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Abstract: Act-and-wait control is a special case of time-periodic control for systems with feedback delay,
where the control gains are periodically switched on and off in order to stabilize otherwise unstable sys-
tems. The stability of feedback systems in the presence of time delay is a challenging problem. In this paper,
we show that the act-and-wait type time-periodic control can always provide deadbeat control for first-order
unstable lag processes with any (large but) fixed value of the time delay in the feedback loop. A full charac-
terization of this act-and-wait controller with respect to the system and control parameters is given based on
performance and robustness against disturbances.
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1. INTRODUCTION

Parallel to the development of control theory, the mathematical theory of time delayed sys-
tems emerged in the early 1950s. Most of the theory of ordinary differential equations
(ODEs) has been generalized for delay-differential equations (DDEs), which have infinite-
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dimensional phase spaces (Hale and Lunel, 1993� Diekmann et al., 1995). The first results
for the stability analyses of linear autonomous-delayed systems appeared in the work of
Hayes (1950), Bhatt and Hsu (1966) and Cushing (1977), while applications and algorithms
appeared somewhat later (Kolmanovskii and Nosov,1986� Stépán, 1989� Niculescu, 2000�
Olgac and Sipahi, 2002� Michiels et al., 2002� Breda et al., 2004� Butcher et al., 2004�
Kalmár-Nagy, 2005� Liu et al., 2010�Mann and Patel, 2010).

The mathematical description of time-periodic nonautonomous systems goes back to
the mid 19th century (Mathieu, 1868). Although a correct theoretical basis for the stability
analysis of these periodic systems was provided by the Floquet theory in the 19th century
(Floquet, 1883), the first stability results, such as those of Stephenson (1908) or van der Pol
and Strutt (1928), appeared only much later due to the lack of a simple algorithm for stability
analysis.

As both autonomous-delayed systems and time-periodic ordinary systems are quite well
understood, those engineering models have received attention in recent years where the two
effects, namely the delay and the time-periodic system parameter may be present together –
including the case of time-periodic time delay (see, for example, Namachchivaya and Bed-
dini, 2003� Insperger and Stépán, 2004). In this respect, the most transparent engineering
problem is the delayed and parametrically excited oscillator modeled by the delayed Math-
ieu equation (Insperger and Stépán, 2002a). Its stability analysis was motivated by several
engineering applications (see, for example, Budak and Altintas, 1998).

Time delay often arises in feedback control systems where the time required for the ac-
quisition of response and excitation data, the information transmission, or the on-line data
processing is not negligible. In spite of the efforts to minimize these delays, they cannot
be fully eliminated due to physical limits. The information delay may be crucial, for exam-
ple, in space applications (Kim and Bejczy, 1993), in controlling congestion in the Internet
(Shakkottai et al., 2003), or in robotic applications with time-consuming control force com-
putation (Kovács et al., 2004).

Although time-invariant state feedback is a wide-spread and easily applicable technique
for control systems, it does not provide a stabilizing controller for all systems. In these cases,
the use of time-periodic feedback gains may improve stability properties. The problem of
stabilization by means of time-periodic feedback gains in nondelayed systems has been
presented by Brockett (1998) as one of the challenging open problems in control theory.
Together with some papers on discrete-time systems (Aeyels and Willems, 1992� Leonov,
2002a�Artstein and Weiss, 2005�Weiss, 2005), partial results have been presented by Leonov
(2002b) and Allright et al. (2005) for piecewise constant control gains and by Moreau and
Aeyels (2004) for sinusoidal control gains. The solution to the problem for a wide class of
systems – without delay – was recently presented by Boikov (2005).

When time-periodic gains are used in the control, stabilization means the placement of
the characteristic multipliers of the system inside the unit circle of the complex plane in
accordance with Floquet theory (see, for example, Farkas, 1994). In this sense, stabilization
is a weak version of pole placement, where the poles are defined as the eigenvalues of the
so-called Floquet transition matrix (or monodromy matrix) of the time-periodic system. The
main difficulty in the above analysis is that there are no closed-form results to construct this
matrix analytically.

Caused by the delay of the time-periodic control feedback, the governing equation is
a nonautonomous DDE with an infinite-dimensional phase space (Hale and Lunel, 1993�
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Figure 1. Block diagram of the control system with feedback delay.

Farkas, 1994). Therefore, the linear stability conditions for the system parameters are even
more complicated. The infinitely many characteristic multipliers (taking the role of the sys-
tem poles) are the eigenvalues of the monodromy operator (infinite-dimensional Floquet
transition matrix), and these poles should be placed in the open unit disc of the complex
plane to achieve stability.

Stabilization of time-delayed systems is difficult, since an infinite number of poles
should be controlled using a finite number of control parameters. The act-and-wait control
method is an effective technique to place infinitely many poles at the origin even for systems
with large feedback delay, which makes the pole placement problem easier. It is a special
case of periodic controllers in which the controller is switched on and off periodically. The
method was introduced first for discrete systems by Insperger and Stépán (2007), and it was
adopted for continuous-time systems by Insperger (2006) and Stépán and Insperger (2006).

