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Increased Stability of Low-Speed
Turning Through a Distributed
Force and Continuous Delay
Model
This paper investigates the increased stability behavior commonly observed in low-speed
machining. In the past, this improved stability has been attributed to the energy dissi-
pated by the interference between the workpiece and the tool relief face. In this study, an
alternative physical explanation is described. In contrast to the conventional approach,
which uses a point force acting at the tool tip, the cutting forces are distributed over the
tool-chip interface. This approximation results in a second-order delayed integrodiffer-
ential equation for the system that involves a short and a discrete delay. A method for
determining the stability of the system for an exponential shape function is described, and
temporal finite element analysis is used to chart the stability regions. Comparisons are
then made between the stability charts of the point force and the distributed force models
for continuous and interrupted turning. �DOI: 10.1115/1.3187153�

Keywords: continuous delay, distributed delay, process damping, stability, temporal fi-
nite elements analysis, time delay, turning
Introduction
The relative vibrations between the tool and the workpiece are
normal phenomenon associated with cutting operations. When

hese vibrations become unstable, they are commonly referred to
s chatter, which may result in inferior part surfaces and increased
ool wear. Chatter can also damage the workpiece, the fixture,
nd/or the machine spindle. Mapping the areas of stability as a
unction of the machining parameters, namely, the depth of cut
nd the spindle speed, not only helps avoid these detrimental ef-
ects of chatter but also increases the efficiency of the cutting
rocess. Predictive models that can generate stability regions for a
ide combination of speeds and cutting depths eliminate the

ostly and time-consuming trial and error alternative.
In order to generate the stability charts for a cutting operation,

t is necessary to model the system dynamics through suitable
quations of motion, descriptive force models, and then apply
roper solution techniques. Models describing cutting tool vibra-
ions began to appear in literature about half a century ago �1–4�.
everal models have been proposed to characterize the cutting
orces as a function of the cutting parameters, such as the depth of
ut and the instantaneous chip thickness whose product forms the
nstantaneous chip area. These models treated cutting forces as a
oint force acting at the tool tip. This conventional approximation
f the cutting forces has been verified experimentally in the
iddle range of cutting speeds. However, actual observations of

he cutting process at low speeds show improved stability when
ompared with those obtained from theoretical predictions �e.g.,
ee Fig. 1�.

There are many machining operations that can be performed
nly at low speeds. For instance, materials which are harder to
achine, such as stainless steel and titanium, are used extensively

n medical tool manufacturing and in the aerospace industry. Ti-
anium, for example, has very high strength to weight ratio and
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excellent corrosion resistance, which makes it ideal for aerospace
applications �5�. Titanium also has great biocompatibility so it is
widely used in medical implants �6�. However, titanium is difficult
to machine owing to its inherent properties of high strength com-
bined with poor thermal conductivity. This requires titanium to be
machined only at low speeds.

The improved stability behavior at low speeds has been attrib-
uted to an energy dissipation mechanism commonly called pro-
cess damping. Process damping plays a key role in stability deter-
mination in machining processes �7–9�. Tobias and Fishwick �1�,
Tlusty �10�, and Minis et al. �11� tried to account for process
damping by including the displacement variable and its derivative
in the cutting force model. Other models recognized process
damping as the result of the interference between the cutting tool
flank face and the undulated machined surface �7�, where the am-
plitude of the force was assumed to be proportional to the material
volume displaced due to interference �12–16�. Chiou and Liang
�17� and later Clancy and Shin �18� used this model to account for
process damping to capture the effect of tool wear on stability in
turning. The same model was implemented by Chandiramani and
Pothala �19� in their study of regenerative chatter in a two degree
of freedom model for turning.

