controller
u = k(x) is designed to ensure the invariance of Sdes ⊂ Rn
in (2) under the non-delayed dynamics (1). Furthermore,
identify the functional H(xt) whose 0-superlevel set is S.

Calculating invariant sets over B is challenging due to
the infinite-dimensional nature of this state space. Thus, we
approximate (5) with a discrete-time map and we compute
invariant sets in the finite-dimensional state space of this
map. Then, we show the convergence of the sets as the
discretization is refined, to finally obtain S. Once S is found,
one can potentially improve the controller to modify this set
as desired; see this idea in [16]. This last step is beyond our
scope and we simply study how delays affect set invariance.

III. FORWARD INVARIANCE THEOREMS
In this section, we discuss the safety of dynamical systems

using the concept of forward invariant sets in state space. We
state forward invariance theorems for DDEs via safety func-
tionals and for discrete-time systems via safety functions.

A. Safety of continuous-time systems with delay
Consider the time delay system (5) and recall a theorem

from [6] that ensures the forward invariance of a set S in the
infinite-dimensional state space B as follows.

Definition 1: The set S ⊂ B is the 0-superlevel set of the
continuous functional H : B→ R if

S = {φ ∈ B : H(φ) ≥ 0},
∂S = {φ ∈ B : H(φ) = 0},

Int(S) = {φ ∈ B : H(φ) > 0}.
(9)

Theorem 1: Given the set S ⊂ B that is the 0-superlevel
set of the continuously differentiable functional H : B→ R,
it is forward invariant if for all xt ∈ S

Ḣ(xt) ≥ −α(H(xt)), (10)

where Ḣ(xt) denotes the derivative along the solutions of (5)
and α is an extended class K function. We refer to S as the
safety set while H is called the safety functional.

The proof can be found in [6]. The simplest extended class
K function α(s) = γs, γ > 0 simplifies (10) to

Ḣ(xt) + γH(xt) ≥ 0. (11)

Fig. 1. Time evolution of the state (6) in the infinite-dimensional state
space and schematic figure of time discretization (12). Green represents the
initial condition x0, while red highlights the state xt.

B. Time discretization

Now we approximate DDE (5) by a discrete-time map via
time discretization. Let us define the discrete time moments
tk = k∆t, k ∈ N, ∆t = τ/r, where r ∈ N+ is the resolution
of discretization. We approximate the state x(t) of (5) at
the discrete moments t = tk by a discretized state called
x(k) ∈ Rn such that x(k) ≈ x(tk). Furthermore, we define

x(k) =
[
x(k)> x(k − 1)> · · · x(k − r)>

]>
, (12)

that approximates r + 1 sampled values from the state
xt ∈ B at t = tk; see the illustration in Fig. 1.

To approximate (5), we construct the discrete-time map

x(k + 1) = f
(
x(k)

)
, (13)

where f : R(r+1)n → R(r+1)n has the following structure:

f(x) =


0 · · · 0 0
I · · · 0 0
...

. . .
...

...
0 · · · I 0

x +


R(x)

0
...
0

, (14)

while I and 0 are n-dimensional identity and zero matrices,
and R : R(r+1)n → Rn depends on the right hand side of
DDE (5) and the numerical scheme used for discretization.

A simple example of a discretization scheme is given
below, although there exist several approaches to discretize
DDEs [17], [18]. For such discretization schemes, it has been
established [19] that when ∆t is small enough the solution
of (13,14) stays close to the solution of (5). More precisely,

lim
r→∞

‖x(k)− x(tk)‖ = 0,

lim
r→∞

∥∥∥∥R(x(k))− x(k)

∆t
− f

(
x(tk), x(tk−r)

)∥∥∥∥ = 0,
(15)

∀k ∈ N. Throughout the paper ‖ · ‖ denotes arbitrary vector
norm on Rn and Cm, m ∈ N+ and the associated matrix
norm on Cm×n. More details on discretion methods for
DDEs, their convergence and examples for R are in [19].

