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Abstract Stability of linear delayed systems subjected to digital control is analyzed.
These systems can typically be written in the form

ẋ(t) = Ax(t) + Bx(t− τ) + Cx(tj−1) , t ∈ [tj , tj+1) ,

where tj = j∆t with ∆t being the sampling period for the digital controller. The
point-delay term x(t−τ) is assumed to be inherently present in the governing equa-
tion of the uncontrolled system, while the term x(tj−1) is present due to the digital
controller. Since the term x(tj−1) can be represented as a term with a piecewise
linearly varying time delay, the system is time-periodic at period ∆t. The stabil-
ity analysis for the system is performed using the semi-discretization method. As
case studies, the stability charts of the delayed oscillator and the turning process are
determined for a digital PD controller.

1 Introduction

Time delays are often inherently present in mechanical systems due to physical
interactions between different elements of the system or due to a feedback mecha-
nism. For instance, in wheel shimmy models, the contact between elastic tires and
the road is described by a delay-differential equation (DDE) with distributed de-
lay [29]. In car following traffic models, time delay arise due to the reflex delay of
the drivers [17]. Machine tool chatter is also modeled by DDEs, where the delay
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Fig. 1 Representation of the sampling effect as time-varying delay

appears due to the regenerative effect as result of the contact of the tool and the
workpiece. For simple tool geometry, the regenerative delay can be modeled by a
point delay [1], while for more complex tool geometry, such as a milling tool with
varying helix angle, the surface regeneration can be described by a distributed de-
lay [4]. In these examples, time delays inherently arise due to the structure of the
mechanical system and the delayed terms in the governing equations are contin-
uous in time. If these systems are subjected to a digital feedback controller, then
discrete-delay terms (i.e., terms with piecewise constant argument) also arise due to
the sampling effect [18, 24]. The goal of this chapter is to analyze the stability of
systems, where both continuous- and discrete-time delayed terms appears.

Here, we consider Newtonian systems with point delay in the position term sub-
jected to a digital proportional-derivative (PD) controller. The governing equation
of such systems can be given in the form

Mq̈(t)+Cq̇(t)+Kq(t) = Hq(t−τ)+Kpq(tj−1)+Kdq̇(tj−1) , t ∈ [tj , tj+1) ,
(1)

where q ∈ Rn is the vector of the general coordinates, M, C and K are the mass, the
damping and the stiffness matrices, H is a matrix describing the delay effect, τ is the
system delay, Kp and Kd are the proportional and derivative control matrices, ∆t
is the sampling step of the digital controller and tj = j∆t are the discrete sampling
instants. Thus, the system contains two types of delay terms, the continuous-time
point-delay term q(t − τ) and the discrete-time delay terms q(tj−1) and q̇(tj−1)
with piecewise constant argument over the sampling interval [tj , tj+1). Actually,
the terms q(tj−1) and q̇(tj−1) can be represented as terms with periodic time delay
in the form q(t− ρ(t)) and q̇(t− ρ(t)), where the time delay is a piecewise linear
function given as ρ(t) = t + ∆t − tj , t ∈ [tj , tj+1) (see Fig. 1). According to
this interpretation, sampling in the feedback loop presents a parametric excitation in
the time delay and the period of the parametric excitation is equal to the sampling
period∆t. Consequently, the governing equation is a periodic DDE, and the stability
analysis can be performed according to the Floquet theory of DDEs [5, 7]. There
exists several numerical methods for the stability analysis of periodic DDEs, the
semi-discretization [9, 10], the Chebyshev polynomial approach [2], the spectral
element method [11], the method of characteristic matrices [22, 28], Hill’s method
[12], the full-discretization method [3,19] or the continuous time approximation [25,
26] can be mentioned as examples. In this chapter, the stability analysis of equation
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(1) is presented using the semi-discretization method according to [9,10]. As a new
concept, one- and two-points methods with different order of approximations are
introduced in the discretization scheme.

2 Semi-Discretization

The first-order representation of equation (1) reads

ẋ(t) = Ax(t) + Bx(t− τ) + Cx(tj−1) , t ∈ [tj , tj+1) , (2)

where

x(t) =

(
q(t)
q̇(t)

)
, A =

(
0 I

−M−1K −M−1C

)
, B =

(
0 0
H 0

)
, C =

(
0 0

Kp Kd

)
.

