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SUMMARY

This paper presents a method which applies pseudospectral tau approximation for retarded functional dif-
ferential equations (RFDEs). The goal is to construct a system of ordinary differential equations, which
provides a finite dimensional approximation of the original RFDE. The method can be used to determine
approximate stability diagrams for RFDEs. Thorough numerical case studies show that the rightmost char-
acteristic roots of the ordinary differential equation approximation converge to the rightmost characteristic
roots of the original RFDE. Application of the method to time-periodic RFDEs is also demonstrated, and
the convergence of the stability boundaries is verified numerically. The method is compared with recently
developed highly efficient numerical methods: the pseudospectral collocation (also called Chebyshev spec-
tral continuous-time approximation), the spectral Legendre tau method, and the spectral element method.
The comparison is based on the stability analysis of three linear autonomous RFDEs. The efficiency of the
methods is measured by the convergence rate of stability boundaries in the space of system parameters, by
the convergence rate of the rightmost characteristic exponent and by the computation time of the stability
charts. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the recent decades, an increasing number of research papers and books have dealt with time-delay
systems in applied sciences. Time delay emerged first in population dynamics, but because then,
its significance has been discovered in many engineering and biological applications. For instance,
control systems always involve feedback delays due to finite-time information transmission, signal
processing, and actuation [1, 2]. Similarly, the nervous system of humans is subjected to delay [3–5],
which affects balancing abilities and may cause movement disorders. Reflex delay of the human
nervous system is the main reason for the development of stop-and-go traffic jams [6, 7]. Time
delay also plays an important role in contact problems such as the ‘shimmy motion’ of wheels [8].
Machine tool vibrations are also explained by the so-called regenerative delay (for details, see
Chapter 4.4 in [9] or [10, 11]). In the aforementioned examples, time delay typically has a desta-
bilizing effect, which is manifested as unwanted vibrations or oscillations around the desired
steady-state motion. Stability analysis of the steady-state motions is therefore of high importance.
Consequently, several numerical methods can be found in the literature for the stability analysis of
linear time-delay systems.

This paper presents a pseudospectral tau (PsT) method for the approximation of retarded func-
tional differential equations (RFDEs) by a system of ordinary differential equations (ODEs).
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Focusing on the stability of the original RFDE, some properties of the PsT method are analyzed
through numerical case studies. Furthermore, the PsT method is compared with the pseudospectral
collocation (PsC) [12, 13] also called Chebyshev spectral continuous-time approximation, with the
spectral Legendre tau (SLT) method [14] and with the spectral element (SE) method [15]. The com-
parison is based on the stability analysis of three linear autonomous RFDEs: the Hayes equation, an
oscillator with two delays and an oscillator with distributed delay. The stability properties of these
systems can be determined in closed form, which serves as a reference for the numerical results.
The efficiency of different methods is measured by the convergence rate of stability boundaries in
the space of system parameters, by the convergence rate of the rightmost characteristic exponent
and by the computation time of stability charts. Note that the methods under comparison all apply
for the stability analysis of linear time-periodic systems as well.

In addition to the results on autonomous RFDEs, this paper also presents the application of
the PsT method for the stability analysis of linear time-periodic RFDEs. The approximation
concept is illustrated on two examples: the delayed Mathieu equation and an oscillator with
time-periodic delay.

The structure of this paper is the following. First, a brief summary is given on different forms of
the equations under study. Then, the formulation of the PsT method is detailed for RFDEs of general
type. Thereafter, comparison of the PsT method with the PsC, SE, and SLT methods is presented.
Then, the application of the PsT method is demonstrated for the stability analysis of time-periodic
RFDEs on two examples. Finally, the paper is concluded in the last section.

2. EQUIVALENT FORMS OF DELAYED PROBLEMS

The numerical methods (PsT, PsC, SLT, and SE) discussed in this paper were derived for different
representations of time-delay systems. In this section, these representations are detailed.

2.1. Retarded functional differential equation

The investigated linear RFDE has the form

Px.t/ D L.t/xt ; t > 0 ; (1)

where the dot represents the right-hand derivative with respect to time t and L.t/ W RC � X ! Rs

is a continuous linear functional, with XDH .Œ��; 0�IRs/ being the Hilbert space of continuous Rs-
valued functions on interval Œ��; 0�. Note that L.t/ depends on system parameters. In (1), function
segment xt 2 X is defined by the shift

xt .�/ D x.t C �/ ; � 2 Œ��; 0� : (2)

It is clear from (1) that the evolution of an RFDE is determined from the solution segment xt which
contains the ‘history’ of the state x dating back to time instant t � � . RFDEs are therefore infinite
dimensional systems, and a solution operator U.t/ maps the initial solution segment x0 to the solu-
tion segment xt . According to the Floquet theory, if L.t/ is periodic (that is L.t/ D L.t C T /
for all t with T being the principal period), then the stability of (1) is determined by the mon-
odromy operator U.T /. The nonzero eigenvalues of U.T / are called charactersitic mutlipliers, and
system (1) is asymptotically stable if and only if all the characteristic multipliers are within the
unit circle of the complex plane (for details see Chapter 8 in [16]). If L is time-invariant, then the
stability properties of (1) are determined by its characteristic roots (or characteristic exponents).
The system is asymptotically stable if and only if the real part of the rightmost characteristic expo-
nent is negative. Note that for time-invariant systems the principal period T is not defined but the
Floquet theory can still be applied with an arbitrary principal period.
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2.2. Operator equation

Let operator V W D .V/! X˙ be defined as

V
�
x0; xC

�
.'/ D

²
x0 .'/ if ' 2 Œ��; 0� ;
xC .'/ if ' 2 .0; h� ;

(3)

with domain

D .V/ D
®
x0 2 X ; xC 2 XC W x0.0/ D xC.0/

¯
: (4)

Here, h > 0 and X˙ � H .Œ��; h�;Rs/, while XC D H1 .Œ0; h�;Rs/ is the Hilbert space of Rs-
valued continuously differentiable functions on interval Œ0; h�. Note that operator V.x0; xC/ simply
connects the initial function segment x0 and function segment xC at ' D 0. Now, considering the
residual of (1) on t 2 Œ0; h�, one can construct the operator equation (OpE)

A z D 0 ; (5)

where operator A W X˙ ! H .Œ0; h�;Rs/ is defined by

A z D ¹Pz.t/ �L.t/zt W t 2 Œ0; h�º : (6)

Because L.t/ is linear, one can decompose (5) by plugging (3) into (5) as

A�x0 CACxC D 0 ; (7)

where

A�x0 D AV .x0; 0/ ; ACxC D AV
�
0; xC

�
: (8)

For any x0 2 X initial function segment, the solution of (7) is precisely defined by xC D
¹x.t/ W t 2 Œ0; h�º. When L.t/ is time-periodic and h D T , the monodromy operator U.T / can be
expressed using (7) (Section 5.3.3). Therefore, (7) can be used for the stability analysis of (1).