For example, to discretize (5) one can use the first-order
Euler-type discretization scheme

ẋ(tk) ≈
(
x(k + 1)− x(k)

)
/∆t. (16)

This yields the discrete-time map (13,14) with

R(x) = Px + ∆t f(Px,Qx), (17)
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where matrices P and Q select the actual and delayed terms
x(k) and x(k − r) from the discretized state x(k):

P =
[
I 0 . . . 0

]
, Q =

[
0 . . . 0 I

]
. (18)

Below we formulate safety conditions for map (13) and
investigate how they change as the discretization is refined.

C. Safety of discrete-time systems

Safety functions for discrete-time maps were introduced
in [20] and further details are given in [21]. Now we state
and prove the forward invariance theorem. We use subscript
r to highlight that the state space dimension depends on r.

Definition 2: The set Sr ⊂ R(r+1)n is the 0-superlevel set
of the continuous function hr : R(r+1)n → R if

Sr = {x ∈ R(r+1)n : hr(x) ≥ 0},
∂Sr = {x ∈ R(r+1)n : hr(x) = 0},

Int(Sr) = {x ∈ R(r+1)n : hr(x) > 0}.
(19)

Theorem 2: Given the set Sr ⊂ R(r+1)n that is the 0-
superlevel set of the continuous function hr : R(r+1)n → R,
it is forward invariant if for all x ∈ Sr

∆hr(x) ≥ −α̂r
(
hr(x)

)
, (20)

where ∆hr is the difference of hr along the solutions of (13):

∆hr(x) = hr(f(x))− hr(x), (21)

α̂r is a function of the form α̂r(s) = s− αr(s) where αr
is an extended class K function that satisfies |αr(s)| < |s|
for s 6= 0. Here Sr is the finite-dimensional representation
of the safety set, while hr is called the safety function.

The proof is provided below. We remark that α̂r is also
an extended class K function if it is strictly monotonically
increasing, but this property is not required by Theorem 2.
Again, the simplest function one can choose is α̂r(s) = γrs
with the restriction 0 < γr < 1, which simplifies (20) to

∆hr(x) + γrhr(x) ≥ 0. (22)

Proof. To prove forward invariance, we show hr(x(k)) ≥ 0,
∀k > 0 if hr(x(0)) ≥ 0. First, note that (20) is equivalent to

hr
(
f(x)

)
≥ αr

(
hr(x)

)
. (23)

For the solutions of (13), we thus have

hr(x(k + 1)) ≥ αr
(
hr(x(k)

)
. (24)

Then, consider the system

y(k + 1) = αr
(
y(k)

)
, y(0) = hr(x(0)), (25)

y ∈ R. The solution y(k) = βr
(
hr(x(0)), k

)
of this system

is given by an extended class KL function βr, which implies
y(k) ≥ 0, ∀k > 0. Since αr is strictly monotonically increas-
ing, we can apply the discrete-time comparison lemma [21]:

hr(x(k)) ≥ y(k) ≥ 0, (26)

∀k > 0, which can also be verified by induction. �

Note that |αr(s)| < |s| for s 6= 0 is required for (25) to
be a contraction. If this does not hold, the trivial fixed point
of (25) is not globally stable. Thus y(k) is not given by an
extended class KL function, and for certain initial conditions
y(k) converges to a positive fixed point or undergoes unstable
increase. If the domain of αr is bounded, such increase leads
out of the domain in finite time.

IV. SAFETY ANALYSIS FOR DELAYED SYSTEMS
Theorems 1 and 2 address the safety of DDE (5) and

discrete-time map (13,14) without considering that one is the
discretization of the other. Now we link the two theorems.

