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Abstract

Stability of 2-dof milling is investigated. Stability boundaries are predicted by the zeroth order approximation (ZOA) and the semi-

discretization (SD) methods. While similar for high radial immersions, predictions of the two methods grow considerably different as radial

immersion is decreased. The most prominent difference is an additional type of instability causing periodic chatter which is predicted only by

the SD method. Experiments confirm predictions of the SD method, revealing three principal types of tool motion: periodic chatter-free,

quasi-periodic chatter and periodic chatter, as well as some special chatter cases. Tool deflections recorded during each of these motion types

are studied in detail.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

High material removal rates, provided in theory by the

modern machining centers, often cannot be achieved in

practice due to the inherent instability of a cutting process.

In cutting processes which involve rotation of the tool or

workpiece, the instability is caused by the so called

regeneration of surface waviness during successive cuts:

wavy surface left behind by the previous cut influences chip

thickness during the current cut, thereby contributing to the

wavy surface, which in turn influences chip thickness in the

successive cut, etc. The resulting instability is called

regenerative chatter.

Dynamics of regenerative cutting processes can be

described by models in the form of linear delay-differential

equations (DDEs) [1,2]. Chatter-free cutting and chatter

correspond respectively to the linearly stable and unstable

solutions of the model equations. The cutting parameters

that assure stable, chatter-free machining can therefore be
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predicted by the linear stability analysis of the equations.

The stability boundary is usually presented in a graph of the

maximal chatter-free depth of cut vs. spindle speed. The

graph is called a stability chart.

For continuous cutting, such as uninterrupted turning, the

model equations are autonomous and the stability boundary

can be given in closed form. The stability boundary has a

typical ‘lobed’ structure, with stability maxima located at

spindle speeds corresponding to the integer fractions of

the eigen-frequencies of the most flexible modes of the

machine–tool–workpiece system. The instability, i.e. the

transition from chatter-free cutting to chatter, corresponds to

the sub-critical Hopf bifurcation [3,4].

For interrupted machining, such as milling and inter-

rupted turning, the cutting force variation is time-periodic.

The resulting model equations are non-autonomous DDEs

for which the linear stability condition cannot be given in

closed form. The stability boundary can be determined

numerically, by time domain simulations [5–7]. While

indispensable for the study of complicated cutting process

models which involve trochoidal tool path, multiple

regeneration effects, non-linear force dependencies, etc.,

the time domain simulations are an inefficient way of
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Fig. 1. Schematic diagram of end milling.
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exploring the parameter space of linear DDEs. The first

analytical attempts at stability prediction of milling were

based on Fourier expansion of the time-periodic force

coefficient [8,9]. The accuracy of the obtained stability

boundary depends on the shape of the cutting force variation

and the number of Fourier terms used to approximate it. For

cutters with a large number of teeth and for substantial

radial immersions, the cutting force varies relatively little so

that reasonably accurate stability predictions can be

achieved by using only the zeroth order Fourier term

[10,11]. However, for cutters with few teeth and for low

radial immersions, prohibitively many Fourier terms may be

needed to capture the cutting force variation. In such cases,

which are quite common in high-speed milling, the exact

stability boundary may differ significantly from the one

predicted by the zeroth order approximation (ZOA).

This discrepancy was first shown for the case of very low

immersion milling, where the time interval of tool–work-

piece contact was a small fraction of the spindle period

[12,13]. Based on a discrete representation of the impact-

like cutting process combined with the exact analytical

solution of the free tool vibration, a time-domain analytical

method for stability prediction was developed which

revealed that there exist two types of instability in milling:

the Hopf bifurcation, which causes the quasi-periodic

chatter, and the period doubling or flip bifurcation, which

causes the periodic chatter. The stability boundary in

milling therefore consists of two sets of lobes corresponding

to the two instability types. In contrast, the ZOA method

predicts only one type of instability, the Hopf bifurcation.

The stability predictions from Refs. [12,13] lose

accuracy as the time of the tool–workpiece contact

increases. Two alternative methods have since been

proposed that can predict stability boundary for an arbitrary

time in the cut. The first method combines the exact

analytical solution of the free tool vibration with the

approximate solution for the tool vibration during cutting

calculated using temporal finite element analysis (TFEA)

[14]. The second method employs the semi-discretization

(SD) scheme to transform the DDE into a series of

autonomous ordinary differential equations (ODEs) for

which the solutions are known [15]. In both methods,

stability is determined by the eigen-values of the transition

matrix which connects the solutions between successive

cuts. The methods have been derived and verified

experimentally using a 1-dof milling system [16,17].

Recently, both methods have also been extended to 2-dof

milling systems [18–20].