2.3. Operator differential equation

Stability properties of (1) can be described by the operator differential equation (OpDE)

Pxt D G.t/xt ; t > 0 ; (9)

where operator G W D .G/! X is given by

G.t/xt D x0t ; (10)

with domain D .G/ D RC � Y , where

Y D
®
xt 2 X W x0t 2 X ; x0t .0/ D L.t/xt

¯
� X (11)

and x0t .�/ is the derivative of xt .�/ with respect to � . Note that G cannot be correctly defined
when Y is time-dependent, hence varying (see page 341 of [17]). Therefore, here, we assume that
Y can be selected as a time-independent domain (e.g., the maximum delay is finite). When G is
time-invariant then (9) gives an abstract Cauchy problem and operator G is called its infinitesimal
generator. If and only if all the elements of the spectrum of the infinitesimal generator lie on the left
half of the complex plane, then the abstract Cauchy problem is asymptotically stable.
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In Chapter 7.1 of [16], Lemma 1.2. shows that the solution of the abstract Cauchy problem is
defined by the solution operator U.t/. Furthermore, in Chapter 7.2 of [16], it is also shown that the
spectrum of G is precisely given by the roots of the characteristic equation of (1). This latter implies
that, for the autonomous case, the stability analysis of (1) and (9) gives the same results. Numerical
results presented in [13] showed that (1) and (9) are equivalent regarding stability for time-periodic
systems as well. Note that the conversion of (1)–(9) is similar to the conversion of a high-order ODE
to first-order ODEs (Cauchy normal form).

By the introduction of function y.t; �/ D xt .�/ with two independent variables t and � , (9) gives
the hyperbolic PDE

@y.t; �/
@t

D
@y.t; �/
@�

; � 2 Œ��; 0� ; t > 0 ; (12)

with the linear, time-dependent, and non-local boundary condition

@y.t; �/
@t

ˇ̌̌
ˇ
�D0

D L.t/y.t; �/ ; t > 0 : (13)

This PDE representation is equivalent to (9), and it is often used in the literature to describe delayed
systems [14, 18]. Note that in some engineering applications the governing equation that models the
physical phenomenon can be derived directly in the form (12) and (13), instead of (1). For example,
the widely used RFDE model of turning with constant delay (see Chapter 5.1.2 in [19]) is a special
case of the PDE model, introduced in [20]. In particular, the RFDE model describes the cutting tool’s
motion in the PDE model under the condition that the tool never loses contact with the workpiece
(for details see [21]). In general, Equations (12) and (13) are capable of giving a more detailed
description of the delayed system than Equation 1. This is because in the PDE model, (12) describes
the propagation of information, while (13) introduces delays in the system. In contrast, RFDE (1)
embeds the propagation in the time domain using time lags. During mathematical modelling, a
decision between the use of (12) and (13) or (1) always involves a trade-off because, in general, the
analysis of PDEs is more difficult than the analysis of RFDEs.

3. METHOD OF WEIGHTED RESIDUALS

The numerical methods which are compared in this article use the method of weighted residuals. In
this section, this method is detailed for (9).

At time instant t , one can approximate the solution segment xt .�/ of (9) on the domain � 2
Œ��; 0�, using finite number of unknown variables aj .t/ in a finite dimensional function space
spanned by the basis

®
�j
¯n
jD1

. The approximate solution of (9) therefore has the form

Qxt .�/ D
nX
jD1

aj .t/�j .�/ : (14)

After the substitution of Qxt into (9), one obtains the residual function

rt .�/ D
nX
jD1

Paj .t/�j .�/ �
nX
jD1

aj .t/�0j .�/ ¤ 0 ; � 2 Œ��; 0� : (15)

Note that in general the residual function is not zero because Qxt is only an approximation of xt .
Approximation schemes aim to determine coefficients aj .t/ in a way that the approximate solution
segment Qxt be closest to the exact solution of (9). The method of weighted residuals weighs the
residual function rt .�/ by test functions  i .�/ over the domain � 2 Œ��; 0� in order to obtain a set
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592 D. LEHOTZKY, AND T. INSPERGER

of linearly independent equations, from which coefficients aj .t/ can be determined. The application
of the method of weighted residuals to (15) gives

hrt ;  i i D 0 ; i D 1; 2; : : : ; n I (16)

where the inner product of functions f .�/ and g.�/ is defined according to

hf; gi D

Z b

a

f .�/g.�/d� ; (17)

with � 2 Œa; b� being the domain of functions f .�/ and g.�/. Equation (16) can be represented in a
matrix form as

NPa.t/ DMa.t/ ; (18)

where matrices N 2 Rsn�sn and M 2 Rsn�sn are composed from sub-matrices according to

N D
�˝
�j ;  i

˛
I
�n;n
i;jD1

; M D
�˝
�0j ;  i

˛
I
�n;n
i;jD1

; (19)

while I 2 Rs�s is an identity matrix and a.t/ D
�
aj .t/

�n
jD1

. Note that due to the application of
the method of weighted residuals the state space X has to be a Hilbert space; however, the proper
selection of X falls out of the scope of this paper. Note also that the solution of (16) is not in the
domain D.G/ because boundary condition

Qx0t .0/ D L.t/Qxt (20)

is not satisfied. For the PDE representation, this means that (12) is employed, but (13) is not satisfied.
Consequently, in order to approximate (9), boundary condition (20) has to be enforced.

Based on the aforementioned description, weighted residual type methods can be different from
each other in the way they select the set of base functions and the set of test functions and also
in the way they enforce the boundary conditions. Methods can be categorized based on how they
enforce the boundary conditions. There are two main categories which are briefly discussed in the
succeeding text.

3.1. Galerkin approximation

For the Galerkin method, the boundary conditions are considered as constraints on the approximate
solution Qxt , that is, base functions �j are constructed in a way that Qxt satisfies the boundary condi-
tion. Note, however, that boundary condition (20) is non-local, that is, it requires the exact solution
of (1) to be known. Thus, the non-locality of boundary condition (20) implies that Galerkin methods
cannot be used for the approximation of (9).

3.2. Tau approximation

In order to solve the problem with non-local boundary conditions, the tau approximation can be
used. In contrast to the Galerkin method, base functions �j do not need to satisfy the boundary con-
straints. The tau approximation technique simply replaces an equation from (16) by the discretized
boundary condition (20). This replacement relies on the tau method, which was proposed by Lanc-
zos (see [22]). The tau method claims that if, after this replacement, (16) still defines a proper
projection then the approximate solution is an element of a complete finite dimensional subspace of
the solutions of the original problem (9). Note, again, that in this case X has to be a proper Hilbert
space. More precise details on Galerkin and tau approximations can be found in Chapter 2 of [23].
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4. PSEUDOSPECTRAL TAU APPROXIMATION

For the PsT method, the term ‘pseudospectral’ indicates that the solution is approximated in a finite
dimensional subspace, where the set of basis functions

®
�j
¯n
jD1

are chosen in a way that the coordi-

nates aj of the subspace spanned by
®
�j
¯n
jD1

represent the approximate solution at specific points.
In the following, the approximation concept of the PsT method is given in details.

