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Extension of Stability Radius to Neuromechanical
Systems With Structured Real Perturbations

David Hajdu, John Milton, and Tamas Insperger

Abstract—The ability of humans to maintain balance about
an unstable position in a continuously changing environment
attests to the robustness of their balance control mechanisms
to perturbations. A mathematical tool to analyze robust stabi-
lization of unstable equilibria is the stability radius. Based on
the pseudo-spectra, the stability radius gives a measure to the
maximum change of the system parameters without resulting
in a loss of stability. Here, we compare stability radii for a
model for human frontal plane balance controlled by a delayed
proportional-derivative feedback to two types of perturbations:
unstructured complex and weighted structured real. It is shown
that: 1) narrow stance widths are more robust to parameter
variation; 2) stability is maintained for larger structured real
perturbations than for unstructured complex perturbations; and
3) the most robust derivative gain to weighted structured real
perturbations is located near the stability boundary. It is argued
that stability radii can effectively be used to compare different
control concepts associated with human motor control.
Index Terms—Biomechanics, neural engineering, neurofeed-

back, robustness, stability radii, time-delay systems.

I. INTRODUCTION

T HE high morbidity and mortality associated with falls in
the elderly provides a strong motivation to understand the

nature of the mechanisms that maintain human balance [1], [2].
One challenge is to uncover the peculiarity of the control al-
gorithm that is capable of stabilizing unstable equilibria in the
presence of delay. However, once stabilization is achieved a
second challenge arises, namely, how robust is the control in
the face of changes in system parameters that arise because of
the effects of external perturbations and changes in posture?
The effects of external perturbations on the nervous system

are most often manifested through effects on systems parame-
ters. Periodic perturbations, e.g., parametric excitation, can sta-
bilize an inverted pendulum [3] and prolong the time that a
stick can be balanced on the fingertip [4]. Random perturba-
tions, namely parametric noise, underlie the spontaneous fluctu-
ations in pupil size [5] and have important roles in motor [6]–[8]
and balance [9]–[12] control. For balance control during quiet
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standing, changes in control parameters can be associated with
changes in stance width [13]–[15].
In robust control theory two more general concepts are used

to describe the effects of parameter perturbations on stability.
First, the parameter perturbations can be real or complex valued
[16]–[18]. Second, the magnitude of the effects of perturba-
tions on system parameters may be unstructured, i.e., unrelated
to the unperturbed system parameters, or may be structured or
weighted structured to reflect a dependence on system param-
eters [19]–[21]. Physical interpretation of complex-valued per-
turbations of systemswith real parameters is controversial, since
the real characteristic roots can become complex without a con-
jugate pair. Unstructured perturbations can lead to irrelevant or
nonphysical effects. Consequently, it is important to determine
the robustness of stability for balance control to structured real
perturbations.
In a seminal paper, Bingham and Ting [14] introduced the

techniques of pseudo-spectral analysis and robust control to
study the effects of unstructured complex perturbations on
the control of human balance. The key concept is that of the
stability radius [19], namely the magnitude of the change in
some system parameters, such as the inertia or the geometric
dimensions, required to destabilize the control mechanism. In
[14], a model of human frontal plane balance with delayed
proportional-derivative feedback [13], [22], [23] subjected to
unstructured complex perturbations was analyzed. Surprisingly,
it was found that the stability radius increases with decreasing
stance width and, for a given stance width, the more robust
gains are located in the middle of the stable region in the
unperturbed parameter space.
Here we extend this approach by computing the stability radii

for the same model for balance control subjected to weighted
structured real perturbations. Our analysis confirms the observa-
tion that the maximum stability radius increases with decreasing
stance width. However, there are two important caveats. First,
the maximum perturbation required to cause instability is ap-
proximately six to ten times larger than obtained for complex
unstructured perturbations. In other words, the stability radii
computed by Bingham and Ting [14] are very conservative.
Second, the most robust derivative gain is located very close
to the lower stability boundary. This observation is consistent
with previous suggestions that feedback gains for human bal-
ance control may be tuned very close to stability boundaries
[10], [24].
The outline of this paper is as follows. In Section II, we

present the model for human frontal plane balance control
developed by Bingham and co-workers [13]. The concepts
of pseudo-spectra and stability radius are briefly reviewed in
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Fig. 1. Frontal-plane model of human mediolateral balance control including
a four-bar linkage mechanism according to [13].

