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sional parameter space of the pendulum'’s length, the forcing frequency, the forcing ampli-
tude, the proportional and the differential gains. It is shown that the critical length of the

fy Wodrdls" pendulum (that can just be balanced against the time-delay) can significantly be decreased
sg;;eil_it; ay by parametric forcing even if the maximum forcing acceleration is limited. The numerical

Semi-discretization analysis showed that the critical stick length about 30 cm corresponding to the unforced
Inverted pendulum system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceler-
ation below the gravitational acceleration.
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1. Introduction

Balancing of an inverted pendulum in the presence of feedback delay is an often referred example in dynamics and con-
trol theory [1-3] and it is also a relevant issue to human motion control [4-6]. It is known that conventional PD controllers
cannot stabilize the upward position if the time delay is larger than a critical value. As it was shown by Stepan [7], this crit-
ical delay for a continuous PD feedback can be given in the simple form 7. = T/(7tv/2), where T is the period of the small
oscillations of the pendulum hanging at its downward position. The same phenomenon is often communicated such that
for a given feedback delay, there is a critical minimum length of the pendulum: if the pendulum is shorter then this critical
length, then the upward position is unstable for any PD controller [8].

Although, in most practical cases, the feedback delay cannot be eliminated from the system, its destabilizing effect can be
abated by different control strategies. One technique to deal with the problem is the intermittent predictive controller [9],
where the sequence of open-loop trajectories is punctuated by intermittent feedback. Another approach is the act-and-wait
controller that is a special case of periodic controllers: the feedback term is switched off and on periodically [10]. Both the
intermittent predictive controller and the act-and-wait controller have a generalized hold interpretation [11] and may be
relevant to human motion control due to their intermittent nature [6,12,13].

A well known way for stabilizing unstable systems is parametric forcing: the upward position of a pendulum can be
stabilized without any feedback control by vertically oscillating its suspension point [14,15]. The underlying mathematical
model is the Mathieu equation, for which the stability properties are described by the celebrated Strutt-Ince diagram [16].
If parametric forcing is combined with delayed feedback, then the resulting mathematical model is a delayed-differential
equation with time-periodic coefficients. Stability analysis for such systems is not trivial, but there exist several numerical
methods to treat the problem (see for instance, [17-21]). A paradigm for time-delayed time-periodic systems is the delayed
Mathieu equation [22].
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The goal of this paper is to analyze the effect of parametric forcing on the stabilization of an inverted pendulum by PD
control with delayed feedback. The paper was motivated by the work of Milton et al. [23], who analyzed human'’s stick bal-
ancing abilities when standing on a vibrating platform. This paper presents a numerical study on the problem. Stability prop-
erties are analyzed as function of the pendulum length, the control gains, the frequency and the amplitude of the parametric
forcing. Stability is determined using the first-order semi-disretization method [24,25]. The outline of the paper is as follows.
First the mechanical model is introduced in Section 2. Then, some special cases are considered in Section 3. Section 4 pre-
sents the semi-discretization algorithm to the stability analysis of the system. Section 5 deals with the analysis of the critical
length for different forcing frequencies and amplitudes. The results are concluded in Section 6.

2. Mechanical model

The mechanical model under study is shown in Fig. 1. The stick is attached to the horizontal slide that moves periodically
up and down together with the base according to the geometric constraint r cos(wt). The stick to be balanced is assumed to
be homogeneous, its mass is m and its length is I. The mass m of the slide is assumed to be negligible relative to the mass of
the stick. The general coordinates are the angular position ¢ of the stick and the position x of the pivot point. A control force
Q is applied on the slide in order to balance the stick. The equation of motion for the dynamic system takes the form

%ml2 imlcos ¢ ((/))+ (—1mgl + Imilrew? cos(wt)) sin @ _< 0 ) )
Imlcos ¢ m X —1ml@?sin T \Q(p, ) )

The displacement x is a cyclic coordinate that can be eliminated from the equation. The essential motion ¢ is then governed
by