We restrict ourselves to a class of nonlinear functionals:

H(xt) = g(L(xt)), (27)

that is a continuously differentiable nonlinear function
g : Cm → R, m ∈ N+ of a linear functional L : B → Cm.
The advantage of this formalism is all linear functionals can
be written into the following form using a Stieltjes integral:

L(xt) = η(0)xt(0) +

∫ 0

−τ
dη(θ)xt(θ), (28)

where η : [−τ, 0]→ Cm×n is of bounded variation. The
derivative of H in (27) along the solution of (5) is

Ḣ(xt) = ∇g(L(xt))
>L̇(xt), (29)

where ∇ denotes gradient and

L̇(xt) = η(0)f
(
xt(0), xt(−τ)

)
+

∫ 0

−τ
dη(θ)x′t(θ), (30)

with prime being the derivative with respect to θ. Further-
more, for linear functionals one has L̇(xt) = L(ẋt).

As counterpart to the functional, we consider the function

hr(x) = gr(Lr(x)) = gr(Wrx), (31)

that is a continuously differentiable nonlinear function
gr : Cm → R of a linear map Lr given by Wr ∈ Cm×(r+1)n.

A. Safety under discretization

First, we discuss convergence for the linear map Lr and
its difference ∆Lr along the solution of (13,14) to a linear
functional L and its derivative L̇ along the solution of (5).

Lemma 1: Consider the continuous time delay system (5)
and its discretization (13,14) which converges accord-
ing to (15). Furthermore, consider a sequence of matri-
ces Wr ∈ Cm×(r+1)n whose column blocks Wr` ∈ Cm×n
defined by Wr =

[
Wr0 Wr1 . . . Wrr

]
have bounded

norm, i.e., there exists C > 0 such that ‖Wr`‖ ≤ C,
∀` ∈ {0, . . . , r}, ∀r ∈ N+. Assume that there exists a linear
functional L : B → Cm such that

lim
r→∞

∥∥∥∥ r∑
`=0

Wr`φ(−`∆t)− L(φ)

∥∥∥∥ = 0, (32)

∀φ ∈ B. Then, one has the following properties for all k ∈ N
considering the solutions xt and x(k) of (5) and (13,14):

lim
r→∞

∥∥Lr(x(k))− L(xtk)
∥∥ = 0 (33)
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and
lim
r→∞

∥∥∆Lr(x(k))/∆t− L̇(xtk)
∥∥ = 0, (34)

where Lr(x) = Wrx, ∆Lr(x) = Lr(f(x))− Lr(x), and
the derivative is along the solution of (5).

Proof. Using (12) and the column blocks Wr`, we have

∥∥Wrx(k)− L(xtk)
∥∥ ≤ r∑

`=0

∥∥Wr`

∥∥∥∥x(k − `)− x(tk−`)
∥∥

+

∥∥∥∥ r∑
`=0

Wr`xtk(−`∆t)− L(xtk)

∥∥∥∥, (35)

which leads to (33) considering (15,32) and that ‖Wr`‖ is
bounded. Using (5,12,14) and L̇(xtk) = L(ẋtk), we get∥∥Wr

(
f(x(k))− x(k)

)
/∆t− L̇(xtk)

∥∥
≤
∥∥Wr0

∥∥∥∥(R(x(k))− x(k)
)
/∆t− f

(
x(tk), x(tk−r)

)∥∥
+

r∑
`=1

∥∥Wr`

∥∥∥∥(x(k − `+ 1)− x(k − `)
)
/∆t− ẋ(tk−`)

∥∥
+

∥∥∥∥ r∑
`=0

Wr`ẋtk(−`∆t)− L(ẋtk)

∥∥∥∥, (36)

which yields (34) via (15,32) and that ‖Wr`‖ is bounded. �

That is, if the weighted sum in (32) converges to an
integral given by L in (28), then Lemma 1 guarantees con-
vergence to linear functionals and their derivatives. Now we
consider the nonlinear functional H, and we state sufficient
conditions under which the safety of the discretized system
(ensured by Theorem 2) guarantees the safety of the time
delay system (given by Theorem 1) at the limit r →∞.