In this paper, stability of a 2-dof milling system is

investigated. Stability boundaries are predicted using the

ZOA and SD methods. The ZOA method is briefly reviewed

and the SD method for 2-dof systems is presented. Stability

predictions of the two methods are compared for a series of

radial immersions and verified experimentally on a high-

speed milling center using a long and slender tool. The

recorded tool deflections in the X–Y plane are analyzed in
detail and six different types of tool motion are distin-

guished: three principal types predicted by the SD method

(periodic chatter-free, quasi-periodic and periodic chatter)

as well as three special chatter cases.
2. Stability prediction for end milling

Consider a 2-dof end milling operation shown schema-

tically in Fig. 1. A cutter with a diameter D and N equally

spaced teeth rotates at a constant angular velocity U. The

radial immersion angle of the j-th tooth varies with time as:

fjðtÞZUtC2pðjK1Þ=N. A compliant machine–tool struc-

ture is excited by the tangential (Ft) and radial (Fr)

components of the milling force at the tool tip causing

dynamic response of the structure governed by the

following equation:

M €X ðtÞCC _XðtÞCKXðtÞ Z FðtÞ: (1)

Here, X(t) and F(t) denote the displacement and cutting

force vectors, while M, C and K denote the system mass,

damping and stiffness matrices. For a system with m

vibration modes in X and Y directions, the vectors are 2m!1

and the matrices 2m!2m dimensional. The matrices are

diagonal if the modes in X and Y directions are uncoupled.

The feed (Fx) and normal (Fy) cutting force components

acting on the j-th tooth are given by:

Fx;jðtÞ Z ½KFt;jðtÞ cos fjðtÞKFr;jðtÞ sin fjðtÞ�gjðtÞ;

Fy;jðtÞ Z ½Ft;jðtÞ sin fjðtÞKFr;jðtÞ cos fjðtÞ�gjðtÞ;
(2)

where gj(t) represents a unit step function determining

whether or not the j-th tooth is cutting. The tangential and

radial cutting force components are assumed proportional to

the chip load defined by the chip thickness hj(t) and axial
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depth of cut ap (or chip width):

Ft;jðtÞ Z KtaphjðtÞ; Fr;jðtÞ Z KraphjðtÞ Z krFt;jðtÞ: (3)

Kt and Kr denote the specific cutting force coefficients, while

kr denotes their ratio, krZKr/Kt.

The instantaneous chip thickness consists of a static

component due to the feed motion, hs,j(t)Zfz sin fj(t) with

feed per tooth fz, and the dynamic component hd,j(t) due to

the cutter displacement. Stability of cutting is influenced

only by the latter which is given by:

hd;jðtÞ Z ½Dxðt;TÞ sin fjðtÞCDyðt;TÞ cos fjðtÞ�gjðtÞ; (4)

where Dx(t,T)Zx(t)Kx(tKT) and Dy(t,T)Zy(t)Ky(tKT)

describe the surface regeneration, i.e. the difference

between the tool positions at the present and previous

tooth passes. TZ2p/NU is the tooth passing period.

The total cutting force acting on the cutter is obtained by

summing the contributions of all cutting edges:

FxðtÞ

FyðtÞ

" #
Z apKt

AxxðtÞ AxyðtÞ

AyxðtÞ AyyðtÞ

" #
Dxðt; TÞ

Dyðt; TÞ

" #
: (5)

Here, Aij(t) denote the directional dynamic milling force

coefficients which vary periodically in time with the tooth

passing period T, Aij(t)ZAij(tCT):

AxxðtÞ Z
1

2

XN

jZ1

½Ksin 2fjðtÞK2kr sin2fjðtÞ�gjðtÞ;

AxyðtÞ Z
1

2

XN

jZ1

½K2 cos2fjðtÞKkr sin 2fjðtÞ�gjðtÞ;

AyxðtÞ Z
1

2

XN

jZ1

½2 sin2fjðtÞKkr sin 2fjðtÞ�gjðtÞ;

AyyðtÞ Z
1

2

XN

jZ1

½sin 2fjðtÞK2kr cos2fjðtÞ�gjðtÞ:

(6)

Finally, the governing delay differential equation (DDE)

of motion reads:

M €X ðtÞCC _XðtÞCKXðtÞ Z apKtAðtÞðXðtÞKXðt KTÞÞ:

(7)

Time dependence of the directional force coefficients

A(t) complicates the stability analysis of Eq. (7) so that the

stability boundary generally cannot be determined in closed

form. A possible solution to this problem is to expand the

coefficients in a Fourier series and retain the terms needed

for the approximation [8,9,11]. In the simplest case, which

is briefly reviewed below, only the zeroth order Fourier term

is kept. Such an approximation is practical as it allows a

closed form expression of the stability boundary, but it loses

accuracy as the radial immersion and the number of cutter

teeth decrease. Alternatively, stability analysis can be

carried out in the time domain using the recently proposed
methods [13–15]. One of them, the semi-discretization

method (SD) [15], is presented in Section 2.2.
2.1. Zeroth order approximation method

The zeroth order approximation method was proposed in

Ref. [11]. It is based on approximating the periodic

directional milling force coefficient (Eq. (6)) by its average

value, A(t)zA0. The resulting approximate milling force

vector is:

FðtÞ Z apKtA0ðXðtÞKXðt KTÞÞ: (8)

The cutter displacement caused by the milling force F
can be expressed in the Laplace domain by means of a

frequency response function (FRF) matrix H of the

machine–tool structure as:

xðsÞ

yðsÞ

" #
Z

HxxðsÞ HxyðsÞ

HyxðsÞ HyyðsÞ

" #
FxðsÞ

FyðsÞ

" #
: (9)

Combining Eqs. (8) and (9) gives a system of equations:

½I CLðsÞA0HðsÞ�FðsÞ Z 0; (10)

where L(s)ZKapKt(1KeKsT) is introduced and I denotes

2!2 identity matrix. The system in Eq. (10) has a non-

trivial solution only if its determinant is zero:

det½I CLðsÞA0HðsÞ� Z 0: (11)

Signs of the real parts of the roots s of Eq. (11) determine

the linear stability of the system. On the stability boundary,

the real part is zero, so that sZiuc, where uc denotes the

chatter frequency. Substituting sZiuc into Eq. (11), a

quadratic equation for L is obtained, solving which yields

the expressions for the depth of cut ap at the stability

boundary and for the corresponding spindle speed n, given

the chatter frequency uc. Further details on this procedure

can be found in Refs. [9,11].