(3)
Semi-discretization is a numerical technique which can be used for the stability
analysis of time-periodic DDEs [9, 10]. The method gives a finite dimensional ap-
proximation for the infinite dimensional eigenvalue problem of time-delayed sys-
tems. The description presented here is valid for the case when the system delay
τ is integer multiple of the sampling period ∆t, i.e., when κ = τ/∆t ∈ Z. The
semi-discretization is based on the discrete time scale ti = ih, where h is the dis-
cretization step determined as τ = rh and ∆t = ph. Here, r is the delay resolution,
p is the period resolution. Clearly, r/p = τ/∆t = κ. Note that subscript i is used
for the discrete time scale of the semi-discretization, while subscript j is used for
the discrete time scale tj = j∆t due to the sampling of the controller. In the next
two subsections, two types of discretization schemes, the one-point method and the
two-point method are detailed.

2.1 One-point methods

One-point methods approximate the delayed value of the state variables with values
taken from one discrete past time instant. The approximation of equation (1) for the
time interval t ∈ [ti, ti+1) can be given as

ẋ(t) = Ax(t) + D(t)xi−r + Cxi−p , (4)

where D(t) is a weighting matrix which depends on the method and the order of the
approximation. Short hand notation is used for x(ti−r) = xi−r and respectively for
the similar terms. The sketch of the semi-discretization for the case of the zeroth-
order one-point method for different steps is shown in Fig. 2 for r = 20, p = 5
and, consequently, κ = 4. The initial condition for equation (4) is x(ti) = xi, which
provides the continuity of the displacement and velocity functions at time instant
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Fig. 2 Sketch of the discretization for the case of zeroth-order one-point method at different steps

t = ti. Using the variation of constants formula, the solution for (4) can be given as

x(t) = eA(t−ti)xi +

∫ t−ti

0

eA(t−ti−s) (D(s)xi−r + Cxi−p) ds. (5)

Hence the relation between the two end points of the discretization interval is

xi+1 = Pxi + R1xi−r + RCxi−p, (6)

where

P = eAh , R1 =

∫ h

0

eA(h−t)D(t)dt , RC =

∫ h

0

eA(h−t)Cdt . (7)

If A−1 exist, then
RC = −A−1

(
I− eAh

)
C , (8)

where I denotes the unit matrix. Equation (6) implies the discrete map
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Xi+1 = G1Xi , (9)

where
Xi =

(
xi xi−1 . . . xi−r

)T
(10)

is an augmented state vector, and the coefficient matrix for this first step reads

G1 =



P 0 . . . 0 RC 0 0 . . . 0 0 R1

I 0 . . . 0 0 0 0 . . . 0 0 0
0 I 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 I 0 0
0 0 . . . 0 0 0 0 . . . 0 I 0


. (11)

Note that this matrix consists of submatrices of size 2n× 2n, namely, P, RC , R1,
the 2n × 2n unit matrix I and the 2n × 2n zero matrix 0. Matrix RC is located at
the (p+ 1)th block in the first row of G1.

Since the control force is constant over the sampling period [ti, ti+p), the ap-
proximate differential equation for the second discretization step is

ẋ(t) = Ax(t) + D(t)xi−r+1 + Cxi−p , t ∈ [ti+1, ti+2) . (12)

Solving this differential equation similarly to (4), the difference equation between
the endpoints of the second discretization is obtained in the form

Xi+2 = G2Xi+1 , (13)

where the state vector is Xi is defined as in (10), and the coefficient matrix for the
second step reads

G2 =



P 0 . . . 0 0 RC 0 . . . 0 0 R1

I 0 . . . 0 0 0 0 . . . 0 0 0
0 I 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 I 0 0
0 0 . . . 0 0 0 0 . . . 0 I 0


. (14)

Here, matrix RC is located at the (p + 2)th block in the first row of G2. The only
difference between matrices G1 and G2 is the location of the sub-matrix RC . While
in G1, RC is located at the (p + 1)th block in the first row, in G2, matrix RC is
located at the (p+ 2)th block in the first row.

For the next discretization interval [ti+2, ti+3), matrix RC is located at the
(p+ 3)th block in the first row, etc. With the induction of this phenomena the struc-
ture of the first row of G is shown in Fig. 3 for different discretization steps.