In this paper, we present a full characterization of the act-and-wait control applied for
the delayed first-order lag compensator. The optimization of the waiting time relative to the
time delay in the feedback loop is based on the analytical construction of the monodromy
operator. It is shown that deadbeat control can be achieved in a wide range of parameters if
the waiting time is larger than the delay. The system performance is analyzed with respect to
three different terms of the performance index including the fastest settling signal (or largest
stability margin), the minimal control effort, and the minimal error for constant actuator
disturbances such as Coulomb friction. The robustness of the deadbeat control strategy with
respect to perturbations in the system and control parameters is also analyzed using stability
radii as a measure.

The analysis gives a summary of the pros and cons of the act-and-wait control strategy
that helps control engineers to choose between options such as the Smith predictor, or other
well-known methods.

2. MATHEMATICAL MODEL OF ACT-AND-WAIT CONTROL FOR A

FIRST-ORDER LAG SYSTEM

Figure 1 shows the control loop of the simplest possible system where advantages of the
act-and-wait control can be discussed. The SISO plant P is a first-order system described by

�x�t� � a x�t�� b �u�t����� (1)

y�t� � c x�t�� (2)
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Figure 2. The act-and-wait function.

with system parameter a � 0, which corresponds to an unstable open-loop process. The
actuator disturbances are modeled by �, which is assumed to be constant when the effect
of Coulomb friction is considered with respect to the accuracy of the final position of the
system in the case of stable processes.

The plant is set in a negative feedback loop that contains a feedback delay � . The con-
troller is given by

u�t� � ��t� d �r�t�� x�t � ���� (3)

where d is the control gain, while

��t� �
�

0� if 0 � t mod T 	 tw�

1� if tw � t mod T 	 tw � ta � T 

(4)

The periodic piecewise constant function � activates and deactivates the control. For a time
period of length tw, the controller is switched off (wait), while for the next period of length
ta, the controller is switched on (act), as shown in Figure 2. This is then repeated periodically
with time period T � tw � ta leading to the act-and-wait control strategy.

With the appropriate rescaling of time with respect to the time delay, the delay parameter
(when present) can be set to � � 1. Furthermore, we consider a zero reference signal: r�t� �
0, and we assume, without loss of generality, that b � 1 and c � 1. Thus, the system under
study is of the form:

�x�t� � a x�t�� u�t���� (5)

u�t� � ���t�d x�t � 1�
 (6)

Since� is constant, it does not affect stability properties, but does affect the accuracy of
the final position xf, given by

xf � lim
t	
 x�t� � �

d � a

 (7)
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3. MOTIVATION

The system in equations 5 and 6 without actuator disturbances � gives the time-periodic
DDE,

�x�t� � a x�t�� ��t� d x�t � 1�
 (8)

The goal of this paper is to provide a full stability picture of equations 8 and 4 for any system
parameter a � 0 with respect to the control parameters d, tw and ta. First, some special cases
are discussed.

3.1. Case d � 0

If there is no controller and no disturbance, apart from the initial condition x�0� for the
system, we are left with

�x�t� � ax�t� � x�t� � eat x�0�� (9)

leading to xf 	�
 for a � 0.

3.2. Case d 
� 0, ��t� � 1, � � 0

If there is no time delay in the feedback loop, then constant control gains can also be used to
stabilize the system. In this case, the governing equation and the system response become

�x�t� � �a � d�x�t� � x�t� � e�a�d�t x�0�
 (10)

Therefore, a control gain d � a always provides a stable process.

3.3. Case d 
� 0, ��t� � 1, � � 1

In the presence of time delay, constant gains can still produce a stable process. The corre-
sponding equation becomes

�x�t� � a x�t�� d x�t � 1�
 (11)

Due to the time delay, this system has an infinite number of characteristic roots. Stability
properties of this system are described by the so called Hayes diagram (Hayes, 1950) shown
in Figure 3. This equation is often considered to be one of the simplest basic examples
for a delayed system (see, for example, Stépán, 1989� Michiels et al., 2002). The stability
boundaries (thick lines in Figure 3) and the parameters corresponding to largest stability
margin (dashed line in Figure 3) can be determined through the analysis of the characteristic
equation. If a � 1, then this system is always unstable for any value of d.
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Figure 3. The Hayes diagram for equation 11.

3.4. The act-and-wait control strategy

The equation under investigation now becomes

�x�t� � a x�t�� ��t� d x�t � 1�� (12)

where ��t� is given by equation 4. The general solution of this DDE for the initial function
x0 can be formulated as

xt � ��t�x0� (13)

where ��t� is the solution operator of the system, the function xt is defined by the shift

xt�s� � x�t � s�� s � [�1� 0]� (14)

and x0�s� is the initial function for the system. Stability properties are determined by the
monodromy operator ��T �. The nonzero elements of the spectrum of ��T � are called char-
acteristic multipliers (or poles), also defined by

Ker��� � ��T �� 
� �0�
 (15)

The system is asymptotically stable if all the characteristic multipliers lie in the open unit disc
of the complex plane. Since DDEs usually have infinitely many poles, stability properties
cannot be given in closed form, but numerical techniques can be used to construct stability
charts.