Two remarks about this method should be pointed out

here. First, as noted in Ref. [11], calculation of the stability

boundary is simplified if the FRF matrix H is assumed

diagonal, i.e. the vibration modes in X and Y directions are

assumed uncoupled and the cross FRFs are set to zero,

Hxy(s)ZHyx(s)Z0. If this assumption holds, it simplifies not

only the calculations but also the measurements of the

machine–tool FRF and identification of the modal proper-

ties. On the other hand, if mode coupling is indeed present it

should not be neglected. A numerical experiment reveals

that even weak mode coupling, with cross terms in

magnitude only 2% that of the direct terms, may already

influence the predicted stability boundary in case of low

radial immersion (compare solid vs. dashed lines in Fig. 2).

Numerical investigations also show that the effect of mode

coupling on stability boundary becomes more pronounced

as radial immersion is decreased. This indicates that it may

be reasonable to check for the presence of vibration mode



Fig. 2. Stability boundaries for the diagonal (solid lines) and full transfer

matrices (dashed lines). Thick and thin lines correspond to the two solutions

for L. Cutting parameters: up-milling, aeZ0.1D, KtZ644 MPa, krZ0.37.

Modal parameters in Table 1 and mxyZmyxZ0.04 g, cxyZcyxZ0.032 kg/s

and kxyZkyxZ8.2 kN/m.
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coupling, particularly if stability boundary is to be predicted

for low radial immersion milling.

Second, there exist two solutions of the quadratic equation

for L, namely a complex conjugated pair L1 and L2ZL�
1 ;

which yield two different stability boundaries. The procedure

itself does not indicate which solution is the correct one.

According to the experience of the authors, one of the

boundaries has usually, but not always (compare for example

thick vs. thin lines in Fig. 2), unrealistically high values of the

depth of cut even at the stability minima, which clearly

distinguishes it from the correct boundary. It seems therefore

advisable to calculate both stability boundaries and to choose

the one with the lowest values of ap.
2.2. Semi-discretization method

Semi-discretization is a technique often used in

computational fluid mechanics for solving partial differen-

tial equations (PDEs). The idea is to discretize the PDE

along the spatial coordinates while leaving the time

coordinate unchanged. In Ref. [15], the method was

adapted to the analysis of delay differential equations

(DDEs) where the time delayed terms are approximated by

a piecewise constant function while the current time terms

are left unchanged. The DDE is thereby approximated by a

series of ordinary differential equations (ODEs). The semi-

discretization method has already been verified and

successfully applied to the stability analysis of various

DDEs, including those of 1-dof and 2-dof milling systems

[16,17,20]. Here, the method is presented for the 2-dof

case [20].

The governing DDE for a 2-dof milling system is given

by Eq. (7). Letting Q(t)ZKapKtA(t) to simplify the

notation, the DDE may be rearranged as:

M €X ðtÞCC _XðtÞC ðK CQðtÞÞXðtÞ Z QðtÞXðt KTÞ: (12)
The discretization is introduced using a time interval

DtZ[ti,tiC1]. The delay time becomes TZmDt, where m is

an integer determining coarseness of the discretization. The

periodic cutting force coefficient Q(t) and the delayed state

X(tKT) are approximated by:

QðtÞzQðtiÞZQi;

XðtKTÞz
1

2
ðXðtiKmC1ÞCXðtiKmÞÞZ

1

2
ðXiKmC1 CXiKmÞ:

(13)

The DDE in Eq. (12) is herewith transformed into a series

of autonomous (ODEs) with piecewise constant excitation

on the right hand side:

M €X ðtÞCC _XðtÞCðK CQiÞXðtÞ

Z
Qi

2
ðXiKmC1 CXiKmÞ: (14)

The second order ODEs can be written as systems of first

order ODEs:

_uðtÞZW iuðtÞCViðuiKmC1 CuiKmÞZW iuðtÞCwi; (15)

where uZ½_x; _y;x;y�†. For the initial condition u(ti)Zui, the

solution of Eq. (15) is known:

uðtÞZeW iðtKtiÞðui CWK1
i wiÞKWK1

i wi: (16)

Substituting tZtiC1 and u(tiC1)ZuiC1 into the solution

gives:

uiC1 ZeWiDtui CðeW iDt KIÞWK1
i ViðuiKmC1 CuiKmÞ

ZPiui CRiðuiKmC1 CuiKmÞ: (17)

Eq. (17) can be recast into a discrete map of the form:

viC1 ZZivi; (18)

with the state vector viZ[ui,uiK1,.,uiKm]† and the

coefficient matrix:

Zi ¼

Pi 0 0 . 0 Ri Ri

I 0 0 . 0 0 0

0 I 0 . 0 0 0

« « « 1 « « «

0 0 0 . I 0 0

0 0 0 . 0 I 0

2
66666666664

3
77777777775
: (19)

The Floquet transition matrix over the principal period T

is approximated by coupling the solutions of m successive

time intervals Dt:

F ZZmK1ZmK2.Z1Z0: (20)

Stability of the investigated system is determined by the

eigen-values of the transition matrix F. The system is stable

if all eigen-values of F are in modulus less than 1.