For the stability analysis of the approximate system (4), the solution should be
determined over the period ∆t = ph of the parametric excitation (i.e., over the
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Fig. 3 Top row of G matrices for one-point methods

principal period). The monodromy mapping for the initial state Xi is given as

Xi+p = ΦXi, (15)

where Φ = Gp Gp−1 . . .G2 G1 is the monodromy matrix (Floquet transition ma-
trix). The condition for asymptotic stability is that all eigenvalues of Φ must be in
modulus less then 1, formally

|µmax| < 1 , (16)

where µmax = max(µi) with µi, i = 1, 2, . . . , (n+ 1)r being the eigenvalues of Φ.
As it was mentioned earlier, semi-discretization of different orders can be rep-

resented by the weighting matrix D(t). In the next points, the zeroth-order and the
first-order approximations will be presented for the one-point method.

2.1.1 Zeroth-order approximation

This method uses only the discrete vector q(ti−r) of general coordinates to approx-
imate q(t− τ) (see Fig. 4). The weighting matrix has the form

D =

(
0 0
H 0

)
(17)

Note that this case corresponds to the standard zeroth-order semi-discretization
method given in [10].

Fig. 4 Sketch of the zeroth- and the first-order one-point methods
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2.1.2 First-order approximation

This method uses the discrete vector q(ti−r) and its derivative q̇(tj−r) to ap-
proximate q(t − τ) (see Fig. 4). It can be seen from the structure of the step
matrix G that the derivatives of q are introduced to the augmented state vector
only because the velocity is present in the control force. These derivatives can be
used to give a better approximation for the delayed state variables, which give
rise to the first-order approximation, where the delayed term is approximated as
q(t− τ) ≈ q(ti−r)+ q̇(ti−r)(t− ti−r). The corresponding weighting matrix reads

D(t) =

(
0 0
H Ht

)
(18)

Note that this first-order approximation is different from the one presented in [10].
Here the first-order approximation of the past state is obtained using q(tj−r) and
its derivative q̇(tj−r), while in [10], the first-order approximation is obtained using
two subsequent discrete state variables q(tj−r) and q(tj−r+1). This latter case here
is called as two-point method.

2.2 Two-point methods

Two-point methods take the past values from two subsequent discrete time instants
for the approximation of the delayed function. The approximation of equation (2)
for the time interval t ∈ [ti, ti+1) can be given as

ẋ(t) = Ax(t) + D1(t)xi−r + D2(t)xi−r+1 + Cxi−p, (19)

where the weighting matrices D1(t) and D2(t) depend on the order of the approxi-
mation and on the weighting between the past values. Similarly to equation (4) the
solution of equation (19) can be determined by the variation of constants formula.
The relation between the two endpoints of the discretization step is

xi+1 = Pxi + R1xi−r + R2xi−r+1 + RCxi−p, (20)

where
P = eAh, R1 =

∫ h

0
eA(h−t)D1(t)dt,

R2 =
∫ h

0
eA(h−t)D2(t)dt, RC =

∫ h

0
eA(h−t)Cdt.

(21)

The coefficient matrices G for two-point methods have similar forms as the ones
for the one point methods. The only difference is that one more sub-matrix appears
on the right end of the top row. The location of the sub-matrix RC for different
discretization steps is the same, after each discrete step, this matrix jumps to the
right by one, as it is shown in Fig. 5. In the next points, semi-discretization schemes
of different orders are presented for the two-point method.
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Fig. 5 Top row of G matrices for two-point methods

2.2.1 Zeroth-order approximation

This method takes the average of the state variable q(t) at two past time instants,
namely at q(ti−r) and q(ti−r+1) to approximate q(t−τ) (see Fig. 6). The weighting
matrices are

D1 = D2 =

(
0 0

1
2H 0

)
. (22)

Note that this case corresponds to the improved zeroth-order semi-discretization
used in [10].

2.2.2 First-order approximation

In this method, the delayed term q(t − τ) is approximated as a linear function of
time using the discrete values q(ti−r) and q(ti−r+1) (see Fig. 6). The weighting
matrices are

D1(t) =

(
0 0

(1− t/h)H 0

)
, D2(t) =

(
0 0

t/hH 0

)
. (23)

Note that this case corresponds to the first-order semi-discretization used in [10].