Gml2 - %ml2 cos? (p> &+ %mlz('p2 sin2¢ + <f%mgl + %mlrw2 cos wt) sing = 7%IQ(<p, () cos ¢. (2)

The control force Q is assumed to be a locally linear function of the angular position ¢ and the angular velocity ¢ in the form
Q@ ¢) =Pp+Dp +ho.t, 3)

where P is the proportional gain, D is the derivative gain and h.o.t. stands for the higher-order terms not modeled here.
Linearization around the upright position ¢ = 0 and modeling the delay 7 in the feedback loop gives

11—2m12<'p(t) + <f%mgl + %mlrw2 cos a)t) o(t) = f%l(P(p(t —17)+Do(t —1)). (4)

Introducing new parameters, the system can be transformed to the form

@(t) + (—a+ecoswt)p(t) = —pp(t — 1) —dp(t — 1), (5)
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Fig. 1. Mechanical model of stick balancing with parametric excitation.
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3. Special cases: p=0,d=0and ¢=0

Eq. (5) covers two special cases: (1) when the controller is switched off, i.e.,, p=0 and d = 0; (2) when there is no para-
metric forcing, i.e., =0 or £¢=0.

Case (1): If p=0 and d = 0, then one obtain the classical Mathieu equation that describes the behavior of a pendulum un-
der parametric forcing around the upward and the downward position. The stability diagram in the plane (a, ¢), the so-called
Strutt-Ince diagram [16], can be seen in the left panel of Fig. 2. The case a < 0 corresponds to the downward position of the
pendulum, while the case a > 0 corresponds to the upward position (inverted pendulum).

The diagram in the right panel of Fig. 2 presents the stability domains transformed to the plane of the forcing frequency
f=w/(2m) and the forcing amplitude r for a pendulum of length [ = 50 cm. The case when the maximum acceleration of the
pivot point is equal to the gravitational acceleration g is denoted by dashed line. The stable domains are located above this
limit, i.e., the upward position of the pendulum can only be stabilized by parametric forcing if the maximum acceleration
exceeds g.

Case (2): If the amplitude of the parametric forcing is equal to zero then one get the governing equation for the PD control
of an inverted pendulum with delayed feedback. The stability properties of this system are well known (see, for instance
[1,26]). The stable domains in the plane of the control gains p and d are bounded by the line p = a and the parametric curve

w?+a

p=(w?+a)cos(wt), d= sin(wt), @ > 0. (7)
The corresponding stability diagrams can be seen in Fig. 3 for feedback delay 7 = 0.1 s and for different lengths I. The numbers
in the diagrams denote the number of unstable roots (i.e., roots with positive real part). In the stable domains, this number is
0. It is known that the stable domain shrinks with increasing length I, and it disappears if [ > It = 3g72 [1,26]. For a feedback
delay 7 =0.1s, a pendulum of length less than Iy = 0.2943 m =~ 30 cm cannot be balanced in its upward position using a
traditional PD controller.

4. Stability analysis by semi-discretization

Stability analysis of Eq. (5) is performed using the semi-discretization method. The point of the method is that the delayed
terms are discretized while the undelayed terms are unchanged and the time-periodic coefficients are approximated by
piecewise constant functions. This way, the system is approximated by an ordinary differential equation (ODE) over each
discretization interval. If the delayed terms are approximated by constants, then the method is called zeroth-order, if the
they are approximated by linear function of time, then it is called first-order semi-discretization. The zeroth-order method
was introduced in [17] for general delayed systems including time-dependent distributed time-delays. The first- and higher-
order methods for the point delay case were presented in [25,24]. As it was shown in [24], if the time-periodic coefficients
are approximated by piecewise constant functions, then second- or higher-order approximation of the delayed term does not
yield any improvement in the convergence compared to the first-order approximation. A continuous time approximation
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Fig. 2. Stability diagram for Eq. (5) with p = 0 and d = 0 in the plane (a,¢) (left) and in the plane of the forcing frequency fand amplitude r for a pendulum of
length [ =50 cm (right). Dashed lines denotes the parameters where the maximum acceleration of the pivot point is equal to g.
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Fig. 3. Number of unstable roots for Eq. (5) with ¢ = 0 for feedback delay 7 =0.1 s and for different lengths I.

technique was introduced in [27,28] based on the concept of semi-discretization that can handle multiple time-delays for
both linear and nonlinear dynamical systems.

