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Abstract

In this paper the non-linear dynamics of a state-dependent delay model of the turning process is analyzed. The size of the regenerative delay
is determined not only by the rotation of the workpiece, but also by the vibrations of the tool. A numerical continuation technique is developed
that can be used to follow the periodic orbits of a system with implicitly defined state-dependent delays. The numerical analysis of the model
reveals that the criticality of the Hopf bifurcation depends on the feed rate. This is in contrast to simpler constant delay models where the
criticality does not change. For small feed rates, subcritical Hopf bifurcations are found, similar to the constant delay models. In this case,
periodic orbits coexist with the stable stationary cutting state and so there is the potential for large amplitude chatter and bistability. For large
feed rates, the Hopf bifurcation becomes supercritical for a range of spindle speeds. In this case, stable periodic orbits instead coexist with the
unstable stationary cutting state, removing the possibility of large amplitude chatter. Thus, the state-dependent delay in the model has a kind
of stabilizing effect, since the supercritical case is more favorable from a practical viewpoint than the subcritical one.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Delay-differential equations (DDEs) often arise in many
different fields of science and engineering; examples include
control systems [1], lasers [2] and neuroscience [3]. One
relevant mechanical application is the dynamics of cutting
processes. The first mechanical models of cutting processes
appeared in the works of Tlusty [4] and Tobias [5]. These mod-
els describe the machine tool/workpiece structure as a flexible
system, where the tool and/or the workpiece experience vibra-
tions. These vibrations cause variations in the cutting depth
and so in the next revolution of the workpiece the tool encoun-
ters the wavy surface that was created. Due to this regeneration
effect, the chip thickness (and hence cutting force) is deter-
mined by the current and previous positions of the tool and
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the workpiece. In the standard models appearing in the literature
the time delay between two successive cuts is considered to
be a constant, which is equal to the period of the workpiece
rotation for turning, and to the tooth passing period for milling.
The corresponding mathematical model of the turning process
is an autonomous DDE, while the milling operation can be
described by DDEs with time-periodic coefficients.

An important phenomenon that limits the productivity of ma-
chining is the onset of self-excited vibrations, also known as
machine tool chatter. Typically, these vibrations are associated
with subcritical Hopf bifurcations. The locations of these Hopf
bifurcations of machining processes are usually shown in the
form of stability lobe diagrams. These diagrams plot the sta-
ble axial cutting depth as function of the spindle speed. Since
DDEs have infinite dimensional state-spaces [6–8], closed form
stability criteria are not usually available. However, there exist
several numerical and semi-analytical techniques to construct
stability diagrams (see, e.g., [8–12]).

Models with constant time delay capture the main character
of regenerative dynamics and can be used to describe linear
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stability properties in good agreement with experiments.
However, some phenomena can only be explained using more
sophisticated models that incorporate varying time delay as
well. Accurate modeling of milling operations shows that the
regenerative delay is in fact time periodic due to the feed mo-
tion, and the corresponding stability diagrams differ from the
ones of traditional models with constant delay (see [13–15]).

If the regenerative process is to be modeled accurately, then
the vibrations of the tool should also be included in the time
delay. In turning processes, the time delay is basically deter-
mined by the rotation of the workpiece but it is also affected
by the current and the delayed position of the tool as it was
shown by Insperger et al. [16,17]. This results in a DDE with
state-dependent delay (SD-DDE) where the delay depends on
the present state and also on a delayed one, thus giving an im-
plicitly defined delay. The effect of state-dependent delay is
also important in rotary cutting processes (e.g., in milling, or
drilling) where the torsional vibrations of the tool are signifi-
cant in the system’s dynamics. Germay et al. [18] and Richard
et al. [19] investigated drilling with drag bits and showed that
state-dependent regenerative delay arises due to the torsional
vibration of the tool. Insperger et al. [20] showed that state-
dependent delay arises in the governing equation of the milling
process even when only the bending oscillation of the tool is
considered and its torsional compliance is neglected.