4.1. Lagrange interpolation

The PsT method approximates the solution segment by its Lagrange interpolant. The approximate
solution segment is given in the form

Qxt .�/ D
nX
jD1

�j .�/xt .�j / ; � 2 Œ��; 0� ; (21)

where �j 2 Œ��; 0� are the nodes of interpolation and �j 2 Pn�1 are the Lagrange base polynomials,
with Pn�1 denoting the space of polynomials of order n�1. Note that by using interpolant (21), the
unknown coefficients of (14) become particular values of the approximate solution segment at some
points �j , that is, aj .t/ D xt .�j /. Lagrange base polynomials have the property

�j .�k/ D ıj;k ; (22)

where ıj;k denotes the Kronecker-delta function. The classical form of Lagrange base polynomials
is

�j .�/ D

nY
kD1
k¤j

� � �k

�j � �k
: (23)

However, the aforementioned formula has some disadvantages: it needs high number of floating
point operations to calculate �j at any given point other than the nodes of interpolation, while the
rounding errors can lead to numerical instability; furthermore, the formula for the derivative of �j
is very complicated. The so-called barycentric representation of Lagrange interpolants helps in the
previous problems. The barycentric formula of Lagrange base polynomials is defined by

�j .�/ D

$j

� � �jPn
kD1

$k

� � �k

; (24)

where the barycentric weights are given as

$j D
1

!0.�j /
; !.�/ D

nY
jD1

.� � �j / : (25)

At the nodes of interpolation, the derivatives of the Lagrange base polynomials can be calculated as

�0j .�k/ D

8̂̂<
ˆ̂:
$j =$k

�k � �j
j ¤ k ;

�
Pn
qD1
q¤j

$q=$j

�j � �q
j D k :

(26)
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Details and derivation of the aforementioned formulae can be found in [24]. Note that using (26),
the derivative of the Lagrange interpolant at the nodes of interpolation can be calculated simply by
a matrix-vector multiplication, because

Qx0t .�j / D
nX
jD1

Dk;j Qxt .�j / ; k D 1; : : : ; n I (27)

where Dk;j D �0j .�k/. Note that the value of the Lagrange interpolant at n number of arbitrary
distinct points

®
��
l

¯n
lD1

is given by a matrix-vector multiplication:

Qxt .��l / D
nX
jD1

Ll;j Qxt .�j / ; l D 1; : : : ; n I (28)

where Ll;j D �j .�
�
l
/ defines a linear transformation between the two point sets defined by the

interpolant evaluated at node sets
®
��
l

¯n
lD1

and
®
�j
¯n
jD1

. Because of the uniqueness of the Lagrange

interpolant, its derivative can be calculated at any given point set
®
��
l

¯n
lD1

by the matrix–vector
multiplication

Qx0t .�
�
l / D

nX
kD1

nX
jD1

Ll;kDk;j Qxt .�j / ; l D 1; : : : ; n : (29)

4.2. Tau approximation

Using (21), after the replacement of the equation corresponding to i D n in (16) with the discretized
boundary condition (20) and coordinate transformation � D 2�=�C1, Equation 18 obtains the form

N PX.t/ DM.t/X.t/ ; (30)

where X.t/ D
�
Qxt .�j /

�n
jD1

while the elements of matrices N and M.t/ are now given according to

Ni;j D
² ˝
�j ;  i

˛
I i D 1; : : : ; n � 1 I

�j .1/ I i D n I
(31)

Mi;j .t/ D

´
2
�

D
�0j ;  i

E
I i D 1; : : : ; n � 1 I

L.t/�j i D n :
(32)

If N is invertible, then (30) can be written as

PX.t/ D G.t/X.t/ ; (33)

where G.t/ D N�1M.t/ is a finite dimensional approximation of operator G.t/. Note that in (16)
the multiplication of residual function (15) with test functions  i , i D 1; : : : ; n � 1 gives the
projection of the residual function onto a space spanned by the test function set ¹ iº

n�1
iD1 . Because

the approximate solution (21) is an element of the subspace of polynomials of order n � 1, by
choosing the test function set as a base in the subspace of polynomials of order n � 2, the residual
(15) will be zero in a co-dimension one subspace of the space Pn�1 of (21). The boundary condition
is enforced by (20), which gives additional relationship between coefficients xt .�j /. If a proper set
of test functions is chosen, the solution of the system subject to tau approximation can be an element
of a complete finite dimensional subspace of the solution of the original problem (9). Consequently,
by increasing n, the approximation can converge to the original problem. In this paper, the suitability
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Figure 1. Representation of the solution (A) of PDE (12) and (13) (blue surface), (B) of operator differential
equation (9) (thick blue lines) and (C) of retarded functional differential equation (1) (blue line), and their

ordinary differential equation approximations (red surface and lines).

of the test function set is not investigated analytically, but they have been tested numerically. The
numerical experiments showed that for the autonomous case the eigenvalues of G in (33) give a
finite dimensional approximation for the point spectrum of G.

Although this method is capable of the approximation of the point spectrum of G, the main focus
of this paper is only on the numerical stability analysis of RFDEs. Because the ODE approximation
(33) is stable if and only if all eigenvalues of G are located in the left half of the complex plane, only
the rightmost eigenvalue of G is of interest. Note that if RFDE (1) is modified that affects only the
last rows of M.t/ corresponding to i D n and the multiplier of the remaining rows. Therefore, when
s and n are fixed, the inverse of N and the integral terms in (31) and (32) have to be calculated only
once, which is beneficial during the construction of stability charts (as discussed in Section 5.4)

In Figure 1, an illustration of the ODE approximation (33) is shown for s D 1 and n D 3. The
solution of the ODE approximation is presented in Figure 1/A and B together with the solution for
the PDE (12)–(13) and OpDE (9) representations of RFDE (1), respectively. In Figure 1, the exact
solution is shown by blue color, while the solution of the ODE approximation is depicted by red
color. The thin red lines are given by the points of the interpolant at the nodes of interpolation,
which is they are given by the elements of X.t/. In Figure 1/A, these lines define the red surface that
approximates the exact solution of (12) and (13). Note that, due to (12), the isocurves of the blue sur-
face are lines with Slope 1. In Figure 1/B, the thin red lines define an approximation for the solution
segment xt of (9) at each time instant t . These solution segment approximations are shown by thick
red lines for time instants 0, t1, and t2. At each t time instant, the solution segment xt coincides with
the corresponding segment of y.t; �/. This is highlighted by gray windows in Figure 1/A and B for
time instants 0, t1, and t2. Note that each element of X.t/ gives an approximation for the solution
x.t/ of RFDE (1) due to the definition (2) of solution segment xt . This is illustrated in Figure 1/C.

4.3. Numerical integration

Equations (31) and (32) contain integral terms whose analytical evaluation would be time-
consuming or even impossible. Note, however, that because ¹ iº

n�1
iD1 � Pn�2, the terms in the

integral are polynomials with maximum order 2n�3. As a result, the integral terms in (31) and (32)
can be evaluated accurately by the Legendre–Gauss–Lobatto quadrature (see 7 for details) using n
number of points. With the application of this quadrature, the integral terms in (31) and (32) can be
calculated as

˝
�j ;  i

˛
D

nX
qD1

Fi;q Lq;j ; i D 1; : : : ; n � 1 I (34)
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˝
�0j ;  i

˛
D

nX
qD1

nX
kD1

Fi;q Lq;kDk;j ; i D 1; : : : ; n � 1 I (35)

where Fi;qD i .��q /wq with
®
��q
¯n
qD1

and
®
wq
¯n
qD1

being the set of nodes and the corresponding set
of weights of the quadrature. Note that if the interpolation and quadrature node sets are the same,
then Lq;j D ıq;j , that is formulas (34) and (35) are simplified by one matrix multiplication. Also,
note that with the application of the standard (non-Lobatto-type) Legendre–Gauss quadrature for
integration, the number of multiplications could be further decreased. This is owing to the fact that
this quadrature gives accurate results for the integral of polynomials of order 2n � 3 by using only
n � 1 number of nodes.

