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Acceleration feedback improves balancing
against reflex delay
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A model for human postural balance is considered in which the time-delayed

feedback depends on position, velocity and acceleration (proportional–

derivative–acceleration (PDA) feedback). It is shown that a PDA controller

is equivalent to a predictive controller, in which the prediction is based on

the most recent information of the state, but the control input is not involved

into the prediction. A PDA controller is superior to the corresponding

proportional–derivative controller in the sense that the PDA controller can

stabilize systems with approximately 40 per cent larger feedback delays.

The addition of a sensory dead zone to account for the finite thresholds for

detection by sensory receptors results in highly intermittent, complex

oscillations that are a typical feature of human postural sway.
1. Introduction
Stabilizing unstable systems is a challenging task for control engineers, and, at

the same time, it is an exciting problem for computational neuroscientists [1,2].

Since the introduction of the notion ‘control of chaos’ along with the related

Ott–Grebogi–Yorke method and Pyragas control of unstable motions [3], it

has become clear that stabilizing unstable states is often expedient above con-

trolling stable ones, especially from the viewpoint of required control energy.

This might be the key to the success of human walking [4], and this has been

crucial in many control engineering tasks [5,6]. The benchmark experimental

paradigm is the stabilization of an inverted pendulum. Surprisingly, it is poss-

ible to stabilize an inverted pendulum with time-delayed feedback [7–9].

Because time delays are intrinsic components of neural control, this observation

has greatly influenced the interpretation of human balancing tasks, such as stick

balancing at the fingertip and postural sway during quiet standing [10–15].

Typically, these interpretations are based on a proportional–derivative (PD)

controller, namely the corrective movements depend on the angular position

and angular velocity [10,15–19]. However, clinical [20–22] and experimental

[23–26] observations strongly suggest that balance control is benefited by

mechanoreceptive (tactile, or force detectors), proprioceptive (muscle spindle)

and vestibular labyrinth (otoliths and semicircular canals) inputs. In addi-

tion to sensory inputs, acceleration information can also be obtained from

internal models of the biomechanics of the human inverted pendulum [27].

These observations suggest that feedback controllers must be extended to a

proportional–derivative–acceleration (PDA) controller to take into account

contributions owing to acceleration [23,26,28] (or force [29]). The use of PDA

feedback without reflex delay for stabilizing motor plants has been discussed

in the context of computational neuroscience [23,30].

It is known that a PD controller cannot stabilize an unstable equilibrium if

the feedback delay is larger than a critical value [7,31]. For an inverted

pendulum, the critical feedback delay can be given as

tcrit;PD ¼
Tp

p
ffiffiffi
2
p ; ð1:1Þ

where Tp is the period of the small oscillations of the same mechanical structure

hanging at its downward position [15]. Note that equation (1.1) is valid for both

the cart pendulum model (�stick balancing) and the pinned pendulum model
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(�postural sway). The governing equations for the delayed PD

controller take the form of a retarded functional differential

equation (RFDE). Although RFDEs have infinitely many

roots, only finitely many of them may have positive real

parts leading to instability [32,33]. By contrast, for a PDA

controller, the governing equation is a neutral functional

differential equation (NFDE), because the delay is present in

the argument of the highest derivative, namely the accelera-

tion. An NFDE can have infinitely many roots with positive

real part. Thus, apart from the usual engineering objection of

using the ‘noisy’ acceleration signals in feedback loops, the

control design of such systems requires additional care. The

complexities of NFDEs have fuelled an enormous mathemat-

ical literature [7,32–34]; however, there have been few

practical applications (for notable exceptions, see recent

studies [35–38]). Here, we show that the stability criteria for

the NFDE that arises in the setting of an inverted pendulum

stabilized by a corrective torque can be readily determined.

While balancing can be described by linear (or linearized)

governing equations, if the postural sway is limited to small

angular displacements, there exists a strong small-scale

nonlinearity related to the sensory threshold [39–41]. A con-

sequence of the presence of such sensory dead zones is that

closed-loop feedback control occurs only when inputs

exceed sensory thresholds. While this nonlinearity has no

effect on large-scale stabilization in the linear system, it

may lead to small amplitude chaotic oscillations (also called

micro-chaos) as explained and proved for robotic systems in

earlier studies [42–44].

The paper is outlined as follows. First, the concepts of feed-

forward, delayed state feedback and predictive controllers are

discussed. It is argued that prediction based on the delayed

state is equivalent to the direct feedback of the delayed state.

In §3, the mechanical model of postural sway is presented invol-

ving the reaction time and the sensory dead zones. A delayed

PDA control law is applied; thus, the governing equation is an

NFDE. In §4, the criteria for the stabilizability of the system

are derived. Section 5 presents a numerical study for human

postural sway. The results are discussed and concluded in §6.
2. Background
Delayed feedback controllers can be classified as either

delayed state feedback or predictive controllers. Predictive

controllers, which predict the actual state of the system

based on its delayed states, are practically equivalent to the

direct feedback of the delayed states. It is a rule of thumb

that the more that recent information is used in the controller,

the better the performance of the control system. For this

reason, we will concentrate on control laws, for which the

state variable from time instant t 2 t is fed back with the

feedback delay t. Including terms higher than the second

derivative such as the jerk results in an unstable system,

because the governing equation is a functional differential

equation of advanced type [45]. For this reason, we will con-

centrate on control laws, where only the position, the velocity

and the acceleration are fed back.