An alternative explanation for the increased stability at lower
speeds was recently introduced by Stépán �20,21�. Instead of
modeling the cutting forces as a single point force, a continuous or
distributed time delay model was introduced to capture the force
distribution over the tool-chip interface �see Fig. 2�. This paper
investigates the influence of the distributed force model on the
stability behavior of continuous and interrupted turning. In par-
ticular, we describe an approach to transform the distributed delay
equations into a discrete delay system. Theoretical stability inves-
tigations were performed using a state-space temporal finite ele-
ment analysis �TFEA� technique �22�. Finally, different
continuous-to-discrete delay ratios are used to elucidate parameter
regimes where the phenomenological increased stability behavior

is adequately captured.
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Turning Process Models
This section starts by deriving a variational equation of motion

or a single degree of freedom turning process. In Sec. 2.2, the
onventional point force model is described and the corresponding
ariational equation of motion is obtained. The resulting equation
s then nondimensionalized and is written into its state-space
orm, which is used for stability determination. In Sec. 2.3, the
istributed force model is introduced and the corresponding varia-
ional equation of motion is derived. This equation includes the
iscrete time delay, due to the tool passage period, as well as a
ontinuous time delay due to the chip sliding over the tool-chip
nterface.

2.1 Equation of Motion. The governing equation of motion
or a rigid workpiece and a tool compliant in one direction, z�t�, is

mz̈ + cż + kz = − Fz�A� �1�

here m, c, and k are the modal mass, stiffness, and damping,
espectively, and Fz�A� is the cutting force component along the z
irection as a function of the instantaneous chip area, A�t�. The
nstantaneous chip area is the product of the depth of cut, b, and
he instantaneous chip thickness, h�t�, i.e., A�t�=bh�t�.

Let z� be the equilibrium solution for the system, which corre-
ponds to cutting at the nominal depth of cut ho. Under these
onditions, the system is in equilibrium with the static cutting
orce, fo. Then for any other solution, z�t� �23�, one can write
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ig. 2 Schematic diagram of a: „a… distributed force model and
b… conventional point force model. Case „a… uses a stress dis-
ribution over the tool rake face and applies a finite time for the
hip to travel along the tool-chip interface. Case „b… is the con-
entional modeling approach of using a point force and a dis-

rete delay model.
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z�t� = z� + ��t� �2�

where ��t� represents a perturbation of the equilibrium solution.
The growth or decay of such small perturbations determines the
stability of the original system, Eq. �1�. Similarly, the cutting force
can be described as the summation of a static component and a
dynamic variation due to oscillations

Fz�A� � fo + �Fz�A� �3a�

�− kz� + �Fz�A� �3b�

Equations �2� and �3� are substituted into Eq. �1� to obtain the
variational equation

m�̈�t� + c�̇�t� + k��t� � − �Fz�A� �4�

Dropping the approximation sign and dividing by the mass, m, Eq.
�4� becomes

�̈�t� + 2��n�̇�t� + �n
2��t� = −

1

m
�Fz�A� �5�

where �n=�k /m is the angular natural frequency, �=c / �2m�n� is
the damping ratio, and �Fz�A� is the dynamic force variation. The
expression for the force variation depends on the adopted force
model and the type of cutting, i.e., continuous or interrupted. In
Sec. 2.2, the conventional point force model will be used in con-
junction with Eq. �5� to produce an equation that can be used to
determine the stability regions.

2.2 Point Force Model. In the conventional point force
model, cutting forces are characterized by a single force vector
acting at a single point—the tool tip. This force is assumed to be
a function of the instantaneous chip area, A�t� �see Fig. 3�.
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Fig. 3 Cutting force and chip area relation
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The dynamic force variation is written as a Taylor series expan-
ion around the nominal uncut chip area Ao

�Fz�A� = u�t��Fz�A� − fo� = u�t��
j=1

p

kj��A� j �6�

here for continuous turning the tool is assumed to be in the cut
ll the time and u�t� assumes a value of one, i.e., u�t�=1. In
ontrast to continuous turning, interrupted turning is a piecewise
ontinuous system where the tool is not always cutting but enters
nd exits the cut, Fig. 4. When the tool is in the cut, a force
roportional to the uncut chip area acts on the tool. However,
hen the tool exits the cut, the system will undergo free vibration

i.e., for interrupted turning, u�t� is a switching function: its value
s 1 when the tool is cutting and 0 when the tool exits the cut�. The
hip area variation is

�A = A − Ao = b�h − ho� �7�

he coefficients of the power series in Eq. �6� come from

kj =
1

j!

djFz�Ao�
dAj , j = 1,2, . . . �8a�

⇒�kj	 = �k1,k2,k3, . . .	 = 
df�Ao�
dA

,
1

2!

d2f�Ao�
dA2 ,

1

3!

d3f�Ao�
dA3 , . . .�

�8b�

he first coefficient, k1, in the above expression is referred to as
he cutting coefficient and is usually determined experimentally.
1 represents the linear approximation of the cutting force varia-
ion, while the higher order terms, k2−k�, provide higher order
pproximations.