The theory of SD-DDEs is an actively developing research
area in mathematics (see, e.g., [21–25]) and results, like
linearization techniques and stability analysis, are not used in
engineering problems yet. SD-DDEs are always non-linear,
since the state itself arises in its own argument through the
delay. The linearized system, however, is a DDE with constant
(or time-dependent) delay. Linearization of SD-DDEs is com-
plicated by the fact that the solution of the system is not
differentiable with respect to the state-dependent delay. Conse-
quently, “true” linearization is not possible, rather we are look-
ing for a linear DDE, which is associated to the original system
in the sense that they have the same local stability properties.

Linear stability analysis of the state-dependent delay model
of turning process was given in [17] using the technique of
Hartung and Turi [22]. In the current paper, the nonlinear
behavior of the same model is analyzed using numerical con-
tinuation techniques.

For turning models with constant delay, subcritical Hopf
bifurcations occur, i.e., unstable periodic orbits coexist with the
stable stationary cutting below the stability lobes. This means
that chatter may arise in the cases where the system is lin-
early stable. This phenomenon was clearly shown experimen-
tally by Shi and Tobias [26]. The first mechanical model that
provided analytical explanation of the unstable limit cycle was
presented by Stépán and Kalmár-Nagy [27]. Since then, their
results were confirmed by different numerical techniques (see,
e.g., [28–32]).

In this paper, it is shown that the Hopf bifurcation may in
fact become supercritical for some parameter values if a state-
dependent regenerative delay is incorporated into the model.
In these cases, small amplitude stable periodic orbits coexist
with the unstable stationary cutting solution above the stability

lobes, and no periodic orbits coexist with the stable stationary
cutting. This is practically more favorable than the subcritical
case since chatter cannot occur below the stability lobes. The
results are obtained by a numerical continuation technique.

2. Mechanical model with state-dependent regenerative
delay

Fig. 1 shows a sketch of the turning process under investi-
gation. The tool is assumed to be compliant and experiences
bending motion in directions x and y, while the workpiece is
assumed to be rigid. The system can be modeled as a 2 DOF
oscillator excited by the cutting force as it is shown in Fig. 2.
The governing equations read

mẍ(t) + cxẋ(t) + kxx(t) = Fx , (1)

mÿ(t) + cyẏ(t) + kyy(t) = Fy , (2)

where m, cx , cy , kx and ky are the modal mass, the damping and
the stiffness parameters in the x and y directions, respectively.
The cutting force is given in the form

Fx = Kxwhq , (3)

Fy = Kywhq , (4)

where Kx and Ky are the cutting coefficients, w is the depth
of cut, h is the chip thickness and q is an exponent (q = 0.75
is a typical empirical value for this parameter). In this model,
it is assumed that the tool never leaves the workpiece, that is,
h > 0 during the cutting process.

If the tool were rigid, then the chip thickness would be a
constant h = h0, which is just the feed per revolution. How-
ever, in practical cases the tool experiences vibrations that alter
the cutting depth and, after one revolution of the workpiece,
the tool cuts this wavy surface. Thus, the regenerative effect
makes the chip thickness non-constant during machining. If the
regenerative delay is �, then the chip thickness can be given as

h =
{

v� + y(t − �) − y(t) if y(t) − y(t − �)�v�,
0 if y(t) − y(t − �) > v�,

(5)

where v is the speed of the feed. Here, the case y(t) − y(t − �)
> v� corresponds to the loss of contact between the tool and
the workpiece. In the current work only local bifurcation
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Fig. 1. Turning model.
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Fig. 2. Model of regeneration in turning process.

phenomena are analyzed and the effect of contact loss is not
investigated. Therefore, in the following analysis, we assume
that y(t) − y(t − �)�v� during machining.

Since the tool experiences vibrations in the x direction as
well, the time delay is not equal to the rotation period of the
workpiece, but it is determined implicitly by

R�� = 2R� + x(t) − x(t − �). (6)

Here � is the spindle speed given in (rad/s) and R is the radius of
the workpiece. Thus, the regenerative delay is a state-dependent
delay since it depends on the state, both current (x(t)) and
delayed (x(t − �)). Therefore, we will use the notation �(xt ),
where xt (s) = x(t + s), s ∈ [−r, 0], r ∈ R+ describes the
history of the state.

