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Abstract The effects of sensory input uncertainty, ε, on
the stability of time-delayed human motor control are inves-
tigated by calculating the minimum stick length, �crit , that
can be stabilized in the inverted position for a given time
delay, τ . Five control strategies often discussed in the con-
text of human motor control are examined: three time-
invariant controllers [proportional–derivative, proportional–
derivative–acceleration (PDA), model predictive (MP) con-
trollers] and two time-varying controllers [act-and-wait
(AAW) and intermittent predictive controllers]. The uncer-
tainties of the sensory input are modeled as a multiplicative
term in the system output. Estimates based on the variability
of neural spike trains and neural population responses suggest
that ε ≈ 7–13 %. It is found that for this range of uncertainty,
a tapped delay-line type of MP controller is the most robust
controller. In particular, this controller can stabilize inverted
sticks of the length balanced by expert stick balancers (0.25–
0.5 m when τ ≈ 0.08 s). However, a PDA controller becomes
more effective when ε > 15 %. A comparison between �crit

for human stick balancing at the fingertip and balancing on
the rubberized surface of a table tennis racket suggest that
friction likely plays a role in balance control. Measurements
of �crit, τ , and a variability of the fluctuations in the vertical
displacement angle, an estimate of ε, may make it possible to
study the changes in control strategy as motor skill develops.
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1 Introduction

Visually directed voluntary movements are under the con-
trol of a motor program that is modifiable by time-delayed
sensory feedback (Shadmehr et al. 2010; Todorov and Jor-
dan 2002). Investigations involving motor imagery (Milton
et al. 2007; Pau et al. 2013) and brain–machine interfaces
(Hochberg et al. 2012) establish that the motor plan can be
generated “from thoughts alone,” but that skilled task perfor-
mance requires sensory feedback (Kuiken et al. 2007; Sum-
inski et al. 2010). How is online feedback control achieved
using time-delayed feedback? All time-delayed feedback
controllers are predictive in the sense that information avail-
able at time t is used to predict corrective actions made at
time t + τ , where τ is the time delay. The unsettled question
concerns whether the nervous system bases these predictions
solely on sensory information collected at a single instance
in time or uses an internal model obtained by solving the
system equations over the delay interval.

Two types of control approaches have been considered:
(1) stabilization with sensory feedback (Milton et al. 2009a;
Stepan 2009) and (2) stabilization with delay compensa-
tion (Nijhawan and Wu 2009; Stanley and Miall 2009).
Commonly considered sensory feedback controllers are
proportional–derivative (PD) and proportional–derivative–
acceleration (PDA). It is well established that such controllers
cannot stabilize an inverted pendulum of a given length unless
the feedback delay is smaller than a critical delay (Schurer
1948; Stepan 1989). The goal of delay compensating con-
trollers is to take the delay out of the control loop (Krstic
2009). For example, the celebrated Smith predictor compen-
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sates the delay using an internal model to predict the actual
state variables of the system (Miall et al. 1993; Miall and
Jackson 2006; Smith 1957). However, its practical applica-
bility is limited by the fact that it cannot be used to stabilize
an unstable open-loop system such as stick balancing and
it is very sensitive to mismatch between the internal model
parameters and the actual system parameters (Palmor 2000;
Michiels and Niculescu 2003). Model predictive (MP) con-
trollers overcome the limitations of the Smith predictor by
solving the system equations over the delay period (Krstic
2009). Examples include controllers based on optimal control
(Kleinman 1969), the finite spectrum assignment (Manitius
and Olbrot 1979; Wang et al. 1998), the reduction approach
(Arstein 1982) and the modified Smith predictor (Palmor
2000). However, MP controllers are sensitive to implemen-
tation inaccuracies and to parameter estimation uncertainties
(Engelborghs et al. 2001; Mondié et al. 2002).

An alternate approach for delay compensation is the use
of intermittent controllers in which the feedback is intermit-
tently turned on and off. For an act-and-wait (AAW) con-
troller, the delay can be eliminated if the switch-off (wait-
ing) period is longer than the feedback delay (Insperger
2006; Insperger and Stepan 2011). Another type of time-
varying controllers is the intermittent predictive (IP) con-
troller (Gawthrop and Wang 2007), which makes use of open-
loop control intervals with a system-matched hold in order to
get a simplified prediction over the delay period. IP control
provides a simpler algorithm than its continuous counterpart,
while it explains a wide range of experiments (Gawthrop et
al. 2011).

There are a number of characteristics that distinguish the
performance of task specific, goal-directed voluntary motor
skills from movements controlled by neural reflexes or cen-
tral pattern generators. The most striking differences are
the relationships between practice and skill. Practice, often
ranging over weeks to years, is required to both attain and
maintain a given skill level. Some individuals are unable
to become skilled even with considerable practice, whereas
under appropriately stressful conditions, skill levels can
rapidly deteriorate [“choking” (Beilock 2011)]. In the con-
text of mathematical models of motor control, the practice
dependence of skill levels is most often interpreted in terms
of a learning-dependent optimization of the important control
parameters, e.g., gains, in the proposed controller. For exam-
ple, it is well established that inaccuracies can be reduced by
a learning process through a feedback error-learning scheme
(Kawato 1990; Gomi and Kawato 1993; Valero-Cuevas et al.
2009). However, uncertainty in the input signal is likely to be
independent of skill levels since it is a function of the proper-
ties of sensory receptors and disturbances from the environ-
ment. Although it is increasingly being recognized that noise
plays an important role in the nervous system (McDonnell
and Ward 2011), especially when time delays are present

(Milton 2011), little work has appeared on the behavior of
time-delayed feedback control schemes in the face of uncer-
tain sensory inputs.

In this paper, we examine the effects of input uncertainty
on the ability of five different control concepts to stabilize
an inverted pendulum: PD, PDA, MP, AAW and IP. These
comparisons are based on the observation that if the time
delay is known, then the shortest stick length that can be
stabilized by a given controller can be calculated. The sensory
uncertainty is modeled as a multiplicative term in the system
output. We find that although the stability of each controller
has different sensitivities to input uncertainty, in all cases,
uncertainty levels of just a few percent can result in the loss
of stability. Since the stabilization of an inverted pendulum is
an important benchmark of control systems theory (Milton et
al. 2009a), we anticipate that our observations are not limited
to problems related to balance control.

The paper is outlined as follows. First, in Sect. 2, the
important aspects of the control of an inverted pendulum
are reviewed. Section 3 shows how uncertainty is introduced
into these models with sampled output. In Sect. 4, the sen-
sitivity of the stability of the PD, PDA, MP, AAW and IP
controllers to sensory uncertainties is examined, and then in
Sect. 5, we show how input uncertainty affects the shortest
stick length that can be balanced for a given delay. Section
6 deals with the effect of sampling on the balancing process.
Finally, the importance of our observations for developing
models of voluntary model control is discussed.

2 Stick balancing model

A schematic model for stick balancing at the finger tip is
shown in Fig. 1. It is assumed that the bottom point of the
stick can freely move both in the horizontal and in the vertical
directions; thus, the system is a 3 degree-of-freedom system.
The general coordinates can be chosen as the horizontal and
the vertical displacements of the stick’s bottom point denoted
by x and y and the angular position of the stick denoted by
ϕ. The feedback control forces, Qx and Qy , keep the stick

Fig. 1 Sketch and mechanical model of stick balancing
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at the position (x, y, ϕ) = (0, 0, 0). Our goal is to determine
for a given τ , the shortest stick, �crit that can be stabilized for
different choices of Qx and Qy .