In the case of milling, two types of instability are

possible:
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(1)
Fig.

(left)

(cros

ively

eige

para

para
The eigen-value is complex and its modulus becomes

larger than 1. This case corresponds to the Hopf

bifurcation, which causes chatter characterized by

quasi-periodic vibrations.
(2)
 The eigen-value is real and its value becomes smaller

than K1. This case corresponds to the period doubling

or flip bifurcation, which causes chatter characterized

by periodic vibrations.
The routes to instability for Hopf and flip bifurcations are

illustrated by the eigen-value trajectories in the bottom

panels of Fig. 3, together with a segment of a stability chart

and the depth of cut and spindle speed values corresponding

to the trajectory points (top panel). In the case of a Hopf

bifurcation (bottom left panel), a pair of complex con-

jugated eigen-values penetrates the unit circle in the

complex plane, whereas in the case of a flip bifurcation

(bottom right panel), the unit circle is penetrated by one real

and negative eigen-value.

Finally, note that the computational burden of the SD

method can be greatly reduced if the unnecessary com-

ponents of the discrete state vector vi, are left out. For the

2-dof case with a single mode in both X and Y directions, the

state vector must have at least the following 2(mC2)

components:

~vi Z ½ _xi; _yi; xi; yi; xiK1; yiK1;.; xiKmC1; yiKmC1; xiKm; yiKm�
†:

(21)
3. Segment of a stability chart (top). Eigen-value trajectories for Hopf

and flip bifurcations (right) (bottom). The points below (circles), on

ses), and above (squares) the stability boundary correspond respect-

to all eigen-values inside, at least one eigen-value on, and at least one

n-value outside the unit circle in the complex plane. Cutting

meters: up-milling, aeZ0.05D, KtZ644 MPa, krZ0.37. Modal

meters in Table 1.
The corresponding coefficient matrix is:

~Zi Z

Pi;11 Pi;12 Pi;13 Pi;14 0 . 0 Ri;13 Ri;14 Ri;13 Ri;14

Pi;21 Pi;22 Pi;23 Pi;24 0 . 0 Ri;23 Ri;24 Ri;23 Ri;24

Pi;31 Pi;32 Pi;33 Pi;34 0 . 0 Ri;33 Ri;34 Ri;33 Ri;34

Pi;41 Pi;42 Pi;43 Pi;44 0 . 0 Ri;43 Ri;44 Ri;43 Ri;44

0 0 1 0 0 . 0 0 0 0 0

0 0 0 1 0 . 0 0 0 0 0

0 0 0 0 1 . 0 0 0 0 0

« « « « « « « 1 « « «

0 0 0 0 0 . 1 0 0 0 0

0 0 0 0 0 . 0 1 0 0 0

0 0 0 0 0 . 0 0 1 0 0

2
6666666666666666666666664

3
7777777777777777777777775

;

(22)

where Pi,hj and Ri,hj are the elements of matrices Pi and Ri in

the h-th row and j-th column, respectively. Further details

on semi-discretization method for stability analysis can be

found in Refs. [15,20,21].
3. Experimental results

The cutting tests were conducted on a high speed milling

center using a cylindrical end mill with a single cutting edge

(NZ1), DZ8 mm diameter, 458 helix angle, and LZ96 mm

overhang (L/DZ12). Originally, the cutter had two teeth but

one tooth was removed in order to avoid disturbances due to

the tool runout. A large overhang resulting in a very long

and slender tool was used to assure a single dominant

vibration mode of the tool. The purpose of these two

simplifications was to provide clearer demonstration and

facilitate better understanding of the dynamic properties of

the milling process. The simplifications were not imposed

by the described semi-discretization method, which is

generally applicable and not restricted to cases with a

single vibration mode.

The cutter was mounted in a HSK40E shrink fit holder.

The workpiece was a square block made of AlMgSi0.5

aluminum alloy, for which the specific tangential force

coefficient and the force ratio were determined mechan-

istically [22,23]: KtZ644 MPa and krZ0.37. Minimal

amount of coolant was used.

Tool deflections during cutting were measured in X and Y

directions simultaneously by a couple of laser optical

displacement sensors mounted on the spindle housing. The

sampling rate of the sensors was 10 kHz. The spindle

housing was considered rigid since its vibration during

cutting was found to be negligible compared to the

deflections of the highly flexible tool. The measurement

point on the tool shaft was located 65 mm above the tool tip.

The recorded tool deflections were mainly associated with

the first bending mode of the tool. Deflections at the tool tip



Table 1

System matrices for the tip–tip FRF

xx yy

Mass M (g) 20.1 19.9

Damping C (kg/s) 1.56 1.60

Stiffness K (kN/m) 414 409

xx and yy denote the indices of the diagonal matrix elements.
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could therefore be calculated by an appropriate scaling of

the recorded deflections.

