
Proceedings of the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, Massachusetts, USA

DETC2015-47037

THE EFFECT OF NON-SYMMETRIC FRF ON MACHINING: A CASE STUDY

David Hajdu
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: hajdu@mm.bme.hu

Tamas Insperger
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: insperger@mm.bme.hu

Gabor Stepan
Department of Applied Mechanics

Budapest University of
Technology and Economics

Budapest, Hungary
Email: stepan@mm.bme.hu

ABSTRACT
Stability prediction of machining operations is often not reli-

able due to the inaccurate mechanical modeling. A major source
of this inaccuracy is the uncertainties in the dynamic parameters
of the machining center at different spindle speeds. The so-called
tip-to-tip measurement is the fastest and most convenient method
to determine the frequency response of the machine. This concept
consists of the measurement of the tool tip’s frequency response
function (FRF) usually in two perpendicular directions includ-
ing cross terms. Although the cross FRFs are often neglected
in practical applications, they may affect the system’s dynam-
ics. In this paper, the stability diagrams are analyzed for milling
operations in case of diagonal, symmetric and non-symmetric
FRF matrices. First a time-domain model is derived by fitting
a multiple-degrees-of-freedom model to the FRF matrix, then
the semi-discretization method is used to determine stability di-
agrams. The results show that the omission of the non-symmetry
of the FRF matrix may lead to inaccurate stability diagram.

1 INTRODUCTION
The maximum capabilities of machine tool centers are of-

ten not utilized due to limitations caused by machine tool chat-
ter. Although in many applications very high cutting speeds are
achievable, the arising harmful vibrations significantly limit the
material removal rate. The prediction of the stability of the ma-
chining operation with high accuracy is therefore an important
task.

In the 1960s, after the extensive work of Tobias [1] and
Tlusty [2], the so-called regenerative effect became the most
commonly accepted explanation for machine tool chatter. The
phenomenon can be described by involving time delay in the
model equations. The vibrations of the tool are copied onto
the surface of the workpiece, which modifies the chip thickness
and induces variation in the cutting-force acting on the tool one
revolution later. This phenomenon can be described by delay-
differential equations (DDEs).

Stability properties of the machining processes are depicted
by the so-called stability lobe diagrams, which plot the maximum
stable depths of cut versus the spindle speed. These diagrams
provide a guide to the machinist to select the optimal technolog-
ical parameters in order to achieve maximum material removal
rate without chatter.

There exist several numerical techniques to predict the sta-
bility of machining operations. Some of them apply the mea-
sured frequency response functions (FRFs) directly, such as the
single frequency solution, the multi-frequency solution [3, 4],
the extended multi-frequency solution [5]. Other techniques,
such as the semi-discretization method [6, 7], full-discretization
method [8], Chebyshev collocation method [9, 10], spectral ele-
ment method [11], the implicit subspace iteration method [12] or
the integration method [13], require fitted modal parameters as
input.

There are several limitations in the modeling of machine
tool chatter. Most models in the literature consider linear sys-
tems, although nonlinear effects may also influence the stability
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properties [14]. The number of modes to be modeled is also
an important factor [15], and the approximation of the measured
frequency response function (FRF) plays an important role [13],
too.

The modal parameters of the system can be extracted from
the measured FRFs using modal parameter estimation tech-
niques. Methods, which are based on the fitting of measured
FRFs, are called frequency-domain estimators, such as the Ratio-
nal Fraction Polynomial method (RFP) [16], (Linear on Nonlin-
ear) Least Squares Frequency-Domain algorithm (LSFD), Poly-
reference Least Squares Complex Frequency-domain estima-
tor, Frequency-domain Direct Parameter Identification (FDPI)
method or Frequency-domain Maximum Likelihood Estimator
(MLE), just to mention a few. There also exist techniques us-
ing the impulse response function of the system in time domain,
for instance the Ibrahim Time-Domain (ITD) method, Eigensys-
tem Realization Algorithm (ERA), Least Squares Complex Ex-
ponential (LSCE) algorithm or other methods (see [17] and the
references therein).