This stick balancing problem can be reduced to a one-
degree-of-freedom system described by

JCϕ̈(t) − mgcϕ(t) = −Qfb
x (t)c, (1)

where m is the mass of the stick, c is the distance between
the bottom (A) and the center of gravity (C) of the stick, JC

is the moment of inertia with respect to the normal line via
the center of gravity, and Qfb

x is the feedback control force
in the horizontal (x) direction. We assume that the stick is
homogeneous, thus c = �/2 and JC = m�2/12, where � is
the length of the stick and Eq. (1) becomes

ϕ̈(t) − aϕ(t) = −u(t), (2)

where a = 6g/� is the system parameter, and u(t) =
6 Qfb

x (t)/m� is the input. The first-order representation of
the system is

ẋ(t) = Ax(t) + Bu(t), (3)

where

x(t) =
(

ϕ(t)
ϕ̇(t)

)
, A =

(
0 1
a 0

)
and B =

(
0

−1

)
(4)

are the state vector, the system matrix and the input matrix,
respectively.

Equation (1) is obtained from the equations of motion

mẍ(t) + mcϕ̈(t) cos(ϕ(t)) − mcϕ̇2(t) sin(ϕ(t))

= Qx (t), (5)

mÿ(t) − mcϕ̈(t) sin(ϕ(t)) − mcϕ̇(t)2 cos(ϕ(t))

= Qy(t) − mg, (6)

JCϕ̈(t) = Qy(t)c sin(ϕ(t)) − Qx (t)c cos(ϕ(t)). (7)

In general, the control forces can be resolved into feedfor-
ward and feedback components as

Qx (t) = Qff
x (t) + Qfb

x (t), (8)

Qy(t) = Qff
y (t) + Qfb

y (t), (9)

where Qff
x (t) and Qff

y (t) are the feedforward terms and Qfb
x (t)

and Qfb
y (t) are the feedback terms (Abed et al. 2000). The

feedforward terms are determined by the inverse dynam-
ics (Jordan 1996; Kawato 1999): substitution of (x, y, ϕ) =
(0, 0, 0) into Eqs. (5)–(7) gives Qff

x (t) = 0 and Qff
y (t) = mg.

Note, however, that if the feedforward component contains a
predefined time-dependent term f (t) such as

Qff
y (t) = mg + f (t), (10)

then it appears as a parametric excitation (i.e., time-dependent
coefficient) in the linearized equation as

JCϕ̈(t) − (mg + f (t))cϕ(t) = −Qfb
x (t)c. (11)

Although parametric excitation may contribute to the stabi-
lization of the stick in case of a continuous periodic excitation
(Milton et al. 2009b; Insperger 2011), it is a feedforward sta-
bilization and not a feedback mechanism. Thus, we do not
consider parametric excitation further.

Linearization of Eqs. (5)–(7) around the equilibrium
(x, y, ϕ) = (0, 0, 0) and (Qx , Qy) = (Qff

x , Qff
y ) gives

mẍ(t) + mcϕ̈(t) = Qfb
x (t), (12)

mÿ(t) = Qfb
y (t), (13)

JCϕ̈(t) − mgcϕ(t) = −Qfb
x (t)c, (14)

Note that Eqs. (1) and (14) are the same. It can be seen that
Eq. (13) can be separated from Eqs. (12) and (14). This means
that the vertical position y is not controllable through the hor-
izontal feedback force Qfb

x (t), while the horizontal position x
and the angular displacement ϕ are not controllable through
the vertical feedback force Qfb

y (t). Thus, one can conclude
that the feedback control force Qfb

y (t) in the vertical direction
does not affect the linear stability of the stick at the vertical
equilibrium.

Equations (12) and (14) govern the horizontal and the
angular displacement of the stick, while Eq. (13) governs
the vertical displacement. The characteristic roots (poles)
of the open-loop system [i.e., Eqs. (12), (13) and (14)
with Qfb

x (t) = 0 and Qfb
y (t) = 0] are λ1,2,3,4 = 0 and

λ5,6 = ±√
mgc/Jc. The roots λ1,2,3,4 = 0 correspond to

the horizontal and the vertical position of the stick’s bot-
tom. This means that the point (x, y) ≡ (0, 0) is a mar-
ginally stable equilibrium of the subspace (x, y, ẋ, ẏ). The
roots λ5,6 = ±√

mgc/Jc correspond to the angular displace-
ment of the stick and show that the vertical position ϕ = 0
is unstable since Re(λ6) = −√

mgc/Jc < 0.
These observations imply that the horizontal and the ver-

tical positions of the stick are asymptotically stable even for
a feedback with very small control gains. Thus, the impor-
tant control problem is the stabilization of the angular dis-
placement since it is associated with the unstable characteris-
tic root λ6 = −√

mgc/Jc. This observation emphasizes the
importance of Eq. (1). For example, the feedback law

Qfb
x (t) = −kp1x(t) − kp3ϕ(t) − kd1 ẋ(t) − kd3ϕ̇(t), (15)

Qfb
y (t) = −kp2 y(t) − kd2 ẏ(t) (16)

can stabilize the vertical and the horizontal displacement
of the stick’s bottom for any kp1 > 0, kp2 > 0, kd1 > 0
and kd2 > 0, while the stabilization of the angular position
requires a careful tuning of kp3 and kd3 (with respect to kp1

123



88 Biol Cybern (2014) 108:85–101

and kd1). Here, kpi , kdi (i = 1, 2, 3) are the proportional and
the derivative control gains for x, y and ϕ, respectively.

3 Modeling uncertainties in delayed motor control
systems

The feedback delay appears in the control law such that
the actual input depends on delayed values of the state.
For instance, the control force in case of a continuous-time-
delayed PD controller reads

Qfb
x (t) = Kpϕs(t − τ) + Kdϕ̇s(t − τ), (17)

where Kp and Kd are the proportional, and the derivative con-
trol gains, and ϕs(t) and ϕ̇s(t) are the angular position and
angular velocity perceived by the sensory system. The obser-
vation that stick balancing is much less successful with eyes
closed suggests that vision plays a dominant role, but does not
exclude roles for other sensory inputs such as those from cuta-
neous mechanoreceptors. Indeed, the measured τ is longer
when cutaneous mechanoreceptor input is diminished, e.g.,
stick balancing (3D) on a table tennis racket [0.22 s (Mehta
and Schaal 2002)] and virtual stick balancing (2D) [0.25–
0.4 s (Cabrera et al. 2004; Patzelt and Pawelzik 2011)], than
observed for stick balancing at the fingertip [∼0.08 s (Cabr-
era and Milton 2004)]. In Sect. 4, we illustrate our findings
using τ = 0.1 s, and in Sect. 5, we compare �crit obtained for
this delay to those obtained for other choices of τ .

