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Act-and-Wait Concept for Continuous-Time Control Systems
With Feedback Delay

Tamás Insperger

Abstract—The act-and-wait control concept is introduced for
continuous-time control systems with feedback delay associated
with infinite poles. The point of the method is that the feedback
is periodically switched on (act) and off (wait) during the control.
It is shown that if the duration of waiting (when the control is
switched off) is larger than the feedback delay, then the system
can be represented by a finite dimensional monodromy matrix,
and a finite number of eigenvalues describe stability. This way, the
infinite dimensional pole placement problem is reduced to a finite
dimensional one. The efficiency of the method is demonstrated on
a case study.

Index Terms—Delay effects, Floquet theory, optimal control, pe-
riodic control, pole assignment, stability.

I. INTRODUCTION

CONSIDER the linear system

(1)

where is the state vector, is the input,
and and are given constant matrices.
Consider the autonomous delayed feedback controller

(2)

where is a constant matrix and is the delay of
the feedback. We assume that the delay is a fixed parameter of
the control system and cannot be eliminated or tuned during the
control design. There are several sources of such time delays,
e.g., acquisition of response and excitation data, information
transmission, online data processing, computation, and appli-
cation of control forces.

System (1), with controller (2), implies the delay-differential
equation (DDE)

(3)

Due to the time delay, this system has an infinite number of poles
(also called characteristic roots or characteristic exponents) de-
termined by the transcendental characteristic equation

(4)
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The system is asymptotically stable if all the poles are located
in the left half of the complex plane. Stability conditions for the
systems’s parameters can be given by monitoring the number of
unstable poles (see, e.g., [1]–[3]).

We introduce the decay ratio , where is the rele-
vant (rightmost) pole, i.e., . This
ratio is a measure of the average error decay over a unit period,
since . Optimization of (1) and (2) raises
the following pole placement problem. For the given matrices
and and for given feedback delay , we are looking for matrix

, so that and, consequently, are as small as possible.
The difficulty of this problem is that an infinite amount of poles
should be controlled by a finite number of control parameters,
i.e., by the elements of matrix .

An effective way of managing the pole placement problem is
through the use of periodic controllers. Several papers have been
published on the stabilization effect of periodic feedback for
both discrete-time [5], [4], and continuous-time systems [6]–[8].
An efficient technique is the use of generalized sampled-data
hold functions by sampling the output periodically and using
special hold functions [9]. Pulse-step control [10] and control-
signal shaping [11] should also be mentioned here as control
concepts with step-wise varying input.

In this brief, a special case of periodic controllers, the act-and-
wait controller, is introduced for continuous-time systems with
delayed feedback. The point of the method is that the control
term is periodically switched off and on during the control so
that the duration of being switched off is larger than the feedback
delay. It is shown that by using this method, the system can be
described by an monodromy matrix. The stability is then
determined by poles (by the eigenvalues of the monodromy
matrix) as opposed to the infinite number of roots of (4). This
way, the dimension of the pole placement problem is reduced
to .

In the second half of the brief, a case study is presented: a
second-order system with delayed feedback. It is shown that the
application of the act-and-wait method radically simplifies pole
placing difficulties, improves stability properties, and results in
a deadbeat control even in the case when the system can not be
stabilized with the original autonomous controller.

The act-and-wait method was already introduced in [12] for
semi-discrete systems with piecewise constant delayed term as-
sociated with a finite dimensional spectrum. In the present brief,
the method is adopted for continuous-time delayed systems as-
sociated with infinite dimensional spectrum.

II. ACT-AND-WAIT CONTROLLER

We introduce the act-and-wait controller

(5)
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where is the -periodic act-and-wait switching function
defined as

if
if

(6)

Using controller (5) instead of (2), the delayed feedback term is
switched off for a period of length (wait), and it is switched
on for a period of length (act). This is a special case of peri-
odic controllers.

System (1), with controller (5), can be written in the time-
periodic DDE form

(7)

According to the Floquet theory of DDEs, stability is deter-
mined by the nonzero eigenvalues of the system’s monodromy
operator, called also characteristic multipliers (see, e.g., [13]).
The system is asymptotically stable if all the characteristic mul-
tipliers are inside the unit circle of the complex plane.

For the time-periodic system (7), the decay ratio can be de-
fined as , where is the relevant characteristic
multiplier, i.e., . This decay ratio
can be used to compare act-and-wait control systems with dif-
ferent periods , to the autonomous system (3).

Now, the optimization problem can be composed in the fol-
lowing way. For given matrices and and for given feedback
delay , we are looking for matrix , and parameters and
so that and, consequently, are as small as possible.

In the case , (7) has infinite number of characteristic
multipliers, therefore, pole placing is still rather complicated,
similarly to the autonomous case (3). However, if , then
the monodromy operator of (7) becomes finite dimensional and
can be represented as an matrix as it is shown below.

First, assume that and . In this case, (7)
can be considered as an ordinary differential equation (ODE) in

and as a DDE in . If , then (the
delayed term is switched off), and the solution of (7), associated
with the initial state , can be given as

(8)

If , then (the delayed term is switched on).
Since , and the solution over the interval is already
given by (8), system (7) can be written in the form

(9)

Solving (9) as an ODE over with as
an initial condition, we obtain

(10)

This way, we constructed an -discrete map over the pe-
riod for the initial state using the piecewise solutions
of (7). This means that the monodromy operator of (7) has
nonzero eigenvalues that are equal to the eigenvalues of the tran-
sition matrix . All the other (infinitely many) eigenvalues of
the monodromy operator are zero. Consequently, system (7) has

characteristic multipliers that are equal to the eigenvalues of
matrix that is actually the monodromy matrix of the system.