4.4. Example

Consider the system of RFDEs

Px.t/ D B.t/x.t/C
rX

pD1

Cp.t/x.t � �p.t//C
Z �b
�a

�.t; �/x.t C �/d� ; (36)

where x W R ! Rs , B W R ! Rs�s;Cp W R ! Rs�s and �p W R ! R 8p, � W R2 ! Rs�s

and s; p; r 2 N. Furthermore a > b > 0 and �p.t/ > 0 8t; 8p is assumed. The substitution of
(34) and (35) into (31) and (32) gives

Ni;j D
²Pn

qD1 Fi;q Lq;j I i D 1; : : : ; n � 1 I
�j .1/ I i D n I

(37)

Mi;j .t/ D

²
2
�

Pn
qD1

Pn
kD1 Fi;q Lq;kDk;j I i D 1; : : : ; n � 1 I

L.t/�j i D n I
(38)

where Ni;j and Mi;j .t/ 2 Rs�s , while � D max
�
a;max

�®
sup �p.t/

¯r
pD1

��
. Using Legendre–

Gauss–Lobatto quadrature for integration, the last row of Mi;j .t/ can be expanded as

L.t/�j � B.t/�j .1/C
rX

pD1

Cp.t/�j .�O�p.t//C
�. Ob � Oa/

4

nX
qD1

�

�
t;
. O�q�1/�

2

	
�j . O�q/wq ; (39)

where Oa D 1 � 2a=� , Ob D 1 � 2b=� , O�p D �1 C 2�p=� 8p and O�q D
Ob�Oa
2
.��q C 1/ C Oa 8q,

while Lagrange base polynomials �j .�/ are defined by the node set
®
�j
¯n
jD1

on the rescaled domain
� 2 Œ�1; 1�. Finally, the finite dimensional approximation of G.t/ is given by (30)–(33).

4.5. Selection of node and test function sets

Note that due to the Lagrange interpolation, the base function set
®
�j
¯n
jD1

is precisely defined by

the node set
®
�j
¯n
jD1

of interpolation. Consequently, the error between the interpolated function

segment xt and its interpolant Qxt can be minimized by the proper selection of node set
®
�j
¯n
jD1

.
The error jxt .�/� Qxt .�/jCŒ�1;1� between xt and Qxt can be minimized by the selection of Chebyshev
nodes for the nodes of interpolation, where the distance between xt and Qxt is measured by the norm

jxt .�/jCŒa;b� D max ¹jxt .�/j W � 2 Œa; b�º : (40)

Details on Chebyshev nodes and polynomials can be found in 7. Because of its minimum error
property, the Chebyshev node set is used for the PsT method as the node set of interpolation.
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For the test function set ¹ iº
n�1
iD1 , two choices were investigated: the set

®
�i�1

¯n�1
iD1

(which is
a base in Pn�2), and the set defined by Legendre polynomials of order up to n � 2 (which is an
orthogonal base in Pn�2). For details on Legendre polynomials, see 7. In case of low n, these sets
give precisely the same results for the eigenvalues of G. However, above a certain order, the set®
�i�1

¯n�1
iD1

results in badly conditioned matrix N, which destroys the convergence of the method.
This problem is avoided, by using an orthogonal base in Pn�2 (e.g., the Legendre polynomials).
Consequently, for the PsT method, the test functions are defined as  i D Pi�1, i D 1; : : : ; n � 1;
where Pi is a Legendre polynomial of order i .

5. COMPARISON

In this section, the efficiency of the PsT method is compared with three methods from the litera-
ture. Comparison is made based on results, obtained for three linear autonomous RFDEs: the Hayes
equation, an oscillator with two delays, and an oscillator with distributed delay. In order to pro-
vide a base for comparison, it is necessary to calculate the exact stability boundaries and rightmost
characteristic exponents of the investigated equations. These are detailed in the sequel.

5.1. Exact stability boundaries

For the determination of stability boundaries, the D-subdivision method [9] is used, which utilizes
the fact that when a root is crossing the stability boundary then its real part is zero, and thus, it
has the form � D iˇ. Substituting this into the characteristic equation of (1), one can determine
Co-dimension 1 surfaces in the space of system parameters with running parameter ˇ. When there
are only two system parameters, these Co-dimension 1 surfaces result in the so-called D-curves on
the plane of system parameters. These D-curves split the plane of system parameters onto domains
where the number of unstable characteristic roots is the same. There are different methods to find the
domains with zero unstable roots (i.e., the stable regions). If the number of unstable characteristic
roots is known in one domain bounded by the D-curves, then the stable domains can be traced
back using the concept of root crossing direction (see Chapter 3.4 in [25]). The number of unstable
characteristic roots can also be calculated using Stepan’s formulas (see Theorem 2.19. in [9]).

5.1.1. Hayes equation. The Hayes equation reads

Px.t/ D ax.t/C bx.t � �/ : (41)

The D-curves are defined by the parametric curves

ˇ D 0 W b D �a ; (42)

ˇ� ¤ k�; k 2 N W a D
ˇ cos.ˇ�/

sin.ˇ�/
; b D

�ˇ

sin.ˇ�/
(43)

in the parameter plane .a; b/ with the running parameter ˇ 2 Œ0;1/ (for details, see Chapter 2.1.1
of [19]). For this equation, the case � D 1 is analyzed throughout this paper. The D-curves and the
domain of stability are shown in Figure 2/A. The D-curves are depicted with gray and black colors,
and the stable domains are indicated with gray shading and black borders.

5.1.2. Oscillator with two delays. This RFDE has the form

Rx.t/C ax.t/ D bx.t � �1/C bx.t � �2/ ; (44)
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Figure 2. Exact stability charts with D-curves: (A) Hayes equation, (B) oscillator with two delays, and (C)
oscillator with distributed delay.

where a > 0 is assumed. The D-curves are given by equations

�

�
2k�

�1 C �2

	2
C a � 2b.�1/k cos

�
k�

�1 � �2

�1 C �2

	
D 0 ; k 2 Z ; (45)

�2 � �1 �
2k C 1
p
a
� D 0 ; k 2 Z : (46)

Details on derivation can be found at the end of Chapter 3.1 in [9]. Throughout this paper, parameters
a D 6 and b D 1 are used. The D-curves and the domain of stability are shown in Figure 2/B.

5.1.3. Oscillator with distributed delay. The general form of this RFDE is given by

Rx.t/C ax.t/ D b

Z 0

��

	.�/x.t C �/d� ; (47)

where the weight function and the length of time history are chosen as 	.�/ D � sin.��/=2 and
� D 1, respectively. The D-curves are given by

a D .k�/2 �
1C .�1/k

2.1 � k2/
b ; k 2 Z n ¹�1; 1º ; (48)

b D 0 ; k D ˙1 : (49)

Proof and detailed description on the derivation of stable parameter domains can be found in
Theorem 3.26 in [9]. The D-curves and the domain of stability are shown in Figure 2/C.