Motor control is most often modeled as a discrete-time
system or, what is equivalent, a continuous-time feedback
system with sampled output (Jordan 1996; Todorov and Jor-
dan 2002; Mehta and Schaal 2002). Here, we assume that the
state and the efferent copies are available only at discrete-
time instants ti = i�t, i = 1, 2, . . ., where �t is the sam-
pling period, and that the feedback delay is integer multiple of
the sampling period, i.e., τ = r�t , where integer r is called
discrete delay. In the case of a PD controller with zero-order
hold, the corresponding control force [the sampled output
piecewise-constant counterpart of Eq. (17)] is

Qfb
x (t) = Kpϕs(ti−r ) + Kdϕ̇s(ti−r ), t ∈ [ti , ti+1). (18)

We assume a sampling period �t = 10 ms, which implies
that the discrete delay is r = 10 when τ = 100 ms. For
comparison, Mehta and Schaal (2002) used a 60-Hz sampling
frequency, which corresponds to �t = 16.67 ms.

In order to describe sensory input uncertainties, we intro-
duce the uncertainty radius as the maximum specific dif-
ference between the actual and the perceived values of the
state variables. Specifically, we introduce the sensory input
uncertainty as a multiplicative term in the system output. The
sensory uncertainty radius for the angular position is denoted

by εp. We assume that the angular position perceived by the
sensory system can be given as ϕs(t) = (1 + δp)ϕ(t), where
ϕ(t) is the actual angular position, and δp is an uncertainty
parameter such that |δp| ≤ εp. The uncertainty radii for the
angular velocity (εv), the angular acceleration (εa) and the
efferent copies of the control commands (εu) can be defined
in a similar fashion. The stability of the system will be ana-
lyzed with respect to the sensory uncertainty radii. The con-
cept of this analysis is similar to the stability radius with
respect to changes in the system parameters (Michiels and
Roose 2003; Michiels and Niculescu 2007).

4 Different control concepts

In this section, we determine the conditions for stabilizing
the upright position of a stick balanced at the fingertip for
five different linear control models that commonly arise in
the setting of motor control: PD, PDA, MP, AAW and IP. All
of these controllers are analyzed for the system described by
Eq. (3) with (4). In order to facilitate comparison between the
different control models, we compute the stability diagrams
as a function of uncertainty for a stick of length 1 m and a
time delay of 100 ms. The sampled output vector is given as

y(ti ) =
(

ϕs(ti )
ϕ̇s(ti )

)
, (19)

where ϕs(ti ) and ϕ̇s(ti ) are the angular position and angular
velocity perceived by the sensory system at time instant ti =
i�t . Sensory uncertainties are introduced using an output
matrix

C =
(

1 + δp 0
0 1 + δv

)
, (20)

where |δp| ≤ εp and |δv| ≤ εv with εp and εv being the
sensory uncertainty radii for the angular position and for the
angular velocity according to Sect. 3. The output is then given
as

y(ti ) = Cx(ti ). (21)

We will also use the control matrix

K = (
kp kd

)
, (22)

where kp = 6Kp/(m�) and kd = 6Kd/(m�).

4.1 Proportional–derivative (PD) control

The governing equations for PD control take the form of a
retarded functional differential equation (RFDE). Although
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RFDEs have infinitely many roots, only finitely many of
them can have positive real parts leading to instability (Hale
and Lunel 1993; Stepan 1989). The stability criteria for
continuous-time-delayed PD feedback

ϕ̈(t) − aϕ(t) = −kpϕ(t − τp) − kdϕ̇(t − τd) (23)

have been extensively studied for the cases when τd �= 0
(Milton et al. 2009a; Stepan 1989) and when τd = 0 (Cabrera
and Milton 2002). When τp = τd = τ �= 0, the upright
position will be unstable if the system parameter a is larger
than a critical value given by

acrit,PD,cont = 2

τ 2 , (24)

for any kp and kd (Schurer 1948; Insperger and Stepan 2011).
Consequently, the critical stick length is

�crit,PD,cont = 6g

acrit,PD,cont
= 3gτ 2. (25)

Thus, for example, if τ = 100 ms, then a stick shorter than
29.4 cm cannot be balanced.

If the sampling effect with a zero-order hold is involved
into the model, then the system is described by

ϕ̈(t) − aϕ(t) = −kpϕ(ti−r ) − kdϕ̇(ti−r ), t ∈ [ti , ti+1).

(26)

For this hybrid system, the critical system parameter for the
stabilizability can be given as

acrit,PD,disc = 1

�t2

(
ln

(
1 + 1 + √

2r(r + 1) + 1

r(r + 1)

))2

,

(27)

[see Enikov and Stepan (1998) for the case r = 1 and
Insperger and Stepan (2007) for the general case r ≥ 1].
It can be shown that acrit,PD,disc < acrit,PD,cont for all finite
r , that is, the sampling effect with the zero-order hold
impairs stabilizability. The critical length corresponding to
�t = 10 ms and r = 10 is

�crit,PD,disc = 6g

acrit,PD,disc
= 32.4 cm. (28)

Note that if �t → 0 and r → ∞ such that r�t = τ , then
acrit,PD,disc → acrit,PD,cont and, consequently, �crit,PD,disc →
�crit,PD,cont.

When sensory uncertainties are present, the control force
with sampled output is given by Eq. (18). The control law
associated with Eq. (3) is

u(t) = Ky(ti−r ), t ∈ [ti , ti+1), (29)

where the control matrix K is given in Eq. (22). The system
defined by Eqs. (3), (21) and (29) can be rewritten as

ẋ(t) = Ax(t) + Bv(ti−r ), t ∈ [ti , ti+1), (30)

v(ti ) = KCx(ti ) (31)

with v(ti−r ) = u(ti ). Solving this system over the sampling
period (ti , ti+1) gives

x(ti+1) = Px(ti ) + Rv(ti−r ), (32)

where

P = eA�t , R =
�t∫

0

eA(�t−s)ds B. (33)

Equations (32) and (31) define the (r + 2)-dimensional dis-
crete map

zi+1 = � zi (34)

with

zi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(ti )
ϕ̇(ti )

v(ti−1)

v(ti−2)
...

v(ti−r )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P11 P12 0 . . . 0 R11

P21 P22 0 . . . 0 R21

H11 H12 0 . . . 0 0
0 0 1 0 0
...

...
. . .

...

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where Pi j , Ri j and Hi j (i, j = 1, 2) denotes the correspond-
ing elements of matrices P, R and H = KC. Actually,
H11 = kp(1 + δp) and H12 = kd(1 + δv). The stability of the
system can be obtained by the analysis of the eigenvalues of
the coefficient matrix �: if all the eigenvalues are modulus
less than one, then the system is asymptotically stable. The
stability of the system for different uncertainty radii can be
obtained by the same calculation by sweeping the uncertainty
parameters δp and δp over the intervals δp ∈ [−εp, εp] and
δv ∈ [−εv, εv].