TABLE I
ANTHROPOMETRIC DATA FROM [13]

Section III with special attention to unstructured complex and
weighted structured real perturbations. Then, in Section IV,
we compare the stability radii calculated for the balance model
subjected to unstructured complex perturbations and to those
obtained for weighted structured real perturbations. Finally, we
discuss further applications of these techniques to the study of
human balance control.

II. DYNAMICAL MODEL

We investigate the mechanical model of frontal-plane balance
control introduced in [13]. The corresponding four-bar linkage
mechanism is shown in Fig. 1. The outer links represent the
legs and the link in the middle replaces the torso. The centers of
masses are indicated by gray dots. The stabilizing joint torque ,
which is a result of a feedback mechanism, is acting at the hips.
The anthropometric data for the four-bar linkage model is given
in Table I according to [13]. The two parameters of interest are
the hip width and the stance width . Following [13], the
feedback delay is set to ms.

A. Linearized Equation of Motion
The equation of motion can be derived using Lagrange's

equations of the second kind. According to [13], the generalized
coordinate of the one-degree-of-freedom mechanism is taken to
be the angle . Introduce perturbation ,

where corresponds to the upper equilibrium of the body.
The linearized equation of motion can then be written as

(1)

where the reduced inertia and the gravitational term are
calculated as

(2)

(3)

with

and (4)

Since , the system is unstable when . Assuming
delayed proportional-derivative feedback mechanism, the gen-
eralized force can be written as

(5)

where and are the proportional and derivative control
gains, is the reflex delay and is a constant, which depends
on the choice of the feedback signal. If the hip's angular position
and velocity is used as feedback signal (i.e., if the actual joint
torque is ), then

(6)

where is the stance width and is the hip width. If the center
of mass excursion is used as feedback signal, then

(7)

In [13] and [14], these two types of feedback signals were ana-
lyzed. Note that the case presents a singularity when

since in this case while the trunk is always
vertical ( ). Therefore, here we prefer to concentrate on
the control of the center of mass. There is a debate whether
the center of mass position is directly controlled by the neural
system or it is controlled indirectly through the body geometry
[25]. Although this question has important neurological impli-
cations, from a mathematical point of view, indirect control of
the center of mass for small displacements corresponds only to a
reparameterization of the equations associated with direct con-
trol. The fact that many sensory organs for balance are in the
head suggests that the control of the position of the head is also
a possible control strategy, namely

(8)

where indicates the distance of the head from the middle of
the hip.
As in [14], it is assumed that the delay and the control gains

are invariant to system changes (see also [15]) and only the pa-
rameters of the mechanical model vary. The variations in the
model parameters can be represented as uncertainties in the
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reduced inertia , the gravitational term and the configura-
tion-dependent coefficient . In order to concentrate the un-
certain parameters, (1) is rearranged in the form

(9)

where

and (10)

Now all of the uncertainties are included in the normalized pa-
rameters and . The equation of motion can then be written
in the first-order form

(11)

with and

(12)

We are interested in the robustness of this system against
changes in the parameters and .

III. ROBUST STABILITY ANALYSIS

In [14], the robust stability of system (11) was determined
using the complex stability radius associated with the perturba-
tion of matrix . This corresponds to perturbation of each el-
ement of by a complex number (including the entries 0 and
1, which shall be invariant to system changes). This approach
gives a conservative estimate of the actual robust stability as-
sociated with structured real perturbations. Furthermore, uncer-
tainties of the mechanical parameters affect not only the system
matrix but also the input matrix . This effect was also ne-
glected in [14]. In this section, the robust stability analysis is
presented in case of real-valued changes of the parameters and
. First, the -pseudo-spectrum is reviewed, then unstructured

complex, weighted structured complex, unstructured real and
weighted structured real stability radii are given step-by-step ac-
cording to the literature [17], [18], [20], [21].
The -pseudo-spectrum of a matrix is defined as

where (13)

where denotes the spectrum, is an arbitrary matrix norm
and is a perturbation matrix [26]. It is known that (13) is
equivalent to

(14)

where denotes the corresponding re-
solvent operator with being the identity matrix. The -pseudo-
spectrum plays an important role in the definition of stability ra-
dius of time-delay systems.