Thus, the governing equation can be written as

mẍ(t) + cxẋ(t) + kxx(t)

= Kxw(v�(xt ) + y(t − �(xt )) − y(t))q , (7)

mÿ(t) + cyẏ(t) + kyy(t)

= Kyw(v�(xt ) + y(t − �(xt )) − y(t))q . (8)

This is a system of SD-DDEs, where the state-dependent delay
�(xt ) is given implicitly by Eq. (6).

In order to reduce the number of parameters we assume
that the tool is symmetric, i.e., cx = cy = c, kx = ky = k. The
corresponding natural angular frequency is �n =√

k/m and the
damping ratio is � = c/(2m�n). Rescaling the state such that
x(t) = v�0x̃(t), y(t) = v�0ỹ(t), where �0 = 2�/� is the mean
time delay, and dropping the tildes immediately gives

ẍ(t) + 2��nẋ(t) + �2
nx(t)

= Kxw(2�R)q−1

m
�q−1

(
�(xt )

�0
+ y(t − �(xt )) − y(t)

)q

,

(9)

ÿ(t) + 2��nẏ(t) + �2
ny(t)

= Kyw(2�R)q−1

m
�q−1

(
�(xt )

�0
+ y(t − �(xt )) − y(t)

)q

,

(10)

where

� = v�0/(2�R) (11)

is the dimensionless feed rate. Note that v�0 = h0 is the feed
per revolution and 2�R is the circumference of the workpiece.
Since h0>2�R, practically, �>1. For instance, � = 0.01 cor-
respond to a workpiece of diameter D = 10 mm with feed rate
h0 = 0.31 mm. Thus, in conventional turning � < 0.01. Still, in
the subsequent analysis, we will investigate cases with � > 0.01
as well in order to point out some interesting phenomena of
systems with state-dependent delay.

Rescaling now the time such that t̃ = �nt , �̃ = �n�, and
�̃0 = �n�0, and, again, dropping the tildes immediately, yields

ẍ(t) + 2�ẋ(t) + x(t) = 1

kr

K1�
q−1

×
(

�(xt )

�0
+ y(t − �(xt )) − y(t)

)q

,

(12)

ÿ(t) + 2�ẏ(t) + y(t) = K1�
q−1

×
(

�(xt )

�0
+ y(t − �(xt )) − y(t)

)q

,

(13)

where

K1 = Kyw(2�R)q−1

m�2
n

(14)
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is the dimensionless depth of cut, and kr = Ky/Kx is the cut-
ting force ratio. Similarly, the implicit equation for the delay
reduces to

�/�0 = 1 + �(x(t) − x(t − �)). (15)

Finally, the condition for the continuous cutting (i.e., without
loss of contact) is

y(t) − y(t − �(xt ))��(xt )/�0. (16)

Thus, the system under study is the SD-DDE (12)–(13) with
the state-dependent delay defined by (15) and constrained by
the condition (16).

If the state-dependent delay is not included into the model,
then the corresponding equations are obtained by setting �(xt )=
�0 in (12)–(13) and in (16). In the next sections, linear stability
properties and non-linear behavior of the models with state-
dependent and with constant delay are compared.

3. Linear stability

True linearization of SD-DDEs is not possible since the so-
lution is not differentiable with respect to the state-dependent
delay (see, [33] and the references therein). Linearization of
SD-DDEs rather means the construction of an associated linear
system that has the same local stability properties as the origi-
nal system. The linearization technique for general autonomous
SD-DDEs was given by Hartung and Turi [22] and for time-
periodic SD-DDEs by Hartung [24].