A photo diode was attached to the spindle housing in

order to detect a black/white transition painted on the

rotating tool holder. The transition occurred once per tool

revolution giving a signal synchronized with the spindle

rotation. The signal was used in off-line stroboscope

resampling of the deflection records.

3.1. Identification of modal parameters

The frequency response function (FRF) matrix H(s) of

the machine–tool structure was determined by a standard

impact test procedure. For stability prediction, the FRF at

the tool tip is required, i.e. both the excitation and the

response should be located at the tool tip (tip–tip FRF).

However, due to the flexible tool of a relatively small

diameter, the excitation at the tool tip using a standard

instrumented hammer with a 100 g head was not

impulse-like. Regular excitation could only be assured

by hitting the tool at the shaft below the tool holder.

Consequently, the FRF at the tool tip could not be

measured directly, instead it had to be calculated from

the FRFs with excitation at the tool shaft. To facilitate

such a calculation, the tool response was measured

simultaneously at the excitation point (15 mm below the

tool holder) and at the tool tip, yielding shaft–shaft and

shaft–tip FRFs. In order to check for the presence of

mode coupling, the tool response was measured in X and

Y directions at both locations. For this purpose, two pairs

of low mass accelerometers (0.7 g each) were attached to

the tool at the two locations. The measured FRFs were

curve fit using a commercial modal analysis software to

identify the modal parameters and obtain the modal

matrix, which was then used to calculate the tip–tip FRF.

The measured shaft–tip and predicted tip–tip FRFs are

compared in Fig. 4. Due to the large overhang of the tool,

the FRFs are dominated by a single peak at ftz722 Hz. It
Fig. 4. Measured shaft–tip (thin) and predicted tip–tip (thick) FRFs: Hxx

(top black), Hxy (bottom black), Hyx (bottom grey), and Hyy (top grey).
was confirmed by finite element modeling that this

frequency corresponds approximately to the first bending

mode of the tool. A small peak observed at fz1000 Hz

corresponds to the spindle vibration mode. This mode was

found to have no influence on the cutting stability and was

therefore neglected in the modal identification procedure.

The frequencies and amplitudes of the dominant modes in X

and Y directions are almost the same so that the direct FRFs

(Hxx and Hyy) are practically overlapping. As expected, the

amplitude of the tip–tip FRFs is much higher than that of the

shaft–tip FRFs. The amplitude of cross FRFs (Hxy and Hyx)

is almost an order of magnitude smaller than that of the

direct FRFs, which indicates that mode coupling is indeed

very weak.

The diagonal elements of the system matrices M, C, and

K for the tip–tip FRFs are listed in Table 1. The out-of-

diagonal elements of these matrices were much smaller and

their calculation was quite unreliable. Consequently, the

out-of-diagonal elements of the system matrices were set to

zero which means that mode coupling was neglected.
3.2. Predicted stability charts

Stability charts were predicted by the zeroth order

approximation (ZOA) and the semi-discretization (SD)

methods for a series of radial depths of cut ae.

Charts for up-milling with aeZD, 0.5D, 0.10D and

0.05D are compared in Fig. 5. For aeZD and 0.5D, ZOA

and SD methods yield similar results: lobed stability

boundaries, with stability maxima located at the integer

fractions of the dominant eigen-frequency, nZ(ft/-

kN)60 rpm. Note that only the lobes for kZ2,3, and 4

are shown in Fig. 5, and NZ1 in the present study.

These stability boundaries correspond to the instability

called Hopf bifurcation which causes quasi-periodic

chatter. As the radial depth of cut ae is decreased, the

discrepancy between the ZOA and SD stability bound-

aries grows considerably. The most prominent difference

is an additional set of lobes introducing additional stable

and unstable regions. The maxima of the new stable

regions are located approximately at the odd integer

fractions of twice the dominant eigen-frequency

nZ ð2ft=ð2kC1ÞNÞ60 rpm. These lobes are predicted

only by the SD method and, as shown below, correspond

mainly to the instability called flip bifurcation which

causes periodic chatter. They appear already at aeZ0.5D

and grow steadily with decreasing ae.



Fig. 5. Stability boundaries for up-milling at various radial immersions

predicted by the ZOA (thin) and SD methods (thick).

Fig. 6. Stability boundary for up-milling at aeZ0 05D predicted by the SD

method (top). Lines: thick black—overall stability boundary, thick grey—

primary flip bifurcation boundary, thin black—boundary between the

periodic and quasi-periodic chatter. Eigen-value trajectories for the primary

flip bifurcation (left, denoted by crosses) and the secondary flip bifurcation

(right, crosses) with the subsequent change of a pair of real eigen-values

into a complex conjugate eigen-value pair (right, diamond) (bottom).
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For aeZ0.05D, the SD stability boundary has an

intriguing structure; the lobe at nz12.5 krpm is a closed

curve within the stable domain, the lobe at nz18 krpm is

almost closed, and there are further lobe-like portions of the

stability boundary at higher depths of cut. Such a stability

boundary is similar to those predicted for a 1-dof interrupted

turning system in Ref. [24], where it was proved rigorously

that all flip bifurcation lobes for a 1-dof system, except for

the first one at nZ2ft!60 rpm, are in fact closed curves

distributed not only along the spindle speed axis, as the

Hopf bifurcation lobes, but across the plane (n, ap). The

present numerical investigations confirm that this property

holds also for 2-dof milling systems. The flip bifurcation

lobes shown superimposed on the stability chart for the aeZ
0.05D case in top panel of Fig. 6 are indeed lens-like closed

curves, distributed across the plane (n, ap). Similar results

have been obtained also for other radial immersions.