The fitted modal parameters are obtained from measure-
ments, which are loaded by noise, parameter identification is
therefore not a straightforward task. Besides the number of
modes to be involved in the fitting, the properties of the me-
chanical model used for the fitting (e.g., proportional vs. non-
proportional damping, symmetric vs. non-symmetric FRF ma-
trix) also strongly affect the results.

In this paper, the sensitivity of the stability charts of milling
operations with respect to the estimation of the cross FRFs
is analyzed. The modal parameters are approximated using a
frequency-domain nonlinear least squares method. Stability dia-
grams are then constructed using the semi-discretization method.
It is shown that the omission of the non-symmetry of the FRF
matrix may lead to inaccurate stability charts.

2 DETERMINATION OF MODAL PARAMETERS
The modal behavior of the machine is usually determined

by means of impact or shaking tests [18]. The measured FRF
contains information about the dynamics of the structure, from
which the modal parameters can be extracted. Consider a ma-
trix differential equation of motion for a multiple-degrees-of-
freedom system in the form

Mr̈(t)+Cṙ(t)+Kr(t) = f(t), (1)

where r(t) ∈ Rn is the generalized coordinate vector, M ∈ Rn×n

is the mass matrix, C ∈Rn×n is the damping matrix, K ∈Rn×n is
the stiffness matrix, f(t) ∈Rn is the excitation vector and n is the
number of degrees of freedom. Matrices M, C, and K depend
on the choice of the general coordinates, for which the under-
lying lumped model is often ambiguous. Therefore, for general

cases, the equations of motion are usually defined in the modal
space. In this section, three modeling concepts are described:
(1) proportional damping; (2) non-proportional damping; and (3)
non-symmetric FRF matrices.

2.1 Proportional damping
The system is proportionally damped if the damping matrix

can be written as

C = αMM+αKK, (2)

where αM ∈ R and αK ∈ R are the proportional factors [19]. If
the damping matrix can be written in this form, then it guarantees
that the mode shapes are real valued and identical to the eigen-
vectors of the undamped system. The corresponding eigenvalue-
eigenvector problem is formulated as

(λ 2M+K)P = 0, (3)

where Pk ∈ Rn (k = 1,2, . . .n) is the normal mode of the un-
damped system, λk =±iωn,k with ωn,k being the natural angular
frequency of the undamped system and i is the imaginary unit.
The mass-orthonormal eigenvectors can be defined as

φφφ k =
Pk√

PT
k MPk

, (4)

and the modal transformation matrix ΦΦΦ can be given as

ΦΦΦ =
(
φφφ 1 φφφ 2 · · · φφφ n

)
. (5)

Using the modal transformation r(t) = ΦΦΦq(t), Eq. (1) can be
transformed into the n-dimensional modal space of the modal
coordinates q(t), i.e.

q̈(t)+ [2ζkωn,k]q̇(t)+ [ω2
n,k]q(t) = ΦΦΦ

Tf(t). (6)

The FRF matrix H(ω) can be formulated as

Hi j(ω) =
Ri(ω)

Fj(ω)
=

n

∑
k=1

φikφ jk

−ω2 +2ζkωn,kωi+ω2
n,k

, (7)

where i j represents the rows and columns of matrix H(ω) re-
spectively, Ri(ω) = F (ri(t)), Fi(ω) = F ( fi(t)) with F denot-
ing the Fourier transform and ζk is the damping ratio of the kth

mode. Note that H(ω) = HT(ω). During a fitting process, four
real parameters should be determined to each degree of freedom,
namely, ωn,k, ζk, φik and φ jk, where k = 1,2 . . .n.
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2.2 Non-proportional damping
A system is called non-proportionally damped if Eq. (2)

does not hold. In this case, the FRFs cannot be expressed ac-
cording to (7), furthermore the mode shapes are complex and
they are not identical to the eigenvectors of the undamped sys-
tem. The equation of motion can be written in a first-order form

Âv̇(t)+ B̂v(t) = fv(t), (8)

where the state vector is v(t) = (rT(t) ṙT(t))T and

Â =

(
C M
M 0

)
, B̂ =

(
K 0
0 −M

)
, fv(t) =

(
f(t)
0

)
, (9)

furthermore Â = ÂT and B̂ = B̂T [19, 20]. The eigenvalue-
eigenvector problem associated with the homogeneous part of
Eq. (8) reads

(Âλ + B̂)U = 0, (10)

where U ∈ C2n is the unnormalized (right) eigenvector. The
eigenvalues can be determined from the frequency equation

det(Âλ + B̂) = 0, (11)

where λk =−ζkωn,k± iωn,k

√
1−ζ 2

k . The eigenvalues and eigen-
vectors form complex conjugate pairs if ζk < 1.