The stability diagram is shown in Fig. 2. This stability
diagram was constructed by point-by-point evaluation of the
critical eigenvalues of � over a fixed-sized grid of parame-
ters Kp and Kd. If a parameter point (Kp, Kd) was found
to be stable for δp = 0 and δv = 0, then it was investi-
gated for different combinations of the uncertainty parame-
ters δp ∈ {−εp, 0, εp} and δv ∈ {−εv, 0, εv} for larger and
larger uncertainty radii εp and εv. For the sake of simplicity,
equal uncertainty radii were assumed for the position and
the velocity sensation (i.e., εp = εv = ε). For instance, the
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Fig. 2 Stability diagrams for the PD controller with �t = 10 ms,
r = 10, � = 1 m, m = 0.1 kg. The stable domain for zero uncertainty
is indicated by gray shading, while the stability boundaries associated
with different uncertainty radii ε = εp = εv are denoted by thin lines

points within the contour curve ε = 0.05 are associated with
a controller that is stable up to 5 % perturbation in the sensory
inputs (i.e., in ϕ and ϕ̇). It can be seen that as the uncertainty
radius increases, the stable domain shrinks. No stable points
were found for the uncertainty radii ε = 0.15. This means
that a stick of length 1 m cannot be balanced by a PD con-
troller if the uncertainty in the perception of the angular posi-
tion and the angular velocity is larger than 15 %. Note that
the stable parameters show up in the domain Kp > mg and
Kd > mgτ (Schurer 1948; Insperger and Stepan 2011). This
feature will be utilized later when stabilizability conditions
will be analyzed numerically.

4.2 Proportional–derivative–acceleration (PDA) control

The governing equation for PDA control is a neutral func-
tional differential equation (NFDE). This terminology means
that the delay is present in the argument of the highest deriva-
tive, namely the acceleration. In contrast to a RFDE, a NFDE
can have infinitely many roots with positive real part. The sta-
bility conditions for continuous-time-delayed PDA feedback

ϕ̈(t)−aϕ(t) = −kpϕ(t −τ)−kdϕ̇(t −τ)−kaϕ̈(t −τ) (36)

have been investigated (Sieber and Krauskopf 2005;
Insperger et al. 2013). It is known that if |ka| > 1, then
Eq. (36) is unstable with infinitely many characteristic roots
with positive real parts (see Lemma 3.9 on page 63 in Stepan
1989); therefore, a necessary criteria for the stability of
Eq. (36) is that |ka| < 1. The critical system parameter that
limits stabilizability is

acrit,PDA,cont = 4

τ 2 . (37)

If the system parameter a is larger than acrit,PDA,cont, then the
system is unstable for any kp, kd and ka. Thus, if the feedback
delay is τ = 100 ms, the critical length is

�crit,PDA,cont = 6g

acrit,PDA,cont
= 3gτ 2

2
= 14.7 cm. (38)

When sensory uncertainties are present, the control force
with sampled output becomes

Qfb
x (t) = Kpϕs(ti−r ) + Kdϕ̇s(ti−r ) + Kaϕ̈s(ti−r ),

t ∈ [ti , ti+1), (39)

where Kp, Kd and Ka are, respectively, the proportional, the
derivative and the acceleration control gains, ϕs(t) = (1 +
δp)ϕ(t), ϕ̇s(t) = (1+δv)ϕ̇(ti−r ) and ϕ̈s(t) = (1+δa)ϕ̈(ti−r )

are the perceived angular position, angular velocity and angu-
lar acceleration. The sensory uncertainties are described by
|δp| ≤ εp, |δv| ≤ εv and |δa| ≤ εa with εp, εv and εa being
the sensory uncertainty radii for the angular position, for the
angular velocity and for the angular acceleration. The system
output vector and the control law associated with Eq. (3) can
be given as

ỹ(ti ) = C̃x̃(ti ), ti = i�t, (40)

u(t) = K̃ỹ(ti−r ), t ∈ [ti , ti+1), (41)

where

x̃(t) =
⎛
⎝ϕ(t)

ϕ̇(t)
ϕ̈(t)

⎞
⎠ , C̃ =

⎛
⎝1 + δp 0 0

0 1 + δv 0
0 0 1 + δa

⎞
⎠ (42)

and K̃ = (
kp kd ka

)
with kp = 6Kp/(m�), kd = 6Kd/(m�)

and ka = 6Ka/(m�). Here, the output is extended by the
perceived angular acceleration ϕ̈s(t).

The system defined by Eqs. (3), (40) and (41) can be
rewritten as

ẋ(t) = Ax(t) + Bv(ti−r ), t ∈ [ti , ti+1), (43)

v(ti ) = K̃C̃x̃(ti ) (44)

with v(ti−r ) = u(ti ). The state and its derivative at t = ti+1

can be given as

x(ti+1) = Px(ti ) + Rv(ti−r ), (45)

ẋ(ti+1) = APx(ti ) + (AR + B)v(ti−r ), (46)
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Fig. 3 Stability diagrams for the PDA controller with �t = 10 ms,
r = 10, � = 1 m, m = 0.1 kg, Ka = 0.0125 Nms2/rad (ka = 0.75).
The stable domain for zero uncertainty is indicated by gray shading,
while the stability boundaries associated with different uncertainty radii
ε = εp = εv = εa are denoted by thin lines

where P and R are given in Eq. (33). The angular acceleration
at t = ti+1 is given by

ϕ̈(ti+1) = Qx(ti ) + Sv(ti−r ), (47)

where Q = DAP, S = D(AR + B) and D = (
0 1

)
. Equa-

tions (45), (47) and (44) define the (r + 3)-dimensional dis-
crete map

zi+1 = �zi (48)

with

zi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(ti )
ϕ̇(ti )
ϕ̈(ti )

v(ti−1)

v(ti−2)
...

v(ti−r )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P11 P12 0 0 . . . 0 R11

P21 P22 0 0 . . . 0 R21

Q11 Q12 0 0 . . . 0 S
H̃11 H̃12 H̃13 0 . . . 0 0
0 0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(49)

where Pi j , Ri j , Qi j , H̃i j (i, j = 1, 2) denote the corre-
sponding elements of matrices P, R, Q and H̃ = K̃C̃. Actu-
ally, H̃11 = kp(1 + δp), H̃12 = kd(1 + δv) and H̃13 =
ka(1+δa). Stability of the system is determined by the eigen-
values of matrix �. The stability diagram with the stability
boundaries for different sensory uncertainty radii is shown
in Fig. 3. For the given parameters, no stable points were
found for the uncertainty radii ε = 0.25. This means that a
stick of length 1 m cannot be balanced by a PDA controller

with �t = 10 ms, r = 10, ka = 0.75 if the uncertainty in
the perception of the angular position, angular velocity and
angular acceleration is larger than 25 %. Note that the stable
parameters show up in the domain Kp > mg and Kd > mgτ

(Sieber and Krauskopf 2005; Insperger et al. 2013).

4.3 Model predictive (MP) control

The MP controller is based on a prediction of state variables
using an internal model of the system. It is known that opti-
mum prediction for a system with input delay is obtained by
solving the system equations over the delay period (Klein-
man 1969; Manitius and Olbrot 1979). Consider first the
continuous-time case. Assume that the system is given by
Eq. (3) such that at time t , the most recent available output
is y(t − τ) = x(t − τ). In this case, the actual state x(t) can
be predicted using x(t − τ) as initial state and the control
command u(s), s ∈ [t − τ, t] in the form

xp(t) = eÃτ̃ x(t − τ) +
0∫

−τ̃

e−ÃsB̃u(s + t)ds, (50)

where Ã, B̃ and τ̃ are the estimated system and input matri-
ces, and the estimated reflex delay used by the internal model
and xp is the predicted state. Here, we consider a PD feed-
back of the predicted state. The corresponding MP controller
reads

u(t) = Kxp(t) = KeÃτ̃ x(t − τ) + K

0∫
−τ̃

e−ÃsB̃u(t + s)ds,

(51)

where matrix K is given by Eq. (22). Note that the com-
ponents kp and kd of K are now the proportional and the
derivative gains for the predicted angular position and for
the predicted angular velocity. The scheme of the prediction
process for the MP controller is shown in Fig. 4. Note that
this control concept requires the knowledge of the input u
over the interval [t − τ, t]. In the human neural system, this
is provided by the efferent copies of the actual control com-
mands.