The linear approximation of the cutting force variation is in-
erted into Eq. �5� to obtain

�̈�t� + 2��n�̇�t� + �n
2��t� = − u�t�

k1b

m
�h�t� − ho� �9�

ubstituting h�t�=ho+��t�−��t−�� into Eq. �9� gives

�̈�t� + 2��n�̇�t� + �n
2��t� = − u�t�

k1b

m
���t� − ��t − ��� �10�

hich represents a delay differential equation �DDE� with con-
tant coefficients.

A set of dimensionless parameters for time, spindle speed, time
elay, and depth of cut �24� is defined as

t̃ = �nt �11a�

�̃ =
�

�n
�11b�

˜

tc

τ
k c

h

v

z
tf

ig. 4 Schematic diagram of the interrupted cutting process.
he force is proportional to the uncut chip area when the tool is

n contact with the work piece but drops to zero when the tool
ibrates freely †31‡.
� = �n� �11c�
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b̃ =
bk1

m�n
2 �11d�

These substitutions result in the dimensionless characteristic fre-
quency �̃n=1. The nondimensionalized version of Eq. �10� then
reads

�̈�t̃� + 2��̇�t̃� + ��t̃� = − u�t�b̃���t̃� − ��t̃ − �̃�� �12�

Equation �12� can be written in state-space form as

�ẋ1

ẋ2

 = � 0 1

− �u�t�b̃ + 1� − 2�

�x1

x2

 + � 0 0

u�t�b̃ 0

�x1�t − ��

x2�t − �� 

�13�

where the tilde was dropped from t and � for convenience. To help
explain the analysis that follows, the above state-space equation is
written in a more compact form

ẋ�t� = A�t�x�t� + B�t�x�t − �� �14�

Equation �14� describes a turning operation subject to the conven-
tional point force model. The stability analysis of equations hav-
ing the same form as Eq. �14� will be explained using the state-
space temporal finite element approach, TFEA, in Sec. 3 �see Ref.
�22��. In Sec. 2.3, an analogous equation will be formulated for
the distributed force model.

2.3 Distributed Force Model. The distributed force model
reflects a more realistic representation of the physical cutting
forces in turning. Instead of concentrating the cutting forces at a
single point, these forces are assumed to have a distribution per
unit length Pz with varying magnitudes along the tool-chip inter-
face. The cutting forces can be described in terms of this distri-
bution by

Fz�A� =�
0

l

Pz�A,s�ds �15�

where s is a local coordinate whose origin is fixed to the tool tip.
This local coordinate describes the contact distance between the
sliding chip and the active face of the tool. The range of values for
s is from 0 to the length, which represents the location where the
chip separates from the tool l. One approximation for Pz combines
the Taylor approximation of the cutting force with an estimated
shape function W �with units of 1/m�

Pz�A,s� = Fz�A�W�s�, s � �0,l� �16�

In order to ensure that this new model maintains the mechanics of
the system, substituting A=Ao, which corresponds to cutting under
stationary conditions, should yield a value of fo=Fz�Ao�. Impos-
ing this constraint on Eq. �15� gives

Fz�Ao� =�
0

l

Pz�Ao,s�ds = Fz�Ao��
0

l

W�s�ds

⇒�
0

l

W�s�ds = 1 �17�

Equation �17� provides a fundamental condition, which has to be
satisfied by any chosen shape function. Let � be the discrete time
delay associated with the tool passage period, and let the short
time delay ts be the time the chip is in contact with the tool. These
two different delays are given by

� =
do�

v
=

2�

�
, ts =

l

vc
=

l

rcv
�18�

where do� is the circumference of the cylindrical workpiece, � is
the angular velocity of the workpiece in units of rad/s, rc is the

chip thickness ratio, and vc=rcv is the chip speed over the rake

OCTOBER 2009, Vol. 4 / 041003-3
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ace �25�. It follows that the ratio of the short time delay ts to the
ong one � is constant

r =
ts

�
=

l

rcdo�

he shape of the stress distribution can be expressed in the time
omain by introducing a local time t̂=s /vc. Substituting t̂ into Eq.
17� yields the following condition on the shape function in the
ocal time domain