5.2. Exact value of the rightmost root

Throughout this paper, the exact value of the rightmost characteristic root in any given point of the
space of system parameters is determined using the corresponding characteristic equation. After the
substitution of � D ˛ C iˇ for the characteristic root, ˛ and ˇ can be determined by solving the
system of non-linear equations given by the real and imaginary parts of the characteristic equation.
However, in general, a solution of this system of equations can be found by using some iterative
numerical method. In order to calculate the rightmost root, one should have a close enough initial
guess. Here, and in the sequel, this initial guess is produced by the results of the previous presented
PsT method. In particular, the root, used as initial guess, is the rightmost root taken from the results
of the PsT method after the relative error converged to a value close to machine precision. The
numerical solver used for the non-linear characteristic equation is the built-in solver of the software
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Wolfram Mathematica 9. The Newton–Rhapson method was used, such that the precision goal was
set to be the double of the precision of the solution based on the PsT method. It has been experi-
enced that starting the iteration from the rightmost root produced by the PsT method, the numerical
solution of the characteristic equation gives practically the same result for all the investigated points
in the space of system parameters.

5.3. Methods under comparison

In this section, the different methods under comparison are described in detail.

5.3.1. Pseudospectral collocation method. This method was first proposed by Breda et al [12].
Later, Butcher and Bobrenkov [13] constructed an identical method approaching the problem from
the framework of continuous-time approximation [26] and therefore called the technique Chebyshev
spectral continuous-time approximation.

Similarly to the PsT method, the PsC method also approximates the OpDE form (9) using the
method of weighted residuals and enforces the boundary condition using tau approximation. For
the PsC method, base functions �j are Lagrange base polynomials defined by the Lobatto-type
Chebyshev nodes, which are given as

�j D cos

�
.j � 1/�

n � 1

	
; j D 1; : : : ; n : (50)

The main difference between the PsC and PsT methods is in the selection of the test function set. The
PsT method uses Legendre polynomials as test functions, while the PsC method applies Dirac-delta
functions in the form

 i .�/ D ı .� � �i / ; i D 1; : : : ; n � 1 I (51)

where ı denotes the Dirac-delta function and �i are the nodes of interpolation (the Lobatto-type
Chebyshev nodes). Note that when using Dirac-delta functions (51) as test functions, (16) is equiv-
alent to the system of equations obtained by setting the residual function (15) to zero at the nodes
of interpolation.

The PsC method uses tau approximation and replaces the equation in (16) corresponding to
� D 1 (that is the equation corresponding to i D n) with the discretized boundary condition (20).
Consequently, the final form of the approximate system will be (30)–(33), again. Because of the
Dirac-delta test functions, no integration is necessary which simplifies terms in (34) and (35) by
one matrix–matrix multiplication. Furthermore, because the Dirac-delta functions are defined on the
nodes of interpolation, terms in (34) and (35) are simplified by one more matrix–matrix multipli-
cation. Finally, the finite dimensional approximation G.t/ of operator G.t/ is constructed from the
sub-matrices

Gi;j .t/ D

²
2
�

IDi;j i D 1; : : : ; n � 1 I
L.t/�j i D n :

(52)

Note that for the calculation of G.t/ no inversion and matrix multiplication are necessary, in contrast
with the PsT method.

5.3.2. Spectral Legendre tau method. The SLT method was proposed by Vyasarayani et al. [14] for
first-order autonomous RFDEs with constant delays. Similarly to the PsT and PSC methods, the SLT
method also approximates the OpDE form (9) using the method of weighted residuals and enforces
the boundary condition using tau approximation. The tau approximation is carried out in the same
way as for the PsT method, therefore the test functions are  i D Pi�1, i D 1; : : : ; n � 1. The main
difference between the PsT and SLT methods is in the base functions. While the PsT method uses
Lagrange base polynomials defined by the Chebyshev nodes, the SLT method employs Legendre
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polynomials as base functions (that is �j D Pj�1, j D 1; : : : ; n). Consequently, the integral terms
in (31) and (32) can be calculated as˝

�j ;  i
˛
D
˝
Pj�1; Pi�1

˛
; i D 1; : : : ; n � 1 I (53)

˝
�0j ;  i

˛
D
˝
P 0j�1; Pi�1

˛
; i D 1; : : : ; n � 1 : (54)

Utilizing the identities and the orthogonality of Legendre polynomials (for details see 7), the integral
terms in Equations 53–(54) can be computed in closed form as

˝
Pj�1; Pi�1

˛
D

2

2j � 1
ıi;j ; (55)

˝
P 0j�1; Pi�1

˛
D

8<
:
0 i > j ;

2 .j�i/mod 2 ¤ 0 ;
0 .j�i/mod 2 D 0 ;

(56)

where ıi;j is the Kronecker delta. The final form of the approximate system is given again by
(30)–(33), using the aforementioned formulas.

5.3.3. Spectral element method. The SE method was first proposed in [15], while its further exten-
sions can be found in [27–29]. In this section, the method is applied and detailed only for the
oscillator with distributed delay. However, based on this example, the application of the method for
the remaining two RFDEs is straightforward. As a first step, the SE method discretizes the integral
term in (47) which, for function segment z D ¹z.t/ W t 2 Œ��; h�º gives the operator equation

QA z D 0 ; (57)

where the tilde indicates that, in general, operator QA is an approximation of operator A. Operator
QA is defined as

QA z D

8<
:Pz.t/ � Bz.t/ � C

mX
pD1

	.��p/z.t � �p/
wp�

2
W t 2 Œ0; h�

9=
; ; (58)

with

z.t/ D


x.t/

Px.t/

�
; B D



0 1

�a 0

�
; C D



0 0

b 0

�
; (59)

and ��p D ��p D
�
��p � 1

�
�=2, while

®
��p
¯m
pD1

and
®
wp
¯m
pD1

are the set of Legendre–Gauss–
Lobatto quadrature nodes and weights, respectively. The element length is chosen as h D �=E,
where E is the number of elements.

Note that the PsT, PsC, and SLT methods discretize the infinitesimal generator (or operator G.t/
in the non-autonomous case) using OpDE (9), in order to obtain a system of ODEs. In contrast, the
SE method discretizes the monodromy operator U.T / using OpE (7), in order to obtain a discrete
mapping. However, all four approximation techniques apply the method of weighted residuals and
tau approximation.

The SE method splits the history segment x0 intoE number of elements, while the length of xC is
equal to the element length h. Function segment z is therefore split intoEC1 number of elements as

zk.t/ D
x0.t/ if k 6 0
xC.t/ if k D 1

; t 2 Œ.k � 1/h; kh� ; k D �E C 1;�E C 2; : : : ; 1 : (60)
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The elements zk are then approximated by their Lagrange interpolants as

Qzk.t/ D
nX
jD1

�j .t/zk
�
tkj

�
; t 2 Œ.k � 1/h; kh� ; (61)

where tkj 2 Œ.k � 1/h; kh�. Note that similarly to the PsT and PsC methods the base functions
are Lagrange base polynomials again, that is, the SE method is a pseudospectral method. After the
substitution of approximate solution segments Qzk to (5), one obtains the residual function

r.t/ D PQz1.t/ � B Qz1.t/ � C
mX
pD1

	
�
��p
�
Qz�;p.t/

wp�

2
; t 2 Œ0; h� ; (62)

with

Qz�;p.t/ D
²
Qz�rp .t � �p/ if t 2

�
0; ˛p

�
;

Qz�rpC1.t � �p/ if t 2
�
˛p; h

�
;