A. Unstructured Complex Stability Radius
Perturbations of the systemmatrix are characterized by the

perturbation matrix . The corresponding perturbed equation
reads

(15)

According to the stability radii theorem (see, e.g., [17]), the un-
structured complex stability radius corresponding to the com-
plex-valued perturbation of the entire system matrix reads

(16)

where denotes the spectral norm. If the nominal system
with is stable, then the perturbed system with any

satisfying the condition is stable, too. Con-
sequently, the robust stability boundaries for perturbations of
different sizes are given by the contour curves of .
In case of perturbations of the input matrix by , the

governing equation reads

(17)

The corresponding complex stability radius reads

(18)
The unstructured complex stability radius corresponds to a

complex perturbation of all the elements of the matrices and
(even the elements 0 and 1) and is therefore a conservative

estimation of the actual stability radius. Amore realistic stability
radius is the weighted structured stability radius, where each of
the system parameters , are perturbed individually.

B. Weighted Structured Complex Stability Radius
The characteristic equation of (11) on the imaginary axis can

be written in the form

(19)

In case of weighted perturbations of the system parameters as
and , the perturbation matrix should be introduced

(20)

where and are the weights of the perturbations with re-
spect to the nominal inertia and the nominal gravitational term
, respectively. If and , where and
are the radii of uncertainties, then the corresponding weights

are

(21)

For instance, if is perturbed by maximum 2%, then
. If or , then no perturbation on



1238 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2016

or on is allowed [20]. This formalism allows the perturba-
tions, which satisfy

(22)

Thus, the allowed perturbations lie within an ellipse of main
axes and in the plane .
Following [20], the complex stability radius corresponding to

the perturbation matrix can be calculated as

(23)

where is the complex weight function

(24)

If the nominal system is stable and , then the system
is robustly stable for any perturbations satisfying (22). Conse-
quently, the robust stability boundary associated with the uncer-
tainty radii and is given by the contour curve .
Contour curves with any give the robust
stability boundaries associated with the uncertainty radii
and .

C. Unstructured Real Stability Radius
If only real entries of the perturbation matrix in (15) are

allowed, then the corresponding real stability radius can be cal-
culated following [17] and [18] as

(25)

where

(26)

and

(27)

Here, denotes the second largest singular value.
Similarly, in case of real-valued perturbation of the input ma-

trix , the real stability radius reads

(28)

with (26) and

(29)

D. Weighted Structured Real Stability Radius
Weighted structured real stability radius is a straightforward

combination of unstructured real [17], [18] and weighted struc-
tured complex [20], [21] stability radii and can be calculated as

(30)

where

(31)

and

(32)

Here, is defined as in (20). Similarly to the previous cases, the
robust stability boundaries associated with the uncertainty radii

and are given by the contour curve , while the
contour curves , give the boundaries associated
with the uncertainty radii and .

IV. RESULTS
Stability boundaries of the nominal system (without perturba-

tion) in terms of the delayed feedback gains can be found in [13].
Robust stability boundaries in case of complex unstructured per-
turbation of the system matrix were provided in [14]. Here,
robust stability analysis is presented for real-valued perturba-
tion on the system parameters and . The stable regions of
the nominal system in the parameter plane were deter-
mined numerically using the semi-discretization method [27].
Stability radii and the robust stability boundaries are determined
only in the stable regions.
In order to be able to compare the unstructured complex sta-

bility radius with the weighted structured real one, we introduce
the relative stability radii. For complex perturbation, we use the
ratio of the norm of the perturbation and the norm of the state
matrix