�
0

l

W�s�ds = 1

⇒�
0

ts

vcW�vct̂�dt̂ = 1, let w�t̂� = vcW�vct̂�

⇒�
0

ts

w�t̂�dt̂ = 1 �19�

his local time, t̂� �0, ts�, gives how much earlier in time a certain
egment of the chip flowing over the active tool face was being
ut at the tip of the tool as shown in Fig. 5. The assumption that
he chip flows at a speed vc=rcv means that the area of a section
f the chip above the tool tip at a local time t̂ is equal to the area
f the same chip section as it was being cut at the tool tip at t
t̂ time units ago or

A�t, t̂� = b�ho + ��t − t̂� − ��t − � − t̂��, t � �to,��, t̂ � �0,ts�
�20�

here A�t , t̂� defines the chip area at time t and local time t̂. At
=0, Eq. �20� gives back the regular expression for the chip area
t the tool tip

A�t,0� = b�ho + ��t� − ��t − ���

he cutting force distribution can now be expressed in the z di-
ection in the time domain using the global time t and the local
ne t̂

pz�t, t̂� = Pz�A�t, t̂�,vct̂� = Fz�A�t, t̂��
1

vc
w�t̂�, t � �to,��,

t̂ � �0,ts� �21�

y substituting the above results, Eqs. �15�, �19�, and �21�, the
ower series from Eq. �6� and also the chip area from Eq. �20�, the

Tool

(a)

kc

Fig. 5 Short time delay embedding into the force model. T
face in „b… can be described by the area of the same segm
utting force variation in the z direction reads
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�Fz�A�t, t̂�� � u�t��
0

ts

�
j=1

p

kjb
j���t − t̂� − ��t − � − t̂�� jw�t̂�dt̂

�22�

�u�t�k1b�
0

ts

���t − t̂� − ��t − � − t̂��w�t̂�dt̂ �23�

where Eq. �23� is the expression for the linearized cutting force
variation. For continuous turning u�t�=1, thus, substituting Eq.
�23� into the variational equation of motion Eq. �5� yields

�̈ + 2��n�̇ + �n
2� = −

k1b

m �
0

ts

���t − t̂� − ��t − � − t̂��w�t̂�dt̂

�24�
The integrodifferential form of Eq. �24� as well as the short time
delay complicate the stability analysis of the system. However,
Eq. �24� can still be solved through a suitable choice of the weight
function. The solution technique involves increasing the order of
the system by one and writing the short delay in terms of the
discrete one as will be shown in Sec. 3.

3 Stability Analysis
In this section, Eq. �24� is converted into a solvable form

through using an exponential weight function. The stability analy-
sis of the resulting state-space equations is then carried out using
state-space TFEA. The analysis is shown only for the distributed
delay system and a similar analysis can be used for the point force
model system, Eq. �14�. In Secs. 3.1 and 3.2, stability boundaries
are plotted for continuous and interrupted turning, respectively. In
each of these sections, the results are shown for both: the point
force model and the distributed force model with different
continuous-to-discrete delay ratios.

Assume that the shape of the distributed cutting force system
W�s� is approximated by the exponential function

W�s� =
1

l
exp�− s

l
� ⇒ w�t̂� =

vc

l
exp�− vc

l
t̂� =

1

r�
exp�− t̂

r�
�,

t̂ � �0,�� �25�
This choice of the weight function agrees with several studies,
which showed that the normal forces over the rake face vary ex-
ponentially �25–29�. Furthermore, the analysis of the DDE de-
scribed in Eq. �24� is simplified by using this exponential weight

Tool

(b)

kc

area of a certain segment of the chip flowing over the rake
t as it was being cut at the tool tip in „a… at time t− t̂.
he
en
function since the distributed delay only increases the system di-
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ension by one. The procedure starts with differentiating Eq. �24�
ith respect to the time t to calculate

��t�
�3�

+ 2���̈�t� + �n
2�̇�t�

= −
k1b

mr�
�

0

�

��̇�t − t̂� − �̇�t − � − t̂��exp�− t̂

r�
�dt̂

owever, to account for the discontinuous cutting forces during
nterrupted cutting, the right hand side is multiplied by a switch-
ng function, u�t�, which gives