In order to appreciate the relationship between a PDA

feedback controller and predictive control, first the concepts

of feed-forward, feedback and predictive control are

reviewed briefly. Then, these concepts are applied to the

balancing task.
2.1. Feed-forward, feedback and predictive controllers
Consider a linear system

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð2:1Þ

where x [ Rn is the state, u [ Rm is the input, A is the state

matrix, B is the input matrix and the notation _xðtÞ denotes

(d/dt)x(t). The task is to find an input u(t) such that the

system is moving according to the desired path xd(t). We

assume that the state x is completely observable without any

noise and there is no need to apply state estimators such as

the Kalman filter. The control law can be written in the form

uðtÞ ¼ uffðtÞ þ ufbðtÞ; ð2:2Þ

where uff(t) is the feed-forward term and ufb(t) is the feedback

term [46]. The feed-forward term can be given as

uffðtÞ ¼ B�1ð _xdðtÞ � AxdðtÞÞ: ð2:3Þ

If xd(t), _xdðtÞ, A and B are known perfectly, then a pure

feed-forward controller without any feedback term (i.e.

u(t) ¼ uff(t)) drives the system along the desired path, provided

that there are no uncertainties in the system parameters, the

feed-forward calculation is totally accurate, there are no pertur-

bations or noise affecting the system, and the initial conditions

fit to the desired motion perfectly. The pure feed-forward con-

troller is an open-loop controller, because no information about

the state is fed back.

In the presence of parameter uncertainties or pertur-

bations, the feedback term ufb(t) should also be applied in

order to compensate the deviation from the desired path

using the error

eðtÞ ¼ xðtÞ � xdðtÞ: ð2:4Þ

Equations (2.1) and (2.3) imply the error dynamics, which are

governed by

_eðtÞ ¼ AeðtÞ þ BufbðtÞ: ð2:5Þ

This equation is also called the variational system of (2.1)

around the desired motion xd(t). Application of both feed-

forward and feedback control terms (i.e. u(t) ¼ uff(t)þ ufb(t))

drives the system along the desired position, eliminating the

error e(t) ¼ x(t) 2 xd(t), provided that the error dynamics

governed by (2.5) are stable. Therefore, the crucial point is

to find a feedback controller ufb, which stabilizes (2.5). The

difficulties arise because the feedback loops inherently

involve time delays which can destabilize the system.

An example for the delayed state feedback is

ufbðtÞ ¼ Deðt� tÞ; ð2:6Þ

where t is the feedback delay and matrix D contains the con-

trol gains. In this case, the stability of the system is

determined by the RFDE

_eðtÞ ¼ AeðtÞ þ BDeðt� tÞ: ð2:7Þ

Predictive controllers suggest that, rather than feeding back

the delayed state, one should predict the actual state based

on the known time history (figure 1). If the state is predicted

based on its own delayed values only, and the feedback term

ufb is not involved in the prediction, then the predicted error

can typically be written as

epðtÞ ¼ PðtÞeðt� tÞ; ð2:8Þ

where P(t) is a matrix describing the prediction over the

delay period. Feedback of the predicted error according to

http://rsif.royalsocietypublishing.org/
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Figure 1. Scheme of known and unknown states owing to feedback delay.
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the linear control law ufbðtÞ ¼ ~Depðt� tÞ gives

_eðtÞ ¼ AeðtÞ þ B ~DPðtÞeðt� tÞ; ð2:9Þ

which is equivalent to equation (2.7) with D ¼ ~DPðtÞ. This

demonstrates that prediction based on the state is equivalent

only to the direct feedback of the delayed state.

If the feedback term ufb is also involved into the predic-

tion through an efferent copy of corollary discharges of the

motor command, then the feedback term can be written in

the general form

ufbðtÞ ¼
ðt

0

f ðq; xðq� txÞ; xdðqÞ;ufbðq� tuÞÞ dq; ð2:10Þ

where f is a measurable function, and tx and tu are the delays

in obtaining the state and the feedback information, respect-

ively. Here, the predicted state is determined as a weighted

integral over the past using the state x over the interval

[0,t 2 tx], the feedback term ufb over [0,t 2 tu] and the desired

state xd, which is known over [0,t]. In several models, it is

assumed that tu ¼ 0, which requires that ufb(t) is readily

available. When tu ¼ 0, an appropriate choice of the function

f may lead to a finite spectrum assignment, provided that all

the parameters are exactly known, the numerical calculation

in (2.10) is performed with perfect accuracy and there are

no perturbations [47,48]. In fact, (2.5) and (2.10) form an

NFDE, which may face instabilities owing to the slightest

uncertainties in the system parameters due to an unstable

pole-zero cancellation [49,50]. Therefore, in this analysis, we

chose the prediction based on the delayed states only,

which is equivalent to a direct delayed state feedback.
2.2. Application to the balancing problem
We can apply the earlier mentioned concepts to the case of

balancing an inverted pendulum described by the linearized

equation

€wðtÞ � awðtÞ ¼ QðtÞ; ð2:11Þ

where w is the small angular position measured from the w ¼ 0

vertical upright position (see §3), €w ¼ ðd2=dt2ÞwðtÞ is the angu-

lar acceleration, a . 0 is the system parameter, and Q(t) ¼
Qff(t) þ Qfb is the control torque with Qff(t) and Qfb being

the feed-forward and the feedback terms, respectively. Here,

the state is described by the vector x ¼ ðw; _wÞT, where _w is

the angular velocity and T denotes the transpose.

