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Abstract

Semi-discretization techniques of periodic delayed systems are presented using zeroth-, first- and higher-order

approximations of the delayed term. It is shown that if the time-periodic coefficients in the equation are approximated by

piecewise constant functions, then there is no need to use higher than first-order approximations of the delayed term. The

results are demonstrated on construction of the stability chart of the delayed Mathieu equation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Systems governed by delay-differential equations (DDEs) often arise in different fields of science and
engineering. Examples include control systems with feedback delay, laser dynamics, neuroscience, balancing
with reflex delay, traffic modeling, or regenerative machine tool chatter. The qualitative investigation of these
mechanical systems always includes stability analysis. In particular, stability charts are constructed displaying
stable and unstable regions in the parameter space.

DDEs usually have an infinite dimensional state space representation [1,2], therefore, in general, no
conditions involving system parameters are available to guarantee stability. One way to deal with stability-
related issues for DDEs is to employ discretization techniques. For example, using piecewise constant
arguments, DDEs can be approximated by discrete maps, for which stability conditions can be obtained in
closed form.

An effective method, the so-called semi-discretization was introduced for delayed systems by Insperger and
Stépán and its advantages compared to the full-discretization were discussed in Ref. [3]. In the process of semi-
discretization of time-periodic DDEs, the delayed terms are discretized while the undelayed terms are
unchanged and the time-periodic coefficients are approximated by piecewise constant functions. The
convergence of the method was established in Ref. [4] for a large class of DDEs appearing in engineering
applications. It was shown that semi-discretization preserves asymptotic stability of the original equation,
therefore it can be used to construct approximate stability charts.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The merit of the semi-discretization method is that it can effectively be used for determining stability of
time-periodic DDEs arising in different engineering applications. Sheng et al. [5] used this technique for the
stability analysis of periodic control systems with delayed feedback. Gradišek et al. [6] and Henninger and
Eberhard [7] applied the method for constructing stability charts for milling operations. The method can also
be used for systems with time-periodic delays, as it was shown in Ref. [8]. Recently, Long et al. [9] and Faassen
et al. [10] applied the semi-discretization method for a detailed milling model including time-periodic
regenerative delay.

The efficiency of the semi-discretization method can be increased by higher order approximations of the
delayed term appearing in the model equations. Zeroth-, improved zeroth- and first-order versions of the semi-
discretization technique were presented and analyzed by Elbeyly and Sun [11] for a second order periodic
system with time delay. The improved zeroth-order method was also considered in Ref. [12] for general DDEs
in state space form.

Following the work of Elbeyly and Sun [11], it is a straightforward step to introduce second- and higher-
order approximations of the delayed term. In this paper, the convergence of different order semi-discretization
schemes is investigated using rate of convergence estimates for the case when the time-periodic terms are
approximated by piecewise constant functions. It is shown that in this case, second- and higher-order
approximations of the delayed term does not provide better convergence than the first-order one. The results
are demonstrated for the delayed Mathieu equation.

2. Zeroth-, first-, and higher-order semi-discretizations

Consider the linear delayed system

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðt� tÞ, (1)

uðtÞ ¼ DxðtÞ, (2)

where xðtÞ 2 Rn, uðtÞ 2 Rm and the matrices AðtÞ, BðtÞ are piecewise smooth, T-periodic functions, and D is a
constant matrix. Such systems often arise in the field of delayed dynamic systems. When the linear stability
properties of a nonlinear delayed system is investigated around a periodic orbit, then one usually ends up with
equations quite similar to Eqs. (1) and (2).

The approximating semi-discrete system is formulated as

_yðtÞ ¼ ~AiyðtÞ þ BðtÞr
ðpÞ
i ðt� tÞ; t 2 ½ih; ði þ 1ÞhÞ, (3)

r
ðpÞ
i ðt� tÞ ¼

Xp

j¼0

Yp

l¼0;laj

t� t� ði þ l � rÞh

ðj � lÞh

 !
wiþj�r, (4)

wi ¼ wðihÞ ¼ DyðihÞ ¼ Dyi, (5)

where h ¼ T=k is the discretization step with k 2 Zþ, and

~Ai ¼
1

h

Z ðiþ1Þh
ih

AðtÞdt; i 2 Z (6)

is the piecewise constant approximation of AðtÞ in Eq. (1). The delayed term r
ðpÞ
i ðt� tÞ is a pth-order

polynomial interpolation of Dyðt� tÞ using the discrete values of wi ¼ DyðihÞ and integer r is defined by

r ¼ intðt=hþ p=2Þ, (7)

where the function intðaÞ denotes the integer part of a. Thus, we have two approximation parameters: the
number k of discrete steps over the period T and the order p of the approximation of the delayed term. Note
that integer r is defined such that ðrþ p=2Þh � t. The concept of the approximation scheme is illustrated in

Fig. 1, where the dashed curve denotes the approximating polynomial r
ðpÞ
i ðt� tÞ.