��t�
�3�

+ 2���̈�t� + �n
2�̇�t�

= − u�t�
k1b

mr�
�

0

�

��̇�t − t̂� − �̇�t − � − t̂��exp�− t̂

r�
�dt̂ �26�

here u�t� is 1 for continuous turning and it switches between 0
nd 1 for interrupted cutting. Next, the right hand side of Eq. �26�
s integrated by parts

u�t�
k1b

mr�
�

0

�

��̇�t − t̂� − �̇�t − � − t̂��exp�− t̂

r�
�dt̂

= u�t�
k1b

mr�
����t − t̂� − ��t − � − t̂��exp�− t̂

r�
�


0

�

+ u�t�
k1b

mr�

1

r�
�

0

�

���t − t̂� − ��t − � − t̂��exp�− t̂

r�
�dt̂

= − u�t�
k1b

mr�
���t� − ��t − ��� −

1

r�
��̈�t� + 2��n�̇�t� + �n

2��t��

�27�

ubstituting the force expression �27� back into Eq. �24� gives

��t�
�3�

+ � 1

r�
+ 2����̈�t� + �2��n

r�
+ �n

2��̇�t� +
1

r�
��n

2 +
u�t̃�k1b

m
���t�

− u�t̃�
k1b

mr�
��t − �� = 0, �28�

nd the equation of motion has been transformed into a third-order
ystem without a continuous time delay but still having the dis-
rete delay �. Equation �28� can be nondimensionalized using the
ame parameters introduced in Eq. �11d�. This results in the fol-
owing nondimensional third-order DDE

��t̃�
�3�

+ � 1

r�̃
+ 2���̈�t̃� + �2�

r�̃
+ 1��̇�t̃� +

1

r�̃
�1 + u�t̃�b̃���t̃�

− u�t̃�
b̃

r�̃
��t̃ − �̃� = 0 �29�

hich can be written in state-space form as

�ẏ1

ẏ2

ẏ3
� = �

0 1 0

0 0 1

−
1

r�̃
�1 + u�t�b̃� − �2�

r�̃
+ 1� − � 1

r�̃
+ 2�� ��y1

y2

y3
�

+ �
0 0 0

0 0 0

u�t�
b̃

r�̃
0 0 ��y1�t − ��

y2�t − ��
y3�t − ��

� �30�

here the tilde was dropped from t and � for convenience. The

tate-space equation could be written in an equivalent form as

ournal of Computational and Nonlinear Dynamics
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ẏ�t� = C�t�y�t� + D�t�y�t − �� �31�
The stability analysis of Eq. �31� can be carried out using state-
space TFEA approach introduced by Mann and Patel �22�. In this
approach, the expressions for the current state and the delayed
state variables are written as vectors

y j�t� = �
i=1

3

a ji
n 	i�
� �32a�

y j�t − �� = �
i=1

3

a ji
n−1	i�
� �32b�

during the jth element. These vectors represent an approximate
solution for Eq. �14� in the form of a linear combination of trial
functions 	i�
�. The local time 
 varies from zero to the time of
each element tj =� /E, where E represents the number of elements
used in the analysis. The chosen trial functions are orthogonalized
on the interval 0�
� tj and the use of the local time notation
ensures that they remain orthogonal for every temporal element.
The set of polynomial trial functions used for this analysis are

	1�
� = 1 − 23�


tj
�2

+ 66�


tj
�3

− 68�


tj
�4

+ 24�


tj
�5

�33a�

	2�
� = 16�


tj
�2

− 32�


tj
�3

+ 16�


tj
�4

�33b�

	3�
� = 7�


tj
�2

− 34�


tj
�3

+ 52�


tj
�4

− 24�


tj
�5

�33c�

The above trial functions are obtained through interpolation, and
they are constructed such that the coefficients of the assumed
solution directly represent the state variable at the beginning,
middle, and end of each temporal element, i.e., at 
=0, tj /2, and
tj, respectively. The construction and properties of these functions
are discussed in more details in Ref. �22�. For demonstration pur-
poses, it is assumed that two elements are sufficient, i.e., E=2,
then the corresponding form of the assumed solution is substituted
into Eq. �14� and using the method of weighted residuals a global
matrix can be obtained that relates the states of the system in the
current period to those in the previous period

