
SURFACE ERROR AND STABILITY CHART OF BEAM-TYPE WORKPIECE IN
MILLING PROCESSES

Adam K. Kiss
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: kiss a@mm.bme.hu

Daniel Bachrathy
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: bachrathy@mm.bme.hu

Gabor Stepan
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: stepan@mm.bme.hu

ABSTRACT
In milling processes, the intermittent cutting force may lead

to harmful vibrations. These vibrations are classified into two
groups. One of them is the self excited vibration which comes
from the loss of stability due to the regeneration effect and these
vibrations lead to unacceptable chatter marks. The other one
is the forced vibration which can lead to high Surface Location
Error (SLE) in case of resonant spindle speeds. In this paper,
the dynamics of the beam-type workpiece is considered which is
modelled by means of Finite Element Analysis (FEA). Both the
forced vibration and the stability properties are predicted along
the tool path. The surface properties are computed on the stable
regions of the stability chart which presents the chatter-free (sta-
ble) parameter domain as a function of the spindle speed and the
tool path. The theoretical results are compared to the measured
SLE and surface roughness.

1 INTRODUCTION
Eliminating the vibrations during milling process is an im-

portant task, but unfortunately, it is unattainable in practice. The
reason for this is two different types of vibration, which may oc-
cur during the process. One of them is the self-excited vibration
that is due to the loss of stability related to the surface regenera-
tion effect [1]. The chip evolution is influenced by the subsequent
position of the previous cutting edge and the current position of
the current cutting edge [2]. This effect can be modelled with

delay-differential equations (DDE) [3]. The other type of vibra-
tion is the periodic forced vibration, but it plays a role only in
the case if the machining process is stable. The forced vibration
can be described by simple inhomogeneous ordinary differential
equation (ODE) and it leads to large amplitude vibration in res-
onant cases. From the mechanical point of view, the machining
process is usually stable if the spindle frequency is close to the
natural frequencies or its higher harmonics, however, large am-
plitude resonant vibration can occur at these spindle speeds. The
relative vibration between the milling tool and the workpiece re-
sults a deviation between the machined and the desired surface,
which also called as the Surface Location Error (SLE) [4, 5].

It is an essential role for a mechanical engineer to predict the
behaviour of a milling process in order to achieve high material
removal rate, thus increase the production rate in manufactur-
ing. The stability properties is usually determined based on the
so-called stability chart which presents the domain of the chatter-
free (stable) technological parameter domain. It is usually repre-
sented in the plane of the spindle speed and the axial immersion.
It can be calculated by means of methods in time domain [6–8]
or frequency domain also [9–11]. In time domain, the identifi-
cation of the modal parameters - which describe the dynamical
behavior of the model - is required but it is complex engineer-
ing procedure. An advantage of the frequency domain solutions
is that they can directly use the measured Frequency Response
Function (FRF). However, these FRF functions change in the
work-space due to the different configuration of the machine tool
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FIGURE 1. Dynamic model of the milling tool.

structure. The variation of the FRF is even more significant if the
dynamics of the workpiece is dominant (i.e.: flexible workpiece
compared to the milling tool, which is typical for beam-type or
thin plate-type workpieces). From the viewpoint of the stability
chart calculation, it is essential to take into account the effect of
the variation in the FRF function.

In this paper, stability chart and surface properties (SLE) cal-
culations are developed using an FRF based model. The variation
of the dynamic properties caused by the material removal and
the changing milling tool position is also considered. Finally, the
predicted phenomena are identified in measurement results.

2 MILLING PROCESS
In order to perform the stability calculation and to predict

the milled surface quality, the cutting process of the milling op-
eration has to be described. In this paper, the widespread linear
force model is used, where the magnitude of the cutting force is
linearly proportional to the actual chip thickness [12]. This is
a good approximation for the computation of the forced vibra-
tion [13] and acceptable to describe the chatter pehonena [14].
The ratios described by the Kr radial and the Kt tangential cut-
ting coefficients, which usually determined by set of cutting tests
for a given tool geometry and cutting parameters [15].