Equation (8) can be transformed into the 2n-dimensional
modal space by the transformation v(t) = ΨΨΨqv(t), where qv(t) ∈
C2n is the modal coordinate vector and ΨΨΨ ∈ C2n×2n is the modal
transformation matrix. Using the normalized eigenvectors

ψψψk =
Uk√

UT
k ÂUk

, (12)

the modal transformation matrix can be written as

ΨΨΨ =
(
ψψψ1 ψ̄ψψ1 · · · ψψψn ψ̄ψψn

)
. (13)

Since ΨΨΨ
TÂΨΨΨ = I and

ΨΨΨ
TB̂ΨΨΨ =−


. . .

λk 0
0 λ̄k

. . .

 :=−ΛΛΛ, (14)

the equations of motion finally can be given in the form

q̇v(t)−ΛΛΛqv(t) = ΨΨΨ
Tfv(t). (15)

From the Fourier transform of Eq. (15), the elements of the FRF
matrix H(ω) can be formulated as

Hi j(ω) =
Ri(ω)

Fj(ω)
=

n

∑
k=1

(
ψikψ jk

ωi−λk
+

ψ̄ikψ̄ jk

ωi− λ̄k

)
. (16)

Note that H(ω) = HT(ω). Equations (16) and (7) are identical if
the damping is proportional, in this case, Re{ψikψ jk}= 0. Using
curve-fitting techniques, the modal parameters ωn,k, ζk, ψik and
ψ jk, where k = 1,2, . . .n can be fitted on the measured FRF. Since
ψ is complex, this gives 6 real parameters for each degree of
freedom.

2.3 Non-symmetric FRF matrices
Engineering structures are often affected by additional

forces, such as gyroscopic forces, rotor-stator rub forces, electro-
magnetic forces, unsteady aerodynamic forces or time-varying
fluid forces [19]. As a result, any of these phenomena can de-
stroy the symmetry of the system matrices and the previously
presented modal formulations do not apply.

From the mathematical point of view, this problem can be
treated in some cases [19, 21]. The mode shapes are generally
complex, and the equation of motion is considered in the form
(8), where Â 6= ÂT and B̂ 6= B̂T can both be non-symmetric. The
diagonal transformation can be performed if the left and right
eigenvectors of the system are calculated as

(Âλ + B̂)UR = 0 and (ÂT
λ + B̂T)UL = 0, (17)

where UR and UL are the unnormalized right and left eigenvec-
tors respectively. According to [19], the right eigenvectors rep-
resent the mode shapes themselves while the left ones are asso-
ciated with preferred excitation patterns.

The modal transformation matrices has to be normalized ac-
cording to the criterion

ΨΨΨR =
UR√

UT
LÂUR

and ΨΨΨL =
UL√

UT
RÂTUL

, (18)

therefore the normalized eigenvectors satisfy the properties
ΨΨΨ

T
LÂΨΨΨR = I and ΨΨΨ

T
LB̂ΨΨΨR = −ΛΛΛ. Using the modal transforma-

tion v(t) = ΨΨΨRqv(t), Eq. (8) can be written as

q̇v(t)−ΛΛΛqv(t) = ΨΨΨ
T
Lfv(t). (19)
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The parametric expression for the elements of the frequency re-
sponse function is

Hi j(ω) =
Ri(ω)

Fj(ω)
=

n

∑
k=1

(
ψR

ikψL
jk

ωi−λk
+

ψ̄R
ikψ̄L

jk

ωi− λ̄k

)
. (20)