�
I 0 0 0 0

N11
1 N12

1 N13
1 0 0

N21
1 N22

1 N23
1 0 0

0 0 N11
2 N12

2 N13
2

0 0 N21
2 N22

2 N23
2
��

a11

a12

a21

a22

a23

�
n

= �
0 0 0 0 �

P11
1 P12

1 P13
1 0 0

P21
1 P22

1 P23
1 0 0

0 0 P11
2 P12

2 P13
2

0 0 P21
2 P22

2 P23
2
��

a11

a12

a21

a22

a23

�
n−1

�34�

which can be written in a more compact form as

Han = Gan−1 �35�

where I is an identity matrix and � depends on the cutting pro-
cess and the force model used. It is an identity matrix for continu-
ous turning, while for interrupted cutting, it is a state transition
matrix �see Appendix�. The dimension of � is 2�2 for the con-
ventional point force model and 3�3 for the distributed force
model. The terms Npi

j and Ppi
j are the following square matrices:

Npi
j =�tj

��I	̇i�
� − C	i�
���
p�
�d
 �36a�

0
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Ppi
j =�

0

tj

�D	i�
��
p�
�d
 �36b�

he functions 
p�
� are called test functions or weighting func-
ions. These functions are used to minimize the error incurred
rom the solution approximation. The weighting functions used
or the presented analysis were shifted Legendre polynomials.
hese polynomials were used because they satisfy the required
ondition of linear independence. Here, only the first two shifted
egendre polynomials, 
1�
�=1 and 
2�
�=2�
 / tj�−1, will be
sed to keep the resulting matrices square. Recalling that the co-
fficients of the assumed solution directly represent the state vari-
ble at various points in time, Eq. �35� can alternatively be written
s

yn = Qyn−1 �37�

here Q=H−1G is called the monodromy operator. Equation �37�
epresents a discrete solution form for Eq. �14� that maps the
tates of the system over a single delay period from the n−1
eriod to the nth period. Here, the condition for asymptotical sta-
ility requires that all the characteristic multipliers, or eigenvalues
f Q, must lie within the unit circle of the complex plane. For
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Fig. 6 Stability charts for the point force model of continu
cutting speed and depth of cut. The damping ratios used ar
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Fig. 7 Stability charts for the distributed force model of co
ized cutting speed and depth of cut. The delay ratio used is

�=0.02 „unstable regions shaded….
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more details about this technique, and for convergence properties,
the reader can refer to Ref. �22�.

In the above analysis, an exponential shape function was as-
sumed to describe the force distribution. Other shape functions
were also suggested �21�, however, only the exponential one can
be transformed into a discrete delay system.

3.1 Continuous Turning Stability. Figure 6 shows two sta-
bility charts that were obtained using the point force model. Two
cases were considered: one with a relatively high damping ratio,
�=0.02, and another with a relatively low damping ratio, �
=0.0038. The region below the boundary line represents stable
cutting conditions while that above the boundary line corresponds
to an unstable cutting process. It can be seen that at low speeds,
this model does not capture the improved stability encountered in
practice. For all continuous turning stability plots, a square grid of
600�600 points was used.

Figure 7 shows two stability plots that were obtained with the
distributed force model. These plots were generated with a very
low value of the delay ratio, r=0.001, and they can be compared
directly to their counterparts for a point force model in Fig. 6. It
can be seen that the distributed force model gives results similar
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o the point force model when the delay ratio is very small, i.e.,
hen the short delay is negligible compared with the discrete
elay. However, for larger values of r, Fig. 8 shows an improved
tability behavior at lower speeds.

3.2 Interrupted Turning Stability. For the point force
odel, Fig. 9 shows the cases when �=0.05, 0.10, and 0.20,
here � represents the fraction of the workpiece revolution that

he tool is cutting. A fine mesh of 2400�600 was used to generate
ll the stability plots of interrupted turning. These results are in
greement with the results obtained in Ref. �24� for interrupted
urning.