The tangential and the radial component of the elementary
cutting forces acting on an elementary segment of the jth cutting

edge dz can be described according to [16]

dFr(t) = Krg
(
ϕ j(t,z)

)
h
(
ϕ j(t,z)

)
dzcosη , (1)

dFt(t) = Ktg
(
ϕ j(t,z)

)
h
(
ϕ j(t,z)

)
dzcosη , (2)

where g
(
ϕ j(t,z)

)
is the screen function

g
(
ϕ j(t,z)

)
=

{
1 if the tool is in thematerial
0 otherwise (3)

which indicates that the jth edge is in contact with the material or
not, ϕ j(t,z) is the current angular position of the jth cutting edge
(which depends on the axial coordinate of the tool z), reads as

ϕ j(t,z) = Ωt +
2π( j−1)

N
− 2πz

p
(4)

for constant helix angle and equally distributed teeth, where N is
the number of the cutting edges, Ω is the angular spindle speed
in [rad/s] and p is the helix pitch. η = arctanDπ/(N p) is the
helix angle and h

(
ϕ j(t,z)

)
is the chip thickness. It is the sum of

the dynamic chip thickness hdyn
(
ϕ j(t,z)

)
and the stationary chip

thickness hstat
(
ϕ j(t,z)

)
[6]. The stationary one is the result of

the projection of the feed per tooth fz on the direction of the tool
tip velocity, reads as

hstat
(
ϕ j(t,z)

)
= fz sinϕ j(t,z). (5)

Note, that the stationary chip thickness influences only the forced
vibration, and it has no effect on the stability if linear cutting
force is considered as in Eq. (1,2) [4]. The dynamic one corre-
sponds to the surface regenerative effect of the machining pro-
cess [9] which plays a role in the stability analysis of the forced
periodic motion [17].

hdyn
(
ϕ j(t,z)

)
=
(
y(t,z)− y(t− τ,z)

)
cosϕ j(t,z) (6)

where y(t) is the general coordinate, which describes the relative
motion between the workpiece and the milling tool (see in Fig.
1) and τ is the tooth passing period (τ = 2π/(ΩN)).

To determine the resultant cutting force, first, the radial and
tangential cutting force components are projected from the local
tangential-radial coordinate system of the jth tooth to the global
x− y coordinate system. Then it is integrated along the axial
coordinate z from zero to the axial immersion ap.
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FIGURE 2. Schematic figure of the applied beam-type workpiece
considering the material removal

Fy(t) =
N

∑
j=1

∫ ap

0

[
Kt Kr

]
h
(
ϕ j(t,z)

)
g
((

ϕ j(t,z)
))

[
−sinϕ j(t,z) cosϕ j(t,z)

]T dz

(7)

Note, that the SLE computation requires the forced vibration
perpendicular to the surface, therefore only the Fy(t) component
is presented in Eq. (7) and the motion is restricted to the direction
perpendicular to the machined surface.

With the previously described cutting force model, the sta-
bility and surface quality calculation can be performed after the
dynamic behaviour of the model is described.

3 DYNAMICS OF THE WORKPIECE
In this paper, the workpiece is assumed much more flexible

compared to the the milling tool together with the whole machine
tool structure. This assumption is valid for a thin walled work-
piece, for example Fig. 2. The milling tool and the workpiece
are considered as a rigid body and a flexible body, respectively.

During the milling process, the actual tool position along
the tool path defines the contact region between the milling tool
and the workpiece. Due to this phenomenon, different points are
excited by the resultant cutting force, hence the dynamic behav-
ior at the actual contact point needs to be considered during the
computation. It can be easily provide by means FEA. In case of
a given workpiece geometry, the corresponding modal matrices
can be extracted from most of the industrial FEA softwares. Our
assumption for the geometry is that the transversal dimensions
(thickness and width) are negligible compared to the longitudi-
nal size (t0 << w << L), as shown in Figure 2. In this case,
the horizontal (longitudinal) vibration is not taken into consider-
ation, since the structure is much more stiffer in the horizontal
direction compared to the transveral direction. Furthermore, if
the width of the plate w is small, then the resultant bending mo-
ment along the workpiece length L is also small, therefore its ef-
fect can be also neglected. Due to these assumptions the bending
vibration is dominant in the model, thus, for the sake of simplic-
ity, a simple beam model is considered and described by Finite

Element Analysis in this paper, which capable of describing all
phenomena in question.