The point of the act-and-wait concept is that, if the waiting period is longer than the time
delay, then the monodromy operator becomes finite-dimensional and can be represented as
a monodromy matrix of the same dimension as the plant (see, Insperger, 2006). In our case,
this means that, if tw � 1, then equation 12 can be transformed into a scalar discrete map.
This does not hold for the case tw 	 1.

Figure 4 shows a series of stability charts for equation 12 in the parameter plane �a� d�
for different waiting and acting period lengths. The charts were determined numerically by
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Figure 4. Stability charts for equation 12. Thick lines: stability boundaries for the act-and-wait control
system. Thin lines: stability boundaries for the case ��t� � 1.

computing the critical (maximum in modulus) poles over a 200 � 200 sized grid of the
parameters a and d using the semi-discretization method (Insperger and Stépán, 2002b). For
comparison, the stability boundaries corresponding to the Hayes diagram (when ��t� � 1)
are also shown by thin lines. It can be seen that the stable domains are essentially larger (for
certain waiting and acting period lengths) than those of the Hayes diagram.
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The case with tw � 1 and ta � 1 has already been investigated in Stépan and Insperger
(2006) as a case study. It was shown that the system is described by a scalar discrete map,
and for any system parameter a, deadbeat control can be achieved. Here, this system will
be investigated for a wider range of the parameters a, d, tw and ta, including the case when
tw 	 1.

4. OPTIMIZATION OF WAITING TIME

Stability properties of equation 12 are determined by the monodromy operator ��T � that
maps the initial function x0 into xT . This means that the state x�T � generally depends on
the initial function x0�s�, and it cannot be determined using a single initial value, say x�0�.
However, in some special cases of the act-and-wait control system, finite-dimensional dis-
crete maps can be constructed between finitely many states of the initial function x0 and the
function xT after time T . In these cases, the delayed systems become finite-dimensional, and
the stability properties are also determined by a finite number of poles. These cases will be
investigated in the following subsections.

4.1. Case tw � 1

In this case, a closed-form solution can be determined for any acting period ta. Assume, the
general case n � 1 	 ta � n, where n is an arbitrary positive integer. Since the delayed term
is switched off during the waiting period, the first section of the solution can be given as

xw�t� � eat x�0�� 0 � t � tw
 (16)

Here, subscript w refers to the solution over the waiting period.
Now, we use the fact that the waiting period is larger than (or equal to) the time delay, and

that the solution over 0 � t � tw is given by equation 16. Thus, in the interval tw 	 t � tw�1,
equation 12 can be written as

�x�t� � a x�t�� dea�t�1�x�0�� tw 	 t � tw � 1� (17)

and its solution for the initial condition x�tw� � eatw x�0� is given by

xa1�t� �
eat x�0�� �� �
� xw�t�

� dea�t�1�x�0�
� t

tw

s� tw 	 t � tw � 1
 (18)

Here, subscript a1 refers to the solution over the first section of the acting period.
For tw � 1 	 t � tw � 2, equation 12 becomes

�x�t� � ax�t�� d

�
ea�t�1�x�0�� dea�t�2�x�0�

� t�1

tw

ds

	
� tw � 1 	 t � tw � 2� (19)

and its solution for the initial condition x�tw � 1� � xa1�tw � 1� is given by
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xa2�t� �
eat x�0�� dea�t�1�x�0�

� t

tw

ds� �� �
� xa1�t�

� d2ea�t�2�x�0�
� t

tw�1

� s2�1

tw

ds1ds2�

tw � 1 	 t � tw � 2
 (20)

Generally, it can be shown that the solution over the interval tw � k � 1 	 t � tw � k is
given by

xak�t� � xak�1 � ��1�kdkea�t�k� Ik�t�x�0�� (21)

where Ik�t� is a nested integral defined recursively as

Ik�t� �
� t

tw�k�1
Ik�1�sk � 1�dsk� (22)

with I0�t� � 1, which can be evaluated in closed form as

Ik�t� � �t � tw � k � 1�k

k!

 (23)

Thus, the solution in the interval tw � n � 1 	 t � tw � n can be written in the compact
form

xan�t� � eat



n�

k�0

��de�a�k�t � tw � k � 1�k

k!

�
x�0�
 (24)

Substitution of t � ta � tw � T into equation 24 yields the discrete map �n from x�0�
to x�T � as

�n � ea�ta�tw�



n�

k�0

��de�a�k�ta � k � 1�k

k!

�

 (25)

This way, the monodromy mapping

xT � ��T �x0� (26)

is reduced to 

x�T �

�xT

�
�


�n O

fn �

�

x�0�

�x0

�
� (27)

where function �xt is defined by the shift

�xt�s� � x�t � s�� s � [�1� 0�
 (28)
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Note that s � 0 is excluded here as opposed to equation 14. In equation 27, O denotes the
zero functional, � denotes the zero operator and fn is a function given from the solution in
equation 24 as

fn�s� �


��
��

eas
��n�1

k�0
��de�a�k �s�T�tw�k�1�k

k!

