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Abstract— This paper addresses the stabilization of discrete-
time linear systems with random delays, which is a common
problem in networked control systems. The delays are assumed
to be bounded and longer than a sampling time unit. We apply
the act-and-wait control concept to stabilize the system: the
controller is on for one sampling period (act) and off for some
sampling periods (wait). If the waiting period is longer than
the maximum delay in the feedback, then the stability can be
described by finite number of eigenvalues. Although the closed-
loop stability of the stochastic system with the act-and-wait
controller is characterized by the Lyapunov exponent of infinite
random matrix products, the dimension of these matrices is
finite, which results in a significant reduction of computational
complexity. The applicability of this method is demonstrated
in a simple example, where we compare deterministic stability
with the Lyapunov exponent based results.

I. INTRODUCTION

Advances in communication technology have made Net-

worked Control Systems (NCSs) a common practice. Sen-

sors, actuators and controllers are connected in a NCS as

nodes, instead of point-to-point connections in traditional

distributed control systems. Classical control theory consid-

ers the transmission of digital signals through an ideal chan-

nel, whereas in NCS signals propagate through an unreliable

communication network, as shown in Figure 1. NCS’s are

applicable to diverse fields such as teleoperation [4], mobile

sensor networks [17] and collaborative haptics [1]. The

main differences between NCSs and standard digital control

systems are random delay, packet dropout, and bandwidth

limitation [7]. Our focus here is on random delays that

comprise network access time and transmission delays. In

some approaches, the packet dropout is also modeled as a

long transmission delay [22].

Different types of time-delay systems including fixed,

time-varying and stochastic time delays are characterized in

[19] as a survey. Existing problems in NCS, and the relevant

control methods are discussed in [23] and [24]. While deter-

ministic delays have been considered in different fields such

as biology [15], population dynamics [13] and machine tool

chatter [20], the study of random delays in control systems

is fairly recent. There are different approaches for stability
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Fig. 1. General networked control systems configuration. The communi-
cation network is either a wired or wireless network.

analysis of an NCS. Modeling and analysis of real-time

systems subject to random time delays in the communication

network was discussed in [16]. This thesis presented the

time-stamping technique to enable the controller to have an

estimate of the delays and take the appropriate action. Based

on this formulation, [22] applied a bilinear algorithm (V-

K iteration) to design switching and non-switching output

feedback controllers, including dynamic controllers.

Periodic control approaches have been shown to have

some advantages in stabilizing linear time-invariant (LTI)

systems, see, e.g., [18], [2] and [14]. If time delay appears

in the feedback loop of a periodic controller, then the gov-

erning equation is a time-periodic delay-differential equation

(DDE), for which the stability analysis requires numerical

techniques, such as the semi-discretization method [11] or

the spectral element approach [12].

Recently [8] and [10] introduced a special periodic con-

troller, the so-called act-and-wait controller, to stabilize

continuous-time LTI systems with feedback delays. In this

method, the control input is switched on (act) and off (wait)

periodically in time. It was shown that if the length of

the switch-off (waiting) period is selected longer than time

delays in a system, then the stabilization of this system

is simplified to a finite dimensional pole placement. The

discrete-time counterpart of the act-and-wait control concept

for sampled systems was introduced in [9].

In this paper, we consider the stability problem for a

discrete LTI system with random communication delays. In

[16] and [22], it was assumed that the time delays are less

than one sampling time unit. Here we assume that these

delays are bounded and larger than a sampling time unit.

This work is aimed to understand how the feedback delays

in the control signal influence stability of NCS, and to find

stability boundaries. In Section II, a discrete time system with

random delays in the feedback control is presented. The time
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Fig. 2. A schematic diagram of the NCS under study.

stamping method and the act-and-wait control is applied to

this system. In Section III, the Lyapunov exponent stability is

discussed. It will be shown that stability analysis is simplified

due to the structure of the act-and-wait controller. In Section

IV, we apply the act-and-wait controller to a simple example

with random delays. The Lyapunov exponent based stability

results are compared with existing conservative criteria. In

Section V, conclusions are drawn.

II. PROBLEM STATEMENT

Consider the discrete-time system

x(i + 1) = Ax(i) + Bu(i), (1)

where x ∈ R
n, u ∈ R

m, A ∈ R
n×n, B ∈ R

n×m are

real matrices and i = 1, 2, ..... We assume that this discrete

system is the plant of the NCS, as illustrated in Figure 2.