The workpiece dynamics can change during the milling pro-
cess in two different ways. One of them corresponds to the move-
ment of the excitation position, which is taken into account by
means of the mode shapes. The other one relates to the effect
of the material removal process, which leads to changing work-
piece geometry and changing dynamical parameters, especially
the natural frequency.

The governing equation of motion can be given as decou-
pled equations of each modal coordinates χi(ω,s) in frequency
domain [18, 19], read as

−ω
2
χi(ω,s)+ iω2ξi(s)ωn,i(s)χi(ω,s)+ω

2
n,i(s)χi(ω,s) =

φi(ω),
(8)

where φi(ω) is the generalized force of ith mode shape, s describe
the arc length coordinate of the tool path (which is equivalent to
the beam length coordinate), ωn,i(s) is the natural angular fre-
quency and ξi(s) is the modal damping of the ith mode shapes,
(i = 1,2, ...,m, where m is the number of the considered modes).
In case of proportional damping, damping coefficients ξi(s) can
be calculated as:

ξi(s) =
αM

2ωn,i(s)
+

αK

2
ωn,i(s), (9)

where αM and αK are the proportional damping factors [18].
With a FEA based model, the variation of the FRF can be mod-
elled for each node of the FEA model. The FRF H(ω,s) in the
function of the frequency ω and the tool position s at the contact
milling point of the tool and workpiece can be given as

H(ω,s) =
m

∑
i=1

T 2
exc,i(s)

−ω2 + iω2ξi(s)ωn,i(s)+ω2
n,i(s)

, (10)

where Texc,i(s) is the element of the ith mass normalized mode
shape vector at the excited contact milling point [18], as shown
in Fig. 3.

4 SURFACE LOCATION ERROR
In this section, the computation steps of the forced vibration

induced SLE are presented based on [5]. The machined surface
contour is defined by the relative motion of the cutting edges and
the excited contact point of the vibrating workpiece. The forced
periodic vibration of the contact point can be defined based on
the given FRF H(ω,s) (Eq. 10) as:

y(t,s) = F−1(H(ω,s)φy(ω)
)
, (11)
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Parameter Symbol Workp. I. Workp. II.

Width w 15 [mm] 20 [mm]

Thickness t0 3 [mm] 5 [mm]

Length L 100 [mm]

Density ρ 2933.33 [ kg
m3 ]

Young’s modulus E 50 [GPa]

Material - AlMgSi05

TABLE 1. Parameters of the milled workpieces (Workp. I. and II.)

FIGURE 3. Frequency Response Function of the workpiece depend-
ing on the length of the workpiece, where only the first two modes are
taken into account (m = 2). Parameters are presented in Table 1.

where φy(ω) is the Fourier Transformation of Eq. 7. The relative
motion of the cutting edge is formulated as the superposition of
the forced stationary vibration y(t,s) and the cylindrical rotation
of the edge:

r j(t,s,z) = y(t,s)− D
2

cosϕ j(t,z). (12)

According to [5], the maximum of the relative displacement
determines the SLE, which is given by

Up-milling: SLE(s,z) = max
t
(r j(t,s,z))−

D
2

Down-milling: SLE(s,z) = min
t
(r j(t,s,z))+

D
2
.

(13)

Consequently, the SLE(s,z) does not only depend on the tool
path coordinate s, but also on the axial coordinates z. Therefore,
the so-called Maximum Surface Location Error MSLE(s) sur-
face quality parameter can be introduced, which is the maximum
of the SLE(s,z) function, reads as

MSLE(s) = max
z

(SLE(s,z)). (14)

FIGURE 4. Stability diagram in the plane of the tool path s and the
spindle speed Ω. The red dots show the bifurcation curves along which
the stability properties changing and the light red shaded area represents
the unstable region. Continuous, dashed and dotted lines represents the
resonant spindle speeds referring to the first, second and third higher
harmonics of the first two natural frequencies, respectively

The presented method can be used to predict the MSLE val-
ues along the tool path for a given set of technological parame-
ters. However, since these computations are based on the stable
forced vibration, it is valid only if the machining process is stable
from the viewpoint of the regenerative effect.