Figures 10 and 11 are stability charts for interrupted cutting,
hich use the distributed force model. In Fig. 10, cases �a�–�c�

orrespond to a value of r=0.001. This low value of r yields
imilar results to those for the point force model �see Fig. 9�. On
he other hand, as the value of r increases to 0.03, as in cases
d�–�f�, the stability at low speeds is improved for the different
alues of �. This trend is even more prominent in Fig. 11 where r
as set to 0.05 and 0.10.

Discussion
This paper investigates the increased stability behavior com-
only observed at low cutting speeds. In literature, this improved

tability has been attributed to the interference between the work-
iece and the tool relief face. The energy dissipation through this
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Fig. 8 Stability charts for the distributed force model of co
ized cutting speed and depth of cut. The damping ratio us
=0.05, and „c… r=0.10 „unstable regions shaded….
nterference mechanism has been called process damping. On the

ournal of Computational and Nonlinear Dynamics

aded 24 Aug 2009 to 152.3.155.242. Redistribution subject to ASME
other hand, the distributed delay used in this paper has been an
unmodeled parameter that was shown to have a great impact on
low-speed cutting stability. More specifically, an exponential
shape function is proposed to approximate the force distribution
over the tool-chip contact length, and a constant delay ratio is
introduced to describe the ratio between the distributed and the
discrete delays.

The distributed force model results in a more complicated gov-
erning equation, a second-order delayed integrodifferential equa-
tion, that involves both a discrete and distributed delay. The dis-
tributed delay results from the finite time it takes the chip to slide
along the rake face of the tool while the discrete delay is from the
period between consecutive passages of the cutting tooth. An ap-
proach to transform the governing equation of motion into a third-
order discrete system is described and the state-space representa-
tion of the new system is obtained. The state-space TFEA
technique is then used to chart the stability boundaries for con-
tinuous and interrupted turning. Different delay ratios are used for
generating stability charts to study the effect of the distributed
delay on stability. For comparison purposes, the point force model
is also used to obtain the conventional stability charts for continu-
ous and interrupted turning. It was found that for a small value of
the delay ratio, i.e., when the continuous delay is negligible in
comparison to the discrete one, the predicted stability boundaries
were similar to those of the point force model. However, for larger
values of the delay ratio, the distributed force model showed an
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improved stability behavior at lower speeds when compared with
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he point force model. The stable parameter space continued to
ncrease with increases in the delay ratio, which confirms the sta-
ilizing effect of the distributed delay.

A specific contribution of the current paper is the introduction
f a more realistic method to represent cutting forces. More spe-
ifically, the present manuscript has described and investigated an
lternative physical explanation for process damping where a dis-
ributed cutting force model, along with an exponential distribu-
ion over the tool-chip interface, is assumed. Although a distrib-
ted force model is more realistic, this idea contrasts the standard
pproach of using a point force. The distributed force model also
rovides an alternative explanation for the improved stability at
ow speeds while still allowing analytical stability analysis. The
urrent approach further averts the complications of previous
orks, which either uses an ad hoc damping term that is inversely
roportional to spindle speed or a displaced volume relationship
hat must be numerically and experimentally calibrated. However,
lthough the stability diagrams from the present study agree quali-
atively with the observed low-speed stability results, the authors
elieve that only experimental investigations can reveal, which
odels or combination of models will most accurately capture the

rocess damping effects.
Possible tasks for future research include experimental verifica-

ion and/or comparison study with historical models of process
amping. The success of the current approach in handling short
elays also suggests that a similar analysis can be performed to
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Fig. 9 Stability charts for the point force model of interru
cutting speed and depth of cut. The damping ratio used is �
revolution that the tool is cutting are „a… �=0.05, „b… �=0.10
ccommodate interference forces on the relief face. This will still
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allow for an analytical stability analysis in the parameter space
while capturing the physical phenomena of the process. Finally,
another task is to construct a solution strategy that can accommo-
date different shape functions for the force distribution and to
expand these solution techniques to other cutting operations.

Acknowledgment
Support from U.S. National Science Foundation CAREER

Award �Contract No. CMMI-0757776� and the Janos Bolyai Re-
search Scholarship of the Hungarian Academy of Sciences is
gratefully acknowledged.