�
� if �1 � s 	 n � 1� ta�

eas
��n

k�0
��de�a�k �s�T�tw�k�1�k

k!

�
� if n � 1� ta � s 	 0


(29)

Equation 27 shows that function xT can be determined using only the initial value x�0� and
does not depend on the initial function �x0. Thus, the monodromy operator has only 1 nonzero
eigenvalue that is just equal to �n, and all the further infinitely many eigenvalues are set to
zero. Clearly, the system is stable if ��n� � 1.

For 0 	 ta � 1, equation 25 gives

�1 � ea�ta�tw��1� de�ata�
 (30)

If 1 	 ta � 2, then

�2 � ea�ta�tw�

�
1� de�ata � 1

2
d2e�2a�ta � 1�2

	

 (31)

Figure 5 shows a stability chart in the parameter plane �d� ta�. The stability boundaries
in the domains n � 1 	 ta � n, n � 1� 2� 3� 4 were determined by solving �n � �1 for �
and ta using equation 25.

The condition for deadbeat control is �n � 0. Using equation 25, this gives

n�
k�0

��1�k�ta � k � 1�ke�ka

k!
dk � 0
 (32)

Note that this condition depends only on the parameter triples a, ta and d, and does not
depend on the waiting period tw. For a given system parameter a and acting period n � 1 	
ta � n, the left-hand side of 32 is a polynomial in d of order n. Hence, in the case of real
polynomial roots, there are n distinct values of d for deadbeat control. For 0 	 ta � 1,
deadbeat control is achieved if

d � ea
ta
 (33)

For 1 	 ta � 2, �2 � 0 gives

d1�2 � ta �
��t2

a � 4ta � 2

�ta � 1�2
ea
 (34)

For a given 1 	 ta � 2, there exist two values of d that result in deadbeat control. For larger
ta,�3 � 0,�4 � 0, etc. should be considered, and further deadbeat parameter curves appear,
as shown in Figure 5 by dashed lines.
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Figure 5. Stability chart for equation 12 with a � 0
2 and tw � 1. Solid lines: stability boundaries for the
act-and-wait control system. Dashed lines: parameter curves for deadbeat control.

The values of the control gain parameter d at the intersection points of the lowest dead-
beat parameter curve and the vertical lines ta � 1� 2� 
 
 
 can be computed using 32. The
first section point (P1 in Figure 5) corresponds to dP1 � ea , the second point (P2 in Figure 5)
corresponds to dP2 � �2�

�
2�ea . For ta 	
, numerical computation gives the conjecture

lim
n	
 dPn � ea�1
 (35)

Thus, the line d � ea�1 is an asymptote of the deadbeat curve. This means that deadbeat
control cannot be achieved if d 	 ea�1 (due to some restriction on the maximal control
gain).

In Figure 5, the gray color denotes an interesting parameter domain. This gray area is
surrounded by deadbeat parameter curves with no stability boundaries in between them. This
means that the stability properties of the corresponding system is very robust with respect to
perturbations in d. If ta is fixed and d is perturbed, then the system moves to the direction of
deadbeat for both decreasing and increasing d without loosing stability.

Since �n is proportional to eatw, its magnitude increases with increasing tw. This means
that the stable domains of the stability charts shrinks with increasing tw. On the other hand,
the reduction of the infinite-dimensional problem to the scalar problem described by equa-
tion 25 is possible only if tw � 1. Consequently, the optimal choice of the waiting period is
tw � 1.
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Figure 6. Stability chart for equation 12 with a � 0
1. Continuous lines: stability boundaries. Dashed
lines: deadbeat control.

However, the choice of tw � 1 may produce some sensitivity problems, since some
small perturbations either in tw or in the delay � � 1 may result in tw 	 � . In that case,
the scalar map �n cannot be constructed, and the system can suddenly become infinite-
dimensional. In order to investigate this issue, some stability charts are presented in Figure 6
for different values of tw. The charts for tw � 0
5, 0.8 and 0.9 were constructed using the
semi-discretization method (Insperger and Stépán, 2002b). For the cases tw � 1� 2� 5, the
charts were determined by solving �n � �1 for fixed values of ta.

For tw � 1, it can be seen that the stable domains shrink slightly for increasing tw.
The numerical plots for tw 	 1 show that the transition between the cases tw 	 1 and
tw � 1 is smooth, no abrupt change in the stability boundaries can be detected. However, one
significant difference is that, while deadbeat control is possible for tw � 1, it is not possible
for tw 	 1, as will be shown in the next subsection.