One reason for using the semi-discretization method is that the approximate system (3)–(5) can
be solved analytically over the discretization interval t 2 ½ih; ði þ 1ÞhÞ for given initial values yðihÞ and
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Fig. 1. The semi-discretization scheme.
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wiþj�r, j ¼ 0; 1; . . . ; p:

yðði þ 1ÞhÞ ¼ PiyðihÞ þ
Xp

j¼0

Ri;jwiþj�r, (8)

where

Pi ¼ e
~Aih (9)

and

Ri;j ¼

Z h

0

e
~Aiðh�sÞBðsÞ

Yp

l¼0;laj

s� tþ ðr� lÞh

ðj � lÞh

 !
ds. (10)

Eqs. (8) and (5) lead to the ðnþ rmÞ-dimensional discrete map

ziþ1 ¼ Cizi, (11)

where

zi ¼

yi

wi�1

wi�2

..

.

wi�r

0
BBBBBBB@

1
CCCCCCCA
; Ci ¼

Pi 0 . . . 0 Ri;p . . . Ri;1 Ri;0

D 0 . . . 0 0 . . . 0 0

0 I . . . 0 0 . . . 0 0

..

. ..
.

0 0 . . . 0 0 . . . I 0

0
BBBBBB@

1
CCCCCCA. (12)

Since T ¼ kh, k-multiple recursive applications of Eq. (11) with initial state z0 result in

zn ¼ Uz0, (13)

where

U ¼ Cn�1Cn�2 . . .C0 (14)

is the monodromy matrix (or Floquet transition matrix) of system (3)–(5). U is a finite dimensional
approximation of the infinite dimensional monodromy operator of the original systems (1) and (2).

The stability of the approximate system (3)–(5) can be assessed by the eigenvalue analysis of matrix U. If all
the eigenvalues are inside the unit circle of the complex plane then system (3)–(5) are asymptotically stable.
Since semi-discretization preserves asymptotic stability of the original system (1)–(2) as it was shown in
Ref. [4], the method can be used to construct approximate stability charts.
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The above formulae give the steps of the semi-discretization method for arbitrary approximation order p.
For the sake of completeness, in the next subsections, special cases of these formulae are presented for the
zeroth- and the first-order approximations.

2.1. Zeroth-order semi-discretization ðp ¼ 0Þ

For the zeroth-order case, Eqs. (4) and (7) give r
ð0Þ
i ðt� tÞ ¼ wi�r and r ¼ intðt=hÞ, thus, the approximate

system reads

_yðtÞ ¼ ~AiyðtÞ þ BðtÞwi�r; t 2 ½ih; ði þ 1ÞhÞ, (15)

wi ¼ wðihÞ ¼ DyðihÞ. (16)

The solution over one discrete step is given as

yðði þ 1ÞhÞ ¼ PiyðihÞ þ Ri;0wi�r, (17)

where Pi is given by Eq. (9) and

Ri;0 ¼

Z h

0

e
~Aiðh�sÞBðsÞds. (18)

If ~A
�1

i exists and BðsÞ � B is constant, then integration gives

Ri;0 ¼ ðe
~Aih � IÞ ~A

�1

i B. (19)

Thus, the coefficient matrix in Eq. (11) reads

Ci ¼

Pi 0 . . . 0 Ri;0

D 0 . . . 0 0

0 I . . . 0 0

..

. . .
. ..

.

0 0 . . . I 0

0
BBBBBB@

1
CCCCCCA. (20)

Now, the approximate monodromy matrix is given by Eq. (14).
An improved or updated zeroth-order semi-discretization method was suggested in Refs. [11,12], where

integer r is defined as r ¼ intðt=hþ 1=2Þ instead of r ¼ intðt=hÞ. It was shown that for some cases, e.g., when
kt=T is an integer, this choice of r improves convergence. However, this does not hold for general t and T

values. For instance, if kt=T þ 1=2 is an integer, then r ¼ intðt=hÞ gives better convergence than
r ¼ intðt=hþ 1=2Þ. Therefore, in this study, we assume that r is defined as in Eq. (7).