Linear stability analysis of the SD-DDE turning problem was
given in [17]. In this section, these results are summarized. The
constant solution of (12)–(13) can be given as

x̄ = 1

kr

K1�
q−1, ȳ = K1�

q−1. (17)

The corresponding delay is also constant: �̄ = �(x̄t ) = �0. The
associated linearized system is

�̈(t) + 2��̇(t) + �(t)

= 1

kr

K1q�q−1((	(t − �0) − 	(t)) + �(�(t) − �(t − �0))),

(18)

	̈(t) + 2�	̇(t) + 	(t)

= K1q�q−1((	(t − �0) − 	(t)) + �(�(t) − �(t − �0))).

(19)

For further details on the construction of this linear system,
see [17].

Investigation of the characteristic equation gives the stability
boundaries in closed form:

K1,SDD =
(

kr

kr − �

)
(�2 − 1)2 + (2��)2

2q�q−1(�2 − 1)
, (20)

�

�n
= 2�

�0
= ��

arctan
(

1−�2

2��

)
+ j�

, j = 1, 2, . . . , (21)

where the Hopf frequency � is used as a parameter, and the
index SDD refers to state-dependent delay.

The stability boundaries of the corresponding system with
constant time delay is

K1,CD = (�2 − 1)2 + (2��)2

2q�q−1(�2 − 1)
, (22)

while the expression for �/�n is identical to (21). Here, the
index CD refers to constant delay.

The difference between the state-dependent and the constant
delay model is characterized by the ratio of the corresponding
critical dimensionless depth of cut

K1,SDD

K1,CD
= kr

kr − �
> 1. (23)

This shows that the state-dependent delay has a stabilizing ef-
fect even at the linear level. However, it should be noted that
this effect is small, since �>1 and typical values of the cutting
force ratio are in the region of kr = 0.3, so the above ratio is
close to 1.

Stability boundaries in the plane (K1, �/�n) are presented
in Fig. 3 for different dimensionless feed rate parameters �.
Solid lines denote the stability boundaries associated with the
state-dependent delay model, while dashed lines correspond to
the constant delay model. For small feed rate (� = 0.001), the
stability boundaries for the two models are practically identical,
while for larger feed rates (� = 0.01 and 0.1), the difference
between the two models can be seen.

In the next sections, the nonlinear behavior along the stability
lobes will be investigated.

4. Bifurcation diagrams for the constant delay model

First, the main features of sub- and supercritical Hopf bifur-
cations are summarized. A sketch showing the amplitude of the
limit cycles as a function of the dimensionless depth of cut is
shown in Fig. 4 for both cases. The linear stability boundary
is denoted by K1,LSB. If K1 < K1,LSB then the stationary cut-
ting is stable, otherwise it is unstable. In the subcritical case,
an unstable limit cycle (periodic orbit) coexists with the sta-
ble equilibrium (stationary cutting). In the supercritical case, a
stable limit cycle coexists with the unstable equilibrium.

In the traditional turning models with constant regenerative
delay only subcritical Hopf bifurcation occurs as was shown
in [27]. This subcritical nature is clearly related to the nonlin-
ear dependence of the cutting force on the chip thickness. For
large amplitude vibrations, the tool may lose contact with the
workpiece. This results in a fold back of the unstable branch
to a periodic (or quasi-periodic or chaotic) attractor at K1,FB.
In mechanical sense, machine tool chatter corresponds to this
large amplitude attractor.

If K1,FB < K1 < K1,LSB then the large amplitude attractor
coexists with the stable stationary cutting. Although the sta-
tionary cutting is linearly stable in this region, perturbations
larger than the amplitude of the unstable limit cycle can still
lead to chatter. Practically, the transition between stable cut-
ting and chatter is not smooth in this case, since for a small
increase of the depth of cut, large amplitude vibrations may
appear suddenly.
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Fig. 5 shows the stability lobe diagram and three bifurcation
diagrams for the constant delay model described by (12)–(13)
with �(xt ) = �0. Since in this case, the term �q−1 appears
only as a multiplier of the dimensionless depth of cut K1, the
combined parameter K1�q−1 can be used instead of K1 as a
parameter proportional to the actual depth of cut. Thus, the
bifurcation diagrams in Fig. 5 represent the amplitude of the
periodic motion of the tool as function of K1�q−1 for fixed
�/�n. Here, ‖x‖ denotes the �2-norm of the displacement of

the tool in the x direction:

‖x‖ =
√∫ T

0
x2(s) ds, (24)

where T is the period of the oscillation. The diagrams were
determined using the software package DDE-BIFTOOL (see,
[34,35]). Continuation of the periodic orbits is stopped when
the continuous cutting condition (16) is broken. The points at
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which the tool loses contact with the workpiece are denoted
by dots in Fig. 5. It can be seen that the branches of periodic
motions bends to the left for all values of �; these are subcritical
Hopf bifurcations.

5. Non-linear analysis of the state-dependent delay model

Continuation for the system with state-dependent delay is
not so straightforward as it is for the constant delay model.
The software DDE-BIFTOOL can be used to the continuation
of SD-DDEs, where the delay is given as explicit function
of the state. However, in the model of turning, the delay is
defined implicitly. To overcome this difficulty, the time delay
�(xt ) along the periodic orbit is added as an extra state variable.
Thus, the time delay is given explicitly as a function of the
state. To add the extra algebraic equation (15) needed to fix the
time delay, DDE-BIFTOOL was modified in a similar way to
the method described in [36] for continuation of neutral DDEs
written as a system of DDEs coupled to an algebraic equation.
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Fig. 6 shows the stability lobe diagrams and bifurcation di-
agrams for the state-dependent delay model with different
dimensionless feed �. It can clearly be seen that the subcritical
Hopf bifurcations change to supercritical as � increases. In the
supercritical case, stable periodic orbits coexist with the lin-
early unstable stationary cutting state, while no unstable peri-
odic orbits coexist with the stable stationary cutting state. This
means that the system cannot experience chatter within the
linear stability boundaries of the stationary cutting state. Also,
periodic vibrations arise only when the stationary cutting state
loses stability and the amplitude of these vibrations increases
continuously with increasing K1. Thus, in supercritical cases,
the transition between stable cutting and chatter is smooth.

It can be seen that the criticality of the Hopf bifurcation does
not change across the whole lobe. For certain spindle speeds on
the left side of the lobes, when � is increased sufficiently, the
Hopf bifurcations becomes subcritical again. However, when
they become subcritical again they very quickly bend back and
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so the effect is minimal. Such a case is depicted in Fig. 7; note
the scale on the horizontal axis.

The transition between sub- and supercritical cases along
the stability boundaries are presented in Fig. 8 for different
values of the dimensionless feed �. The sections of the bound-
aries where supercritical Hopf bifurcations occur are denoted
by thick lines while subcritical boundaries are denoted by thin
lines. It can be seen that the right side of the lobes become su-
percritical for increasing �, while the left side remains mostly
subcritical.The critical values of the dimensionless feed � where
the criticality of the Hopf bifurcation changes are presented in
Fig. 9 for the first lobe (�/�n > 1). It can be seen that there is a
minimum value of the critical feed denoted by point A. The cor-
responding parameters are �A =0.0209 and (�/�n)A =1.3225
(it is to the left from the center of the lobe). If � < �A, then
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Fig. 7. Bifurcation diagram for �/�n = 1.2566, � = 0.1.
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the Hopf bifurcation is always subcritical. It should be noted
that �A is quite large value, it corresponds to a workpiece of
diameter D =10 mm with feed rate h0 =0.657 mm/rev, which
is not typical in practical turning.

It can also be seen that this curve bends back at point B,
where �B = 0.0342, (�/�n)B = 1.2459. Thus, the bifurcation
is also subcritical if �/�n < (�/�n)B .