4.2. Case tw 	 1

The constructive step-by-step solution presented in the previous subsection is not valid if the
waiting period is shorter than the time delay (tw 	 1). It can be shown that, under certain
conditions, the system can still be transformed into a finite-dimensional map. Consider the
following cases:

(a) case tw 	 1 with n � 1� tw 	 T � n � tw, see Figure 7a�
(b) case tw 	 1 with n 	 T � n � 1� tw, see Figure 7b�
(c) case tw 	 1 with n � 1� tw 	 T � n, see Figure 7c.
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Figure 7. Graphs of the solution of equation 12 for different cases: (a) tw 	 1, n � 1� tw 	 T � n � tw�
(b) tw 	 1, n 	 T � n � 1� tw� and (c) tw 	 1, n � 1� tw 	 T � n.

4.2.1. Case tw 	 1, with n � 1� tw 	 T � n � tw

Consider first the case n � 1, i.e. 2 � tw 	 T � 1 � tw. The solution over one act-and-
wait period is divided into three parts [0� tw], [tw� 1] and [1� T ], as shown in Figure 7a. For
0 	 t � tw, the solution is

xp1�t� � eat x�0�� (36)

where the subscript p1 refers to part 1. Integration gives the second part for tw 	 t � 1,

xp2�t� � eat x�0�� d
� t�1

tw�1
ea�t�s�1�x0�s�ds
 (37)

The state x�1� is given by

x�1� � ea x�0�� d

� 0

tw�1
e�as x0�s�ds� �� �
�: Y1�0


 (38)

Here, Y1�0 is a special weighted integral of the initial function x0. Finally, the third part of the
solution for 1 	 t � T is given by
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xp3�t� � eat�1� de�a�t � 1��x�0�� dea�t�1�Y1�0
 (39)

Thus, the state after one act-and-wait period is

x�T � � eaT �1� de�a�T � 1��x�0�� dea�T�1�Y1�0
 (40)

Here, x�T � is determined as a linear combination of the initial state x�0� and the weighted
integral Y1�0. In order to obtain a discrete map, the value of

Y1�T :�
� 0

tw�1
e�as xT �s�ds (41)

should also be expressed as a linear combination of x�0� and Y1�0. Here, xT can be expressed
as

xT �s� �


���
���

xp1�s � T �� if �1 � s � tw � T�

xp2�s � T �� if tw � T � s � 1� T�

xp3�s � T �� if 1� T � s � 0


(42)

Thus, integration of equation 41 gives

Y1�T �
� 0

tw�1
e�as xp3�s � T �ds
 (43)

Note that the solution segment xp3 is given in equation 39. After evaluation of the integrals,
it can be seen that Y1�T can be given as a linear combination of x�0� and Y1�0. This implies
the discrete map 


x�T �

Y1�T

�
� �1



x�0�

Y1�0

�
� (44)

where �1 is a 2� 2 matrix,

�1 �



eaT �1� de�a�T � 1�� �dea�T�1�

ea�T�1��1� tw�
�
ea � 1

2 d�tw � 2T � 3�
� �dea�T�1��1� tw�

�

 (45)

This way, the monodromy mapping can be written in the form

�
��x�T �

Y1�T

�T

�
�� �

�
���
�1�11� �1�12� O

�1�21� �1�22� O

fx fY 1 �

�
���
�
���

x�0�

Y1�0

�0

�
��� 
 (46)

Here, function �t is defined as
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�t�s� � xt � xt�0�sx � Y1�t sY 1� (47)

where

Y1�t �
� 0

tw�1
e�as xp3�s � t�ds� (48)

and sx and sY 1 are the right eigenvectors of the monodromy operator ��T � corresponding to
xt�0� and Y1�t , respectively. Functions fx and fY 1 describe the dependence of �T on x�0� and
Y1�0. Equation 46 shows that the system can be reduced to a 2 � 2 system governed by �1.
All the remaining infinitely many eigenvalues are set to zero.

Consider now the case n � 2, i.e. 3� tw 	 T � 2� tw. In this case, a three-dimensional
discrete map can be constructed:�

���
x�T �

Y1�T

Y2�T

�
��� � �2

�
���

x�0�

Y1�0

Y2�0

�
��� � (49)

where Y1�0 and Y1�T are defined in equations 38 and 41, and

Y2�0 :�
� 1

tw

� s1�1

tw�1
e�as2 x0�s2�ds2ds1� (50)

Y2�T :�
� 1

tw

� s1�1

tw�1
e�as2 xT �s2�ds2ds1
 (51)

Here, �2 is a 3� 3 transition matrix (not presented here in detail).
It can be shown that, for the general case n � 1 � tw 	 T � n � tw, the system can

always be described by an �n � 1�� �n � 1� transition matrix, denoted by �n . In this case,
deadbeat control cannot be achieved, since �n � 1� poles cannot, in general, be placed at the
origin using only one control parameter, d .

4.2.2. Case tw 	 1, with n 	 T � n � 1� tw

Consider first the case n � 1, i.e. 1 	 T � 2 � tw (see Figure 7b). The solution after one
act-and-wait period can be determined according to equation 40, but the weighted integral
Y1�T is now given by

Y1�T �
� 1�T

tw�1
e�as xp2�s � T �ds �

� 0

1�T
e�as xp3�s � T �ds (52)

instead of equation 43, since now tw � 1 	 1 � T . From equation 52, it can be seen that
Y1�T can only be determined if the initial function x0�s� is known over s � [tw � 1� 1 � T ].
Thus, in this case, no finite-dimensional discrete map can be constructed in a similar way
to that in Section 4.2.1. Similarly, it can be shown that, for any n � 2� 3� 
 
 
 , the algorithm
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of constructing a finite-dimensional discrete map does not work. Note, however, that the
fact that a finite-dimensional map cannot be constructed in this way does not assure that the
system is infinite-dimensional.