2.2. First-order semi-discretization ðp ¼ 1Þ

For the first-order case, Eq. (7) gives r ¼ intðt=hþ 1=2Þ and Eq. (4) gives

r
ð1Þ
i ðt� tÞ ¼

t� t� ði � rÞh

h
wiþ1�r �

t� t� ði þ 1� rÞh

h
wi�r. (21)

In this case, the approximate system is

_yðtÞ ¼ ~AiyðtÞ þ BðtÞr
ð1Þ
i ðt� tÞ; t 2 ½ih; ði þ 1ÞhÞ, (22)

wi ¼ wðihÞ ¼ DyðihÞ. (23)

The solution over one discrete step reads

yðði þ 1ÞhÞ ¼ PiyðihÞ þ Ri;0wi�r þ Ri;1wiþ1�r, (24)
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where Pi is given by Eq. (9) and

Ri;0 ¼ �

Z h

0

s� tþ ðr� 1Þh

h
e
~Aiðh�sÞBðsÞds, (25)

Ri;1 ¼

Z h

0

s� tþ rh

h
e
~Aiðh�sÞBðsÞds. (26)

If ~A
�1

i exists and BðsÞ � B is constant, then integration gives

Ri;0 ¼ ~A
�1

i þ
1

h
ð ~A
�2

i � ðt� ðr� 1ÞhÞ ~A
�1

i ÞðI� e
~AihÞ

� �
B, (27)

Ri;1 ¼ � ~A
�1

i þ
1

h
ð� ~A

�2

i þ ðt� rhÞ ~A
�1

i ÞðI� e
~AihÞ

� �
B. (28)

In this case, the coefficient matrix in Eq. (11) reads

Ci ¼

Pi 0 . . . 0 Ri;1 Ri;0

D 0 . . . 0 0 0

0 I . . . 0 0 0

..

. ..
. ..

.

0 0 . . . 0 I 0

0
BBBBBB@

1
CCCCCCA (29)

and the approximate monodromy matrix is given by Eq. (14).
3. Rate of convergence estimates

Rigorous proof of the convergence was established for the zeroth-order case in Ref. [4], and the convergence
of the higher-order techniques can be proved similarly. In this section, the rate of convergence will be
investigated for the zeroth-, first- and higher-order approximations.

First, the discretization error over a single interval ½0; h� is analyzed. The difference between the discretized
and the exact solution is

xðhÞ � yðhÞ ¼

Z h

0

AðsÞxðsÞ � ~A0yðsÞdsþ

Z h

0

BðsÞuðs� tÞ � BðsÞr
ðpÞ
0 ðs� tÞds

¼

Z h

0

AðsÞxðsÞ � ~A0xðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E1

þ

Z h

0

~A0xðsÞ � ~A0yðsÞds

þ

Z h

0

BðsÞuðs� tÞ � BðsÞr
ðpÞ
0 ðs� tÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E2

. ð30Þ

Terms E1 and E2 can be analyzed using Taylor expansions over ½0; h� of u, r
ðpÞ
0 , A and B with xðtÞ ¼ yðtÞ in

t 2 ½�t; 0�. Long, but straightforward computations show that E1 ¼ Oðh3
Þ independently on the order of the

approximation, while E2 ¼ Oðh2
Þ if p ¼ 0 and E2 ¼ Oðh3

Þ if p ¼ 1.
Taking the norm of both sides of Eq. (30), we obtain the local discretization error

Elocal ¼ kxðhÞ � yðhÞkpkE1 þ E2k þ

Z h

0

KkxðsÞ � yðsÞkds, (31)
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with K ¼ k ~A0k. Due to the Gronwall inequality, Eq. (31) yields

kxðsÞ � yðsÞkpkE1 þ E2k expðKsÞ (32)

for all s 2 ½0; h�. This implies that Elocal ¼ Oðh2
Þ if p ¼ 0 and E local ¼ Oðh3

Þ if p ¼ 1.
If p41, then the order of the term E2 increases, but the term E1 remains third order, consequently,

Elocal ¼ Oðh3
Þ for all p41. In order to achieve higher order convergence for p41, the approximation of matrix

AðtÞ should be improved, e.g., higher-order Magnus series [13] should be used for the approximation of AðtÞ
instead of Eq. (6). (Note that Eq. (6) corresponds to the first-order Magnus series.) Here, however, we only
investigate the cases p ¼ 0 and 1 with Eq. (6). So, we can conclude that if piecewise constant approximation of
the periodic coefficients is used, then the first-order approximation of the delayed term is the optimal choice.