(63)

where ˛p D �p mod h and rp D
�
�p=h

�
is the integer part of �p=h. Residual function segment

r D ¹r.t/ W t 2 Œ0; h�º can be defined by operators as

r D S Qz1 �
mX
pD1

Qp Qz�rp �
mX
pD1

Rp Qz�rpC1; (64)

where

S Qz1 D
²
PQz1.t/ � BQz1.t/ if t 2 Œ0; h� ;
0 otherwise ;

(65)

Qp Qz�rp D
²

C	.��p/Qz
�rp .t � �p/

wp�

2
if t 2 Œ0; ˛p� ;

0 otherwise ;
(66)

Rp Qz�rpC1 D
²

C	.��p/Qz
�rpC1.t � �p/

wp�

2
if t 2 Œ˛p; h� ;

0 otherwise :
(67)

The element-wise, linear coordinate transformation

�k D
2.t � .k � 1/h/

h
� 1 ; k D �E C 1;�E C 2; : : : ; 1 (68)

defines a shift from the global coordinate t 2 Œ��; h� to local coordinates �k 2 Œ�1; 1�; k D
�EC1;�EC2; : : : ; 1. Because the domains of all the local coordinates �k are the same, the upper
indices are dropped in the sequel. Coordinate transformation (68) changes operators in (65)–(67) as

S Qz1 D
²
2
h
Qz01.�/ � BQz1.�/ if � 2 Œ�1; 1� ;

0 otherwise ;
(69)

Qp Qz�rp D
²

C	.��p/Qz
�rp .� C 2 � ˇp/

wp�

2
if � 2 Œ�1;�1C ˇp� ;

0 otherwise ;
(70)

Rp Qz�rpC1 D
²

C	.��p/Qz
�rpC1.� � ˇp/

wp�

2
if � 2 Œ�1C ˇp; 1� ;

0otherwise ;
(71)
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where ˇp D 2˛p=h. The application of the method of weighted residuals gives

˝
S Qz1;  i

˛
�

mX
pD1

˝
Qp Qz�rp ;  i

˛
�

mX
pD1

˝
Rp Qz�rpC1;  i

˛
D 0 ; i D 1; : : : ; n ; (72)

which can be expanded as

nX
jD1

Si;j Qz1;j �
mX
pD1

nX
jD1

Qp
i;j Qz

�rp ;j �

mX
pD1

nX
jD1

Rpi;j Qz
�rpC1;j D 0 ; i D 1; : : : ; n I (73)

with

Si;j D
Z 1

�1

�
2

h
I�0j .�/ � B�j .�/

	
 i .�/d� D

2

h
I
nX
qD1

Fi;qDq;j � BFi;j ; (74)

Qp
i;j D C	

�
��p
� wp�
2

Z �1Cˇp
�1

�j .� C 2 � ˇp/ i .�/d� D C	.��p/
wp�

2

nX
qD1

F
Q;p
i;q L

Q;p
q;j ; (75)

Rpi;j D C	
�
��p
� wp�
2

Z 1

�1Cˇp

�j .� � ˇp/ i .�/d� D C	.��p/
wp�

2

nX
qD1

F
R;p
i;q L

R;p
q;j ; (76)

where Fi;q and Dq;j are defined under (35) and (27), respectively, while

F
Q;p
i;q D  i

�
ˇp
2
.��q C 1/ � 1

� wqˇp
2

; L
Q;p
q;j D �j

�
ˇp
2
.��q � 1/C 1

�
; (77)

F
R;p
i;q D  i

�
.2�ˇp/�

�
qCˇp

2

� wq.2 � ˇp/
2

; L
R;p
q;j D �j

�
.2�ˇp/�

�
q�ˇp

2

�
: (78)

Note that according to (4) the boundary condition x0.0/ D xC.0/ has to be enforced that is equation

Qz0.1/ D Qz1.�1/ (79)

has to be satisfied. By assuming Legendre–Gauss–Lobatto node set for interpolation and introducing
notation Qzk;j D Qzk

�
��j

�
, (79) gives

Qz0;n D Qz1;1: (80)

Consequently, if the history segment x0 is known, one ends up with n number of unknowns
.Qz1;1; Qz1;2; : : : ; Qz1;n/ and nC 1 number of equations given by (73) and (80). The SE method applies
the tau approximation in the same way as in Section 4.2, hence in (73), the equation with index
i D n is replaced by (80), and the test functions are set to be the Legendre polynomials ( i D Pi�1).
Using (73) with i D 1; : : : ; n � 1 and (80), Qz1;j , j D 1; : : : ; n can be calculated for any initial
function segment x0. Due to the Legendre–Gauss–Lobatto node set,

Qzk;n D QzkC1;1; k D �E C 1;�E C 2; : : : ;�1 (81)

hold. Taking this into consideration, Equations 73 i D 1; : : : ; n � 1 and (80) define the mapping

ACXC D �A�X0; (82)
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Figure 3. The structure of matrices ACp and A�p .

where

AC 2 R2n�2n; A� 2 R2n�.2E.n�1/C2/; XC D
�
z1;j

�n
jD1

; X0 D
�
X0l
�E.n�1/C1
lD1

; (83)

with

X0l D Qz
k;j ; k D

´
1�E if l D 1h
l�2
n�1

i
C1�E otherwise

; j D

²
1 if l D 1
l�.k�1CE/.n�1/ otherwise

: (84)

Matrices A� and AC can be calculated as

A� D �
mX
pD0

A�p ; AC D
mX
pD0

ACp ; (85)

where the structure of ACp and A�p is shown in Figure 3. The elements of submatrices S, Qp , and Rp

are defined according to (74)–(76). For the case rp > 0, p > 0, the last two columns of Qp and the
first two columns of Rp within matrix A� overlap. The overlapped parts are highlighted by circles
in Figure 3, and the overlapped elements are merged by summation.

Note that X0 and Xh D
�
Xh
l

�E.n�1/C1
lD1

define piecewise Lagrange interpolants of x0 and xh,
respectively, where the elements of Xh are given by

Xhl D
²

X0
lCn�1

if 0 < l 6 .E � 1/.n � 1/ ;
z1;l�.E�1/.n�1/ if .E � 1/.n � 1/ < l 6 E.n � 1/C 1 : (86)

Because (47) is autonomous, the principal period can be set to T D h. The mapping between Xh

and X0 thus define a matrix approximation U.T / of monodromy operator U.T /. The structure of
U.T / is shown in Figure 4, where ‚ represents a null matrix. The approximate system is stable if
and only if all eigenvalues (multipliers) 
 of U.T / have modulus less than one. Using the relation

 D e�T , the real parts of the characteristic exponents can be calculated as

Re.�/ D
1

�
ln
q

Re2.
/C Im2.
/ I (87)
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Figure 4. Structure of the matrix approximation U.T / of monodromy operator U.T / depicted with the
corresponding matrix dimensions.

Table I. Investigated points on the plane of system parameters.

however, the corresponding imaginary parts cannot be uniquely determined from the characteristic
multipliers. Note that the inverse of AC has to be recomputed each time the system parameters are
updated. For the results presented in the next section,m D n is used (m is the number of quadrature
points used for the approximation of the distributed delay in (58)). These results are obtained for
E D 1, which is the effect of element-wise refinement is not investigated. Note, however, that
element-wise refinement can be applied also for the PsT, PsC, and SLT methods. An example
for such element-wise refinement is given in [30] for the Chebyshev spectral continuous-time
approximation.

