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ABSTRACT
An efficient numerical method is presented for the

stability analysis of linear retarded dynamical systems. The
method is based on a special kind of discretization technique
with respect to the past effect only. The resulting approximate
system is delayed and time-periodic in the same time, but still,
it can be transformed analytically into a high dimensional
linear discrete system. The method is especially efficient for
time varying delayed systems, including the case when the
time delay itself varies in time. The method is applied to
determine the stability charts of the delayed Mathieu equation
with damping.

INTRODUCTION
There are several mechanical models which lead to

equations of motions governed by delayed-differential
equations (DDEs). In mechanical engineering, for example,
the models describing the regenerative effect in machine tool
vibrations, the human/machine systems involving the human
operator’s reflex delay, or the robotics applications like
telemanipulation with information delay, can be mentioned
(see Stépán, 1989). The corresponding mechanical models are
often low degree-of-freedom (DOF) oscillatory systems
subjected to the delayed feed-back of the state variables. The
stability analysis of these systems is an important and crucial
problem.

In the above practical applications, the first mechanical
models lead to autonomous DDEs, and the stability analysis of
the linearized systems is based on the roots of the
characteristic function in the same way, as the Routh-Hurwitz
criterion (see Routh, 1877, Hurwitz, 1895) for ordinary
differential equations (ODEs). In case of a DDE, the major
problem is that the number of the characteristic roots is
infinite, and to have asymptotic stability, all these roots have to
be situated in the left half of the complex plane.

The advanced mechanical models include parametric
excitation, too. In case of a human operator, the reflex delay
can vary in time; in case of machining, the cutting speed (see
Insperger et al., 2001), or the number of active teeth (Insperger
and Stépán, 2000b) can change periodically; while in case of
telemanipulation, a time-varying parameter may help to
compensate the destabilizing effect of large time delays (see
Insperger and Stépán, 2000c). Problems like these require the
stability analysis of linear, time-periodic delayed oscillatory
systems, described by linear non-autonomous DDEs.

The models in all the applications mentioned above can be
viewed as some kinds of generalizations of the delayed
Mathieu equation. First, the existing results are summarized in
this direction. Then the so-called semi-discretization method
is introduced for time-periodic DDEs like the damped and
delayed Mathieu equation. Finally, the stability charts of these
systems are presented for different parameter combinations,
and physical conclusions are derived.

PRELIMINARIES
The underlying problem in all the applications mentioned

in the Introduction is the delayed Mathieu equation:

)2()()cos( πεδ −=++ tbxtxt(t)x&& (1)

In case of b = 0, the stability chart of the classical Mathieu
equation, the so-called Strutt–Ince diagram was published by
van der Pol and Strutt (1928). This is presented in Fig. 1 with
S denoting the parameter domains where the trivial solution is
stable (but not asymptotically stable) in Lyapunov sense (see
Nayfeh and Mook, 1979). The stability chart for the case 0=ε
was published only forty years later by Hsu and Bhatt (1966),
the structure of this chart is much simpler, though. In Fig. 2, S
denotes those parameter domains, where 0≡x  is
asymptotically stable in Lyapunov sense.
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Fig. 1  The Strutt–Ince diagram of Eq. (1) for b=0
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Fig.2  The Hsu–Bhatt diagram of Eq. (1) for ε = 0

Insperger and Stépán (2000b) used the weight functions of
Fargue (1973) to approximate the delayed term in Eq. (1).
Although, the resulting finite dimensional systems
convergence slowly to the infinite dimensional DDE, the
results of the numerical investigations clearly indicated that
the stability boundaries remain lines for the 0>ε  case. Using
the infinite determinant method of Hill (1886), Insperger and
Stépán (2000a) proved that the stability boundaries in the
parameter plane ),( bδ  remain lines passing along the
boundary curves of the Strutt-Ince diagram (see Fig. 3) for the
general case of Eq. (1).

SEMI-DISCRETIZATION METHOD
The so-called semi-discretization is a well known

technique used, for example, in computational fluid
mechanics. The basic idea is, that the corresponding partial
differential equation (PDE) is discretized along the spatial
coordinates only, while the time coordinates are unchanged.
From dynamical systems viewpoint, the PDE has an infinite
dimensional state space, which is approximated by the finite
dimensional state space of a high dimensional ODE.