(33)

This number gives the relative complex perturbation that is
allowed on the system matrix without losing stability. For
weighted structured real perturbation, we set the uncertainty
radii to and and introduce the relative stability
radius as

(34)

This number gives the relative real perturbation that is allowed
on the inertia and the gravitational term without losing sta-
bility. Now, the relative stability radii and can directly
be compared.
Fig. 2 compares the robust stability boundaries and the

pseudo-spectra calculated using complex unstructured and real
weighted structured perturbations. Panel a) in Fig. 2 shows
the robust stability boundaries for complex unstructured per-
turbations of the system matrix using the same concept
as in [14]. The equation under analysis is given in the first
order form (11) and the robust stability boundaries are de-
termined using the complex stability radius given by (16).
Different contour curves associated with relative stability radii

are presented. These contour curves
correspond to complex perturbation of the
system matrix .
Panel b) in Fig. 2 illustrates the pseudo-spectrum associated

with the control gains and . This point is
indicated by point A in panel a). The three right-most character-
istic roots are indicated by black dots and their pseudo-spectra
associated with different perturbation levels are indicated by
thin lines. The relative complex stability radius at this param-
eter point is , i.e., the corresponding pseudo-spec-
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Fig. 2. Stability chart and corresponding pseudo-spectra with stance width
ratio : a) complex stability radii; b) complex pseudo-spectra at
parameter point A; c) real stability radii; d) real pseudo-spectra at parameter
point B.

trum just touches the imaginary axis. This indicates that there
exists a complex perturbation with
such that the perturbed system loses asymptotic stability. Thus,
a 4.1% complex perturbation of can already destabilize the
system.
Panel c) in Fig. 2 shows the robust stability boundaries ob-

tained by the weighted structured real stability radius according
to (30) with and . Different contour curves in-
dicate different relative weighted structured real stability radii

. For instance, the contour curves indicate the ro-
bust stability boundaries corresponding to maximum 10% per-
turbation of the inertia and maximum 10% perturbation of the
gravitational term .
Panel d) in Fig. 2 shows the pseudo-spectra corresponding to

the same control gains as in panel b). This point is also indicated
by point B in panel c). It can be seen that the change of the three
right-most characteristic roots for real perturbations is qualita-
tively different from that of the complex perturbations: the real
characteristic multipliers of the nominal system remain real and
move on the real axis as the perturbation changes. The wan-
dering of the complex pair of eigenvalues is also different: they
sharply drift to the imaginary axis in a specific direction. The rel-
ative real stability radius at this parameter point is .
This means that the system can lose stability if the real-valued
perturbations satisfy

(35)

In other words, larger than 44% perturbation on the inertia or
on the gravitational term can destabilize the system. This nu-
merical example demonstrates that the complex stability radius
gives a strongly conservative estimate of the relative stability ra-
dius. The 4.1% relative complex perturbation on the systemma-
trix may already destabilize the system, while the size of the

Fig. 3. Stable (white) and robustly stable (gray) domains for stance width ra-
tios for different feedback concepts: a) position feedback
of center of mass excursion; b) position feedback of head excursion. The uncer-
tainties of both the inertia and gravitational terms are 20%.

Fig. 4. Robust stability boundaries for stance width ratio and for
different perturbations on the inertia and the gravitational term.

relative real perturbation on and , which gives an unstable
system, is 44%. The maximum relative stability radii in the ro-
bust stability diagrams show a similar tendency:
while (both points are indicated by dots in panels
a) and c) of Fig. 2).
Fig. 3 shows the effect of the use of different feedback signals.