2.2.3 Second-order approximation

This method approximates the state variable values between two past time instants
by using not only the past values of the function but also their derivatives. Namely,

Fig. 6 Sketch of the zeroth-, the first-, the second- and the third-order two-point methods
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q(t − τ) is approximated by a second-order function using the values q(ti−r),
q(ti−r+1) and q̇(tj−r) or q̇(tj−r+1) (see Fig. 6). The second order function is con-
structed by the linear interpolation between two first order one point approximations
at time instants ti−r and ti−r+1. The weighting matrices read

D1(t) =

(
0 0

(1− t/h)H tI

)
, D2(t) =

(
0 0

t/hH (t− h)t/hH

)
. (24)

Note that this discretization concept is different from the ones presented in [10].

2.2.4 Third-order approximation

In this method, the delayed term q(t − τ) is approximated by the discrete values
q(ti−r), q(ti−r+1) of the state variables and its derivatives q̇(tj−r) and q̇(tj−r+1)
(see Fig. 6). The weighting matrices are

D1(t) =

(
0 0(

1− 3
(
t
h

)2
+ 2
(
t
h

)3)
H t

(
1− 2 t

h +
(
t
h

)2)
H

)
, (25)

D2(t) =

(
0 0(

3
(
t
h

)2 − 2
(
t
h

)3)
H t

(
− t

h +
(
t
h

)2)
H

)
. (26)

This discretization concept is different from the ones presented in [10].
Comparison of the above methods for different period resolutions shows that

the third-order two-point method provides the fastest convergence. Therefore, this
method will be used for the for the forthcoming examples.

3 Example: the delayed oscillator

Consider first the delayed oscillator subjected to a digital PD controller [13]. The
governing equation can be written in the form

ẍ(t)+a1ẋ(t)+a0x(t) = b0x(t−τ)−Px(tj−1)−Dẋ(tj−1), t ∈ [tj , tj+1) (27)

where tj = j∆t are the sampling instants for the controller, ∆t is the sampling
period, P is the proportional gain and D is the derivative gain. The stability chart
of this DDE for P = 0 and D = 0 is well known in the literature (see the diagrams
P = 0 and D = 0 in Figures 7 and 8).

The first order representation of equation (27) reads

ẋ(t) = Ax(t) + Bx(t− τ) + Cx(tj−1) , t ∈ [tj , tj+1) , (28)

where
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x(t) =

(
x(t)
ẋ(t)

)
, A =

(
0 1
−a0 −a1

)
, B =

(
0 0
b0 0

)
, C =

(
0 0
−P −D

)
. (29)

Figures 7 and 8 present a series of stability diagrams for different (both neg-
ative and positive) proportional and derivative control gains for κ = 2 and 20.
The horizontal and vertical axes are a0 and b0 parameters, respectively. The charts
were determined by the third-order two-point semi-discretization method. Note that
κ = r/p = τ/∆t, which describes the ratio of the time delay τ and the sam-
pling period ∆t. The stability diagrams were obtained numerically by analyzing the
eigenvalues of the transition matrix Φ for a series of fixed parameters.

For large κ values, the sampling period ∆t of the digital controller is much
smaller than the system delay τ . In these cases, the PD controller practically results
in an artificial stiffness and a damping in the system, since a0x(t) + Px(tj−1) ≈
(a0 + P )x(t) and a1ẋ(t) +Dẋ(tj−1) ≈ (a1 +D)ẋ(t) if t ∈ [tj , tj+1), tj = j∆t
and∆t� 1. This tendency can be observed in Fig. 8 (for the case κ = τ/∆t = 20):
positive proportional gains result in a shift of the stability diagram to the left, while
positive derivative gains increase the area of the stability domains. An interesting
feature in this case is that the stabilizing effect of the positive derivative gains is
stronger for negative proportional gains than for positive ones.

For smaller κ values (see Fig. 7), the connection between the control gains and
the stability of the system is not so trivial. In these cases, the sampling period ∆t of
the digital controller and the system delay τ is commensurate, and the combination
of the two kind of time delays results in intricate stability charts.