The bifurcation scenario at the bottom and upper arcs of a

lens-like flip lobe is illustrated in the bottom panels of Fig. 6
by trajectories of the two eigen-values of the Floquet

transition matrix that determine stability and the type of

vibrations arising when ap is increased from 0 to 5 mm at nZ
30 krpm, as indicated in the top panel stability chart. First, at

apz0.77 mm, one real eigen-value penetrates the unit circle

in the complex plane, causing the primary flip bifurcation

(bottom left panel) and the associated periodic chatter

vibrations. This situation is identical to the one shown in the

bottom right panel of Fig. 3. Next, at apz2.95 mm, the

second real eigen-value penetrates the unit circle (bottom

right panel), causing the secondary flip bifurcation. The

chatter vibrations remain periodic. At apz3.15 mm, the two

real eigen-values merge into a complex conjugated pair

which changes the nature of chatter vibrations from periodic

to quasi-periodic. The boundary between the periodic and

quasi-periodic chatter vibrations is also shown superimposed

on the stability chart in the top panel of Fig. 6. Except at nZ
29 krpm, this boundary is almost indistinguishable from the

upper arc of the flip bifurcation lobes.

Finally, comparing the size and location of Hopf and flip

bifurcation lobes, it is important to note that although the

Hopf lobes are much wider than the flip lobes, the latter

usually reach to lower cutting depths than the former.

Furthermore, the flip lobes may be located partly or even

entirely within the stable domain corresponding to the

Hopf lobes. In order to assure chatter-free machining, it is

therefore necessary to consider both Hopf and flip

bifurcation lobes when selecting the cutting parameters.
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3.3. Experimental stability charts

The predicted stability boundaries were verified

experimentally by cutting tests conducted at a series of

spindle speeds n and depths of cut ap. During each cut, a

100 mm long straight path was machined. A stable cut

was performed before each recorded cut in order to assure

the same reference surface for all cuts. Stability of cutting

was assessed based on the recorded tool deflections, sound

emitted during cutting, and roughness of the machined

surface. The experimental and predicted stability charts

for up-milling with aeZD, 0.5D, 0.10D and 0.05D are

compared in Fig. 7. The results for down-milling are

qualitatively similar (not shown).

For aeZD and 0.5D, the predicted and experimental

stability boundaries agree very well. In both cases, a flip

bifurcation is found at nZ29 krpm, as predicted by the SD

method. For aeZ0.5D, a slight increase of the experimental
Fig. 7. Experimental and predicted stability boundaries for up-milling at

various radial immersions. Circles—stable cutting, crosses—quasi-periodic

chatter, diamonds—periodic chatter. Stability boundaries (lines): exper-

imental (black), predicted by the SD (grey solid) and ZOA methods (grey

dashed).
stability minima at higher spindle speeds is observed. Such a

systematic increase of stability minima with spindle speed is

observed also for lower radial immersions and for both

milling directions. This phenomenon could be caused by a

decrease of specific cutting force coefficients at higher

spindle speeds.

For aeZ0.1D and 0.05D, the predictions and experiments

agree only qualitatively, i.e. with respect to the structure of

the stability boundary. Several flip bifurcation lobes are

found, all slightly below the predicted spindle speeds. Note

that the flip lobes at nZ17 and 28.5 krpm for aeZ0.1D and at

nZ12 and 17 krpm for aeZ0.05D appear to be bounded from

above by the Hopf lobe. This indicates that the flip lobes

might indeed be closed curves as predicted. The largest

quantitative discrepancies between the predicted and exper-

imental stability boundaries are observed at the stability

maxima, which are significantly overestimated, while the

stability minima are overestimated at low spindle speeds. It is

presently not clear what causes these discrepancies. Possible

reasons could be: (a) the variation of the radial immersion

due to tool deflections and (b) the effect of the edge forces.

The tool deflections during cutting affect the actual radial

depth of cut ae. Depending on the phase of vibrations, the tool

deflections may either add or subtract from the nominal ae,

and thus either decrease or increase the actual stability

boundary. The edge forces are caused by ploughing and

rubbing of the tool [22] and are not accounted for in the

simplified analytical model (Eq. (3)) used to predict the

stability boundaries. According to the recent time domain

simulations [7], the nonlinear effects of the edge forces may

either decrease or increase the stability boundary.

Comparison of all four experimental stability charts in

Fig. 7 also reveals that the locations of stability maximum

at nZ(ft/2)60z21 krpm and the flip bifurcation lobe at

nZ(2ft/3)60z29 krpm are shifted toward lower spindle

speeds, nz20 and 27.5 krpm, respectively, as radial

immersion is decreased. Such a shift could be explained

by variation of the dominant eigen-frequency of the tool

with spindle speed, which becomes more pronounced at

low radial immersions. In order to verify this assumption,

the tool response to the impulse excitation was measured

by the laser optical sensors at a series of spindle speeds.