Panel a) shows the case when the position and the velocity of the
center of mass is applied as feedback signal according to [13],
[14] ( ). Panel b) presents the case when the feedback
signal is the position and the velocity of the head ( ).
The uncertainty radii for both cases are and ,
i.e., the maximum perturbations are 20% for both parameters.
Although the robust stability boundaries are different for the
two feedback concepts, they are similar in topology, namely,
there is no choice of , which can robustly stabilize the
system for stance width ratios ranging from 0.7 to 1.5.
This observation suggests that the nervous system might tune
control gains to accommodate different configurations.
Fig. 4 shows the change of the robust stability boundaries

under different sizes of perturbations. The panels can be con-
sidered projections of the 4-D robust stability diagram in the
parameter space . The uncertainty radius for
the inertia is kept constant in each row, while each column rep-
resents constant uncertainty radius for the gravitational term.
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Fig. 5. Stabilizing feedback gains (gray shading in panels a, b, d, e), gains
associated with maximum relative stability radii (solid line in panels a, b, d, e)
and maximum relative stability radii (solid line in panels c, f). Panels a, b, c:
unstructured complex stability radius according to [14]; panels d, e, f: weighted
structured real stability radius.

For instance, the case and corresponds to
perturbations which lie within the ellipse in the plane
defined by (22) with main axes and .
Stable regions for delayed feedback controllers are typically

bounded by a straight vertical line representing static loss of
stability and a curved boundary representing dynamic loss of
stability [28], [29]. It can be observed that the uncertainty of
the inertia shifts the static stability boundary to the right, but
does not affect significantly the dynamic stability boundary. The
uncertainty in the gravitational term shifts drastically the dy-
namic stability boundary, but does not affect the static stability
boundary. In case of the presented parameter combinations and
stance widths, robust stability boundaries are more sensitive to
uncertainties in the inertia than in the gravitational term.
Fig. 5 shows the stabilizing feedback gains and the maximum

relative stability radii for different stance width ratios. In Fig.
Fig. 5a), b) and d), e), the stabilizing feedback gains are indi-
cated by gray shading, the gains associated with the maximum
relative stability radii are marked by solid lines. Fig. 5c) and
f) presents the maximum relative stability radii as a function of
the stance width ratio . Fig. 5a), b) and c) shows the results
obtained by unstructured complex stability radius according to
[14], while Fig. 5d), e) and f) corresponds to the weighted struc-
tured real stability radius. For both types of perturbations the
largest stability radii are associated with narrow stance widths.
There are two main differences between the complex and the

real stability radii shown in panels c) and f). First, the max-
imum relative complex perturbation of the system matrix
without losing stability is less than 10%, while this ratio for the
real perturbation of the inertia and the gravitational term ranges
between 48%–63%. Thus, the allowed real perturbation on the
actual mechanical parameters is much larger than the complex
one. Second, the most robust derivative gain ( ) is located
close to the lower stability boundary for the real perturbation,

Fig. 6. Center-of-mass trajectories for different stance widths obtained by
time-domain simulations using feedback gains associated with .

while it is about in the middle of the stable region for the com-
plex perturbation. Note that the actual feedback gains fitted to
human response to perturbation are in the lower left corner of the
stable region [13], which corresponds to the most robust control
gains obtained by the real stability radius.
Fig. 6 shows simulations of the model at narrow (
) and wide ( ) stance widths using the feedback

gains associated with complex stability radius . The
initial conditions for the simulations were and

rad/s and Matlab dde23 solver was used to determine time
histories. These plots confirm the results by [14]: trajectories
of the center of mass are similar for different stances while the
restoring torque is significantly larger for narrow stance. The
corresponding relative complex stability radii are
and , i.e., 7.4% and 4.5% complex perturbations are al-
lowed on the system matrix . The relative real stability radii
( and ) show that these perturbations actu-
ally correspond to significantly larger perturbations on the real
system parameters: 34.1% and 27.5% perturbations are allowed
on the inertia and the gravitational term. It can be observed that,
for these parameters, the center-of-mass trajectories are sim-
ilar to the response of a critically damped system in agreement
with [14].