Here, the first-order semi-discretization method is used to determine the stability for Eq. (5). The steps of the method are
briefly presented below. First, the system is transformed to the form

y(t) = A(t)y(t) + Bu(t — 1), 8)

u(t) = Dy(t), 9)
where

® 0 1 ) ( 0 )
= A(t) = B= , D=(-p —d). 10

y=(0) 0=, _seoswr) o) (1) D=Cp-a) (10)
Then, the discretization time step h = T/k is introduced, where k € Z*. The system is approximated as

() = AF(t) + BBy (Oitiz1-n + fo(t)in), € [ih, (i +1)h), (11)

i; = i(ih) = Dy(ih), (12)
where

. 1 @+Dh

A=y / Atydt, icz, (13)

ih

ﬁl(t):tf‘rfh(ifn)h? ﬁo(t):7t7‘cf(ih+1fn)h (14)

and n = int(t/h + 1/2). Note that the approximation parameter is the number k of discretization intervals over the period T,
and number n (the delay parameter) is defined such that (n+ 1/2)h ~ 7. Eqs. 11 and 12 define an ordinary differential equa-
tion with piecewise linear forcing that can be solved step-by-step over each discretization interval in the form

Yis1 =Y((i+ 1)h) = Piy(ih) + Riollin + Ri1lis1-n, (15)
where
P, = ehilh), (16)
h _ _ ~
Rio — 7/ sS—1T +’§n 1)heAi(h—S)B ds, (17)
0
h _ ~
Ri,] :/ #em(his)B ds. (18)
0
If A;l exists, then integration gives
Rio = (Z;l +% (A2 - -(m-1hA") (1 - eAfh>>B, (19)
~ 1, ~ - ~
Rix = (ﬂ‘\{l +5 (fA,-’Z + (1 - nh)Aﬂ) (1 — eAfh>>B. (20)

Egs. 15 and 12 implies the (n + 2)-dimensional discrete map
zi,1 = Ciz; (21)
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with
Vi P 0 0 Ri1 Rio
Ui q DO ..0 0O O
zi= | Bi2 , ¢G=(01T1 ... 0 0 0| (22)
Ui pn 0 0 ... 0 I 0
Multiple recursive applications of Eq. (21) with initial state z, gives the monodromy mapping
z¢ = Pz, (23)
with
®=C1Cez...Co (24)

that is a finite dimensional approximation of the infinite dimensional monodromy operator of the original system (8) and (9).
The system is asymptotically stable if all the eigenvalues of the monodromy matrix are located within the unit circle of the
complex plane.

Fig. 4 presents some sample stability diagrams in the plane (p,d) for a stick of length [ = 50 cm with forcing amplitude
r=>5 mm and forcing frequencies f = 2, 2.5 and 3 Hz. The diagrams were determined via point-by-point evaluation of the crit-
ical eigenvalues over a 100 x 100-sized grid of parameters p and d. The approximation parameter was k = 25, 20 and 17 for
the cases f=2, 2.5 and 3 Hz, respectively. The corresponding delay parameter was n =5 for all cases. It can be seen that the
stability diagrams qualitatively differ from the ones of the time-invariant system with ¢ = 0. Here, the stable domains are
serrated by unstable tongues caused by the parametric forcing. Note that Eq. (5) was also analyzed in [29], where similar
stability diagrams were presented in the plane (p,d), while the same system under PI control was analyzed in [30].