Repeated applications of Eqs. (30)–(32) over the intervals ½h; 2h�; ½2h; 3h�; . . . ; ½ðk � 1Þh; kh�, where k ¼ T=h,
give that the maximum error over the period T is OðhÞ if p ¼ 0, and Oðh2

Þ if p ¼ 1.

4. Semi-discretization of the delayed Mathieu equation

The demonstration of the rate of convergence of the semi-discretization method is problematic, since the
exact stability properties of the underlying systems are usually unknown. To the best knowledge of the
authors, the only time-delayed time-periodic system with analytically available stability chart is the delayed
Mathieu equation [14]. Here, this equation will be analyzed as a case study, so the approximate stability charts
can be compared to the exact one.

We consider the delayed Mathieu equation in the form

€xðtÞ þ k _xðtÞ þ ðdþ e cosotÞxðtÞ ¼ bxðt� tÞ. (33)

If k ¼ 0 and t ¼ T ¼ 2p=o (i.e., the period T is equal to the time delay t), then the exact stability boundaries
can be given analytically, as it was shown in Ref. [14]. The corresponding nonlinear perturbation of the
delayed Mathieu equation was considered in Ref. [15].
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Fig. 2. (a) Stability chart of Eq. (33) with e ¼ 2, k ¼ 0, T ¼ t ¼ 2p; (b) simulations for parameter point A.
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Fig. 3. (a) Stability chart of Eq. (33) with e ¼ 2, k ¼ 0:2, T ¼ 3p=2, t ¼ 2p; (b) simulations for parameter point B.
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Eq. (33) can be written in the state space forms Eqs. (1) and (2) with

xðtÞ ¼
xðtÞ

_xðtÞ

 !
; AðtÞ ¼

0 1

�ðdþ e cosotÞ �k

 !
; B ¼

0

b

� �
; D ¼ ð1 0Þ.

Zeroth- and first-order semi-discretizations can be obtained as described in Section 2. We do not investigate
higher-order cases, since they do not give any improvements in the convergence, as it was shown in Section 3.

The top panel of Fig. 2 shows the stability chart of the delayed Mathieu equation with e ¼ 2, k ¼ 0,
T ¼ t ¼ 2p obtained by zeroth- and first-order semi-discretizations using k ¼ 20 discrete steps over the period
T. The charts were determined via point-by-point evaluation of the Floquet transition matrices and the
associated critical eigenvalues over a 400� 200-sized grid of parameters d and b. The exact stability
boundaries are also presented for reference. It can be seen, that the first-order method results in a smaller error
than the zeroth-order one. The bottom panel shows three different simulations obtained by the zeroth- and the
first-order semi-discretization, and the dde23 module of Matlab. The associated parameters are d ¼ 3:6 and
b ¼ �0:45, this is denoted by point A in the stability chart. It can be seen that the zeroth-order method
predicts an unstable process, while the first-order one shows that the system is stable.

The top panel of Fig. 3 shows the stability chart for the parameters e ¼ 2, k ¼ 0:2, t ¼ 2p, T ¼ 3p=2. In this
case, no closed form stability boundaries are available. The bottom panel shows the simulations for the
parameters d ¼ 1:8, b ¼ 0:7 that correspond to point B in the stability chart.
5. Conclusion

Semi-discretization of periodic delayed systems was considered using zeroth-, first-, and higher-order
approximations of the delayed term. It was shown that if the time-periodic coefficients in the equation are
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approximated by piecewise constant functions, then there is no need to use higher than first-order
approximations of the delayed term. In order to achieve higher order convergence, the time-periodic
coefficients should also be approximated using higher-order techniques, like the Magnus series method [13].
The results were demonstrated by constructing approximate stability charts of the delayed Mathieu equation.

Acknowledgment

This work was supported in part by the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences (T.I.), by the Hungarian National Science Foundation under grants no. OTKA T068910 (G.S.) and
F047318 (T.I.), and by the National Science Foundation under grants no. DMS 0705247 (J.T.).
References

[1] G. Stépán, Retarded Dynamical Systems, Longman, Harlow, 1989.

[2] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.

[3] T. Insperger, G. Stépán, Semi-discretization method for delayed systems, International Journal for Numerical Methods in Engineering

55 (5) (2002) 503–518.

[4] F. Hartung, T. Insperger, G. Stépán, J. Turi, Approximate stability charts for milling processes using semi-discretization, Applied

Mathematics and Computations 174 (2006) 51–73.

[5] J. Sheng, O. Elbeyli, J.Q. Sun, Stability and optimal feedback controls for time-delayed linear periodic systems, AIAA Journal 42 (5)

(2004) 908–911.
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