V. DISCUSSION

The calculation of stability radii can be used to assess the ef-
fects of parametric perturbations on the dynamics of a model
for balance control with delayed proportional-derivative feed-
back. In other words, the control gains that are essential for the
maintenance of balance are the ones associated with the largest
stability radius. In a previous study [14], it was shown that the
largest stability radii in response to unstructured complex per-
turbations occur for narrow stance widths. Here, we confirmed
that this is also true for more realistic perturbations and, in par-
ticular, those that take the form of weighted structured real per-
turbations. However, there are two quantitative differences be-
tween the effects of complex and real perturbations. First, the
stability radii in response to weighted structured real perturba-
tions are six to ten times larger than observed for unstructured
complex perturbations. Second, the most robust derivative gains
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are located closer to the stability boundary when the parameter
perturbations are real valued. This latter observation is consis-
tent with the previous suggestion that feedback gains for human
balance control may be tuned very close to stability boundaries
in order to minimize energy requirements for maintaining bal-
ance [10], [24].
Most individuals experience greater instability when standing

with a narrow stance and are typically most comfortable when
. Thus the observation that the stability radius is largest

for a narrowstance seemscounter-intuitive.As explained in [13],
the lack of robustness at wide stance is due to the reduction in
rotational inertia, while the destabilizing gravitational moment
remains nearly constant, which results in an increased leverage
of the muscle torque and hence a larger sensitivity to parameter
perturbations. It should also be noted that the feeling of larger
instability for a narrow stance is not related to the robustness
against parameter perturbations, but rather robustness against
perturbations in the state variables, which is associated with the
basin of attraction of the equilibrium position. For example, an
important requirement for the maintenance of balance during
quiet standing is that the center of massmust stay within the base
of support located beneath and between the soles of the feet.
In mathematical terms the base of support is approximately the
basin of attraction for the upright position [30]. A much studied
example of the effect of perturbations in the state variables on
standing balance is the ankle-hip-step strategy adopted by sub-
jects in response to increasingly large perturbations [31]–[34].
Presumably the unsteadiness felt by individuals standing with
narrow stance widths reflect the role of other corrective mecha-
nisms which are activated as the edge of the basin of attraction is
approached [35].
Our analysis shows that the control preserves stability even

for 50 perturbations of the inertia. This is in some sense
in agreement with the results of [36], where the effect of
adding weight and inertia on balance was analyzed during
quiet standing. They separated the effect of added inertia and
added weight and showed that adding inertia by itself had no
effect on balance while adding weight by itself had a slight
negative effect on balance. It should be emphasized that in this
paper we analyzed temporary perturbations of the inertia and
the gravitational term, which is not equivalent to permanent
change of these parameters, where the neuromuscular control
gains are already adjusted. For instance, it is known that obese
persons have a higher risk of falling than lightweight individ-
uals [37]. Overweight can hardly be considered as a temporary
perturbation of the inertia since individuals can accommodate
their neural control gains continuously according to their actual
weight. In [38], a proportional stabilizing force (an added stiff-
ness) was applied at the hip while standing, which is equivalent
to a permanent perturbation of the gravitational term. It was
shown that subjects adjusted their control gains to compensate
for the change in the stiffness parameter.
Previous studies have emphasized that balance control mech-

anisms are benefited by tuning the parameters near, or even
on, stability boundaries [10], [24]. It is more efficient to ini-
tiate quick movements from an unstable position than from a
stable one and the energy demands for such control are rela-
tively small. In addition, dynamical systems tuned towards the

edge of stability can exhibit a variety of complex behaviors, col-
lectively referred to as critical phenomena [39], which may pro-
vide mechanisms for self-regulated balance, e.g., on-off inter-
mittency [10].
Many types of control mechanisms have been postulated for

the stabilization of unstable positions including proportional-
derivative-acceleration feedback [40]–[42], intermittent predic-
tive control [43], [44], intermittent activation of feedback con-
trol [45]–[47], predictor feedback [48], [49] and act-and-wait
control [50]. Moreover, the effects of perturbations are impor-
tant for other tasks related to human balance control during
motion [51], such as stick balancing [10], [4], balance control
during postural sway [52], [46], maintaining a constant force
in an unstable environment [53] or balancing on tightropes and
slacklines [54]. Since all of these tasks are impacted by para-
metric perturbations we anticipate that techniques, such as those
related to the stability radius, will become increasingly impor-
tant for identifying robust mechanisms for neural control.
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