Appendix: Interrupted Turning-Free Vibration
In order to establish the stability of an interrupted turning pro-

cess, it is necessary to obtain the state transition matrix describing
the system states during free vibration. The third-order system
derived in the analysis of the distributed force model in Eq. �26�
will be considered first since the transition matrix for the second-
order system can be obtained easily from the third-order case. For
a nondimensionalized third-order system, the equation of motion
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during free vibration is
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Fig. 10 Stability charts for the distributed force model of interrupted turning plotted as a function of the nondimensional-
ized cutting speed and depth of cut. The damping ratio used is �=0.0038 and the cases for different fractions of the
workpiece revolution that the tool is cutting and different delay ratios are „a… �=0.05 and r=0.001, „b… �=0.10 and r=0.001,
„c… �=0.20 and r=0.001, „d… �=0.05 and r=0.03, „e… �=0.10 and r=0.03, and „f… �=0.20 and r=0.03 „unstable regions shaded….
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Fig. 11 Stability charts for the distributed force model of interrupted turning plotted as a function of the nondimensional-
ized cutting speed and depth of cut. The damping ratio used is �=0.0038 and the cases for different fractions of the
workpiece revolution that the tool is cutting and different delay ratios are „a… �=0.05 and r=0.05, „b… �=0.10 and r=0.05, „c…
�=0.20 and r=0.05, „d… �=0.05 and r=0.10, „e… �=0.10 and r=0.10, and „f… �=0.20 and r=0.10 „unstable regions shaded….
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��t�
�3�

+ 2��̈�t� + �̇�t� = 0 �A1�

hich has the solution ��t�=c1e�1t+c2e�2t+c3, where �1,2

����2−1. The solutions for the different states of the system
an be expressed in matrix form as

���t�

�̇�t�

�̈�t�
� = � e�1t e�2t 1

�1e�1t �2e�2t 0

�1
2e�1t �2

2e�2t 0
��c1

c2

c3
� �A2�

r equivalently

��t� = Lc �A3�

etting t= tc at the beginning of free vibration, and solving simul-
aneously for the set of initial conditions forming a 3�3 identity
atrix, Eq. �A2� reads

CIRP Ann., 27�2�, pp. 583–589.

ournal of Computational and Nonlinear Dynamics
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I = LC �A4�

where the square matrix of coefficients, C, can be found by in-
verting L

C = L−1 = �
0 −

�2

�1��1 − �2�
e−�1tc

1

�1��1 − �2�
e−�1tc

0
�1

�2��1 − �2�
e−�2tc −

1

�2��1 − �2�
e−�2tc

1 −
��1 + �2�
��1�2�

1

��1�2�
�

�A5�

Let tf be the duration of free vibration, then a state transition
matrix can be obtained that relates the state of the tool as it exits
from the cut at t= tc to the state of the tool as it re-enters into the

cut at t= tc+ tf
���tc + tf�

�̇�tc + tf�

�̈�tc + tf�
� = � e�1�tc+tf� e�2�tc+tf� 1

�1e�1�tc+tf� �2e�2�tc+tf� 0

�1
2e�1�tc+tf� �2

2e�2�tc+tf� 0
��

0 −
�2

�1��1 − �2�
e−�1tc

1

�1��1 − �2�
e−�1tc

0
�1

�2��1 − �2�
e−�2tc −

1

�2��1 − �2�
e−�2tc

1 −
��1 + �2�

�1�2

1

��1�2�
����tc�

�̇�tc�

�̈�tc�
� ⇒ ���tc + tf�

�̇�tc + tf�

�̈�tc + tf�
� = ����tc�

�̇�tc�

�̈�tc�
� �A6�

here the state transition matrix � is

� =
1

�1 − �2���1 − �2� −
�2

�1
e�1tf +

�1

�2
e�2tf −

��1
2 − �2

2�
��1�2�

1

�1
e�1tf −

1

�2
e�2tf +

��1 − �2�
��1�2�

0 �1e�2tf − �2e�1tf e�1tf − e�2tf

0 �1�2e�2tf − �1�2e�1tf �1e�1tf − �2e�2tf

� �A7�
he 2�2 state transition matrix for the second-order system can
e obtained by eliminating the first row and the first column in Eq.
A7� to obtain

� =
1

�1 − �2
� �1e�2tf − �2e�1tf e�1tf − e�2tf

�1�2e�2tf − �1�2e�1tf �1e�1tf − �2e�2tf

 �A8�

hich agrees with the result obtained in Ref. �30�.
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