Due to the presence of the communication network in the

NCS random delays will be introduced in the feedback.

It is assumed that the delays, denoted by ri’s, are random,

non-negative integers, i.e. 0 ≤ ri ≤ rmax, where rmax is the

maximum delay.

The control strategy is the act-and-wait control [9], which

is a time-periodic state feedback. This control approach

applies a signal for a while and then waits to evaluate

the response. Based on this response the controller applies

next appropriate control signal. The act-and-wait controller

applied here is given in the form

u(i) = g(i)Kx(i − ri), (2)

where K ∈ R
m×n is the gain matrix, ri’s are random delays

and g(i) is a periodic function defined as

g(i) =

{

1 if i modP = 0
0 otherwise

, i = 1, 2, ... (3)

where P ∈ N is the period of the act-and-wait control. Here,

the controller is acting for a single discrete step, and it is

inactive (waiting) for P − 1 discrete steps. System (1) with

the act-and-wait controller (2), gives rise to the following

random delayed difference equation

x(i + 1) = Ax(i) + g(i)BKx(i − ri). (4)

In this paper, our goal is to study the stability of this

system.

Remark: P = 1 (i.e. g(i) ≡ 1) corresponds to simple

continuous state feedback control with random delays. This

special case has been extensively studied (see e.g. [20], [22]).

III. RECASTING THE PROBLEM

As the delay is bounded, we can apply the time-

stamping technique [16] by introducing a new variable z i =
[xT (i), x

T (i − 1), ..., x
T (i − rmax)]

T ∈ R
(1+rmax)n.

After some manipulations, system (4) can be written as the

following non-autonomous difference equation

zi+1 = Gi zi, (5)

where

Gi =























A 0 . . . g(i)BK . . . 0 0

I 0 . . . 0 . . . 0 0

0 I . . . 0 . . . 0 0

...
. . .

...

0 0 . . . 0 . . . I 0























, (6)

and the matrix g(i)BK is located in the (1 + ri)
th column.

Then

zi+1 = GiGi−1.....G1z1. (7)

Further simplification can be achieved by grouping the ma-

trices Gi’s in one period. For simplicity we assume i=NP ,

and therefore

zi+1 = zNP+1 =
(

GNP GNP−1 . . .G(N−1)P+1

)

. . .

(G2P G2P−1 . . .GP+1) (GP GP−1 . . .G1) z1

= HN . . .H2 H1 z1 (8)

where

Hj = GjP GjP−1 . . .G(j−1)P+1. (9)

During the “waiting” steps when (i modP ) �= 0, matrix

g(i)BK vanishes, for example, G1 = G2 = · · · = GP−1.

Therefore, Hj is simplified even more as

Hj = GjP (GjP−1)
P−1

. (10)

Let us consider the period to be longer than the maximum

delay, i.e.

P > rmax. (11)

In this case, Hj will exhibit the simple structure

Hj =











Mj 0 · · · 0

A
P−1

0 · · · 0

...
...

...

A
P−rmax 0 · · · 0











, (12)

with

Mj = A
P + BKA

P−1−r(j−1)P . (13)
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Equation (8) after i = NP iterations can be written as

zNP+1 =











MNMN−1 . . .M1 0 · · · 0

A
P−1

MN−1MN−2 . . .M1 0 · · · 0

...
...

...

A
P−rmaxMN−rmax . . .M1 0 · · · 0











z1.

(14)

Note that the coefficient matrix has rmaxn zero eigenvalues,

and all the nonzero eigenvalues are determined by the n×n

block MNMN−1 . . .M1.

IV. STABILITY BASED ON LYAPUNOV

EXPONENT

Equation (14) describes a random process because the

matrices Mj involve the random delays rj’s. The Lyapunov

exponent for the problem is defined as

λ = lim
N→∞

1

N
ln(‖ zNP+1 ‖). (15)

The stochastic growth/instability (λ > 0) or decay/stability

(λ < 0) of a random process is described by the above

Lyapunov exponent. The limit in (15) gives rise to an infinite

matrix product. Random matrix products have a wide variety

of applications in physics [3] and in mathematics [6]. The

computation of Lyapunov exponent for matrix products is in

general a complex task [21].

As it was noted above, the coefficient matrix in (14) has

rmaxn zero eigenvalues, and the nonzero eigenvalues are

comprised of the eigenvalues of

L = MNMN−1 . . .M1. (16)

This means that the Lyapunov exponent is simply the loga-

rithm of the dominant eigenvalue of matrix L.