In Fig. 9 only the first lobe is considered but this phenomenon
is the same for all the other lobes as is seen from the parame-
terization of (21). Assume that �=�cr is the chatter frequency,
where the criticality of the bifurcation changes in the first lobe.
In this case, the period of the limit cycles arising from the Hopf
bifurcation is Tcr = 2�/�cr. Using (21) with j = 1, the corre-
sponding time delay is

�01 =
2 arctan

(
1−�2

cr
2��cr

)
+ 2�

�cr
. (25)

For any other lobes with j = n > 1, � = �cr gives the delay

�0n =
2 arctan

(
1−�2

cr
2��cr

)
+ n2�

�cr
. (26)

Note, that �0n − �01 = (n − 1)2�/�cr = (n − 1)Tcr. Now, we
can say that if x̂(t) = x̂(t + Tcr) is a periodic solution of the
system with time delay � = �01, then it is also the solution for
the system with � = �0n, since

x̂(t − �01) = x̂(t − �01 − (n − 1)Tcr) = x̂(t − �0n). (27)

This means that the criticality of the bifurcation changes at the
chatter frequency � = �cr for all the lobes.
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Fig. 10 shows the variation of the time delay along the pe-
riodic branches at the center of the lobe (�/�n = 1.3541). In
order to be able to compare the variations in the time delays,
the periods of the orbits are normalized to 2�. It can be seen
that the amplitude of the delay variation increases with the di-
mensionless feed �. Also, the assumption of a constant delay
as made by previous DDE models is clearly flawed.

6. Conclusion

The non-linear dynamics of the state-dependent delay model
of turning processes was analyzed using numerical continua-
tion methods. The important difference between this model and
other models is that the regenerative delay is determined not

just by the rotation of the workpiece, but also by the vibrations
of the tool. The linear stability analysis of the model was given
earlier in [17], where it was shown that the stability lobes asso-
ciated with the state-dependent delay model are slightly higher
than those of the constant delay model.

The mathematical model is an SD-DDE where the time delay
is defined implicitly. The behavior of the system at the linear
stability boundaries was investigated. Specifically, the critical-
ity of the Hopf bifurcation at the stability loss was determined.
A modified version of DDE-BIFTOOL was used that allows
the time delay to be treated as an extra state variable. The anal-
ysis showed that the criticality of the Hopf bifurcations along
the stability lobes depends on the feed rate. For small feed
rates, the bifurcation is subcritical, similarly to the models with
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constant spindle speed (see [27]). In this case, an attractor
(either a periodic or quasi-periodic orbit, or a chaotic attractor)
coexists with the stable stationary cutting state that may lead
to chatter even within the linear stability boundaries. For large
feed rates, it was found that the bifurcation becomes supercrit-
ical for certain spindle speeds, mostly on the right-hand side of
the stability lobe. In the supercritical case, stable periodic or-
bits coexist with the linearly unstable stationary cutting state,
and no attractors coexist with the stable stationary cutting state.
This means that the system cannot experience chatter within
the linear stability boundaries. From practical point of view,
clearly, the supercritical Hopf bifurcation is more favorable than
the subcritical one. Adaptive chatter control strategies [37] are
also much more efficient at supercritical stability boundaries.

Thus, it was shown that the state-dependent delay in the
turning model has a kind of stabilizing effect. It increases the
linear stability limits and it turns the subcritical bifurcations
to supercritical ones. In some respect, the state-dependent time
delay has a kind of compliance compared to the “stiff” constant
delay. As a rule of thumb, we might say that the more flexible
the delay is, the more stable the system is.

The fact that varying regenerative delay may stabilize cutting
processes is well known in the machining community. This is
the goal when varying spindle speeds are applied, or milling
tools with variable pitch angles are used. However, in these
cases, the variation in the delay is prescribed, while in the cases
of state-dependent delays, it is self-regulated.

Acknowledgments

The authors acknowledge the support from the Centre de
Recerca Matemàtica (CRM), Barcelona, Thematic Research
Term on Non-Smooth Complex Systems. T.I. was supported
by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences and the Hungarian National Science
Foundation under Grant no. OTKA F047318. D.A.W.B. is a
research fellow supported by the Lloyds Tercentenary Founda-
tion. G.S. was supported by the Hungarian National Science
Foundation under Grant no. OTKA T068910.