If the desired angular motion is given as wd(t), then

the feed-forward control torque should be given as

QffðtÞ ¼ €wdðtÞ � awdðtÞ. If the system parameter a is known

precisely, no noise is affecting the system and the initial con-

ditions fit perfectly to wd(t), then the control torque Q(t) ¼
Qff(t) drives the system along the desired path. In the pres-

ence of parameter uncertainties and noise, however, the

feedback term Qfb(t) is also required to reduce the error

e(t) ¼ w(t) 2 wd(t).
In balancing, the desired position is the vertical upright

position, i.e. wdðtÞ ; 0; consequently, QffðtÞ ; 0. Hence, the

error is equal to the state itself (e(t) ¼ w(t) 2 wd(t) ¼ w(t)),
and the error dynamics are governed by

€wðtÞ � awðtÞ ¼ Qfb: ð2:12Þ

Owing to the feedback delay, the state variables describing

the pendulum’s motion (e.g. angular position w, angular vel-

ocity _wðtÞ or angular acceleration €wðtÞ) are available only in
the interval [0,t 2 t], and no information can be obtained

from the interval (t 2 t, t] (figure 1). The task is to find a sta-

bilizing feedback control torque Qfb using the available

delayed information only.

Linear feedback of a simple linear prediction of the angu-

lar position wpðtÞ ¼ wðt� tÞ þ t _wðt� tÞ and a constant

prediction of the angular velocity _wpðtÞ ¼ _wðt� tÞ implies

the equation

€wðtÞ �awðtÞ ¼ �~kpðwðt� tÞ þ t _wðt� tÞÞ � ~kd _wðt� tÞ; ð2:13Þ

where ~kp and ~kd are the proportional (position) and the

derivative (velocity) gains for the predicted state. This

equation is equivalent to the direct feedback of the delayed

position and the delayed velocity (PD feedback) with

proportional gain kp ¼ ~kp and with derivative gain

kd ¼ t~kpþ~kd.

A second-order prediction of the angular position

can be given using the delayed angular acceleration as

wpðtÞ ¼ wðt� tÞ þ t _wðt� tÞ þ 1
2t

2€wðt� tÞ, a linear predic-

tion of the angular velocity can be given as

_wpðtÞ ¼ _wðt� tÞ þ t€wðt� tÞ and a constant prediction of the

angular acceleration is €wpðtÞ ¼ €wðt� tÞ. Linear feedback of

these terms results in

€wðtÞ � awðtÞ ¼ �~kpðwðt� tÞ þ t _wðt� tÞ þ 1

2
t 2€wðt� tÞÞ

� ~kdð _wðt� tÞ þ t€wðt� tÞÞ � ~ka €wðt� tÞ;
ð2:14Þ

where ~ka is the acceleration gain for the predicted state. This

equation is equivalent to the direct feedback of the delayed

position, velocity and acceleration (PDA feedback) with pro-

portional gain kp ¼ ~kp, derivative gain kd ¼ t~kpþ~kd and

acceleration gain ka ¼ 1
2t

2 ~kpþt~kdþ~ka. In this sense, delayed

PDA feedback can be interpreted as a feedback of a special

prediction of the current position, velocity and acceleration

based on their delayed values. Note that, independently of

this interpretation, the control gains (kp, kd, ka) or, alterna-

tively, (~kp;~kd;~kaÞ should be tuned in order to achieve stability.
3. Model
The mechanical model of balancing in the sagittal plane via

torques applied at the ankle joint is shown in figure 2. Follow-

ing Winter et al. [51] and Loram & Lakie [52], the human

body is modelled as a rod of mass m pivoted on joint

A. The distance between the centre of gravity C and the sus-

pension point A is denoted by ‘AC. JC is the moment of inertia

with respect to the normal line via the centre of gravity. The

passive but insufficient resistance of the ankle joint against

falling is modelled by a torsional spring of stiffness kt and a

torsional dashpot of damping bt. These elements are

http://rsif.royalsocietypublishing.org/
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attributed to the foot, Achilles tendon and aponeurosis, and

they cannot be neurally regulated during quiet standing. As

shown by Loram & Lakie [52], the stiffness increases slightly

with ankle torque, which verifies the linear spring model.

They also showed that the intrinsic mechanical stiffness of

the ankle is insufficient for stability during quiet standing,

and additional modulation of parallel connected calf muscle

fibres is required to maintain balance. This torque acting on

the body is denoted by Q in figure 2. The angle of the

human body with respect to the vertical is denoted by w.

The equation of motion can be written in the form

JA €wðtÞ þ bt _wþ ktwðtÞ �mg‘ACsinðwðtÞÞ ¼ �QðtÞ; ð3:1Þ

where JA ¼ JC þ m‘AC
2 is the moment of inertia of the body

with respect to the normal line via the pivot point A, and

g ¼ 9.81 m s22 is the gravitational acceleration.