Due to the limitations of the experimental setup, these

FRFs could not be used directly for stability prediction,

but they do illustrate the influence of spindle speed on

modal properties of the tool. The experiments show that

the frequency and compliance of the dominant vibration

mode both decrease as spindle speed is increased. Fig. 8

depicts the variation of the mode frequency ft for the

spindle speed range considered. At its minimum at

nZ23 krpm, ftz684 Hz is approximately 5% lower than

ftz722 Hz at zero spindle speed. If ftZ684 Hz is used to

calculate the location of the second flip bifurcation lobe,

nZ(2ft/3)60z27.4 krpm is obtained, which agrees very

well with the location of the flip lobe in the experimental

stability chart for aeZ0.05D (bottom panel in Fig. 7).



Fig. 9. Recorded tool motion (grey lines) in X–Y plane, with strobo-

scopically sampled data (dark dots) and the filtered tool motion (black lines)

superimposed (A). Stroboscopically sampled X-deflection vs. time (B).

Amplitude spectra of X-deflection; the grey vertical lines denote multiples

of fTP (C). Stable cutting (top), quasi-periodic chatter (middle), periodic

chatter with period 2T (bottom); up-milling, aeZ0.05D (all).

Fig. 8. Frequency of the dominant vibration mode of the rotating tool vs.

spindle speed.
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Decrease of the mode compliance with the increasing

spindle speed (not shown) could also explain the

systematic increase of the experimental stability minima

with spindle speed, which was observed experimentally

for all ae.

3.4. Tool motion in X–Y plane

Three different types of tool motion corresponding to

three cutting regimes were predicted by the SD method and

observed experimentally: periodic chatter-free regime,

quasi-periodic chatter and periodic chatter regimes.

Typical examples of tool motion in X–Y plane for the

three regimes are shown in Fig. 9, together with the

stroboscopically sampled deflection in the feed (X)

direction and the amplitude spectrum of X-deflection.

Frequency of the stroboscope was set at the tooth passing

frequency fTPZ1/TZNn, which is for a cutter with a single

tooth (NZ1) equal to the spindle speed, fTPZn. For the

two periodic cases, the noise-free trajectories of the tool

motion are shown superimposed on the recorded trajec-

tories, providing a detailed picture of the path followed by

the tool. The noise-free trajectories were obtained by a

nonlinear filtering technique suitable for periodically

forced processes [25]. All examples shown in Fig. 9 were

taken from the up-milling cuts with aeZ0.05D.

In chatter-free regime (top panels in Fig. 9), the tool

oscillates periodically with the tooth passing frequency fTP

which means that the tool motion repeats itself after each

tooth pass. This is confirmed by the stroboscopically

sampled data points which are grouped in one compact

cloud and their values remain approximately constant as

cutting progresses (top panel B). The amplitude spectrum of

the deflection contains peaks only at the multiples of fTP (top

panel C). In quasi-periodic chatter regime (middle panels),

the tool moves on a torus defined by the tooth passing

frequency fTP and the dominant eigen-frequency ft of the

machine–tool system. The two frequencies usually have
incommensurate values. The stroboscopically sampled data

points form an ellipse and their values oscillate in time

(middle panel B). Peaks in the deflection spectrum are found

at the two frequencies, fTP and ft, at their sums and

differences, and multiples thereof (middle panel C). Tool

motion in periodic chatter regime (bottom panels) is also

periodic, but with twice the tooth passing period, 2T (or half

the tooth passing frequency fTP/2). This means that the tool



Fig. 10. Recorded tool motion (grey lines) in X–Y plane for two different lobes, with the stroboscopically sampled data (dark dots) and filtered tool motion

(black lines) superimposed (A and B). The corresponding X-deflection amplitude spectra; the vertical lines denote multiples of fTP (C and D). Stable cutting

(top), periodic chatter (bottom); up-milling (all), aeZ0.05D.
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motion repeats itself after two tooth passes. The strobo-

scopically sampled data points form two compact clouds

which are visited alternately by the tool trajectory (bottom

panel B). The amplitude spectrum of the deflection shows

peaks at the multiples of fTP/2 (bottom panel C).

Comparison of all three amplitude spectra (panels C)

confirms that the tooth passing frequency is always present

in the process, since it corresponds to the excited vibration

of the tool, while the appearance of additional peaks in the

spectra indicates chatter [26]. This well known property of

milling dynamics is often exploited for the purpose of

chatter detection.

In order to illustrate better the difference between the

periodic chatter-free and periodic chatter regimes, tool

motion at spindle speeds corresponding to two different

lobes in the two regimes are compared in Fig. 10. The

chatter-free examples (top panels) were taken from the

stable regions at nZft/3 and nZft/2. In the nZft/3 case,

the tool completes three oscillations per tooth pass period T
(top panel A), while two oscillations are completed in the

nZft/2 case (top panel B). This is also reflected in

the corresponding amplitude spectra of the tool deflection;

the dominant eigen-frequency of the machine–tool system

(ftz722 Hz) is matched respectively by the third (top panel

C) and second harmonics (top panel D) of the tooth passing

frequency fTP. The periodic chatter examples (bottom

panels) were taken from the flip bifurcation lobes predicted

at nZ2ft/5 and nZ2ft/3, but observed at slightly lower

spindle speeds. In the nZ2ft/5 case, the tool completes

two and a half oscillations per tooth pass period T, i.e. five

oscillations per 2T (bottom panel A), while three oscil-

lations are completed per 2T in the nZ2ft/3 case (bottom

panel B). The amplitude spectra show the highest peak at the

eigen-frequency ft matched respectively by the fifth (bottom

panel C) and the third harmonics (bottom panel D) of half

the tooth passing frequency fTP/2.