It can be shown that Hi j 6= H ji, i.e., the FRF matrix is not sym-
metric in this case. In practice, the measured cross FRFs are of-
ten close to each other, but sometimes significant differences can
be observed, which can qualitatively affect the dynamical behav-
ior of the system. If the cross FRFs are the same, then the system
matrices are symmetric, the left and right eigenvectors are the
same and ΨΨΨR = ΨΨΨL = ΨΨΨ. Note, that during the fitting process,
the measured non-symmetric cross frequency response functions
have to be used. The unknown parameters are ωn,k, ζk, ψR

ik , ψL
ik,

ψR
jk, ψL

jk and k = 1,2 . . .n. Since ψ is complex, this results 10
real parameters for each degree of freedom.

3 MILLING OPERATION
The general equation of motion in case of multiple-degrees-

of-freedom systems considering the typically intricate regener-
ation properties associated with a complex tool geometry reads
[22]

Mr̈(t)+Cṙ(t)+Kr(t) = f(t,rt(ϑ)), (21)

where rt(ϑ) = r(t+ϑ),ϑ ∈ [−T,0) and T is the occurring max-
imum delay, furthermore f(t,rt(ϑ)) = (Fx Fy 0 . . . 0)T, where Fx
and Fy are the cutting force components.

For convenience, a simple helical tool is assumed, with con-
stant helix angle and equally distributed teeth. Tools with un-
equal tooth pitch and with varying helix angle are studied in
[12,23] and in [20]. The helical tool analyzed here has N teeth of
uniform helix angle β . According to [7], the tool is divided into
elementary disks along the axial direction. The relation between
the helix angle β and the helix pitch lp is tanβ = Dπ/(Nlp), thus
the angular position of the cutting edges along the axial direction
reads

ϕ j(t,z) =
2πΩ

60
t + j

2π

N
− z

2π

Nlp
, (22)

where z is the coordinate along the axial immersion. The elemen-
tary cutting-force components in tangential and radial directions
acting on tooth j at a disk element of width dz are given as

dFj,t(t,z) = g j(t,z)Kth
q
j(t,z)dz, (23)

dFj,r(t,z) = g j(t,z)Krh
q
j(t,z)dz, (24)

Fx

x
ytool

workpiece

feed

ae

Ω
Fy

q1

q2

...

...

ap

β

β

lp

D

x
z

FIGURE 1. Dynamical model of milling operation.

where h j(t,z) is the chip thickness cut by the tooth j at axial
immersion z. The screen function g j(t,z) reads

g j(t,z) =

{
1, if ϕen < (ϕ j(t,z)mod2π)< ϕex,

0, otherwise.
(25)

The actual chip thickness at tooth j can be calculated approxi-
mately as

h j(t,z)≈ ( fz + x(t− τ)− x(t))sinϕ j(t,z)

+(y(t− τ)− y(t))cosϕ j(t,z), (26)

where fz is the feed per tooth, x(t) and y(t) are the displacements
of the center of the tool, and τ = 60/(NΩ) is the tooth-passing
period. The components of the elementary cutting force acting
on tooth j in direction x and y reads

dFj,x(t,z) = dFj,t(t,z)cosϕ j(t,z)+dFj,r(t,z)sinϕ j(t,z), (27)
dFj,y(t,z) =−dFj,t(t,z)sinϕ j(t,z)+dFj,r(t,z)cosϕ j(t,z),

(28)

from which the resultant cutting forces can be calculated as

Fj,x(t) =
N

∑
j=1

∫ ap

0
dFj,x(t,z)dz =

N

∑
j=1

∫ ap

0
g j(t,z)(Kt cosϕ j(t,z)+Kr sinϕ j(t,z))h

q
j(t)dz, (29)

Fj,y(t) =
N

∑
j=1

∫ ap

0
dFj,y(t,z)dz =

N

∑
j=1

∫ ap

0
g j(t,z)(−Kt sinϕ j(t,z)+Kr cosϕ j(t,z))h

q
j(t)dz.