If the parameters of the internal model match the actual
system parameters, i.e., if Ã = A, B̃ = B and τ̃ = τ , then
the prediction gives the exact state, i.e., xp(t) = x(t). In this
case, the feedback of the predicted state eliminates the delay
from the control loop and one ends up with the equation

ẋ(t) = Ax(t) + BKx(t), (52)

for which the characteristic roots can arbitrarily be assigned
to any point within the complex plane by tuning the control
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Fig. 4 Scheme of the prediction process for the MP controller

gains kp and kd in matrix K. However, if the internal model is
not perfectly accurate (i.e., Ã �= A, B̃ �= B or τ̃ �= τ ), then
Eqs. (3) and (51) define a system of RFDEs and the spectrum
of the system become infinite.

We consider the case when the output is sampled at time
instants ti = i�t, i = 1, 2, . . . and the input is piecewise
constant, i.e., u(t) = u(ti ), t ∈ [ti , ti+1). Similar to the PD
and the PDA controllers, we assume that the angular position
and the angular velocity are affected by sensory uncertainties
described by Eqs. (21) and (20). Furthermore, we assume that
the perceived efferent copies of the control command are

us(ti ) = (1 + δu)u(ti ), (53)

where |δu| ≤ εu with εu being the sensory uncertainty radii
for the efferent copies. In this case, the state x(ti ) can be
predicted by the internal model using the sampled output
y(ti−r ) as initial state and the perceived control commands
us(ti− j ), j = 1, 2, . . . , r̃ as

xp(ti ) = P̃r̃ y(ti−r ) +
r̃∑

j=1

P̃ j−1R̃us(ti− j ), (54)

where

P̃ = eÃ�t , R̃ =
�t∫

0

eÃ(�t−s)ds B̃, (55)

and r̃ = round(τ̃ /�t) is the discrete delay in the internal
model. The corresponding control law reads

u(ti ) = Kxp(ti ) = KP̃r̃ y(ti−r ) + K
r̃∑

j=1

P̃ j−1R̃us(ti− j ).

(56)

If there are no sensory uncertainties (i.e., if y(ti−r ) = x(ti−r )

and us(ti− j ) = u(ti− j ) with j = 1, 2, . . . , r̃ ), then the actual
control force for the stick balancing problem can be given by
the expansion of formula (56) as

Qfb
x (t) = Kp

(
chr̃ϕ(ti−r ) + 1

α̃
shr̃ ϕ̇(ti−r )

+
r̃∑

j=1

1

α̃2

(
ch j − ch j−1

)
Qfb

x (ti− j )

)

+Kd

(
α̃shr̃ϕ(ti−r ) + chr̃ ϕ̇(ti−r )

+
r̃∑

j=1

1

α̃
(sh j −sh j−1)Qfb

x (ti− j )

)
, t ∈ [ti , ti+1),

(57)

where Kp = m�kp/6 and Kd = m�kd/6 are the actual control
gains, α̃ = √

ã with ã being the estimated system parameter
used by the internal model and ch j = cosh(α̃ j�t) and sh j =
sinh(α̃ j�t). This control law can be written in the form of
the tapped delay-line controller (Mehta and Schaal 2002)

Qfb
x (t) = K̂pϕ(ti−r ) + K̂dϕ̇(ti−r )

+
r̃∑

j=1

K̂u, j Qfb
x (ti− j ), t ∈ [ti , ti+1), (58)

where

K̂p = Kpchr̃ + α̃Kdshr̃ , (59)

K̂d = 1

α̃
Kpshr̃ + Kdα̃chr̃ (60)

are the proportional and the derivative control gains for the
delayed state variables ϕ(ti−r ) and ϕ̇(ti−r ) and

K̂u, j = Kp
1

α̃2

(
ch j − ch j−1

) + Kd
1

α̃

(
sh j − sh j−1

)
(61)

are the control gains for the efferent copies of the control
commands u(ti− j ), j = 1, 2, . . . , r̃ . In this sense, the MP
controller is a special case of the tapped delay-line controller
with the special control gains given by Eqs. (59), (60) and
(61).

If Ã = A, B̃ = B, τ̃ = τ and there are no sensory uncer-
tainties in xi and ui , then Eq. (54) gives the exact state at
t = ti . In this case, the control law u(ti ) = Kxp(ti ) combined
with Eq. (3) gives the discrete map x(ti+1) = (P+RK)x(ti ),
which corresponds to a sampled output system (with a zero-
order hold) without any feedback delay.

As it was explained in the Introduction, we assume that
the internal model is accurate as a result of a long enough
learning process (i.e., Ã = A, B̃ = B, τ̃ = τ , P̃ = P and
R̃ = R), and the uncertainties appear only in the sensory
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Fig. 5 Stability diagrams for the MP controller with �t = 10 ms, r = 10, � = 1 m, m = 0.1 kg. The stable domain for zero uncertainty is
indicated by gray shading, while the stability boundaries associated with different uncertainty radii ε = εp = εv = εu are denoted by thin lines

inputs. In this case, the system described by Eqs. (3), (56),
(21) and (53) can be rewritten as

ẋ(t) = Ax(t) + Bv(ti−r ), t ∈ [ti , ti+1), (62)

v(ti ) = KPr Cx(ti ) + K
r∑

j=1

P j−1R(1 + δu)v(ti− j ). (63)

with v(ti−r ) = u(ti ). The solution of this system over the
sampling period [ti , ti+1) gives

x(ti+1) = Px(ti ) + Rv(ti−r ), (64)

where P and R are defined in Eq. (33). Equations (64) and
(63) define the (r + 2)-dimensional discrete map

zi+1 = �zi (65)

with

zi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(ti )
ϕ̇(ti )

v(ti−1)

v(ti−2)
...

v(ti−r )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P11 P12 0 0 . . . 0 R11

P21 P22 0 0 . . . 0 R21

T11 T12 V1 V2 . . . Vr−1 Vr

0 0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(66)

where Pi j , Ri j , Ti j (i, j = 1, 2) denote the correspond-
ing elements of matrices P, R and T = KPr C and Vj =
KP j−1R(1 + δu). The stability of the system is determined
by the eigenvalues of matrix �.

Figure 5 shows a sample stability diagram with the stabil-
ity boundaries for different sensory uncertainty radii. For the
given stick length, no stable points were found for the uncer-
tainty radii ε = 0.25. This means that a stick of length 1 m
cannot be balanced by a MP controller with �t = 10 ms,
r = 10 if the uncertainty in the perception of the angular
position, angular velocity and efferent copies is larger than
25 %. Note that the stable parameters show up in the domain
Kp > mg and Kd > mg�t .