Theorem 3: Consider the continuous time delay system (5)
and its discretization (13,14) which converges according
to (15). Consider the continuously differentiable functional
H : B → R given by (27) and a sequence of continuously dif-
ferentiable functions hr : R(r+1)n → R given by (31), which
are chosen such that Wr ∈ Cm×(r+1)n has the properties
listed in Lemma 1, while gr and g satisfy

lim
r→∞

gr(ξ) = g(ξ), lim
r→∞

‖∇gr(ξ)−∇g(ξ)‖ = 0, (37)

∀ξ ∈ Cm. Assume that the 0-superlevel set Sr of hr is
forward invariant under the discrete dynamics (13,14) for
all r ∈ N+, i.e., (20) holds for all x ∈ Sr with α̂r having
the properties listed in Theorem 2, and assume that the limit

α(s) = lim
r→∞

α̂r(s)/∆t (38)

exists and α̂r is an extended class K function. Then, the
0-superlevel set S of H is forward invariant under the
continuous delayed dynamics (5).

Proof. Since g and gr are continuous, (27,31,33,37) lead to

H(xtk) = lim
r→∞

hr(x(k)). (39)

Furthermore, one can prove

Ḣ(xtk) = lim
r→∞

∆hr(x(k))/∆t (40)

as follows. By the definition (21,31) of ∆hr and the continu-
ous differentiability of gr, we apply the mean value theorem:

∆hr(x(k)) = gr
(
Wrf(x(k))

)
− gr

(
Wrx(k)

)
= ∇gr

(
Wrx(k) + εr

)>
Wr(f(x(k))− x(k)), (41)

where εr = δWr(f(x(k)− x(k)) with δ ∈ [0, 1]. Notice
that limr→∞ ‖εr‖ = 0 due to (34). Since g and gr are con-
tinuously differentiable, we get (40) from (29,33,34,37,41).
Then, using (38) and that α̂r is continuous, (39,40) give

Ḣ(xtk)+α(H(xtk)) = lim
r→∞

(∆hr(x(k))+α̂r(hr(x(k)))/∆t.

(42)
Since (20) holds for all r, taking r →∞ leads to (10), and
the rest of the proof follows from Theorem 1. �

The simplest choice of α, α̂r are α(s) = γs, α̂r(s) = γrs,
γr = γ∆t with 0 < γr < 1, 0 < γ < 1/∆t, where the upper
bound on γ vanishes as ∆t→ 0. Furthermore, we remark
that the theorem can be extended to a combination of terms
as hr(x) =

∑r
j=0 g

j
r(W

j
rx) and H(xt) =

∑∞
j=0 g

j(Lj(xt))
provided that gjr , Wj

r, g
j , Lj have the properties of gr, Wr,

g, L for all j ∈ {0, . . . , r} and the sum is convergent. We
will use this form in the case study of Sec.V.

B. Computation of safety sets
Now we discuss the computation of the safety set Sr corre-

sponding to hr in the finite-dimensional state space R(r+1)n.
We approach this by constructing hr with a free parameter
cr ∈ R, denoted by hr(x; cr). The parameterization gives
rise to a family of 0-superlevel sets Sr,c:

Sr,c = {x ∈ R(r+1)n : hr(x; cr) ≥ 0}, (43)

cf. (19), which facilitates finding the forward invariant ones
amongst them by tuning parameter cr. Moreover, we can
search for Sr as the largest invariant set amongst Sr,c to
reduce conservativeness. Based on (22), we use the following
condition for invariance:

∆hr(x; cr) + γr hr(x; cr) ≥ 0. (44)

To ensure safety, the set given by (43) must be inside the
one defined by (44) as illustrated in Fig. 2(a), where the green
domain is inside the red one. Varying cr may enlarge the
safety set, which becomes maximal for cr = ccr where the
surfaces hr(x; cr) = 0 and ∆hr(x; cr) + γrhr(x; cr) = 0
are tangent to each other at a point x = xcr; see Fig. 2(b).
Once the surfaces intersect, (44) is violated in a subset of
(43), see Fig. 2(c), and the set in (43) is no longer forward
invariant (not even in the subset where (44) holds).