References

[1] J. Richard, Time-delay systems: an overview of some recent advances
and open problems, Automatica 39 (10) (2003) 1667–1694.

[2] B. Krauskopf, Unlocking dynamical diversity: optical feedback effects on
semiconductor lasers, in: D. Kane, K. Shore (Eds.), Bifurcation Analysis
of Lasers with Delay, Wiley, New York, 2005, pp. 147–183.

[3] M. Breakspear, J. Roberts, J. Terry, S. Rodrigues, N. Mahant,
P. Robinson, A unifying explanation of primary generalized seizures
through nonlinear brain modeling and bifurcation analysis, Cerebral
Cortex 16 (9) (2006) 1296–1313.

[4] J. Tlusty, A. Polacek, C. Danek, J. Spacek, Selbsterregte Schwingungen
an Werkzeugmaschinen, VEB Verlag Technik, Berlin, 1962.

[5] S.A. Tobias, Machine Tool Vibration, Blackie, London, 1965.
[6] J. Hale, S. Verduyn Lunel, Introduction to Functional Differential

Equations, Springer, New York, 1993.
[7] O. Diekmann, S. van Gils, S. Verduyn Lunel, H.-O. Walther, Delay

Equations: Functional-, Complex-, and Nonlinear Analysis, Springer,
New York, 1995.

[8] G. Stépán, Retarded Dynamical Systems, Longman, Harlow, 1989.

[9] Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling,
Ann CIRP 44 (1) (1995) 357–362.

[10] B. Balachandran, M.X. Zhao, A mechanics based model for study of
dynamics of milling operations, Meccanica 35 (2) (2000) 89–109.

[11] T. Insperger, B.P. Mann, G. Stépán, P.V. Bayly, Stability of up-milling
and down-milling. Part 1: alternative analytical methods, Int. J. Mach.
Tools Manuf. 43 (1) (2003) 25–34.

[12] S.D. Merdol, Y. Altintas, Multi frequency solution of chatter stability
for low immersion milling, J. Manuf. Sci. Eng. 126 (3) (2004) 459–466.

[13] X.-H. Long, B. Balachandran, Milling model with variable time delay,
in: Proceedings of the 2004 ASME International Mechanical Engineering
Congress and Exposition, Anaheim, CA, paper no. IMECE2004-59207,
2004.

[14] R.P.H. Faassen, N. van de Wouw, H. Nijmeijer, J.A.J. Oosterling, An
improved tool path model including periodic delay for chatter prediction
in milling, J. Comput. Nonlinear Dyn. 2 (2007) 167–179.

[15] X.-H. Long, B. Balachandran, B.P. Mann, Dynamics of milling processes
with variable time delay, Nonlinear Dyn. 47 (2007) 49–63.

[16] T. Insperger, G. Stépán, J. Turi, State-dependent delay model for
regenerative cutting processes, in: Fifth EUROMECH Nonlinear
Dynamics Conference, ENOC 2005, Eindhoven, The Netherlands, 2005,
pp. 1124–1129.

[17] T. Insperger, G. Stépán, J. Turi, State-dependent delay in regenerative
turning processes, Nonlinear Dyn. 47 (1–3) (2007) 275–283.

[18] C. Germay, N. van de Wouw, R. Sepulchure, H. Nijmeijer, Axial
stick-slip limit cycling in drill-string dynamics with delay, in: Fifth
EUROMECH Nonlinear Dynamics Conference, ENOC 2005, Eindhoven,
The Netherlands, 2005, pp. 1136–1143.

[19] T. Richard, C. Germay, E. Detournay, A simplified model to explore
the root cause of stick-slip vibrations in drilling systems with drag bits,
J. Sound Vib. 305 (2007) 432–456.

[20] T. Insperger, G. Stépán, F. Hartung, J. Turi, State-dependent regenerative
delay in milling processes, in: Proceedings of ASME International
Design Engineering Technical Conferences, Long Beach CA, paper no.
DETC2005-85282, 2005.
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