The same idea can be used for any DDE, but its
implementation is not trivial. The infinite dimensional nature
of the DDE is due to the presence of past effects described by

functions embedded also in the time domain, above the past
interval ],[ tt τ− , where τ  denotes the time delay, that is
length of the delay effect. In this paper, the method is
presented for the general second order time periodic DDE

)()()()()()()()( 1100 ττ −+−=++ txtctxtbtxtctxtb(t)x &&&& , (2)

where the coefficients b0(t), c0(t), b1(t) and c1(t) are periodic
functions of period T. This equation is a generalization of the
delayed Mathieu equation in the following aspects: it contains
viscous damping, all the coefficients may depend on the time
periodically, and the time period T is not necessarily equal to
the time delay τ which could also be time-periodic. Note, that

πττ 20 ==≡ T  for the special case of Eq. (1).
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Fig. 3  Stabilty chart of Eq. (1) for ε = 1

Fig. 4. Semi-discretization
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The basic idea of semi-discretization is as follows. Find
integers k and n with the help of which the time period T and
the constant time delay 0τ  can be divided in the following
way: the intervals ],[ 1+ii tt  of length t∆ , 1,,1,0 −= ki K , cover
one time period, while the length of the past effect in time is
covered by n+1/2 intervals as shown in Fig. 4. Thus, k and n
satisfy

2/1
0

1 +
==−= + nk

Tttt ii
τ∆ . (3)

The larger the integer n is, the better the approximation is.
That is why we call n as approximation parameter. For
example, in the special case of Eq. (1), when πτ 20 ==T , the
integers nk =  or 1−= nk can be chosen, but they satisfy the
above condition for ∞→n  only. In other words, if the
principal period T of Eq. (2), is not a multiple of the interval
length t∆ , that is tkT ∆≠  exactly, then an approximate
principal period TT ≈~

 should be applied, which satisfies
tkT ∆=~ . By decreasing t∆ , that is by increasing the

approximation parameter n, the errors decrease.
Consider Eq. (2) in the time interval ],[ 1+∈ ii ttt , where

titi ∆= , ,...2,1,0=i . The point of semi-discretization is that
the right hand side of Eq. (2) is approximated with a constant
value, while the left hand side is left in the original differential
form. In other words, the delayed terms are discretized, the
actual time domain terms are not. To achieve this goal, let us
approximate the constant time delay 0τ by the piece-wise
linear, time-dependent, t∆ -periodic varying delay function

)(tτ  as shown by the saw-like function in Fig. 4. In spite of
the fact that the resulting system looks more complicated due
to the appearance of the time-periodic delay instead of the
constant one, the new approximate equation has a finite
dimensional representation and it can be handled analytically
in closed form. The reason is as follows:

),0[,))/int((0 ∞∈−+≈ ttttnt ∆∆τ (4)
),[,))(()( 10 +− ∈=−≈− iini tttxtnixtx ∆τ (5)
),[,))(()( 10 +− ∈=−≈− iini tttxtnixtx &&& ∆τ (6)

which means that the delayed state variables become constant
for each discretized time interval. If the time dependent
coefficients )(1 tb  and )(1 tc  in Eq. (2) are approximated by
constant (say average) values ib1  and ic1  for ],[ 1+∈ ii ttt  and
for each ,...2,1,0=i , then the forcing term on the right hand
side of Eq. (2) is approximated by a piece-wise constant
function

niniinii fxcxbtxtctxtb −−− =+≈−+− 110101 )()()()( && ττ , (7)

If the same approximation is used for the periodic functions
ibtb 00 )( ≈ , ictc 00 )( ≈  for each time interval of discretization,

the resulted equation is piece-wise autonomous:

niii ftxctxb(t)x −=++ )()( 00 &&& ,    ,...2,1,0],,[ 1 =∈ + ittt ii , (8)

The general solution of Eq. (8) (if b0i is small enough) reads

( ) ( )+−−= )(cos)(exp)( 1 iiiii ttttKtx ωγ

               ( ) ( ) ni
i

iiiii f
c

ttttK −+−−
0

2
1

)(sin)(exp ωγ , (9)

where the constants iK1  and iK2  are determined by the initial
conditions ii xtx =)( , ii xtx && =)( , and iω  and iγ characterize
the natural frequency and damping, respectively, having
different values for each time interval. They are determined by
the left-hand side of Eq. (8) as follows

2
0i

i
b−=γ , (10)

2
004

2
1

iii bc −=ω . (11)

Calculation of the solution (9) at time 1+it  results the values

niiiiiii fxxx −+ ++= 3211 ααα & , (12)

niiiiiii fxxx −+ ++= 3211 βββ && , (13)

where

( )ttt ii
i

i
ii ∆γ∆ω

ω
γ∆ωα exp)sin()cos(1 



 −= , (14)

( )tt ii
i

i ∆γ∆ω
ω

α exp)sin(
1

2 = , (15)

)1(
1

1
0

3 i
i

i c
αα −= , (16)