The control torque Q(t) is assumed to be a linear combi-

nation of the angular position w, the angular velocity _w and

the angular acceleration €w. These quantities are obtained

from mechanoreceptive (tactile, or force detectors) and pro-

prioceptive (muscle spindle) sensors, from vestibular organs

(otoliths and semicircular canals) and from visual inputs.

The presence of a sensory dead zone is accounted for by

assuming that the actuating forces occur only if the input sig-

nals exceed some threshold values [12,18,40,53]. Furthermore,

the overall reaction time is modelled as a feedback delay.

Assuming different thresholds for the different sensation

inputs, the control torque can be given as

QðtÞ ¼ QpðtÞ þQdðtÞ þQaðtÞ ð3:2Þ

with

QpðtÞ ¼
0; if jwðt� tÞj , ws;
�Kpwðt� tÞ; if jwðt� tÞj � ws;

�
ð3:3Þ

QdðtÞ ¼
0; if j _wðt� tÞj , _ws;
�Kd _wðt� tÞ; if j _wðt� tÞj � _ws;

�
ð3:4Þ

and

QaðtÞ ¼
0; if j€wðt� tÞj , €ws;
�Ka€wðt� tÞ; if j€wðt� tÞj � €ws;

�
ð3:5Þ

where Kp is the proportional gain, Kd is the derivative gain, Ka

is the acceleration gain, t is the feedback delay, and ws, _ws and

€ws are the sensory threshold values for the angular position,

the angular velocity and the angular acceleration, respectively.

Note that the delay t appears also for threshold conditions.

An important element of the current analysis is that the

control force is activated only for motions exceeding some

thresholds [12,40]. For small motions, when the state
variables are within the sensory dead zone, there is no control

action, and the system behaviour is determined by the

unstable open-loop system. A reasonable claim is that

equation (3.1) with (3.2)–(3.5) cannot have a domain of

attraction around ðw; _w; €wÞ ¼ ð0; 0; 0Þ if the linear system

JA €wðtÞ þ bt _wþ ðkt �mg‘ACÞwðtÞ ¼ �Kpwðt� tÞ
� Kd _wðt� tÞ � Ka€wðt� tÞ ð3:6Þ

is not stable. This is proved in Haller & Stepan [42] and

Enikov & Stepan [43] for digital balancing where the time

delay is not constant but periodically varying owing to digital

sampling. Therefore, the stability analysis of (3.6) plays a cru-

cial role in the problem. If (3.6) is stable, then the nonlinear

system (3.1) with (3.2)–(3.5) has an attractor (a limit cycle or

a chaotic attractor) around ðw; _w; €wÞ ¼ ð0; 0; 0Þ. If (3.6) is

unstable, then (3.1) with (3.2)–(3.5) typically does not have

any attractor and the balancing process ends up with falling.

Note that the system without the control torque Q(t) is

unstable, because the intrinsic mechanical stiffness of the

ankle alone cannot maintain stability, i.e. kt 2 mg‘AC , 0 [52].

This controller is intermittent in the sense that the control

force is switched on and off depending on the size of the sen-

sory inputs. Although this kind of switching does not affect

stability, there are other types of switching conditions that

may strongly contribute to the stability of the system. For

instance, Asai et al. [13] applied an intermittent controller,

which uses the stable manifold of the saddle of the open-

loop system (see model 3 in their paper). If the system is

close to the stable manifold, then the control is switched

off, and it is switched on only when it gets close to the

unstable manifold. The corresponding switching condition

is defined in the phase plane: if wðt� tÞð _wðt� tÞ�
kwðt� tÞÞ . 0 (with k � 0) then the controller is switched

on; otherwise, the controller is switched off. They showed

that the resultant intermittent system is more stable than

the linear system. In our approach, the intermittency appears

as a result of the modelling of the sensory dead zone, which

is also modelled by Asai et al. [13] in their model 4.

By rescaling the time as ~t ¼ t=t and dropping the tilde

immediately, (3.6) can be transformed into the form

€wðtÞ þ b _wðtÞ � awðtÞ ¼ �kpwðt� 1Þ � kd _wðt� 1Þ
� ka€wðt� 1Þ; ð3:7Þ

where

b ¼ btt

JA
; a ¼ ðmg‘AC � ktÞt 2

JA
. 0 ð3:8Þ

and

kp ¼
Kp t

2

JA
; kd ¼

Kdt

JA
; ka ¼

Ka

JA
: ð3:9Þ

Equation (3.7) is an NFDE, because the second derivative of

the state variable (€w) appears both with actual and with

delayed arguments. Consequently, infinitely many unstable

characteristic exponents may arise for certain parameter com-

binations. In what follows, we will determine the critical

maximum value of the delay t for which the system can

still be stabilized.

http://rsif.royalsocietypublishing.org/


3

stable 0

10
(a) (b)

5

5

w = w3
w = w1

w = w1

w = w2

w = w4

w = p

w = 3p

w = 0w = 2p
w = 0

3

21

1

3

2

4

0

–5

–10
–40 –20 20 40 60 80 0 1 a 30

1

0

a

kd

kp kp

kd

Figure 3. Stability chart with the number of unstable characteristic exponents for (3.7) with a ¼ 2, b ¼ 0 and ka ¼ 0.5 (PDA controller).