Consider now the case when the period of acting can not be
smaller than the time delay due to any reasons (e.g., physical
limitations of the controller), that is, and . In
this case, the monodromy matrix can be determined by step-
wise integration over subsequent intervals. First, the solution
over should be determined similarly to (8). Then, the so-
lutions can be determined over the intervals

, etc., by step-by-step substituting the solution of the
previous interval into the delayed term. If ,
then is obtained after succeeding integration.

For example, if , then piecewise integration over
, and yields the monodromy

matrix

(11)

The main conclusion, regarding the general system (7), is that
if and , then an monodromy matrix can
always be constructed using the piecewise solutions of (7). Con-
sequently, eigenvalues determine the stability properties of the
system as opposed to the infinite number of poles of the system
with the original autonomous controller (2). This way, the infi-
nite dimensional-pole placement problem is reduced to an -di-
mensional one: eigenvalues of should be placed using the
control parameters in .

Note that the above statement does not imply that arbitrary
pole placement of the resulted monodromy matrix is always pos-
sible. Actually, the placement of the eigenvalues of is still a
rather complex problem, since they depend nonlinearly on the
components of . Therefore, the stabilization problem of the
general system (7) is not investigated here. Only a case study
is presented in the next section about the pole optimization of a
second-order system with delayed feedback.

III. CASE STUDY

Consider the second-order system with delayed feedback de-
scribed by in (1), (5), and (6) with

(12)

If , then the characteristic equation of the
corresponding autonomous system reads

(13)

This system has an infinite number of poles that can not arbi-
trarily be placed using the two control parameters and .
Moreover, if , then the autonomous system cannot even
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Fig. 1. Time histories for (12) with a = 0 using (a) autonomous and (b) act-
and-wait controller.

be stabilized, i.e., the system is unstable for all pairs
(see, e.g., [1]).

In the following subsections, cases and will
be investigated. Optimal control parameters corresponding to
the smallest possible decay ratios will be determined for the
autonomous control case and for the act-and-wait case
with and .

A. Case

This case describes a feedback stabilized double integrator
with input delay. The system can be stabilized using an au-
tonomous controller with , and pole optimization gives
the optimal control parameters with
the relevant pole (see, e.g., [14]). The corre-
sponding decay ratio is .

If the act-and-wait control concept is used with
and , then the system can be represented by the 2 2
monodromy matrix

(14)

given by (10). The pole placement problem is now reduced to
the placement of the two eigenvalues of using the control
parameters . It can be seen that and can be chosen
so that both eigenvalues are zero, that is, ! These optimal
parameters are and

. If these parameters are used then , that
is, the system is deadbeat in period!

Time histories for the autonomous and the act-and-wait cases
are shown in Fig. 1. The simulation was performed using the
semidiscretization technique [15]. Thick lines denote the pe-
riods of acting and thin lines denote waiting. In the autonomous
case in Fig. 1(a), the control is continuously active, and the con-
vergence is relatively slow. In Fig. 1(b), the time history corre-
sponding to the act-and-wait control shows that the system ac-

Fig. 2. Time history for (12) with a = �4 using act-and-wait controller.

tually converges to zero within period . In the period ,
the delayed term is switched off (we are waiting), in the period

, the controller is switched on forcing the system to zero
(we are acting). In the next act-and-wait period, the system stops
at zero completing the deadbeat convergence.

B. Case

In this case, matrix describes an unstable system (like the
inverted pendulum in [1]). This system can not be stabilized
using an autonomous controller since .

If the act-and-wait controller is used with and
, then the monodromy matrix can be given according

to (15), shown at the bottom of the page.
It can be seen that this matrix can be stabilized, moreover,

both eigenvalues can be placed to the origin using the control
parameters and , that is, deadbeat
control can be achieved! Time history corresponding to the op-
timal deadbeat case is shown in Fig. 2. It can be seen that
grows exponentially in the first wait period since is
unstable, then, during the first act period , the growing
tendency of is reversed, and the deadbeat convergence is
completed in the next act-and-wait period.

IV. CONCLUSION

The act-and-wait control method was introduced for linear
-dimensional continuous-time control systems with feedback

delay . It was shown that the infinite dimensional pole place-
ment problem of the delayed system can be reduced to an -di-
mensional one, if the feedback is periodically switched off and
on with switch-off period . The point is that the switched
system can be described by an monodromy matrix, con-
sequently, stability properties are described by eigenvalues.

As a case study, a second-order system with delayed feedback
was investigated. It was shown that the number of poles can be
reduced from infinity to 2 by applying the act-and-wait method,
and deadbeat control can be attained even in the case when the
original autonomous controller cannot stabilize the system.

The main conclusion of this paper is that the act-and-wait
concept provides an alternative for control systems with feed-
back delays. The traditional way is the continuous use of small

(15)
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control gains according to Fig. 1(a), when a cautious, slow feed-
back is applied with small gains resulting in slow convergence.
The proposed alternative way is the act-and-wait control con-
cept, when large control gains are used in the acting period and
zero gains are used in the waiting period according to Fig. 1(b).
Although it might seem unnatural not to actuate during the wait
period, the act-and-wait concept is still a natural control logic
for time-delayed systems. This is the way, for example, that one
would adjust the shower temperature considering the delay be-
tween the controller (tap) and the sensed output (skin).
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