(30)

Assuming small perturbation εεε(t) around the periodic motion
rp(t) of stationary cutting, i.e. r(t) = rp(t)+ εεε(t), the linearized
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equation of motion considering the delayed terms can be given
in the form

Mε̈εε(t)+Cε̇εε(t)+Kεεε(t) = κκκ(t)(εεε(t− τ)− εεε(t)), (31)

where the specific directional factor matrix κκκ(t) can be calcu-
lated as

κκκ(t) =
∂ f(t, t− τ)

∂r(t− τ)
=


κxx(t) κxy(t) 0 · · · 0
κyx(t) κyy(t) 0 · · · 0

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 . (32)

Note, that κκκ(t) = κκκ(t + τ) is also periodic. Since only the tool
tip is forced, matrix κκκ(t) in the spatial xyz representation contains
only four nonzero elements, which are

κxx(t) =
N

∑
j=1

q f q−1
z

∫ ap

0

(
g j(t,z)

(
Kt cosϕ j(t,z)+Kr sinϕ j(t,z)

)
sinq

ϕ j(t,z)
)
dz, (33)

κxy(t) =
N

∑
j=1

q f q−1
z

∫ ap

0

(
g j(t,z)

(
Kt cosϕ j(t,z)+Kr sinϕ j(t,z)

)
cosϕ j(t,z)sinq−1

ϕ j(t,z)
)
dz, (34)

κyx(t) =
N

∑
j=1

q f q−1
z

∫ ap

0

(
g j(t,z)

(
−Kt sinϕ j(t,z)+Kr cosϕ j(t,z)

)
sinq

ϕ j(t,z)
)
dz, (35)

κyy(t) =
N

∑
j=1

q f q−1
z

∫ ap

0

(
g j(t,z)

(
−Kt sinϕ j(t,z)+Kr cosϕ j(t,z)

)
cosϕ j(t,z)sinq−1

ϕ j(t,z)
)
dz. (36)

Since the system can be non-proportionally damped, the govern-
ing equation can be formulated as

Âż(t)+ B̂z(t) = κ̃κκ(t)(z(t− τ)− z(t)), (37)

where the state vector is z(t) = (εεεT(t) ε̇εε
T(t))T and

κ̃κκ(t) =
(

κκκ(t) 0
0 0

)
. (38)

Since the system matrices are non-symmetric, Eq. (37) can be
transformed into the 2n-dimensional modal space by the trans-
formation z(t) = ΨΨΨRqv(t). The governing equation is obtained
as

q̇v(t)−ΛΛΛqv(t) = ΨΨΨ
T
Lκ̃κκ(t)ΨΨΨR(qv(t− τ)−qv(t)). (39)

Hyx

HyyHxx

Hxy

|F
RF

| [
μm

/N
]

4

3

2

1

0

5

0.5 1 1.5 2 2.5 3
Frequency [kHz]

3.5 4 0.5 1 1.5 2 2.5 3
Frequency [kHz]

3.5 4

y
x

y
x

Hxx

Hxy

y
x

y
x

Hyy

Hyx
F

F

F

F

FIGURE 2. Measured frequency response functions (data taken from
[18]).

The state space equations can be introduced in the form

q̇v(t) = A(t)qv(t)+B(t)u(t− τ), (40)
u(t) = Dqv(t), (41)

where A(t) = ΛΛΛ−ΨΨΨ
T
Lκ̃κκ(t)ΨΨΨR, B(t) = ΨΨΨ

T
Lκ̃κκ(t) and D = ΨΨΨR. In

case of a 2-dimensional tip-to-tip measurement, four FRFs can
be evaluated and fitted. The state matrices in that case can be
simplified to

A(t) = ΛΛΛ−ΨΨΨ
T
Lκ̃κκ(t)ΨΨΨR, (42)

B(t) =

(
ψL

1i ψ̄L
1i · · · ψL

ni ψ̄L
ni

ψL
1 j ψ̄L

1 j · · · ψL
n j ψ̄L

n j

)T(
κxx(t) κxy(t)

κyx(t) κyy(t)

)
, (43)

D =

(
ψR

1i ψ̄R
1i · · · ψR

ni ψ̄R
ni

ψR
1 j ψ̄R

1 j · · · ψR
n j ψ̄R

n j

)
. (44)