5 STABILITY ANALYSIS

In what follows, the stability boundaries of the regenerative
effect are presented based on the so-called Extended Multi Fre-
quency Solution (EMFS) [11]. The EMFS is an efficient com-
putational algorithm for determine the stability boundaries by
means of to calculate the real and the imaginary parts of the de-
terminant of the truncated Hill’s infinite matrix. With the help of
the EMFS, the stability of the machining process can be deter-
mined for a given parameter set. The stability chart is computed
in the plane of the tool path s and the spindle speed Ω by means of
the so-called Multi-Dimensional Bisection Method [20], which
is a fast interval halving numerical algorithm. The combination
of the EMFS and the MDBM provides an efficient and fast com-
putational method, which is capable to determine the stability
boundaries. In Fig. 4, the stability is computed for parameters
presented in Table 1 and 2. Note, that the stability chart does not
show the traditional lobe structure since the vertical axis is not
the axial immersion ap, but the tool path coordinate s.
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6 A CASE STUDY
6.1 Numerical results

The above-described computation method is applied to a
case study, in which, the peripheral milling of beam-type work-
pieces are performed. Note, that in this paper the entire width
of the workpiece is milled, therefore the axial immersion ap is
equal to the width of the workpiece (w = ap). During the cal-
culation, the generated FRF presented in Fig. 3 and the tech-
nological parameters shown in Table 1 and 2 are used. The so-
called superchart (Fig. 5 and 6) [21] presents the boundaries of
the stability chart together with the MSLE values in the plane
of the spindle speed Ω and the tool path coordinate s. It is
well-known that if the natural frequencies of the system is ex-
cited by one of the Fourier components of the cutting force then
it can lead to large resonant vibrations. Therefore, substantial
MSLE values are evolved typically at the resonant spindle speeds
(Ω = ωn/(kN),k = 1,2,3, ...). Nevertheless, in case of helical
edged cutting tool, there exist so-called trivial and non-trivial ap-
propriate axial immersions [5, 13], where no resonant vibration
take place, therefore negligible MSLE can be achieved. The triv-
ial appropriate axial immersion is formulated as

w = pk, k ∈ N. (15)

Note, that for Eq. (15), the cutting edges cover a full periods [0,
k2π], therefore, constant cutting force is resulted independently
from the spindle speed Ω. The non-trivial appropriate axial im-
mersion is given as

w(Ω) =
Ω

ωn
pk, k ∈ N (16)

for which no resonant vibration of the selected natural frequency
is evolved.

Fig. 5 shows that the favorable parameter domains can
be found (at the pockets) between the stability lobes near
to the resonant spindle speeds or its higher harmonics (Ω ≈
11000,21000,45000rpm), where the chatter can be eliminated
for the full length of the workpiece. On the other hand, these
regions are not recommended from the viewpoint of the surface
errors due to the resonant vibration (see Fig. 5). However, if
the conditions for the trivial or the non-trivial appropriate axial
immersion Eq. (15, 16) are fulfilled, then small MSLE values
formed. For a given axial immersion, we can reformulate Eq.
(16) to give a condition for the number i of the higher harmonics
of the resonant spindle speed (Ω/i):

i =
kp
w
, i,k ∈ N. (17)

Note, it can be fulfilled only if p/w is rational.

Parameter Symbol Value

Feed per tooth fz 0.05 [mm]

Number of teeth N 4 [-]

Helix pitch p 10 [mm]

Tool diameter D 8 [mm]

Radial immersion ratio ae 0.05 [-]

Axial immersion ap = w width of the workpiece

Radial force coeff. Kr 300 ·106
[ N

m2

]
Tang. force coeff. Kr 800 ·106

[ N
m2

]
Damping coeff. I. αM 1.43 ·10−6

[ 1
s

]
Damping coeff. II. αK 45.02 [s]

TABLE 2. Parameters of the case study

In the case study of Workpiece I. p/w = 2/3 and Eq. (17)
holds for parameter pairs [i,k] =[2,3], [4,6],[6,9], ... . This
means, that the every second (even) resonant spindle speeds lead
to negligible MSLE values, and the odd ones create resonant vi-
bration and large surface error, as shown in Fig. 5.