5. Effect of parametric forcing on the critical stick length

The goal of this study is to analyze the effect of parametric forcing on the stabilization process. Stability charts in the
plane (p,d) are therefore determined for a series of forcing frequencies f, forcing amplitudes r and pendulum lengths . As
a first step, a set of diagrams is presented in Fig. 5 that describes the changes in the stability properties for different f, r
and l. Different colors denote stability boundaries for different lengths I, while the feedback delay is 7 = 0.1 s for all plots.
The approximation parameter was determined such that k > 10 and n > 5. It can be seen that for small amplitudes and
for small frequencies, stable domains arise only for the lengths [ = 40, 60, 80 and 100 cm that are all larger then the critical
length I.;iro = 30 cm for the unforced system. For large amplitudes and large frequencies, stable domains arise also for the
case I =20 cm (see, for instance the case r =20 mm with f= 6 Hz, where the boundaries for all lengths can clearly be seen).

Fig. 6 presents the critical stick lengths for different forcing frequencies and amplitudes. The chart was determined in the
following way. The frequency and amplitude were changed between 2 and 20 Hz and 0 and 10 mm, respectively, both in 100
steps providing a 100 x 100 grid over the plane (f,r). For each pair (f;r), the length was fixed to a starting value of s+ = 5 cm,
and the stability diagrams were determined over a 100 x 100 grid in the plane (p,d) with the bounds —0.5 < p <2 and
—0.5 < d < 2 (asin Fig. 5). Then the length of the stick was increased by Al = 2.5 cm, and the stability diagram was computed
again. The process was repeated until no stable region was found within the region —0.5 < p < 2, —0.5 < d < 2. The corre-
sponding length was denoted as the critical length for the pair (f,r). The approximation parameter for the first-order
semi-discretization method was such that k > 10 and n > 5. The calculation process was strongly time-consuming, since
the critical eigenvalue had to be calculated for around 8.5 x 108 different parameter combinations (for 100 x 100 grid over
the (p,d) plane, for 100 x 100 grid over the (f,r) plane and for an average 8.5 different lengths I). The calculation of the dia-
gram in Fig. 6 took 16 days on a normal notebook (Intel Core 2 Duo Processor, 2.4 GHz, 2 GB).
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Fig. 4. Stability charts for Eq. (5) with feedback delay 7 = 0.1 s, stick length [ = 50 cm, forcing amplitude r =5 mm for different forcing frequencies f.
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Fig. 5. Set of stability charts for Eq. (5) with 7 = 0.1 s for different forcing frequencies f and amplitudes r. Different lengths are denoted by different colors
(see the legend on the right). For large amplitudes and large frequencies, the stable regions appears also for length [ = 20 cm.
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Fig. 6. Color map for the critical length as function of forcing frequency and amplitude for 7 = 0.1 s. Numbers denote the critical lengths. Thin lines denote
the hyperbola f r=0.02, 0.04, 0.06 m/s. Thick line corresponds to the case when the maximal acceleration equals to g.



2166 T. Insperger /Commun Nonlinear Sci Numer Simulat 16 (2011) 2160-2168

The color-bar in Fig. 6 denotes the critical stick length ... Some values are also presented in the main diagram in order to
help to identify the corresponding colors. During the analysis of the diagram, it should be considered that the stability dia-
grams were determined numerically at discrete pairs (f,r) with discrete lengths [ in the (p,d) plane with —0.5<p < 2,
—0.5 < d < 2. This is the reason for the fragmented contour lines. It can be seen that for the case, when the forcing amplitude
is zero, the critical stick length is about 36 ~ 38 cm that is larger then the theoretical value I = 30 cm for the unforced
system. This is again due to the discrete numerical analysis of the parameter domains: the 100 x 100 resolution over the
parameter plane (p,d) is not fine enough to find the very narrow stability regions for lengths close to I ;.

In spite of the numerical fragmentation of the diagram, the tendency can clearly be seen: the critical length of the pen-
dulum decreases for increasing f and r approximately along the hyperbola fr = const. Some of these hyperbola are presented
in the figure for fr = 0.02, 0.04 and 0.06 m/s by thin lines for reference. A radical change in the critical length can be observed
above the hyperbola fr = 0.06 m/s, were the critical length tends to the minimum starting value s, = 5 cm. This result is not
surprising, since it is known that an inverted pendulum of any length can be stabilized by appropriate (i.e., high enough)
forcing frequency and forcing amplitude even without feedback control. However, if the power or the maximum acceleration
of the forcing is limited, then the forcing frequency and the amplitude cannot be increased arbitrarily.