5.4. Results

Results for the comparison of the PsT, PsC, SLT, and SE methods are given in Tables I–V. The
approximate boundaries of stability were determined as follows. Eigenvalues of matrix G (or U.T /)
were computed for a series of system parameters on an equidistant grid of a particular domain in
the plane of system parameters. Eigenvalues, having the largest real part (or largest absolute value),
were stored for each gridpoint. A three-dimensional surface was fitted on these eigenvalues over
the parameter plane using the ‘contour’ function of MATLAB. The approximate borders of stability
were given by the zero-level curve (or level curve at 1) of this three-dimensional surface. Note that
efficiency of this algorithm can be improved if only the critical eigenvalues are calculated (e.g., see
[31]). Efficiency could also be increased if non-uniform grid is used in the parameter plane (for
such methods see [32] and [33]). The convergence of the rightmost characteristic exponents were
investigated for parameter combinations given in Table I.

Table II presents the stability boundaries for the investigated RFDEs using different methods with
an increasing order n of approximation. It is observed that the convergence of stability boundaries
is almost exactly the same for the PsT, SE, and SLT methods, while the PsC method has slower
convergence for stability.
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Table II. Convergence of stability boundaries using different methods for different retarded functional
differential equations.

Table III shows the real part of the error of the rightmost characteristic exponent as a function
of the order of approximation. Results show that the SE method tends to have the highest rate
while the PsC method tends to have the lowest rate of convergence. It is interesting to note that the
points corresponding to the PsT method and the SLT method coincide for smaller n values. Their
convergence rates are close to that of the SE method in case of the Hayes equation and the oscillator
with distributed delay, while in case of the oscillator with two delays, their convergence rates are
close to that of the PsC method. Tables II–III can be used for the comparison of methods based on
their convergence with respect to n. However, in practice, the time necessary for the computation of
the stability charts is also important. Clearly, the time demand of a method depends on its realization
as a particular algorithm. A reliable base for comparison could be the number of necessary floating
point operations; however, such analysis is not performed in this paper. Here, the computational
demand of the methods is characterised by the time necessary for the computation of stability charts.

Table IV shows the computational time of stability charts using 200�200 gridpoints on the plane
of system parameters. The computational time is presented as a function of approximation order
for different equations and different methods. For the calculation of stability charts, the software
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Table III. The convergence of the real part of the rightmost exponent using different methods for different
retarded functional differential equations and system parameters ccording to Table I.

Table IV. Necessary time for the computation of stability charts based on the calculation of approximate
characteristic exponents/multipliers in 200 � 200 points of the plane of system parameters.

MATLAB was used. During the construction of MATLAB codes, the authors strived to increase
the efficiency evenly for algorithms corresponding to the investigated methods in order to provide a
base of a fair comparison. Based on the structure of the methods under comparison, some prelim-
inary estimations can be made on their speed. In all four methods, the majority of computational
time is spent on the determination of the eigenvalues of G (for the PsT, PsC, and SLT methods) or
U (for the SE method). Note that the herein presented algorithm calculates all the eigenvalues of
these matrices, although for stability only the critical eigenvalue is of interest. It is expected that the
structure of the matrix has no significant effect on the time of eigenvalue computation. However,
the inversion of matrices AC and N cost considerable time which has to be carried out repeatedly in
case of the SE method and once in case of the PsT and SLT method. Note also that under updated
system parameters, the PsC method has to carry out one less matrix–matrix multiplication com-
pared with the other methods. This matrix multiplication, however, has small effect on the overall
computational time. The results presented in Table IV match with the previous discussion, which
is the SE method requires more computational effort, while the rest of the methods have similar
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Table V. Time efficiency of different methods for different retarded functional differential equations and
system parameters according to Table I.

computational demand. In practice, a limit is set for the relative error of the real part of the right-
most exponent, and the order of approximation is increased until this limit is reached. Therefore, a
more useful diagram can be constructed by the combination of Tables III and IV, which is shown
in Table V.

Table V shows parametric ‘curves’ with the running parameter n on the plane of computational
time and error of the real part of the rightmost characteristic exponent. The farthest to the left a curve
is placed on this plane the better time efficiency the corresponding method has. Note that while the
computational time corresponds to a stability chart, the error corresponds to a particular point of this
chart. It is therefore assumed that the time which is necessary for the calculation of the exponents
is the same in all points of the parameter plane. The results of Table V show that for the Hayes
equation the PsT method, for the oscillator with two delays the PsC method, while for the oscillator
with distributed delay the SLT method is the most time-efficient. The SE method has the least time-
efficiency for the investigated cases. Note that the SE method can approximate only the real parts
of the exponents according to (87), therefore, it cannot be used for applications where the location
of exponents is of interest on the complex plane (e.g., continuous pole placement [34]). Also note
that in case of pseudospectral methods, the variables of the discretized system are distinct points
of the history function, which can be advantageous in some applications. Furthermore, it should be
mentioned that, to the best knowledge of the authors, detailed theoretical convergence analysis does
not exist for the PsT and SE methods. However, for the PsC and the SLT methods, precise theoretical
convergence analysis is provided in [35] and in [36], respectively.

6. APPLICATION FOR TIME-PERIODIC SYSTEMS

The proposed method can also be applied to time-periodic systems based on the Floquet theory. As it
is detailed in Section 4, the PsT method approximates RFDE (1) by the ODE (33). When the RFDE
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is time-periodic, stability is determined by the characteristic multipliers of the monodromy operator
U.T /. A matrix approximation U.T / of the monodromy operator can be defined by the mapping

X.T / D U.T /X.0/ : (88)

However, in general, U.T / cannot be calculated in closed form. A simple approximation for U.T /
can be given via the approximation of the time-periodic ODE (33) by a series of autonomous ODEs
in the form

PVk.t/ D GkVk.t/ t 2 ..k � 1/�t; k�t� ; k D 1; 2; : : : ; N I (89)

where Vk D ¹Vk.t/ W t 2 ..k � 1/�t; k�t�º solution segments are connected by boundary
conditions

Vk.k�t/ D VkC1.k�t/ ; k D 1; 2; : : : ; N � 1 : (90)

In (89), the time step is �t D T=N with N 2 N being the period resolution, while

Gk D
1

�t

Z k�t

.k�1/�t

G.�/d� (91)

is a piecewise constant approximation of G.t/. The approximation of U.T / is then given by

U.T / � QU D eG�
N eG�

N�1 � � � eG�
1 ; (92)

where

G�k D Gk�t D N�1
Z �t

0

M.�C .k � 1/�t/d� ; k D 1; 2; : : : ; N : (93)

Note that the monodromy operator is approximated in two steps. First, (9) is discretized by the PsT
method, then (33) is approximated by (89). In contrast, the direct approximation of the solution
operator is more sound, which can be carried out, for example, by the SE method or the collocation
technique in [37].

6.1. Examples

Two examples are shown for the application of this method. Namely, stability charts are determined
for the delayed Mathieu equation and for an oscillator with time-periodic delay.