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120763

5

 on January 25, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
4. Criteria for stabilizability
The criteria of stabilization are presented for four cases:

(i) the undamped case with PD control (b ¼ 0, ka ¼ 0); (ii)

the damped case with PD control (b = 0, ka ¼ 0); (iii)

the undamped case with PDA control (b ¼ 0, ka = 0); and

(iv) the damped case with PDA control (b = 0, ka = 0).
4.1. Proportional – derivative control for the
undamped case (b ¼ 0, ka ¼ 0)

If ka ¼ 0 then (3.7) is an RFDE. For this system, the criteria for

the stabilizability are known in the literature [7,31,54]: if the

dimensionless system parameter a is larger than a critical

value given by

acrit;PD ¼ 2; ð4:1Þ

then the system is unstable for any kp and kd. Note that this

result can also be obtained as a special case ka ¼ 0 of the

analysis of the PDA controller in §4.3 and appendices A.1–

A.3. From here, simple calculation gives that the critical

feedback delay for the balancing task governed by (3.6)

with bt ¼ 0 and ka ¼ 0 is

tcrit;PD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2JA

mg‘AC � kt

s
: ð4:2Þ

Note that the period of the small oscillations of the

pendulum hanging at its downward position is

Tp ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JA=ðmg‘AC � ktÞ

p
; thus (4.2) is equivalent to (1.1).
4.2. Proportional – derivative control for the damped
case (b = 0, ka ¼ 0)

If there is a damping in the system, then the critical value for

the dimensionless system parameter a is

acrit;PD;damped ¼ 2þ 2b; ð4:3Þ

which implies the critical feedback delay

tcrit;PD;damped ¼
bt

mg‘AC � kt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
t

ðmg‘AC � ktÞ2
þ 2JA

mg‘AC � kt

s
: ð4:4Þ
For small values of bt, the critical delay is slightly larger than

it is for the undamped case.
4.3. Proportional – derivative – acceleration control for
the undamped case (b ¼ 0, ka = 0)

If ka = 0, then (3.7) is an NFDE. It is known that if jkaj. 1,

then (3.7) has infinitely many characteristic roots with posi-

tive real parts (see lemma 3.9 on p. 63 in Stepan [7]);

therefore, in the current analysis, we concentrate only on

the case jkaj , 1. Stability analysis for (3.7) with jkaj, 1 can

be performed according to the D-subdivision method com-

bined with the analysis of the exponent-crossing direction

along the D-curves [7]. Briefly, the D-curves separate the

plane of some selected system or control parameters (in this

case, the plane (kp, kd)) into domains where the numbers of

unstable characteristic exponents are constant. The stability

boundaries are the D-curves bounding the domains with

zero unstable characteristic exponent.

The D-curves for (3.7) can be given as

if v ¼ 0 : kp ¼ a; kd [ R; ð4:5Þ

and

if v = 0 :

kp ¼ ðv2 þ aÞcosvþ kav
2

kd ¼
v2 þ a

v
sinv;

8<
: ð4:6Þ

where v is the frequency parameter, which is equal to

the imaginary part of the characteristic exponent l, i.e.

v ¼ Im(l) (for details, see appendix A.1). The D-curve

kp ¼ a given by (4.5) is associated with a real critical charac-

teristic exponent l ¼ 0, whereas the D-curve given by (4.6)

is associated with a complex conjugate pair of characteristic

exponents of the form l ¼ + iv. In fact, the parametric

curve (4.6) defines a spiral in the plane (kp, kd), as shown

in figure 3. The number of unstable characteristic roots

in the individual domains separated by the D-curves can

be determined by the analysis of the exponent-crossing direc-

tion (for details, see appendix A.2). The corresponding

stability chart with the number of unstable exponents for

a¼ 2 and ka ¼ 0.5 is presented in figure 3. Some specific

values of the frequency parameter v along the stability

boundaries are also presented. The stable domain (with
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zero unstable characteristic root) is indicated by grey shading

in figure 3b (zoomed).

It is shown in appendix A.3 that, as the dimensionless

system parameter a gets larger and larger, the domain of stab-

ility gets smaller and smaller. If a is larger than a critical value

given by

acrit;PDA ¼ 4; ð4:7Þ

then the system is unstable for any kp, kd and ka. Conse-

quently, the critical feedback delay for the balancing task

governed by (3.6) with bt ¼ 0 can be given as

tcrit;PDA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4JA

mg‘AC � kt

s
; ð4:8Þ

that is, tcrit;PDA ¼
ffiffiffi
2
p

tcrit;PD (see (4.2)). This means that the

critical delay for the PDA controller is larger by approxi-

mately 40 per cent than that of the PD controller. Note that

this result corresponds to the one obtained by Sieber &

Krauskopf [28].
Table 1. Mechanical and physiological parameters taken from Asai et al. [13].

m ¼ 60 kg bt ¼ 4.0 Nms rad21

‘AC ¼ 1 m t ¼ 0.2 s

JA ¼ 60 kg m2 a ¼ 0.0784

kt ¼ 471 Nm rad21 b ¼ 0.013

denote the stability boundaries for the PD controller obtained by the
approximation of the delayed terms by their first-order Taylor series
expansion. The acceleration feedback gain for the PDA controller is Ka ¼ 54
(Nms2 rad21) such that its dimensionless value is ka ¼ 0.9.