In the case study of Workpiece II. (p/w = 1/2), Eq. (17)
is hold for parameter pairs [i,k] =[1,2], [2,4],[3,6], ... , there-
fore, non of the spindle speeds would lead to resonance. This
case demonstrate a special case, where the axial immersion ap is
double of the helix pitch p, hence, this situation corresponds to
the trivial appropriate axial immersion. Thus, the cutting force
is constant, therefore, there is no vibration and the small MSLE
determined by the static deformation, only (see Fig. 6).

6.2 Measurement results
Measurements are performed on both of Workpiece I. and

II. based on the parameters presented in Table 1. and Table 2.
The first measurement performed for Workpiece I. at Ω = 17000
rpm, which is the first resonant spindle speed of the first natu-
ral frequency. Fig. 7 shows the measured surface profile of the
workpiece at different heights along the tool path. The upper en-
velope of the curves defines the MSLE function. It can be seen,
that the pattern of the MSLE along the length of the workpiece
has similar form to the respective mode shape and does not show
chatter marks as it predicted in Fig. 5.

Spindle speed Ω = 22000 rpm (the second resonant spindle
speed of the second natural frequency) is also tested for which
only negligible MSLE values are measured as predicted based on
Eq. (17). However, we find chatter marks around the peaks of the
corresponding mode shape. This is represented by the measured
surface roughness in Fig. 8. The reasons for this could be that
the size of the two unstable islands are underestimated and the
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FIGURE 5. Maximum Surface Location Error and extended stability
diagram in the function of the spindle speed along the tool path / plate
length for up-milling for Workpiece I.; Parameters: p = 10 mm; ap =

w = 15 mm, v = 3 mm

FIGURE 6. Measured MSLE profile along the tool path for spindle
speed Ω = 17000 rpm; parameters from Table 1. and 2. for Workpiece
I.

line of the selected spindle speed crosses them.
During the measurement performed for Workpiece II., we

find chatter marks along the whole workpiece for all the tested
spindle speeds as predicted by the numerical results in Fig. 6. As
an example, the machined surface at Ω = 17000 rpm is presented
in Fig. 9, which shows chatter marks along the full length of
the tool path. Note, that no shape deviation is detected, because
trivial appropriate axial immersion (see Eq. ap = 2p is applied
(15)).

CONCLUSION
In this study, it is shown that how the variation of the Fre-

quency Response Function affect the stability and surface errors
of the machining process. To demonstrate this phenomena, the
workpiece is considered as a flexible body and its dynamic prop-
erties are assumed to be dominant compared to the machine tool.

FIGURE 7. Measured Roughness for Workpiece I. at spindle speed
Ω = 22000 rpm, parameters from Table 1. and 2. High Rz values indi-
cates the occurrence of chatter vibration

FIGURE 8. Maximum Surface Location Error and extended stability
diagram in the function of the spindle speed along the tool path / plate
length for down-milling for Workpiece II.; Due to the axial immersion is
twice greater than the helix pitch, constant cutting force arises and only
static deformation is occurred; Parameters: p = 10 mm; ap = w = 20
mm, v = 5 mm

FIGURE 9. Chatter marks on the milled surface, parameters from Ta-
ble 1 and 2 for Workpiece II. at Ω = 17000 rpm

Furthermore, the changing stiffness caused by the material re-
moval and the change in the position of the contact milling point
are also considered. The stability boundaries together with the
MSLE values in the plane of the spindle speed Ω and the tool
path s are presented in the superchart.

The case studies show that the favorable parameter domains
are located at the resonant spindle speeds from the viewpoint of

6 Copyright © 2016 by ASME



stability. It is also shown that the Maximum Surface Location
Errors can be substantial at these spindle speeds. However, if
the trivial or the non-trivial appropriate axial immersion are ap-
plied, then good surface quality can be achieved even for reso-
nant spindle speeds. The numerical and the experimental case
studies shows good aggreement, which validates the theoretical
results.
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