We study the tangency of the surfaces via their gradients

w(x; cr) = ∇hr, v(x; cr) = ∇(∆hr + γrhr), (45)

which are parallel when the surfaces are tangent at x = xcr

for parameter cr = ccr. The largest invariant set is found by
solving the following system of nonlinear algebraic equations

hr(xcr; ccr) = 0,

∆hr(xcr; ccr) + γrhr(xcr; ccr) = 0,

v(xcr; ccr) = λw(xcr; ccr),

(46)
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Fig. 2. Graphical representation of the 0-superlevel set (43) (green shading)
and the safety condition (44) (red shading).

where λ ∈ R. This contains (r + 1)n+ 2 equations and
(r + 1)n+ 2 unknowns (xcr ∈ R(r+1)n, ccr and λ), thus, the
method scales well with the dimension of the problem. Note
that the existence of the roots requires appropriate selection
of hr since invariant sets are not of arbitrary shape.

V. CASE STUDY

In order to illustrate the above mathematical construction,
we consider the following scalar nonlinear control system

ẋ(t) = x3(t) + u(t− τ), (47)

with input delay τ where x ∈ R and u ∈ R; cf. (4). Then, we
consider the proportional control u = −x, which guarantees
for the delay-free case (τ = 0) that the set Sdes given by
hdes(x) = 1 − x2 is safe [6], i.e., −1 ≤ x(t) ≤ 1 for all
t > 0 if −1 ≤ x(0) ≤ 1. As we will see, this desired set is
not invariant when delays arise (τ > 0), and we intend to
find invariant sets and compare them to the desired one.

The controller u = −x yields the closed loop dynamics

ẋ(t) = x3(t)− x(t− τ), (48)

cf. (5). This system has three equilibria: x(t) ≡ 0, which is
linearly stable for 0 ≤ τ < π/2 and unstable otherwise, and
x(t) ≡ −1, x(t) ≡ 1, which are unstable for any τ ≥ 0.

For 0 ≤ τ < π/2 we expect an invariant domain around
the origin, which we compute via discretization. System (48)
can be discretized into the form (13,14) with

R(x(k)) = x(k) + ∆t
(
x(k)3 − x(k − r)

)
, (49)

cf. (17). The disretized system has three fixed points:
x(k) ≡ 0, x(k) ≡ [−1 · · · − 1]> and x(k) ≡ [1 · · · 1]>.
Again, the latter two are unstable for any τ ≥ 0 (that appears
via ∆t = τ/r), while the former one is stable below a
critical τ and unstable above. In order to make sure that this
critical value is π/2 (as it was in the continuous time case),
we rescale time with parameter ar = 4r

π sin π
2(2r+1) . Such

rescaling allows us to compare the results for small values
of r, but it is not necessary for observing the convergence
for larger values of r (since ar → 1 as r →∞).

Finally, we propose the quadratic safety function

hr(x; cr) = c2r − x>Prx, (50)

where Pr = T
−>
r T−1r ∈ R(r+1)×(r+1), overbar denotes

conjugate, and Tr ∈ C(r+1)×(r+1) is constructed such that
its columns are the eigenvectors of the coefficient matrix

∂f/∂x(0) of the linear terms in (13,14,49). Note that (50) is
of form hr(x) =

∑r
j=0 g

j
r(W

j
rx). Here Wj

r is the j-th row
of T−1r , and Wj

rx represents a projection to the j-th eigendi-
rection. This spectral projection has a continuous limit and
Wj

r has the properties listed in Theorem 3. Furthermore,
gjr(ξ) = c2r/(r + 1)− ξξ, j ∈ {1, . . . , r} that also satisfy the
conditions in Theorem 3 as long as c2r/(r + 1) converges for
r →∞, which will be shown below. Also note that, cr can
be considered as the size of the invariant set and one can
potentially find the largest one.

The quadratic safety function (50) renders the safety set
(43) to be an (r + 1)-dimensional ellipsoid around the origin
in the state space R(r+1). The left-hand side of (44) becomes

∆hr(x; cr) + γrhr(x; cr)

= −f>(x)Prf(x) + (1− γr)x>Prx + γrc
2
r,

(51)

while the gradient vectors in (45) read

w(x; cr) = −2Prx,

v(x; cr) = −2
∂f>(x)

∂x
Prf(x) + 2(1− γr)Prx.