( )tt ii
i

ii
i ∆γ∆ω

ω
ωγβ exp)sin(

22

1
+−= , (17)

( ) ( )ttt iiiii
i

i ∆γ∆ωω∆ωγ
ω

β exp)cos()sin(
1

2 += , (18)

i
i

i c 1
0

3
1 ββ −= . (19)

From Eq. (7), the shift of the indices gives

iiiii xcxbf 11 += & . (20)
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Equations (12), (13) and (20) give the connection between the
states of the system at time instants it  and 1+it . This
connection can be presented as a discrete map

iii yAy =+ 1 , (21)

where the state variables are arranged into the n+2
dimensional state vector

)col( 1 niiiii ffxx −−= L&y , (22)

and the coefficient matrix has the form
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The new variables denoted by jf  in Eq. (22) are the constant

excitation forces in the time intervals ],[ 1+∈ jj ttt .

The next step is to determine the transition matrix Φ  over
the principal period tkT ∆=  (or over the approximated
principal period tkT ∆=~ ). This serves a finite dimensional
approximation of the monodromy operator in the infinite
dimensional version of the Floquet Theory presented by Hale
and Lunel (1993) or Farkas (1994). The transition matrix gives
the connection between 0y  and ky in the form

=ky Φ 0y . (24)

The coupling of the solutions over the intervals ],[ 1+ii tt ,
1,,1,0 −= ki K  results

== −− 11 kkk yAy =−−− 221 kkk yAA =K 001 yAA K−k , (25)

that is, the transition matrix Φ  is given by the simple matrix
multiplication

Φ 0121 AAAA K−−= kk . (26)

At this point, the stability investigation of Eq. (2) is
reduced to the problem whether the eigenvalues of Φ  are in
modulus less than 1. Any standard numerical algorithm can be
used for this last step.

STABILITY CHARTS FOR THE DAMPED DELAYED
MATHIEU EQUATION

As an example, the stability chart of the delayed damped
Mathieu equation

)2()()cos()( 10 πεδ −=+++ txctxttxb(t)x &&& (27)

is determined for various parameters. The accuracy of the
method can be checked in the undamped case 00 =b  the exact
charts of which are known analytically (see Insperger and
Stépán (2000a), and Fig. 3 for 1=ε ). Similar stability charts
are shown in Fig. 5 determined with 20=n  approximation
number for different ε  values.

Fig. 5 Stability charts of the delayed Mathieu equation without damping
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Fig. 6. Stability charts of the damped delayed Mathieu equation (27)



6 Copyright © 2001 by ASME

The charts in Fig. 5 reconstruct the exact linear stability
boundaries well. Still, a slight deviation can be identified in
the case 0,4,5.1 10 ≈≈= ccε that is due to the fact that the

time period T~  in the approximating discrete system is not
exactly equal to the time period =T 2π  in Eq. (27).

In Fig.6, two different viscous damping values are added
to the delayed Mathieu equation. The 0=ε  case shows that
the increasing damping improves the stability properties and
unifies the disjoint domains of stability of the undamped case.
Still, the parametric excitation makes these unified domains
disjoint again, and also shifts them as the amplitude ε of
parametric excitation increases.

In Figures 5 and 6, the black stability boundary curves
refer to Hopf bifurcation, the blue ones for flip bifurcation or
period doubling, the red ones for bifurcations topologically
equivalent to the saddle-node bifurcations.

The convergence of the method can easily be seen by
applying the theorem, that the solutions of a differential
equation depend continuously on the system parameters. If the
systems described by Eq. (2) and Eq. (6) are close to each
other, then their solutions are also close to each other. By
converging the approximation parameter n to infinity, the
solutions of the two system are also converging to each other.

CONCLUSION
The stability charts of the damped delayed Mathieu

equation give a clear picture about the complicated and
physically almost unpredictable stability properties of these
systems. The deep understanding of these linear systems is
important in several applications in the design of machining
technology, in robotics telemanipulation or in human-machine
systems.

The reliable and efficient calculation of these stability
charts is presented with the help of the so-called semi-
discretization method applied for DDEs. The main point of
semi-discretization is that the constant time delay is
approximated with a piecewise linear periodic function as
shown in Fig. 4. Although, the resulted approximating system
is also a DDE with time periodic delay, and it seems to be
more complicated than the original DDE with constant time
delay, it can still be treated as a finite dimensional discrete
system. In other words, the infinite dimensional characteristic
of the parametrically excited delayed system disappears when
the time delay is piecewise linear with slope 1.

For the approximation parameter 1=n , the resulted
approximating system corresponds to the so-called zero order
holder (ZOH) appearing in the models of computer controlled
machines (see Stépán, 2000).
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