4.4 Act-and-wait (AAW) control

The AAW controller is a special case of the time-varying con-
trollers in which the feedback term is periodically switched
on and off. The continuous-time AAW controller associated
with Eq. (3) reads

u(t) = g(t)Kx(t − τ), (67)

where K is given in Eq. (22), and

g(t) =
{

0 if 0 ≤ (t mod T ) < tw,

1 if tw ≤ (t mod T ) < tw + ta = T,
(68)

is the T -periodic act-and-wait switching function. Here, ta
and tw are the lengths of the acting and the waiting periods,
respectively, and ta+tw = T is the length of one act-and-wait
period. The main feature of the AAW controller is that the
control is switched off for the waiting period, and a delayed
PD controller is only working over the acting period. Equa-
tions (3) and (67) define the time-periodic RFDE

ẋ(t) = Ax(t) + g(t)BKx(t − τ). (69)
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As it was shown by Insperger (2006), if the waiting period
is larger than the feedback delay, then the system can be
described by a finite-dimensional discrete map. For instance,
if tw ≥ τ and ta < τ , then the solution over one act-and-wait
period can be given as x(T ) = �(T )x(0), where

�(T ) = eAT +
T∫

tw

eA(T −s)BKeA(s−τ) ds (70)

is the 2 × 2 monodromy matrix of the system. Stabilization
of the system requires the placement of the 2 eigenvalues of
matrix �(T ) within the unit circle of the complex plane by
tuning the control gains kp and kd in K. Thus, the infinite-
dimensional control system is reduced to a two-dimensional
system by introducing waiting periods into the feedback loop.

When sensory uncertainties are present, the control force
with sampled output becomes

Qfb
x (t) = g(t)

(
Kpϕs(ti−r ) + Kdϕ̇s(ti−r )

)
, t ∈ [ti , ti+1),

(71)

where Kp and Kd are the proportional and the derivative
control gains, respectively, and ϕs(t) and ϕ̇s(t) are the per-
ceived angular position and the perceived angular velocity.
The switching function g(t) is given by Eq. (68). The wait-
ing and the acting periods are chosen as tw = τ = r�t and
ta = �t , respectively, which give the act-and-wait period
T = (r + 1)�t . This corresponds to an intermittent con-
trol concept in the sense that control actions are taken only
over the acting periods of length �t , while the system is
left open-loop over the waiting periods of length r�t . The
corresponding control law can be given as

u(t) = g(t)Ky(ti−r ), t ∈ [ti , ti+1), (72)

where K is given in Eq. (22).
Due to the periodic switching of the control term, the solu-

tion of the system defined by Eqs. (3), (21) and (72) can be
given in closed form. In the first act-and-wait period, the
system is governed by

ẋ(t) = Ax(t), t ∈ [0, tr ), (73)

ẋ(t) = Ax(t) + BKCx(0), t ∈ [tr , tr+1). (74)

The solution at t = T = tr+1 can be written as

x(T ) = �x(0), (75)

where � = Pr+1 + RKC with P and R given in Eq. (33).
The matrix � is actually a 2 × 2 monodromy matrix of the
system. Hence, the system is stable if the eigenvalues of �

are in modulus less than 1.

Fig. 6 Stability diagrams for the AAW controller with �t = 10 ms,
r = 10, � = 1 m, m = 0.1 kg, ta = 10 ms, tw = 100 ms. The
stable domain for zero uncertainty is indicated by gray shading, while
the stability boundaries associated with different uncertainty radii ε =
εp = εv are denoted by thin lines

Figure 6 shows the stability diagram with the stability
boundaries for different sensory uncertainty radii. For the
given stick length, no stable points were found for the uncer-
tainty radii ε = 0.2. This means that a stick of length 1 m
cannot be balanced by the AAW controller with �t = 10 ms,
r = 10, tw = r�t and ta = �t if the uncertainty in the per-
ception of the angular position and the angular velocity is
larger than 20 %. Note that the proportional and differential
gains for the stable domains are essentially larger than that
of the PD or the PDA controllers. This is due to the fact that
actions are performed only for a period of length ta = 10 ms,
while no control action is performed for a period of length
tw = 100 ms.

4.5 Intermittent predictive controller

Intermittent predictive controller makes use of sampled feed-
back of the state variables, but uses a special system-matched
hold rather than zero-order hold (Gawthrop and Wang 2007;
Gawthrop et al. 2011). If the system is described by Eq. (3),
then the intermittent control input is formulated as

u(t) = Ke(Ã+B̃K)(t−ti )xip(ti ), t ∈ [ti , ti+1), (76)

where Ã and B̃ are the estimated system and input matrices
used by the internal model, and xip(ti ) is the intermittent pre-
diction of the state at time instant ti based on the delayed out-
put y(ti − τ). Here, similar to the previous cases, we assume
that the length of the open-loop interval is �t = τ/r . Thus,
the prediction is updated at each sampling instant ti = i�t
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based on the most recent available output y(ti−r ). This is in
contrast with the concept by Gawthrop et al. (2011), where
the sampling period is chosen as �t ≥ τ in order to obtain a
relatively simple intermittent prediction.

The delay used for the prediction by the internal model
is denoted by τ̃ , and the corresponding discrete delay is
r̃ = round(τ̃ /�t). The prediction is performed over a delay
period based on the system-matched hold assumption by
solving the system

ẋip(t) = Ãxip(t) + B̃Ke(Ã+B̃K)(t−ti −τ)y(ti−r ),

t ∈ [ti−r̃ , ti ), (77)

for the initial state xip(ti−r ) = y(ti−r ). The predicted state
can be given as

xip(ti ) = eÃr̃�t

⎛
⎝I +

r̃�t∫
0

e−ÃsB̃Ke(Ã+B̃K)sds

⎞
⎠ y(ti−r ),

(78)

where I denotes the identity matrix. This type of prediction
is also called simplified or intermittent predictor, since the
convolution integral in the second term can be computed by
a matrix exponential. Actually, due to the intermittency of
the controller, the predicted state can also be given as

xip(ti ) = (
Epp + Eph

)
y(ti−r ), (79)

where Epp and Eph are the partitions of the matrix

E = eAphr̃�t =
(

Epp Eph

Ehp Ehh

)
, (80)

with

Aph =
(

Ã B̃K
0 Ã + B̃K

)
. (81)

Using Eqs. (76), (79) and the definition of u(t) in Eq. (2), the
actual control force can be given as

Qfb
x (t) = m�

6
Ke(Ã+B̃K)(t−ti )

(
Epp + Eph

)
y(ti−r ),

t ∈ [ti , ti+1). (82)

The solution of Eq. (3) with the control law (76) over the
sampling period [ti , ti+1) can be given as

x(ti+1) = eA�t x(ti )

+
⎛
⎝

�t∫
0

eA(�t−s)BKe(Ã+B̃K)sds

⎞
⎠ xip(ti ). (83)

Similar to the simplified prediction, the convolution integral
can be given in an explicit way as

x(ti+1) = Fssx(ti ) + Fshxip(ti ), (84)

where Fss and Fsh are the partitions of the matrix

F = eAsh�t =
(

Fss Fsh

Fhs Fhh

)
, (85)

with

Ash =
(

A BK
0 Ã + B̃K

)
. (86)

Equations (84), (79) and (21) define the (2 + 2r)-
dimensional discrete map

zi+1 = � zi (87)

with

zi =

⎛
⎜⎜⎜⎜⎜⎝

x(ti )
x(ti−1)

x(ti−2)
...

x(ti−r )

⎞
⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎝

Fss 0 0 . . . 0 W
I 0 0 . . . 0 0
0 I 0 . . . 0 0
...