(52)

Using (50,51,52) in (46) allows us to find the largest invariant
set Sr for different r values that are visualized in Fig. 3.

Figure 3a shows the case r = 1, where the state space and
the safety set are two-dimensional. The state x(k) consists of
the current state x(k) (associated with x(t) in the continuous-
time system) and the delayed state x(k − 1) (associated
with x(t − τ)). The safety set is shaded as green while
the safety condition is shown by red for different values of
γr as indicated. The black curves bound the domain that is
forward invariant according to direct numerical iteration of
the nonlinear map (13,14,49) for various initial conditions.

Figure 3b illustrates the case r = 2 associated with the
three-dimensional state space given by x(k), x(k − 1) and
x(k− 2) which are related to x(t), x(t− τ/2) and x(t− τ)
in the continuous-time system. The safety set is now three-
dimensional as shown by the green ellipsoid. The safety
condition is shown by the red surface, whereas the boundary
of the invariant domain obtained by direct iteration is gray.

While safety sets can be depicted in two- or three-
dimensional state spaces (r = 1, 2), visualizing them in
higher dimensions and comparing them for different r values
is challenging. For visualization and comparison only, we
restrict to a subset of states, which can be illustrated in two
dimensions. We consider states xt(θ) that are linear in θ, i.e.,
in discrete time: x(k − `) = x(k)(1− `/r) + x(k − r)`/r,
` ∈ {0, 1, . . . , r}. Here x(k) and x(k − r) are associated
with x(t) and x(t− τ), thus invariant sets can be illustrated
and compared in the plane (x(t), x(t− τ)).

Figure 3c shows the two-dimensional slice of the invariant
sets for different mesh numbers r. Green illustrates the safety
sets based on forward invariance theorem, while grayscale
curves visualize those obtained from direct iteration. As r
increases, the green curves converge to an ellipse, which can
be considered as the two-dimensional slice of the safety set
of the continuous time delay system. The difference between
the green and grey curves is due to the selected quadratic
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Fig. 3. Safety sets of (48) for τ = 1.3. (a) Safety set in two dimensions (r = 1) for γr = 0, 0.5 and 1. Green and red show the safety sets and safety
conditions, respectively. Black curves are the stable manifolds of the nontrivial equilibria (red dots) which bound the forward invariant domain around the
trivial equilibrium (green dot) obtained by direct iteration. (b) Safety set in three dimensions (r = 2) for γr = 0. (c) Two-dimensional slice of the safety
sets (green) and invariant domains computed by direct iteration (black) for different values of r. (d) Convergence of the parameter ccr when increasing r.

form of the safety function in (50). We remark that the delay
decreases the size of the invariant set; cf. the blue desired
set Sdes that is invariant without the delay.

In order to illustrate the convergence of the safety sets,
we use the ccr value in (50) as a linear measure to compare
the size of different-dimensional ellipsoids for different mesh
numbers. Figure 3d shows that this measure converges to a
value as the mesh number r is increased.

Finally, note that direct iterations with various initial con-
ditions can be computed within O(pr) seconds for p different
initial values in each state, that becomes computationally
infeasible for large r. Meanwhile, the approximation of the
invariant domain with the forward invariance theorem is
computationally effective, we found the computation time
for this example to be 1.036r seconds on a normal laptop.

VI. CONCLUSIONS
Safety of time delay systems was analyzed by using safety

functionals, time-discretization and safety functions. By dis-
cretizing the time delay systems, the infinite-dimensional
state space was reduced to a finite-dimensional one, while
the safety functionals were approximated by safety functions.
This allowed computing forward invariant sets of time delay
systems in finite dimensions. The convergence of this method
for calculating invariant sets was demonstrated on a scalar
example. Our future research includes the use of projections
to finite-dimensional subspaces like the one corresponding
to the output dynamics, comparing barrier function based
methods to those obtained by formal methods [10], and
analyzing the effect of the time delay on invariant domains.
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