4.2.3. Case tw 	 1, with n � 1� tw 	 T � n

Consider first the case n � 1, i.e. tw 	 T � 1 (see Figure 7c). The state after one act-and-
wait period is given by

x�T � � eaT x�0�� d

� T�1

tw�1
ea�T�s�1�x0�s�ds� �� �
�: V1�0


 (53)

This is a linear combination of x�0� and the weighted integral V1�0. In order to obtain a
discrete map, the value of

V1�T :�
� T�1

tw�1
ea�T�s�1�xT �s�ds (54)

should also be expressed as a linear combination of x�0� and V1�0. Here, xT is given by

xT �s� �


���
���

x0�s � T �� if �1 	 s � �T�

xp1�s � T �� if �T 	 s � tw � T�

xp2�s � T �� if tw � T 	 s � 0


(55)

where the functions xp1�s� and xp1�s� are defined in equations 36 and 37, respectively. Thus,

V1�T �
� tw�T

tw�1
ea�T�s�1�xp1�s � T �ds �

� T�1

tw�T
ea�T�s�1�xp2�s � T �ds
 (56)

It can be seen that V1�T can only be determined if the initial function x0�s� is known over
s � [tw � 1� T � 1]. Thus, the algorithm of constructing a finite-dimensional discrete map
does not work in this case either.

One can say that the system with n�1� tw 	 T 	 n�1� tw can generally be described
by the monodromy operator ��� �, which, in general (but not necessary), has infinitely many
poles.

4.3. Number of poles for arbitrary tw

Based on the previous subsections, the number of poles of equation 12 is summarized in
Table 1. The geometric representation of the different cases in the plane �ta� tw� are presented
in Figure 8. Question marks refers to the fact that the system is not necessarily infinite-
dimensional if the algorithm for constructing a finite dimensional discrete map fails, as it
was shown in Sections 4.2.2 and 4.2.3.
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Table 1. Summary of the dimension of the monodromy operator of equation 12.

Condition for tw and ta Monodromy operator Number of nonzero poles

tw � 1
n � 1 	 ta � n

�
�n O
fn �

	
1

tw 	 1

n � 1 	 ta � n

tw � n�1
2 � ta

2

�
�n O
fx�Y �

	
n � 1

tw 	 1
n � 1 	 ta � n

tw 	
n�1

2 � ta
2

��T � 
(?)

Figure 8. Chart of the dimension of the monodromy operator of equation 12.

5. OPTIMIZATION OF OTHER PARAMETERS BASED ON PERFOR-

MANCE

The system performance is characterized by the index

J � 1

2
Q J1 � 1

2
R J2 � 1

2
W J3� (57)

where

J1 �
� 


0
x2�s�ds� J2 �

� 


0
u2�s�ds� J3 � x2

f 
 (58)

In the above, J1 roughly corresponds to the rate of decay of the signal, J2 to the control effort,
and J3 corresponds to the accuracy of the final position for constant actuator disturbances
such as Coulomb friction. The constants Q, R and W are weights. The aim is to find the
control parameters that minimize the performance index J . Since the weights Q, R and
W might be different for different problems, we will investigate the terms J1, J2 and J3

individually for the deadbeat case tw � 1, 0 	 ta � 1 when ta � ea
d. For this case, the
control input and the solution can be given in the piecewise form as (see Figure 9):
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Figure 9. The input and the response of the system in the deadbeat case with a � 1 and ta � 1.

u�t� �


���
���

0� if 0 	 t � tw�

dea�t�1�x�0�� if tw 	 t � tw � ta�

0� if tw � ta 	 t�

(59)

x�t� �


���
���

eat x�0�� if 0 	 t � tw�

deat�1� e�a��t � tw�x�0�� if tw 	 t � tw � ta�

0� if tw � ta 	 t


(60)

Evaluation of J1 using equation 60 and substitution of ta � ea
d gives

J1 �
�
� 1

2a

�
e2atw � 1

��
�

e
2aea

d � 1
�

d2 � 2daea � 2a2e2a

4a3
e2a�tw�1�

�
� x2�0�
 (61)

From here, it can be seen that

� J1

�d
	 0� (62)

i.e. the larger the control gain d, the less the J1. Thus, the optimal gain with respect to J1 is
dJ1 opt 	
, with the corresponding acting period length ta J1 opt 	 0.

Evaluation of term J2 using euqation 59 with ta � ea
d gives

J2 �
�

e
2aea

d � 1
�

e2a�tw�1�

2a
d2x2�0�
 (63)
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Figure 10. Optimal gain d and acting period length ta for deadbeat control with ta 	 1.