3

4.4. Proportional – derivative – acceleration control for
the damped case (b = 0, ka = 0)

The stability criteria for the damped case can be derived in a

similar way; the only difference is that the term bl shows up

in the characteristic function. The D-curves in this case form as

if v ¼ 0 : kp ¼ a; kd [ R; ð4:9Þ

and

if v = 0 :
kp ¼ ðv2 þ aÞcosvþ bv sin ðvÞ þ kav

2;

kd ¼ v2þa
v

sinv� b cos ðvÞ:

(
ð4:10Þ

The critical system parameter, at which the stable

domain in the stability chart disappears, can be obtained

as acrit,PDA,damped ¼ 2 þ 2ka þ 2b, which, considering that

jkaj, 1, implies

acrit;PDA;damped ¼ 4þ 2b: ð4:11Þ

Thus, the damping term also contributes to the stabilizability

of the system.

Using (3.8), the critical feedback delay for the balancing

task governed by (3.6) can be given as

tcrit;PDA;damped ¼
bt

mg‘AC � kt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
t

ðmg‘AC � ktÞ2
þ 4JA

mg‘AC � kt

s
: ð4:12Þ

For reasonably small damping values, this critical delay is

larger by approximately 40 per cent than that of the

corresponding PD controller.
5. Numerical examples
In this section, the stability diagrams are determined for some

specific parameter values from the corresponding literature.

First, the parameters from Asai et al. [13] are used to deter-

mine the stability charts for the PD and the PDA controller.

Then, two parameter sets are taken from Loram & Lakie

[52] and a numerical simulation is presented to show the

effect of the sensory dead zone.
5.1. Case study 1
The mechanical and physiological parameters for the first

case study were taken from Asai et al. [13] (table 1). The cor-

responding stability diagrams can be seen in figure 4. The

stability regions (shaded) were determined using (4.9) and

(4.10). It can be seen that the stability domain for the PDA

feedback is larger than that of the PD controller. Larger

stable domains provide greater robustness against parameter

perturbations. A comparison with the stability charts in Asai

et al. [13] shows that their intermittent controller (model 3 in

their paper) is able to stabilize the system for control gains

for which the linear PD and PDA controllers are unstable.

The stability boundaries for the PD controller obtained by

the approximation of the delayed terms by their first-order

Taylor series expansion is also presented for reference

(for details, see Asai et al. [13]). As can be seen, this

approximation is appropriate only for small control gains.
5.2. Case study 2
For the second case study, the parameters were taken from

Loram & Lakie [52], in which the parameters of 15 subjects

were measured. Two sets of parameters were selected:

(i) the mean value of the 15 subjects and (ii) subject JR,

who had the smallest passive resistance against falling. The

corresponding parameters are listed in table 2. The reflex

delay was chosen to be t ¼ 200 ms as a mean value from

Loram & Lakie [52]. The stability charts for the PD and the

http://rsif.royalsocietypublishing.org/


Table 2. Mechanical and physiological parameters for the numerical study
taken from Loram & Lakie [52].

dataset mean value subject JR

m (kg) 75.5 70.9

‘AC (m) 0.92 0.87

JA (kg m2) 63.9 53.66

kt (Nm rad 21) 595.5 217.7

bt (Nms rad 21) 4.011 4.011

a 0.0535 0.2877

b 0.0126 0.0149
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Figure 5. Stability charts for PD and PDA controllers with the parameters listed in table 2. Stable domains are denoted by grey shading. The acceleration feedback
gain is Ka ¼ 57.51 (Nms2 rad21) for the mean value and Ka ¼ 48.29 (Nms2 rad21) for subject JR such that the corresponding dimensionless values are Ka ¼ 0.9
for both cases. (a) Mean values and (b) subject JR.

Table 3. Control gains for the simulations and the corresponding
dimensionless values.

Kp ¼ 804.9 Nm rad21 Kp ¼ 0.6

Kd ¼ 268.3 Nms rad21 Kd ¼ 1

Ka ¼ 48.29 Nms2 rad21 Ka ¼ 0.9
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PDA controllers are presented in figure 5. Because the com-

bined relative stiffness for subject JR is the smallest, the

stable domain is smaller than that determined from the

mean values and it is also shifted towards larger Kp values.

Time domain simulations for the nonlinear system (3.1)

with (3.2)–(3.5) were performed using the zeroth-order semi-

discretization method described by Insperger & Stepan [54].

The parameters of subject JR were used for the simulation.

The control gains are given in table 3. The discretization step

was 1 ms. The sensory threshold values were set to ws ¼

0.004 (rad), _ws ¼ 0:004 (rad s21) and €ws ¼ 0:004 (rad s22)

[13]. The initial conditions for the simulation were w(0) ¼

0.001 rad, _wð0Þ ¼ 0 and €wð0Þ ¼ 0.

The results of the simulations are shown in figure 6. The

angular acceleration €w and the control torque Q show strong

discontinuities denoted by arrows in figure 6. This feature

originates from two sources. First, the sensory dead zone

gives an intermittent nature to the controller, which typically

results in an almost periodic motion (in a limit cycle)

[18,39–41]. Second, it is a special feature of NFDEs that the

initial discontinuities do not decay in time (as opposed to

the RFDEs) [32,33]. These two effects result in a highly inter-

mittent and chaotic-like signal. Solutions of this type have

been referred to as bounded, time-dependent states [58].
Similar behaviour is typical in robotic balancing, where the

digital effects, i.e. the sampling, the processing delay and

the round-off error, result in a small amplitude chaotic

motion around the equilibrium, which is called micro-chaos

[42–44]. In these applications, the round-off error presents

a dead zone around equilibrium similar to the sensory

dead zone described by (3.3)–(3.5).