Finally, three special cases of chatter observed

experimentally are presented (Fig. 11): a combination of



Fig. 11. Recorded tool motion in X–Y plane (grey lines), with strobo-

scopically sampled data (dark dots) and filtered tool motion (black lines)

superimpose (A). Stroboscopically sampled X-deflection vs. time (B).

Amplitude spectra of X-deflection; grey vertical lines denote multiples of

fTP (C). Combination of periodic and quasi-periodic chatter (top), periodic

chatter with periodic 3T (middle), periodic chatter with period 4T (bottom);

up-milling, aeZ0.05D (all).
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the quasi-periodic and 2T periodic chatter, and two cases

of periodic chatter with periods 3T and 4T. Periodic

chatter cases with higher periods were also observed but

less frequently.

The combination of the quasi-periodic and periodic

chatter types (top panels) was usually observed at cutting
depths above the flip bifurcation lobe. The stroboscopically

sampled tool deflection indicates (top panel A) that during

this type of chatter the tool moves on a torus defined by the

dominant eigen-frequency ft and half the tooth passing

frequency fTP/2. The peaks in the amplitude spectrum are

located at the multiples of fTP/2 (top panel C). Theoretically,

such chatter could correspond to the case when at least one

pair of complex conjugate eigen-values and at least one real

eigen-value of the Floquet transition matrix (Eq. (20)) were

in modulus larger than 1.

The periodic chatter cases with periods O2T are in fact

special cases of the quasi-periodic chatter. They were

observed mainly at low radial immersions and always

within the Hopf bifurcation lobe, where the quasi-periodic

type of chatter was expected. In Fig. 11, the examples with

periods 3T (middle panels) and 4T (bottom panels) are

shown. The stroboscopically sampled data points are

gathered respectively in three and four compact clouds

(panels A) visited periodically in time (panels B). The

amplitude spectra of the X-deflection contain peaks at the

multiples of fTP/3 and fTP/4, respectively (panels C). These

properties are similar to those reported in Ref. [16] for the

3T periodic motion of a 1-dof milling system. The stability

theory of milling does not predict periodic types of chatter

with periods other than 2T. The two cases shown here

could correspond to the quasi-periodic chatter cases when

the pair of complex conjugate eigen-values of the transition

matrix penetrates the unit circle in the complex plane at

angles G2p/3 (period 3T) and Gp/2 (period 4T, see

bottom left panel of Fig. 3). In parlance of the dynamical

systems theory [27], occurrence of these periodic chatter

cases could be attributed to the fact that at low radial

immersions the periodic motion synchronized with the

periodic forcing attracts the trajectory more than the quasi-

periodic motion which is unsynchronized with the forcing.
4. Conclusions

Stability of a 2-dof milling process was investigated.

Stability boundaries were predicted by the zeroth order

approximation (ZOA) and semi-discretization (SD)

methods. While similar for high radial immersions, predic-

tions of the two methods grow increasingly different as

radial immersion is decreased. The most significant

difference is an additional set of stability lobes predicted

only by the SD method. These lobes correspond mainly to

the type of instability called period doubling or flip

bifurcation, which causes a periodic type of chatter, as

opposed to the quasi-periodic chatter caused by the

instability called Hopf bifurcation. More detailed numerical

investigations also revealed that the flip bifurcation lobes

are in fact closed curves distributed across the plane

spanned by the spindle speed and axial depth of cut. It is

not uncommon for the closed flip lobes to be located entirely

within the stable parameter domain.
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Experimental verification of the stability boundaries

confirmed the predictions of the SD method. However,

quantitative agreement between the predictions and

experiments diminished as radial immersion was

decreased. While structures of the predicted and

experimental stability boundaries remained similar also

at low radial immersions, the predicted stability maxima

were much higher than those observed experimentally.

The reasons for these quantitative discrepancies could

possibly be attributed to the variation of the radial

immersion during cutting due to the tool deflection and

to the effects of edge (ploughing) forces that were not

considered in the force model. The experiments also

showed that the machine–tool modal properties may

depend on spindle speed. In the present study, the

frequency and compliance of the dominant vibration

mode (first bending mode of the tool) were found to

decrease as spindle speed was increased.

All three types of tool motion predicted by the SD

method were observed experimentally: periodic chatter-

free, quasi-periodic chatter and periodic chatter. Analysis of

the tool deflections recorded during these motion types

confirmed the properties predicted by the theory. In

addition, three special cases of chatter were shown: a

combination of quasi-periodic and periodic chatter types,

observed above the flip bifurcation lobe, and two periodic

chatter cases with higher periods, observed within the Hopf

bifurcation lobe.

In summary, the presented investigations have shown

that there indeed exist two types of instability in milling. In

order to assure chatter-free machining, both of them should

be taken into account when selecting the cutting

parameters.
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