In this paper, three different modeling concepts are inves-
tigated, all of them assume non-proportional damping. First, it
is assumed that the vibrations in directions x and y are indepen-
dent, i.e. the measured cross FRFs are neglected. This is an often
used concept in the literature. Second, a symmetric FRF ma-
trix is considered, where the vibration modes are not parallel to
the directions x and y. Third, the effect of non-symmetric FRF
matrix is analyzed. This phenomenon typically occurs in case of
gyroscopic effect, magnetic field, nonlinearities or fluid-structure
interaction [19]. Moreover, in real studies the measured structure
usually shows some non-symmetry as a result of these or several
other effects. In Fig. 2 a measured example can be seen (data
taken from [18]), where Hxy means that the vibrations of the tool
tip is measured in direction x but excited in direction y. As it
can be seen, the cross FRFs (Hxy and Hyx) indicated by dashed
lines cannot be neglected compared to the diagonal FRFs (Hxx
and Hyy) indicated by solid line.
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FIGURE 3. Fitted FRFs in case of diagonal FRF matrix, where the
cross terms are neglected.

4 STABILITY ANALYSIS
For periodic delay-differential equations, the Floquet theory

applies. The solution segment of wt for a general linear time-
periodic DDE of the form

ẇ(t) = L(t,wt), L(t +T, .) = L(t, .) (45)

associated with the initial function w0 can be given as wt =
U (t)w0, where wt(ϑ) = w(t +ϑ), ϑ ∈ [−τ, 0), L is a a linear
functional, which is periodic in its first argument, furthermore T
is the principal period and U (t) is the infinite-dimensional so-
lution operator. The stability of the system is determined by the
spectrum of the corresponding monodromy operator M =U (T )
[7]. This operator usually cannot be determined in closed form
but can be approximated numerically.

Based on the semi-discretization method [7], the periodic
coefficients are approximated by piece-wise constant terms, i.e.

Ak =
1
h

∫ tk+1

tk
A(t)dt, Bk =

1
h

∫ tk+1

tk
B(t)dt (46)

where k = 1,2 . . . p, τ = ph and p is the number of the discretiza-
tion steps over the principal period. Based on the analytical so-
lution of Eqs. (40)-(41) assuming piecewise constant coefficient
matrices, the linear mapping which projects the solution to the
next time step can be formulated as

Qk+1 = GkQk, (47)

where Qk = (qT
v,k uT

k−1 · · · uT
k−p)

T. Finally, the monodromy op-
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FIGURE 4. Fitted FRFs in case of symmetric FRF matrix, where the
cross terms are the same.
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FIGURE 5. Fitted FRFs in case of non-symmetric FRF matrix, where
the cross terms are different.

erator is approximated by the transition matrix ΠΠΠ as

Qk+p = ΠΠΠQk = Gk+p−1Gk+p−2 · · ·GkQk, (48)

which is a finite-dimensional discrete approximation of the mon-
odromy operator. The eigenvalues are calculated from the char-
acteristic equation det(µI−ΠΠΠ) = 0. The system is stable if all
the complex eigenvalues µk are located inside the unit circle of
the complex plane.
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5 A CASE STUDY
The measured FRFs is shown in Fig. 2. It can be seen that the

cross functions (denoted by dashed lines) are in the magnitude
of the diagonal FRFs, therefore they cannot be neglected. The
parameters of the analyzed machining process are q = 1, Kt =
500 · 106 N/m2, Kr = 200 · 106 N/m2 and fz = 0.05 mm/tooth,
while a simple two-fluted tool with constant helix angle β = 45◦

and diameter D = 20 mm was assumed.

5.1 Fitted FRFs
Different fitted FRFs were determined using the theories

presented previously. First, it is assumed that the cross FRFs can
be neglected and the diagonal functions are fitted independently
using two 8-degrees-of-freedom models in the x- and y-directions
(referred as ‘Diagonal FRFs’). The corresponding FRFs can be
seen in Fig. 3. Note, that the scale is logarithmic in order to make
visible the least dominant modes too, which are the most difficult
to fit.