Similar discontinuities might also arise in models using

intermittent control laws, such as an intermittent predictive con-

troller [55,56], an act-and-wait controller [54,57] or a stochastic

drift-and-act controller [2,12,58]. Indeed, the experimental dem-

onstration of the intermittent nature of human balance control

tasks [11,13,59] raises the possibility that such control strategies

may be of widespread use by the nervous system.
6. Conclusion
Here, we have shown that acceleration feedback benefits the

stabilization of the upright position of an inverted pendulum.

In the absence of time delay, the acceleration feedback acts as

an active inertia to reduce the spring constant [60]. However,

in the presence of time delays, the applied PDA controller is

equivalent to a predictive controller where the actual state is

predicted based on the delayed position, velocity and accel-

eration. If the jerk, or higher order derivatives, is also

involved in the prediction, then the linear system becomes

unstable because the resultant functional differential equation

becomes of advanced type. Thus, direct feedback of the

delayed position, velocity and acceleration with different

feedback gains gives an optimal variety for controllers

http://rsif.royalsocietypublishing.org/
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using predictions based on the observed state in the absence

of noise. In order to achieve a stable process, the three control

gains should be adjusted, possibly by a learning process, and

no a priori knowledge is necessary about the system par-

ameters. This approach is in contrast to optimal control

using model-based predictive controllers [10,61,62]. How-

ever, it has been shown that human postural responses to

support–surface translation predicted by equations of the

form we have discussed here resemble very closely those

predicted from optimal control [26].

If there is noise in the system or the state is not completely

observable, then the application of state estimators such as

the Kalman filter is a reasonable solution [10]. In this case,

the state estimation should be extended to the acceleration

as well in addition to the position and the velocity estimation.

However, once the position, velocity and acceleration are esti-

mated in an optimal way, the PDA controller provides better

stability properties than the corresponding PD controller,

which is a straight consequence of the current study.

The criteria t , tcrit (or alternatively, a , acrit) guarantee

the stability of the vertical fixed point (w ¼ 0) of the inverted

pendulum. However, experimental observations suggest that

the fluctuations in w for human postural sway and stick bal-

ancing at the fingertip do not resemble those expected for a

stable fixed point subjected to noisy perturbations. In particu-

lar, a rhythmic, or possibly chaotic, component has been

emphasized (see [58]). One possible interpretation is that

these complex dynamics reflect the fact that sensory

thresholds are finite and hence sensory dead zones will be

present [18,40]. We have shown that the addition of such

thresholds to a PDA controller is sufficient to produce very

complex and intermittent types of oscillatory behaviours.

However, we suggest that the stability of the upright pos-

ition, at least in the mathematical sense, is determined by

the stability of the dynamical system when the sensory

dead zones have zero size. In other words, the addition of

a sensory dead zone cannot itself stabilize an unstable

upright position. On the other hand, it is possible that a

sensory dead zone can be destabilizing. This is because the

amplitude of the complex oscillations is proportional to

the magnitude of the sensory dead zone. Large-amplitude
fluctuations may exceed the basin of attraction for the upright

position and cause a fall [58]. The beneficial effects of a sen-

sory dead zone become manifest when, for example, the

interactions between delay and noise transiently reduce

the amplitudes of trajectories below sensory thresholds [2].

In such cases, balance is achieved without active neural

feedback and hence at minimal metabolic expense.

Our observations do not eliminate the role of intermittent

controllers in balance control [13,58]. Indeed, the existence of

ankle–hip–step strategies to maintain balance in response to

increasingly large perturbations [63] strongly points to a

nested, or ‘safety net’, control network topology. In other

words, the number of feedback loops that participate in con-

trol increases as the vertical displacement angle increases [64].

An important distinguishing point is that the thresholds in

these strategies are not related to sensory dead zones, but

rather are likely to be set in a manner to influence stability.

Although the potential advantages of acceleration feed-

back have long been recognized [23,29,60], only with the

availability of inexpensive triaxial accelerometers have their

beneficial effects on balance control been investigated exper-

imentally [65,66]. The fact that the delayed PDA controller is

superior to the delayed PD controller with respect to stabiliz-

ability suggests that other fields of neuroscience in which PD

controllers have been used previoulsy could also benefit by

involving acceleration feedback in the control law.