6.1.1. Delayed Mathieu equation. The first-order form of the delayed Mathieu equation is

Px.t/ D .BC BT .t// x.t/C C x.t � �/ ; (94)

where

BT .t/ D "
�

0 0

� cos
�
2�t
T

�
0

	
; (95)

while matrices B and C are given in (59). Derivation of the exact stability boundaries for this
equation can be found in [38]. Using the PsT method, the discretization of (94) is carried out
according to (37) and (38), where now

L.t/�j D .BC BT .t// �j .1/C C�j .�1/ : (96)

Note that for the computation of QU, integral terms in (93) have to be calculated only once, even for
varying a; b; "; � system parameters. By increasing n and N , one can observe the convergence of
the approximate stability chart to the analytical one. In Figure 5, the converged stability boundaries
are shown for fixed � and T parameters.
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Figure 5. Stability chart of the delayed Mathieu equation for � D T D 2� , n D 12 and N D 15.

Figure 6. Stability charts of the oscillator with time-periodic delay for n D 15 and N D 20.

6.1.2. Oscillator with one time-periodic delay. The first-order form of this oscillator is given by

Px.t/ D B x.t/C C x.t � 
.t// ; (97)

where matrices B and C are defined in (59), and 
.t C T / D 
.t/ with 
.t/ > 0 8t . Again,
discretization of (97) is performed according to (37) and (38), where now

L.t/�j D B�j .1/C C�j
�
1 � 2	.t/

�

�
; (98)

with � being the maximum value of the delay. In Figure 6, approximate stability charts are shown
for the time-periodic delay


.t/ D 2�
�
1C " cos

�
2�t
T

��
: (99)

After the comparison of the results presented in Figure 6 and the results shown in Fig. 4.11 in
Chapter 4 of [19], one can observe that the boundaries of stability, determined by the PsT method,
converge to those determined by the semi-discretization method.

7. CONCLUSIONS

In this paper, the competitiveness of the PsT method against recently developed highly efficient
numerical methods was shown with respect to the stability analysis and ODE approximation of
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RFDEs. The properties of the compared methods were presented by means of their application to
three linear autonomous RFDEs. The results of Section 5 imply that the PsT and SLT methods have
similar high time efficiency, while the PsC and SE methods have a bit lower time efficiency for the
determination of stability charts in the plane of system parameters. It is also shown that the PsT and
SLT methods approximate the rightmost root of ODEs with similar high convergence rate, while
the PsC method has lower rate of convergence. Here, the authors note that the convergence rate of
the PsT and SLT methods is higher than that of the PsC method not only for the rightmost root but
also for the finite dimensional approximation of the complete spectrum of the RFDE. This property
is not detailed here but is experienced by the authors through several numerical experiments. Based
on the results of Section 5, the authors believe that the PsT method is a useful highly efficient tool
for the stability analysis and ODE approximation of linear autonomous RFDEs. Furthermore, the
results of Section 6 imply that the PsT method can also be used for the ODE approximation of time-
periodic RFDEs.
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APPENDIX

Appendix A. Legendre polynomials
Definition of Legendre polynomials by Bonnet’s recursion formula:

P0.�/ D 1
P1.�/ D �

Pj .�/ D
2j�1
j

� Pj�1.�/ �
j�1
j
Pj�2.�/ j D 2; 3; : : :

Some properties of Legendre polynomials:

� orthogonality:
R 1
�1 Pj .�/Pi .�/d� D

2

2j C 1
ıi;j

� Pj .1/ D 1 and Pj .�1/ D .�1/ j

Recursion formula for the first derivative of Legendre polynomials:

P 0j .�/ D .2j � 1/Pj�1.�/C P
0
j�2.�/ j D 2; 3; : : :

Because of the aforementioned formula and the orthogonality property of Legendre polynomials,

Z 1

�1

P 0j .�/Pi .�/d� D

8<
:
0 if i > j
2 if .j�i/mod 2 ¤ 0
0 if .j�i/mod 2 D 0

Appendix B. Legendre–Gauss–Lobatto quadrature
The Legendre–Gauss–Lobatto quadrature approximates a definite integral by a sum as

I D

Z b

a

x.t/dt � QI D
nX
qD1

x.tq/wq ;

where tq D a�b
2
��qC

aCb
2

with ��q andwq being the quadrature nodes and weights, respectively. The
Legendre–Gauss–Lobatto quadrature gives exact results for all polynomials with maximum order
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2n�3. The quadrature nodes are the roots of .1� �2/P 0n�1.�/, that is �1, 1 and the roots of the first
derivative of the Legendre polynomial of order .n � 1/. The quadrature weights are given by

wq D

8̂̂<
ˆ̂:

2

n.n � 1/
if q D 1; n I

2

n.n � 1/P 2n�1.�
�
q /

if q D 2; 3; : : : ; n � 1 :

Appendix C. Chebyshev points and polynomials

Theorem 1
Consider the Lagrange interpolant Qx.�/ of x.�/ on the domain � 2 Œa; b�, using the node set®
�j
¯n
jD1
� Œa; b�. Assume that x.t/ is C n on the given interval. Then, at any � point of Œa; b�, the

error En.�/ D x.�/ � Qx.�/ of interpolation is given by the formula

En.�/ D �
x.n/.��/

nŠ
!n.�/ ; !n.�/ D

nY
jD1

.� � �j / ;

where �� 2 Œa; b� is a constant, which depends on the value of � .

Theorem 2
Let Œa; b� a fixed interval. For a pn.�/ n-order polynomial with leading coefficient 1, jpn.�/jCŒa;b� 6
jqn.�/jCŒa;b� for all qn.�/ n-order polynomial with leading coefficient 1 if and only if pn.�/ has at
least n C 1 distinct absolute extrema on Œa; b�. On these points, the absolute value of pn.�/ is the
same, while the sign of its value alternates.

Theorem 3
There is only one pn.�/ n-order polynomial with leading coefficient 1 on Œa; b�, for which
jpn.�/jCŒa;b� 6 jqn.�/jCŒa;b� for all qn.�/ n-order polynomial with leading coefficient 1.

Theorem 4
On the domain Œ�1; 1�, the function

QTnC1.�/ D
cos.n arccos.�//

2n�1
; n > 1

is an n-order polynomial with leading coefficient 1 having nC 1 absolute extrema with alternating
signs.

Definition 1
Polynomials T1.�/ D 1 and TnC1.�/ D 2n�1 QTnC1, n > 1 are called Chebyshev polynomials.

Corollary 1
Because !n.�/ is an n-order polynomial with leading coefficient 1, choosing

®
�j
¯n
jD1

as the set of
zeros of TnC1.�/ scaled from domain Œ�1; 1� to Œa; b� leads to minimal jEn.�/jCŒa;b�, moreover an
upper estimation can be given by

jEn.�/jCŒa;b� 6
max

��2Œa;b�

®ˇ̌
x.n/.��/

ˇ̌¯
nŠ 2n�1

:

Theorem 5
The Chebyshev polynomial TnC1.�/ D cos.n arccos.�// can be given by the recursive formula

TjC1.�/ D 2Tj .�/ � Tj�1.�/ ; j D 2; : : : ; n I

with T1.�/ D 1 and T2.�/ D � .
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Theorem 6
If x.�/ is absolute continuous on the domain of interpolation, then its Lagrange interpolant Qx.�/ on
the zeros of the Chebyshev nodes converges uniformly to x.�/ in the C Œa; b� norm as n!1.
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