. . .
...

...

0 0 0 . . . I 0

⎞
⎟⎟⎟⎟⎟⎠

, (88)

where W = Fsh
(
Epp + Eph

)
C. Note that Fss = P defined

in Eq. (33). The stability of the system is determined by the
eigenvalues of matrix �.

Note that the IP and the AAW controllers are similar in
the sense that both controllers have a generalized hold inter-
pretation (Gawthrop 2010). However, in contrast with the IP
controller, the AAW controller relies on a feedback of the
delayed state and does not use an internal model for the pre-
diction of the actual state.

As mentioned, if �t ≥ τ , then the intermittent prediction
has a simple form Gawthrop et al. (2011). For instance, if
�t = τ , then matrix � becomes a 4 × 4 matrix. In this case,
however, the output is sampled at every �t = τ = 100 ms
only. In our model, we assume that the output is sampled at
every �t = τ/r = 10 ms; thus, the intermittent predictor
uses more recent output data, which improves stability prop-
erties but, at the same time, the size of the monodromy matrix
describing the system dynamics is larger.

For the stability calculation, we assume that the internal
model is accurate as a result of a long enough learning process
as explained in the Introduction (i.e., Ã = A, B̃ = B and
τ̃ = τ ), and the uncertainties appear only in the sensory
inputs described by the output matrix C. Figure 7 shows
a sample stability diagram with the stability boundaries for
different sensory uncertainty radii. For the given stick length,
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Fig. 7 Stability diagrams for the IP controller with �t = 10 ms, r =
10, � = 1 m, m = 0.1 kg. The stable domain for zero uncertainty
is indicated by gray shading, while the stability boundaries associated
with different uncertainty radii ε = εp = εv are denoted by thin lines

no stable points were found for the uncertainty radii ε = 0.15.
This means that a stick of length 1 m cannot be balanced by
the IP controller with �t = 10 ms, r = 10 if the uncertainty
in the perception of the angular position and angular velocity
is larger than 15 %. Note that the stable parameters show up
in the domain Kp > mg and Kd > 0.

5 Critical length

The critical stick length, �crit , is the shortest stick length that
can be stabilized by a control mechanism for a given τ . We
used the following procedure to estimate �crit for the PD,
PDA, MP, AAW and IP controllers as a function of τ for
different sensory uncertainty radii (ε). We assumed that the
uncertainty radius for each of the different sensory inputs is
the same, namely εp = εv = εa = εu = ε.

1. The uncertainty radius ε was fixed.
2. The length of the stick was fixed, and the stability dia-

gram in the plane (Kp, Kd) was determined according to
Sects. 4.1–4.5 for the case without sensory uncertain-
ties (i.e., for δi = 0, i = p, v, a, u). The resolution
step in the plane (Kp, Kd) was �Kp = mg/100 and
�Kd = mgτ/100. Considering the structure of the sta-
bility diagrams in Figs. 2, 3, 5, 6 and 7, this resolution is
a reasonable choice. For the PDA controller, the acceler-
ation control gain was set such that ka + εa ≤ 0.95 (note
that ka + εa ≥ 1 results in an unstable control process
in case of δa = εa). For the different uncertainty radii
ε = 0.01, 0.02, 0.05, 0.1, 0.15, 0.2 in Fig. 8, the accel-
eration gains were ka = 0.9, 0.9, 0.9, 0.85, 0.8, 0.75,

respectively. For the AAW controller, the lengths of the
waiting and the acting periods were tw = �t = 10 ms
and ta = r�t = τ .

3. At the parameter points, where the system was found to
be stable, stability was determined for all possible com-
binations of sensory uncertainties δi ∈ {−εi , 0, εi } (i =
p, v, a, u). For the PD, the AAW and the IP con-
trollers, the combinations of δp ∈ {−εp, 0, εp} and
δv ∈ {−εv, 0, εv} gave 3 × 3 = 9 different cases of
sensory uncertainties. For the PDA and the MP con-
trollers, 3 × 3 × 3 = 27 different cases were analyzed,
since in these cases, the uncertainties in the acceler-
ation (δa ∈ {−εa, 0, εa}) and in the efference copies
(δu ∈ {−εu, 0, εu}) were also considered, respectively.

4. If there was at least one point in the plane (Kp, Kd) where
the system was stable for all the possible combinations of
the sensory uncertainties, then the system was declared
robustly stable for the given uncertainties. In this case,
the length of the stick was reduced, and the steps 2 and
3 were repeated for the new stick length.

5. Steps 2, 3 and 4 were repeated until no more robustly
stable point was found. The critical length is the one, for
which there is a stable point in the plane (Kp, Kd), which
remains stable for the given sensory uncertainties, but for
a 1-cm shorter stick, there is no robustly stable point.

Figure 8 shows �crit for the different controllers as a func-
tion of τ and ε. For ε ≤ 0.2, PD and IP provided the
least robust control (longest �crit) for τ in the experimen-
tally observed range (between the vertical dashed lines in
Fig. 8). For ε ≤ 0.1, the MP control had the shortest �crit

for this range of τ . However, for ε = 0.15, PDA control was
equally as good as MP control, and for ε = 0.2, PDA control
was the more robust.

The ε-dependent differences in the behavior of the MP and
PDA controllers suggests that there is a trade-off between the
benefits of model predictive control on the one hand and the
attendant amplification of the sensory input error on the other.
For ε ≤ 0.15, the benefits of model prediction outweigh
the costs of sensory input error amplification, and hence,
MP is the more robust controller. However, once the sensory
input error becomes large enough, the sensory input error
amplification dominates over the benefits of model predictive
control. Consequently, in the context of high sensory input
error, delayed state feedback control, such as PDA, becomes
more effective.

6 Sampling period

All of the models, we have considered assume a single, fixed
delay. However, in reality, the neural delay for stick balanc-
ing is likely to be more complicated: a distributed or even a
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Fig. 8 Critical lengths as function of time delay for different sensory
uncertainties (ε). The vertical dashed line indicates the range of τ mea-
sured for human stick balancing: τ ≈ 0.08–0.1 s for balancing on a

fingertip (Cabrera and Milton 2004), and τ ≈ 0.22 s for balancing on
the surface of a table tennis racket (Mehta and Schaal 2002)

state-dependent delay may be more appropriate. The intro-
duction of �t enables a discrete approximation to the con-
tinuous dynamics, which is not very sensitive to the nature
of the time delays. In other words, this is a useful first step
approximate to explore the effects of sensory uncertainty on
balance control. This point having been made, it is clearly
very important to determine to what extent the value of �t
affects the conclusions in Fig. 8.

Figure 9 shows a plot of �crit versus �t for the five models
of balance control determined for two different time delays
when the sensory uncertainty is 10 %. The uncertainty for
neurons in the central nervous systems is ≈7–13 % (Arieli et

al. 1996; Otmakhov et al. 1993; Shadlen and Newsome 1998;
Werner and Mountcastle 1963). This estimate is obtained
from the coefficient of variation calculated for neural spike
train and neural population responses to external stimuli. As
can be seen, the effect of changing �t over the range of 1–
20 ms on �crit is very small.