This work was partially supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences (T.I.), the
Hungarian–American Enterprise Scholarship Fund (T.I.), the
Hungarian National Science Foundation under grant no. OTKA-
K101714 (G.S. and T.I.) and the National Science Foundation under
grant no. NSF-1028970 (J.M.).
Appendix

A.1. Determination of the D-curves
The characteristic function for (3.7) reads

DðlÞ ¼ l2 � aþ kp e�l þ kdl e�l þ kal
2 e�l: ðA 1Þ
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According to the D-subdivision method, substitution of l ¼

g+ iv, v � 0 into D(l) ¼ 0 and decomposition into real

and imaginary parts give

Re : g2 � v2 � aþ kp e�gcosvþ kdg e�gcosvþ kdv e�gsinv

þ kaðg2 � v2Þ e�gcosvþ ka2gv e�gsinv ¼ 0

ðA 2Þ

and

Im : 2gv� kp e�gsinvþ kdv e�gcosv� kdg e�gsinv

þ ka2gv e�gcosv� kaðg2 � v2Þ e�gsinv ¼ 0:

ðA 3Þ

Substitution of g ¼ 0 into (A 2) and (A 3) gives the D-curves

given in (4.5) and (4.6).
A.2. Determination of the number of unstable
characteristic exponents

As shown in figure 3, the D-curve (4.6) defines a spiral in the

plane (kp, kd), while (4.5) gives a vertical line. Simple analytic

calculation shows that the distance between the point

(kp, kd) ¼ (a,a) and the intersection points along the line

kp ¼ a is increasing with each cycle of the spiral, provided

that jkaj , 1. In order to see this, let vj, j ¼ 1; 2; . . . denote

the parameters for which the curve (4.6) intersects the line

kp ¼ a. Odd values of j result in positive kd, while even

values of j give intersections with negative kd. For kd . 0,
the distances of the intersection points tend to

lim
j!1
ðkdðv2jþ3Þ � kdðv2jþ1ÞÞ ¼ 2p sinðv�Þ; ðA 4Þ

where v� ¼ arccos ka with v� [ ½0;p�. For kd , 0, a similar

calculation gives

lim
j!1
ðkdðv2jþ2Þ � kdðv2jÞÞ ¼ �2p sinðv�Þ: ðA 5Þ

Consequently, the curves (4.5) and (4.6) cut the parameter

plane (kp, kd) into infinitely many domains that are all

attached to the line kp ¼ a.

In general, the number of unstable characteristic roots for the

individual domains can be determined by the analysis of the

exponent-crossing direction (also called root-crossing direction

or root tendency) along the D-curves, which is the sign of the par-

tial derivative of the real part of the characteristic exponent with

respect to one of the system parameters. If the number of unstable

exponents is known for at least one point in one domain, then it

can be determined for all the other domains by considering the

exponent-crossing direction along the D-curves.

Here, the exponent-crossing direction along the D-curve

kp ¼ a is determined by taking the partial derivatives of

(A 2) and (A 3) with respect to kp and by substituting g ¼ 0,

v ¼ 0 and kp ¼ a. This derivation gives

g 0kp
¼ 1

a� kd
; ðA 6Þ

which means that g 0kp
is positive for kd , a and negative for

kd . a. If the line kp ¼ a is crossed from left to right with
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kd . a, then a real characteristic exponent becomes stable. If

kd , a, then a real exponent becomes unstable as the line

kp ¼ a is crossed from left to right.

If kp ¼ 0, kd ¼ 0 with jkaj , 1 and a . 0, then the number

of unstable characteristic exponents is 1 (see fig. 3.10 on p. 64

in Stepan [7]). The number of unstable exponents can be

given for all the domains in the parameter plane (kp, kd) by

considering the exponent-crossing directions along the

D-curve kp ¼ a.

Note that the number of unstable exponents can also be

determined using Stepan’s formula (see theorems 2.15 and

2.16 and the proof of theorem 2.20 in Stepan [7]).

A.3. Determination of the critical system parameter
In order to determine the critical system parameter acrit,PDA,

which limits the stabilizability of (3.7), the D-curves (4.5) and

(4.6) should be analysed for different values of a and ka. Series

of stability diagrams with different dimensionless system par-

ameters a and acceleration control gain ka are presented in

figures 7 and 8 for different control parameter regions. Figure 7

shows that the intersection points along the line kp ¼ a are

more and more dense as ka gets closer and closer to 1.

Note that if ka . 1, then the system has infinitely many

unstable characteristic exponents. Figure 8 shows diagrams

zoomed on the domain of stability (with zero unstable
exponent). It can be seen that, as the system parameter a
gets larger and larger, the domain of stability gets smaller

and smaller and disappears when the tangent of the para-

metric curve (4.6) at v ¼ 0 becomes vertical. A long but

straightforward algebraic derivation gives

lim
v!0

dkd

dkp
¼ lim

v!0

dkd=dv

dkp=dv
¼ 6� a

6� 6ka � 3a
: ðA 7Þ

The tangent is vertical if 6 2 6ka 2 3a ¼ 0, which gives the

critical value acrit,PDA ¼ 2 þ 2ka. Because the only limitation

to ka was that jkaj, 1, the critical value for the system par-

ameter a in the case of a PDA controller is

acrit;PDA ¼ 4: ðA 8Þ

If a! 4 and ka ! 1, then the domain of stability shrinks

to the point (kp, kd) ¼ (4,4). In the limit case a ¼ 4, ka ¼ 1

and (kp, kd) ¼ (4,4), there are infinitely many characteristic

exponents with zero real part.

An alternative way to determine the critical value for a is

the Taylor series expansion of kp(v) in (4.6),

kp ¼ aþ 1þ ka �
a
2

� �
v2 + � � � : ðA 9Þ

If the coefficient of v2 is positive, then the proportional gain

kp is increasing with increasing v, which gives the same

critical value acrit,PDA ¼ 2 þ 2ka.
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