Partial derivation with respect to d gives the control gain where J2 is minimal,

dJ2 opt � 2aea

WL��2e�2�� 2

 (64)

Here WL�s� is the so-called Lambert function, defined as WL�s�eWL�s� � s. Lambert functions
often arise in computational techniques for DDEs (see, for example, Asl and Ulsoy, 2003).
The corresponding optimal acting period length is

ta J2 opt � ea

dJ2 opt
� WL��2e�2�� 2

2a

 (65)

Since the current analysis is restricted to the case ta � 1, these optimal values are available
only if a � 1�WL��2e�2�
2 � 0
7968. Here, dJ2 opt � 2
2184. The corresponding optimal
parameters are presented in Figure 10 by solid lines. Optimal parameters for the cases when
ta � 1 can be obtained similarly.

The term J3 depends only on the final position given by equation 7,

J3 � x2
f �

�2

�d � a�2

 (66)

Since J3 is inversely proportional to the square of gain d, it decreases with an increase in the
control gain. Hence, the optimal gain considering J3 is given by dJ3 opt 	 
 similar to the
one corresponding to J1.

Note that the minimum of J1 and J3 are obtained at d 	
, while the minimum of J2

(given by equation 64) is obtained at finite values of the control gain d with a corresponding
acting time ta, both depending on the system parameter a, as shown in Figure 10. Depending
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on the problem at hand, the weights Q, R and W can be chosen and an overall optimal value
can be determined by minimizing the composite performance index J given by equation 57.
This minimization process might be subject to problem-specific physical constraints such as
limitations on the maximum control force or the maximum acting period.

6. ROBUSTNESS OF DEADBEAT CONTROL

In the case of deadbeat control, all the poles are located at the origin. However, small per-
turbations in the system or control parameters destroy this property, and larger perturba-
tions may even destabilize the originally deadbeat system. According to Michiels and Roose
(2003), the stability radius can be used as a measure of the robustness of stability. The stabil-
ity radius corresponds to the smallest perturbations that result in a shift of a pole outside the
closed unit disc of the complex plane and, hence, cause instability. For given parameters a,
d, tw and ta, denote the spectral radius of the monodromy operator ��T � by � 1�a� d� tw� ta�.
For instance, the stability radius of the deadbeat control system with respect to changes in a
can be defined as

ra � inf
�a��

���a
a� : � 1�a ��a� ddb� tw� ta� � 1� � (67)

where ddb is the control gain that results in deadbeat control. For fixed a and ta, the gain ddb

can be given by solving equation 32 for d. We can similarly define stability radii rd , rtw and
rta .

In the case tw � 1 and 0 	 ta � 1, the stability radius rd can be determined in closed
form:

�1 � 0 � ddb � ea

ta

�1 � �1 � d�1 � ea � ea�1�ta�tw�

ta

����
��� � rd � e�a�ta�tw� � e�aT 
 (68)

Note that the deadbeat parameter points are right in the middle of the domain of stability. This
means that the deadbeat parameter points are just those where the robustness of stability is
the largest in the sense of Michiels and Roose (2003). It can clearly be seen that rd decreases
with increasing a, ta and tw.

As opposed to rd , stability radii ra , rtw and rta cannot be expressed in closed form, but
they can be determined numerically. For given parameters a and ta, the deadbeat control
gain ddb can be determined using equation 32, and the stability of the system can be followed
numerically for varying a, ta and tw. The minimum absolute value of�a,�ta and�tw, which
result in an unstable system gives ra, rta and rtw.

For fixed n � 1 	 ta � n and tw � 1, stability radius ra can be determined numerically
using equation 25 for �n . However, during the numerical computation of rta , the condition
n � 1 	 ta ��ta � n should be monitored in order to use the proper value of n for �n .

It can be seen that stability radius rtw always satisfies
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Figure 11. Robustness of deadbeat control for tw � 1. Thick lines: ta � 1. Thin lines: ta � 0
5. Dashed
lines: ta � 0
2.

rtw � 1� 1
tw
 (69)

This is due to the fact that if tw��tw � 1, i.e. tw is large enough so that it never gets smaller
than 1 for any disturbances, then the system is described by �n, and the corresponding dead-
beat condition 32 does not depend on tw. The only possible way to lose stability is to perturb
tw by �tw 	 1� tw in order to get tw ��tw 	 1, which corresponds to equation 69. In this
case, equation 25 for�n is not valid any more, since the dimension of the system changes ac-
cording to Figure 8, and the system may also become infinite-dimensional. Then, rtw should
be determined using other numerical techniques. Here, the semi-discretization method was
used.

Figure 11 shows the stability radii of the deadbeat control as a function of system pa-
rameter a for different acting period length ta, while the waiting period length is fixed to
tw � 1. It can be seen that stability radii ra , rd and, for a � 0
5, rta increase with decreasing
ta, while the stability radius rtw increases with increasing ta.