7 Conclusions

The design of a feedback controller suitable for balancing a
stick of a given length at the fingertip depends on the time
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Fig. 9 Critical lengths as function of sampling period for 10 % sensory uncertainty (ε = 0.1). The acceleration gain for the PDA controller was
ka = 0.75

delay (τ ) and the uncertainty in the sensory input (ε). Our
observations suggest that MP control is the most robust for
stick balancing at the fingertip when τ ≈ 0.08 s, namely
the delay observed for human stick balancing at the finger-
tip. Although the sensitivity of MP controllers to sensory
uncertainty has been used to motivate the need for noise
reduction strategies (Bays and Wolpert 2007), such as those
based on population density coding (Milton and Mackey
2000; Shadlen and Newsome 1998; Werner and Mountcas-
tle 1963), the Kalman filter (Mehta and Schaal 2002) and
Bayesian approaches (Krill and Peuget 2004), our observa-
tions suggest that these additional procedures are not nec-
essary. Specifically, our observations indicate that tapped
delay-line controllers are sufficient to stabilize stick of length
0.25–0.5 m, i.e., the shortest lengths that sticks can be bal-
anced at the fingertip by skilled human stick balancers. The
uncertainties takes the form of a multiplicative term in the
system output. Although controllers robust to the effects of
multiplicative uncertainties have been developed (Freuden-
berg and Looze 1988; Gawthrop et al. 2011; Goodwin et
al. 2001; Skogestad and Postlewaite 1996; Stein 2003), it is
not clear whether such robust controllers are appropriate for
stick balancing (Cluff and Balasubramaniam 2010; Cabrera
and Milton 2002, 2004).

The observation that only certain individuals following
long periods of practice (weeks to months) can balance sticks
of this length is consistent with the suggestion that critically
important gains and other parameters in the controller are
adjusted using a feedback error-learning schemes (Kawato
1990; Gomi and Kawato 1993; Valero-Cuevas et al. 2009).
Note that here we considered only linear control models, but
nonlinear controllers such as the ones proposed by Bottaro
et al. (2008), Asai et al. (2009), Suzuki et al. (2012) are also
promising alternatives for the human controller.

We emphasize that the above observations apply specif-
ically to models for stick balancing expressed in terms of
Eq. (2). In other words, it is not possible to interpret our obser-
vations as proof that the nervous system does indeed use MP-

type feedback controllers. An important limitation of these
models is that they do not correctly describe the nature of the
interaction between the fingertip and stick, namely the nature
of the pivot point for the inverted pendulum. For Eq. (2), the
stick is physically attached in a frictionless manner to the
pivot point, and hence, recovery is possible even from initial
displacement angles, ϕ(0), as large as 180◦. In contrast, for
human stick balancing the stick falls off the fingertip once,
ϕ(t) becomes sufficiently large: our experience suggests that
expert stick balancers cannot tolerate ϕ(0) ≥ 20◦. Since the
stick is not physically attached to the fingertip, it becomes
necessary to consider contributions to control related to fric-
tion (Campbell et al. 2008; Landry et al. 2005). The addition
of friction terms of the form kϕ̇(t) to Eq. (2), where k is a
small, positive friction constant, can have profound effects
on stability. For example, the critical length is significantly
smaller if k is large. The importance of the contact between
stick and fingertip for stick balancing is readily demonstrated
by the dramatic increase in difficulty encountered when bal-
ancing a stick on a smooth, polished surface, such as a plastic
plate.

Mehta and Schaal (2002) were the first neuroscientists to
propose that MP models are involved in the control of stick
balancing by humans, but were unable to identify the precise
nature of the controller. Their difficulties may have stemmed
from the fact that they only considered a 1-m stick balanced
on the surface of a table tennis racket. The advantage of the
use of the table tennis racket is that it minimizes input from
mechanoreceptors and hence τ ≈ 0.22 s. In our experience,
the shortest stick that can be balanced by a highly skilled
stick balancer on a table tennis racket is ≈0.1–0.2 m longer
than the shortest stick that can be balanced at the fingertip.
From Fig. 8, we see that this could be accomplished by a MP
controller in combination with a noise reduction algorithm
[e.g., a Kalman filter (Mehta and Schaal 2002)] so that ε ≤
0.02. However, it is unlikely that the nature of the contact
between stick and fingertip is the same as that between stick
and table tennis racket. In other words, the friction provided
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Fig. 10 Long-lived transient motion in case of a PDA control model
with sensory dead zone ϕdz = 0.01 (rad), ϕ̇dz = 0.01 (rad/s), ϕ̈dz =
0.01 (rad/s2). The system without the dead zone is unstable; however,
for the given dead zone, bounded transient motion survives for 250 s.
Parameters: � = 1 m, τ = 0.22 s, kp = 61, kd = 14.9, ka = 0.9

by the rubberized surface of the table tennis racket may in
large part explain the ability to balance short sticks in this
scenario.

It is difficult to estimate the critical stick length, �crit , for
human stick balancing experimentally. As an illustration con-
sider the following. Our most-skilled stick balancer can bal-
ance 100 % of stick balancing trials longer than 240 s for a
0.4-m stick, 20 % of trials for a 0.315-m stick, and 0 % of trials
for a 0.299-m stick. However, for a 0.299-m stick, this indi-
vidual achieves a mean stick balancing time of 69 s, which
is considerably longer than the time required for an uncon-
trolled stick to topple over (<2 s for sticks of length 0.2–1 m).
The fundamental problem is to distinguish an asymptotically
stable solution from a long-lived transient. Transient mainte-
nance of the upright position lasting minutes readily arises in
noisy, time-delayed dynamical systems (Cabrera and Milton
2002; Milton et al. 2008). Figure 10 shows that long-lived
transient stabilizations of a stick under PDA control can occur
in the presence of a sensory dead zone. In both of these sit-
uations, these transients arise in a dynamical system that is
unstable in the noise-free case and without deadzone. Simi-
lar behavior is typical in robotic balancing, where the digital
effects, i.e., the sampling, the processing delay and the round-
off error result in a small amplitude chaotic motion around
the equilibrium, which is called micro-chaos (Csernak and
Stepan 2010).

As subjects become more skilled in the performance of
a complex voluntary motor task, they become more goal-
oriented and less dependent on intentionally directed cor-
rective movements (Fitts and Posner 1967). This observa-
tion suggests that the control mechanisms themselves may
change with practice as skill increases. For example, a sub-
ject may initially use a sensory feedback controller, such
as PD or PDA, and then with learning develop an internal
model which enables a switch to a MP controller. A practical
problem has been the scarcity of methods to determine when
such changes in control strategy occur (Cabrera and Mil-
ton 2004; Cluff and Balasubramaniam 2010). We suggest

that if the time delay (τ ), critical length (�crit) and sensory
uncertainly level (ε) is known, then the possible feedback
controller(s) that can meet these criteria can be determined.
In particular, it is possible to determine at which skill level
a state sensory feedback controller (PD, PDA) is no longer
capable. All of these parameters can be measured in the lab-
oratory: τ from corrections made in response to an exter-
nal perturbation, �crit from the shortest time length that can
be maintained for a specified time and the uncertainly from
the variance of the fluctuations in the vertical displacement
angle. Since skill levels remain fairly constant over testing
periods administered on the same day, it becomes possible
using τ , �crit and uncertainty estimates to follow the changes
in feedback objectively as the subject becomes skilled. Thus,
we anticipate that determining these parameters will provide
insights into the development of skill with practice.
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