Second, the symmetric formulation was used (referred as
‘Sym. cross FRFs’). In this case, all of the four measured func-
tions are fitted simultaneously. The fitted functions of a 16-
degrees-of-freedom model can be seen in Fig. 4. Since the cross
terms are significantly different, the fitted cross function cannot
approximate any of the them properly.

Third, the non-symmetry of the FRFs was also modeled.
The fitted results are shown in Fig. 5. Again, a 16-degrees-of-
freedom model was used during the fitting. Note, that the fitted

diagonal FRFs are almost the same for all the three fitting con-
cepts.

5.2 Sensitivity of stability charts
Once the measured FRFs are fitted, the semi-discretization

method can be used. The stability charts of the different models
can be seen in Fig. 6 for 10% and 50% radial immersion down-
milling (i.e., ae/D = 0.1 and 0.5), for full-immersion milling
(i.e., ae/D = 1), and for 10% and 50% radial immersion up-
milling. The sketch of down-milling and up-milling can also be
seen in Fig. 6. Solid thin line represents the boundary of the
stable domain in case of a diagonal FRF matrix, solid thick line
in case of symmetric FRF matrix, while grey shaded area corre-
sponds to the stable domains obtained in case of non-symmetric
FRF matrix. All results were checked by the extended multi-
frequency solution introduced in [5], which showed good agree-
ment with the results obtained by the semi-discretization method.

Stability diagram for full-immersion milling operation can
be seen in panel a). The difference between stability boundaries
obtained by the different concepts is not significant. The diag-
onal and symmetric FRF provides practically the same stability
chart, while the non-symmetric case slightly differs. Note, that
the difference increases as the spindle speed increases, i.e., the
chart is sensitive at higher speeds.

The 50% down-milling operation in panel b) is more sensi-
tive to the estimation of the cross FRFs, however the diagonal
and symmetric FRF matrices provide almost the same stability
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boundaries similarly to the full-immersion case. The 10% down-
milling process presented in panel c) shows significant difference
between the different models.

The results for the up-milling processes are similar. In case
of a 50% up-milling operation, which is presented in panel d),
the symmetric and the diagonal FRFs provide similar stabil-
ity boundaries, but the boundaries corresponding to the non-
symmetric model is clearly different especially for higher spin-
dle speeds. In panel e), a 10% up-milling process is studied.
It shows surprisingly large sensitivity, all of the three different
models give very different results.

CONCLUSION

Prediction of the stability of a machining operation requires
information about the modal behavior of the machining center.
The frequency response functions can only be determined by ex-
periments, which is usually noisy and may involve several un-
certain factors. In this aspect, modal fitting can be considered as
a filter: only the significant modes are used, which can clearly
be distinguished form noise. However, if some modes are not
identified properly, then the resulted stability diagrams may not
reflect the properties of the real structure. On the other hand,
if a frequency-domain method is used for stability prediction
(e.g., multi-frequency solution), which uses directly the mea-
sured FRFs without any filtering, then the uncertainties of the
measurements are transferred to the stability boundaries.

The most convenient measurement technique is the measure-
ment of the tool tip. The modal response of the tool is measured
and excited in two perpendicular directions. This results two di-
agonal FRFs and two cross FRFs. The cross FRFs are usually
neglected and only the diagonal functions are fitted. Although
the fitting process is simpler in this case, the resulted stability
boundaries can be significantly different. In this work, the effect
of the estimation of the cross FRFs is studied for milling opera-
tions.

The case study shows that the inaccurate approximation of
the cross frequency response function can significantly affect the
stability diagram, moreover the sensitivity is generally larger for
processes with small radial immersions. It has to be highlighted
that the stability properties are sensitive to the non-symmetry of
the FRF matrix, which is an important issue from the operational
point of view. At high speeds, for instance, the gyroscopic ef-
fect of the rotating elements of the spindle can be significant,
and the operational modal behavior and the corresponding stabil-
ity charts can be substantially different. If the gyroscopic effect
cannot be neglected, then even if the measured static structure
has symmetric FRFs, during the operation the symmetry fails
and the stability chart changes.
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