Note that, using the act-and-wait control system, we

reduced the n(rmax + 1)-dimensional matrix in (15) to

an n-dimensional one in (16), reducing the computational

burden to a great extent. Still, computing the above matrix

product for large N values has some practical limitations.

Namely, the elements of L might grow exponentially and

naive computation will lead to overflow. In order to avoid this

problem, we follow the re-normalization procedure described

in [5].

V. DOUBLE INTEGRATOR WITH RANDOM

DELAYS AND ACT-AND-WAIT CONTROL

In this example, we will apply the act-and-wait controller

to a simple dynamic system (the double integrator) with

random delay, and explore the stability chart in the parameter

space of the control gains. We also compare the Lyapunov

exponent results with a naive result based on fixed delays.

This comparison reveals the significance of considering the

random nature of the delays.

Consider the double integrator system

ẋ(t) =

(

0 1
0 0

)

x(t) +

(

0
1

)

u(t). (17)

Fig. 3. Stability region for the stochastic system obtained by the Lyapunov
exponent analysis (green); the stability boundaries for the deterministic
system with fixed delays r = 4 (solid red), r = 5 (dashed blue) and r = 6
(dash-dotted magenta); and their intersection as a conservative estimate
(solid black).

The sampled system of (17) with the sampling period being

1 results in the following discrete system

x(i + 1) =

(

1 1
0 1

)

x(i) +

(

1
1

)

u(i), (18)

u(i) = g(i)Kx(i − ri), (19)

where K = [ k1 k2 ] is the gain matrix (k1is the propor-

tional gain and k2 is the differential gain). In (19), g(i) is

the P-periodic switching function defined in (3) and r i ∈
{4, 5, 6} is a uniformly distributed random delay.

We apply the act-and-wait control with period P = 7 >

rmax, to satisfy condition (11). The system is stable if the

Lyapunov exponent λ is negative for the chosen values

of k1 and k2. The Lyapunov exponents are calculated for

NP = 105. The corresponding stability diagram in the

plane (k1, k2) is shown in Figure 3. The stable domains

are indicated by green color. For comparison, the stability

boundaries are also presented for the fixed delay values

r = 4, r = 5 and r = 6. In this case, matrices Mj

are identical (since r is fixed), and the system is stable if

the eigenvalues of Mj are all inside the unit circle. The

stability boundaries for the cases r = 4, r = 5 and r = 6
are triangles indicated by solid red, dashed blue and dash-

dotted magenta lines in Figure 3. The intersection of these

three triangles is the smaller triangle (black thick line), which

can be considered as a conservative estimate for the stability

region. As can be seen, this region is considerably smaller

than the true (stochastic) stability region.

To further elaborate this point, Figure 4 presents the

time response of (18)-(19) with the gain matrix K =
[−0.2 −2.0] (corresponding to point A in Figure 3), which

is stable by both the “deterministic” method and based on the

Lyapunov exponent. The control signal is also presented in

the figure. Figure 5 shows the same plots for the gain matrix

K = [−0.38 −2.5] (corresponding to point B in Figure 3).

This case was predicted to be stable by the analysis of the

Lyapunov exponents, while it was predicted to be unstable

by the conservative “deterministic” approach.
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Fig. 4. Time response of (18)-(19) with the gain matrix K = [−0.2, −2.0]
that is stable based on both the Lyapunov exponent approach and the
deterministic stability.
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Fig. 5. Time response of (18)-(19) with the gain matrix K =
[−0.38, −2.5] that is stable only based on the Lyapunov exponent
approach.

VI. DISCUSSION

In this paper, a discrete dynamical system with ran-

dom feedback delays was considered. We applied the time-

periodic act-and-wait controller to the system. The stability

analysis of the system resulted in an infinite random matrix

product, which we investigated by the Lyapunov exponent.

It was shown that if the length of the waiting period

was chosen longer than the maximum time delay, then the

dimension of the multiplied matrices was reduced, resulting

in a significant reduction of computational complexity. The

proposed method was applied to the simple example of

the double integrator. The stability region derived based

on the Lyapunov exponent was compared with conservative

deterministic estimations.

Although the concept of not acting for a while during

a control process may seem unnatural, it is still a natural

control logic for systems with feedback delays. This is

how, for example, one would adjust the shower temperature

considering the delay between the controller (tap) and the

sensed output (water temperature at skin).
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