Figure 12 shows the stability radii of the deadbeat control for different waiting period
length tw, while the acting period length is fixed to ta � 1. It can be seen that stability radii ra ,
rd and rta decrease with increasing tw, while the stability radius rtw increases with increasing
tw. Note that equation 69 gives here rtw � 1
2 for tw � 2 and rtw � 4
5 for tw � 5, as can
also be seen in Figure 12.

Stability radii rtw in Figures 11 and 12 shows that the system does not get suddenly unsta-
ble for perturbations in tw, even in the case tw ��tw 	 1 when the system may also become
infinite-dimensional. If tw � 2 or 5, then the system is more robust against disturbances in tw

than against disturbances in a, d and ta. For tw � 1 and ta � 1, rtw have similar characteristics
to the stability radii ra , rd or rta . However, if tw � 1 and ta � 0
5 or 0.2, then the robustness
against tw is worse than that against the other parameters. Figures 11 and 12 also show that
all the four stability radii ra , rd , rta and rtw decrease with increasing system parameter a.

Robustness against disturbances in the time delay can be characterized by the stability
radius with respect to changes in the delay. Due to the scaling of the time delay to � � 1,
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Figure 12. Robustness of deadbeat control for ta � 1. Thick lines: tw � 1. Thin lines: tw � 2. Dashed
lines: tw � 5.

disturbances in the delay parameter are transformed to disturbances in the parameters a, d ,
ta and tw. If the time delay is changed from 1 to 1 � �� , then rescaling of the time gives
�a � a�1����, �d � d�1����, �ta � ta
�1���� and �ta � tw
�1����, where tilde denotes
the parameters in the rescaled time. Thus the robustness of the system against disturbances
in the time delay is a combination of the robustness against disturbances in a, d, ta and tw.
The corresponding stability radius can be defined as

r� � inf
����

���� �
1 : � 1�a�1����� ddb�1����� tw
�1����� ta
�1����� � 1� 
 (70)

If tw
�1 ���� � 1 and 0 	 ta
�1 ���� � 1, then this transformation does not affect
the terms a�ta � tw� and d ta of �1 in equation 30, and the only term that changes is e�a . In
this case, substitution of the deadbeat condition ddb � ea
ta into �1 � �1 gives the stability
radius r� as

r� � 1

a
ln
�
1� e�a�ta�tw�

�

 (71)

The case n � 1 	 ta
�1 � ��� � n can be investigated similarly, but �n should be used
instead of �1. If the perturbation yields tw
�1 � ��� 	 1 then the system’s dimension
changes according to Figure 8 and �n cannot be used, but stability can be determined using
numerical techniques, such as the semi-discretization method.

Figure 13 shows the stability radius r� of the deadbeat control as a function of system
parameter a for different act-and-wait period lengths. It can be seen that the stability radius
increases with decreasing tw and with increasing ta. The point is that, even if tw is chosen to
be close to 1, and disturbances in the parameters results in tw 	 � � 1, the stability of the
system does not change radically. Moreover, the robustness against disturbance in the delay
� or the waiting period length tw show similar characteristic as the robustness against the
other parameters a, d and ta.
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Figure 13. Robustness of deadbeat control against disturbances in the time delay, with the nominal value
� � 1.

7. CONCLUSION

The act-and-wait concept was investigated for the delayed first-order lag compensator in
equation 12 with respect to the state parameter a and the three control parameters, namely,
the control gain d, the length ta of the acting period and the length tw of the waiting period.
The delay parameter � was scaled to 1. It was shown that if tw � 1, then the system can be
transformed into a scalar discrete map, and deadbeat control can always be achieved for any
system parameter a. If tw and ta are fixed so that tw � 1 and ta � 1, then more values of d can
be found that result in deadbeat control. In these cases, there are some parameter domains
(gray region in Figure 5) that are bounded by deadbeat parameter curves. In these domains,
both increase and decrease of the control gain d push the system to the direction of deadbeat.
However, if the control gain d is limited so that it cannot be larger than ea�1, then deadbeat
control cannot be attained.

It was shown that, for some combinations of the act-and-wait period lengths, the system
can still be transformed to a finite-dimensional discrete map if 1
2 � tw 	 1. Numerical
stability charts provided evidence that the transition between the cases tw 	 1 and tw � 1 is
smooth, i.e. there are no abrupt changes in the stability properties if the waiting period length
or the time delay is perturbed, although, deadbeat disappears for tw 	 1.

In the case of deadbeat control, the system performance was analyzed with respect to
three different terms of the performance index, the fastest settling signal J1, the minimal
control effort J2 and the minimal error for constant actuator disturbances J3. It was shown
that the minimum of J1 and J3 is obtained if d 	 
 with ta 	 0, while the minimum of
J2 can be found at certain finite values of d and ta (shown in Figure 10) depending on the
system parameter a.

The robustness of the deadbeat control strategy with respect to perturbations in the sys-
tem and control parameters was also analyzed using stability radii as a measure. It was found
that the stability radius of deadbeat control is sufficiently large if the system parameter a and
the acting period length ta are small and the waiting period length is tw � 1, i.e. the waiting
period is equal to the time delay. However, the stability radii decrease with an increase in the
system parameter.
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