A relevant issue in human stick balancing is that the base of the stick is in contact with the fingertip that implies that the
downward acceleration cannot exceed gravitational acceleration g, i.e. amay = re? < g (with w = 27f).This limit is denoted by
thick line in Fig. 6. It can be seen that the slope of this limit is larger then the slope of the fr = const hyperbola. This suggest
that in case of human stick balancing, parametric forcing is more effective if the forcing frequency is relatively small, while
the forcing amplitude is relatively large. Fig. 7 shows a similar plot for the parameters 2 < f<20Hz and 0 < r < 50 mm. It
can be seen that the critical length goes below 0.24 ~ 0.26 even if a.x < g (see around f=2 ~ 3 Hz with r =30 ~ 40 mm).

In order to confirm that a stick of length less than 30 cm can be balanced with reflex delay 7 = 0.1 s in case of parametric
forcing, a detailed stability analysis is performed for f=2.5 Hz with r = 30 mm. The corresponding maximal acceleration is
amax = 7.4 m/s?, i.e., the contact between the base of the stick and the fingertip is continuously maintained. The stability dia-
grams are presented in Fig. 8. It can be seen that very narrow stable domains do exist even for the length 18 cm. This means
that stick balancing properties can be improved by parametric forcing even if the maximum acceleration of the stick’s base
does not exceeds gravitational acceleration g.

6. Conclusions

The effect of parametric forcing on a PD control of an inverted pendulum was analyzed in the presence of feedback delay.
The stability of the time-periodic and time-delayed system was determined numerically using the first-order semi-discret-
ization method in the 5-dimensional parameter space of the pendulum length, the forcing frequency, the forcing amplitude,
the proportional and the differential gains. Due to the large number of parameters, the computations were time-consuming.

l crit [Cm]

—40

Amplitude - r [mm]

Frequency - f [Hz]

Fig. 7. Color map for the critical length as function of forcing frequency and amplitude for 7=0.1. Numbers denote the critical lengths. Thick line
corresponds to the case when the maximal acceleration equals to g.
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Fig. 8. Wandering of the stability boundaries in the plane (p,d) for forcing frequency f = 2.5 Hz and forcing amplitude r = 30 mm for different lengths I. The
maximum acceleration is dmax = 7.4 m/s?. Very narrow stable domains were found for length I =18 cm.

The critical length of the pendulum (defined as the length that can just be balanced against the time-delay) was determined
for different frequencies and amplitudes. For the case without parametric forcing, the critical length to a reflex delay of 0.1 s
is about 30 cm. If there is no limitation to the forcing parameters, then the critical length can be decreased arbitrarily,
since an inverted pendulum of any length can be stabilized by large enough forcing frequency and amplitude even without
feedback control.

If the frequency and/or the amplitude of the parametric forcing are limited by any reason, then the critical length cannot
be decreased arbitrarily. This issue is relevant to stick balancing at the fingertip [23], where the acceleration of the stick’s
base cannot exceed gravitational acceleration. The numerical study showed that the critical length can effectively be de-
creased for this case, too, with relatively low forcing frequencies (around 2 ~ 3 Hz) and relatively large forcing amplitudes
(around 3 ~ 4 cm). For instance, the critical length to the reflex delay 0.1 s with frequency 2.5 Hz and amplitude 30 mm was
found to be 18 cm.

In this analysis, the stick balancing ability was characterized by the stability of the process based on a purely mechanical
model. This model provides information only about the existence of such control gains that provides a stable control process
in the neighborhood of the upward position in the presence of given feedback delays. Other aspects, like the survival times
[8,23], i.e., the time interval for that one is able to balance a stick at the fingertip, can hardly be evaluated based on this
model. This phenomenon is rather related to a more complex model of the combined mechanical and neural system.
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