Fig. 7 Stability charts for equation (27) with κ=2, a1=0, τ = 2π for delay resolution r=40
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Fig. 8 Stability charts for equation (27) with κ=20, a1=0, τ = 2π for delay resolution r=40

4 Example: application to turning processes

Regenerative machine tool chatter is one of the main limitations of increasing
the material removal rate in machining processes [14]. There are several meth-
ods and ideas to suppress machine tool chatter, such as the vibration absorber [23],
impedance modulation [20], spindle speed variation [21,30] or active control [8,15].
Here, the single degree-of-freedom model of a turning process subjected to a digital
PD controller is analyzed. The mechanical model with modal mass m, stiffness k
and damping c can be seen in Fig. 9. The linearized governing equation forms as

ξ̈(t) + 2ζωnξ̇(t) + (H + ω2
n)ξ(t) = Hξ(t− τ)− kpξ(tj−1)− kdξ̇(tj−1) , (30)

where t ∈ [tj , tj+1) , ξ(t) = x(t) − x0 is the displacement around the trivial
equilibrium point x0, ωn =

√
k/m is the undamped natural frequency of the tool,

ζ = c/(2mωn) is the damping ratio of the tool , H is the specific cutting-force
coefficient, Q/m = kpξ(tj−1) + kdξ̇(tj−1) is the specific control force and kp
and kd are the proportional and derivative control gains [13]. Equation (30) has the
same form as (27), hence the stability chart for equation (30) can be analysed by
semi-discretization in the same way as for (27). Fig. 10 presents a series of stabil-
ity diagrams for different (both negative and positive) proportional and derivative
control gains for κ = τ/∆t = 20. The horizontal axis is the dimensionless spindle
speed Ω/(60fn), where the spindle speed is Ω = 60/τ and the natural frequency
of the tool is fn = ωn/(2π). The vertical axis is the dimensionless specific cutting-
force coefficient H/ω2

n. In this diagram the exact stability boundaries of the turning
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Fig. 9 Sketch of the mechanical model

Fig. 10 Stability charts for turning processes with different control parameters for κ=20, r=20 and
ζ=0.05

process without any control are presented by gray line. The stability diagrams were
obtained in the same way as for equation (27). It can be seen that the most important
control parameter is the derivative gain kd. Positive derivative gains result in a kind
of artificial damping parameter in the system. The effect of the proportional gain kp
on the stability is not so significant. Similarly to the delayed oscillator, the stabiliz-
ing effect of the positive derivative gains is stronger for negative proportional gains.
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5 Conclusions

Dynamical systems with continuous point delay terms in the form x(t− τ) and dis-
crete delayed terms in the form x(tj−1), t ∈ [tj , tj+1), tj = j∆t were analyzed
using the semi-discretization method. These systems typically arise if a delayed
system is subjected to a digital feedback controller. Different approaches were pre-
sented based on the number of the discretization points and based on the order of
the approximation of the delayed term. Stability diagrams were determined for the
delayed oscillator with digital controller and, as a practical application, stabilization
of turning processes with digital feedback controller was analyzed.

The results related to the delayed oscillator are shown in Figures 7 and 8. The
results for the stabilization of the turning process is presented in Fig. 10. The main
conclusion is that if the feedback controller is fast enough compared to the time
delay in the uncontrolled system, then, since x(tj−1) ≈ x(t) and ẋ(tj−1) ≈ ẋ(t) on
t ∈ [tj , tj+1), tj = j∆t, positive proportional and derivative gains act as a kind of
artificial stiffness and damping in the system. Therefore if κ� 1 then, considering
stability, an analogue PD control approximates well the digital PD control. In this
case, it was observed that the stabilizing effect of the positive derivative gains is
stronger for negative proportional gains. If the sampling period ∆t of the feedback
controller is commensurate to the system delay τ , then the combination of the two
kind of time delays result in an intricate stability picture.

In the equations analyzed in this paper, two types of delays were present: the
continuous delay x(t−τ) and the discrete delay x(tj−1). While the continuous delay
attributes an infinite dimensional nature to the system, the discrete delay presents
a kind of intermittence or discontinuity in the system. This combination of time
delays may also be important in human balancing models with reflex delay, where
the human motor control is often modeled as a system with discontinuous feedback
[6, 16, 27].
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