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Summary. The presented work shows an effective description of the phase space of conventional milling process, which is a time-
periodic, nonlinear, delayed system due to the rotation of the milling tool, the cutting force characteristics and the appearing regenerative
effect, respectively. It is shown that the tool can reach such large amplitude that it misses cuts and instead of a single delay its
multiplied version operates. The vibration can be so violent that all teeth can leave the surface and the tool can actually fly over the
surface bypassing any cuts. This effect results in the cutting force switching completely off and the dynamic system behaves as a finite
dimensional system till one of the teeth bites back to the material again. This work shows parameter regions where these different kinds
of effects can appear in the model of conventional milling processes.

Introduction

The dynamics of milling processes was investigated first by Tlusty [1] and Tobias [2] in the middle of the last century.
Both recognized the effect of the regeneration of the past motion of the tool through the cut surface. Mathematically
the system can be represented by delay differential equations (DDEs) which generate infinite dimensional phase space.
In milling, this is subjected to time-periodic behaviour, which induces that the stationary solution is a time-periodic
vibration. The asymptotic stability of this stationary cutting solution can be determined by the extended Floquet theory
used on the perturbed variational system of the stationary cutting solution. In the literature there are many methods, which
deal with the stability of time-periodic delayed variational systems. All these methods present the so-called stability lobe
diagram. In it, along the stability border Hopf bifurcation or period doubling bifurcations of periodic orbits can appear in
the nonlinear system. In an ideal situation, a perturbed system approaches the stationary solutions in the predicted stable
domain, while in the unstable domain, the amplitude grows and reaches a threshold high amplitude vibration (chatter
vibration). The linear stability charts were confirmed in many cases, although there are plenty of uncertainties involved
still in predictions.
One of these uncertainties is caused by possible nonlinearities mostly originated from the nonlinear cutting force char-
acteristics. In autonomous systems (like turning) it was shown that the nonlinearity induces subcritical Hopf bifurcation
along the stability boundaries [3]. Similar results were shown in case of interrupted milling where period doubling bi-
furcations occur [4]. Furthermore, this behaviour was also demonstrated by experiments in case of conventional milling
operation [5]. The subcritical sense means that there is an unstable orbit around the stable stationary solution, which
might push the system to the high amplitude threshold chatter vibration depending on the level of perturbation.
In case of turning, it was shown that this stable threshold object exists due to the flyover effect, when the turning tool
leaves the workpiece and jumps in again after a while. In [6] it was shown the unstable limit cycle can be extracted
using centre manifold reduction and a so-called bistable region (unsafe zone) can be formulated below the linear stability
boundaries where the system is sensitive for external perturbations.

Conventional Milling Model Subjected to Flyover Effect

In this model the structure of the milling machine (Figure 1a) is characterized by linear modal analysis and it can be
described by the following form assuming proportional damping

q̈(t) + [2ξkωn,k]q̇(t) + [ω2
n,k]q(t) = UᵀF(t,x(t),x(t− τ)), (1)

where x(t) = Uq(t) holds, if x and q are the Cartesian and modal coordinates. The mass normalized modal transforma-
tion matrix is U = [U1,U2, . . . ,Um] form selected modes. In (1) ξk and ωn,k are the damping ratios and natural angular
frequencies of the kth mode (k = 1, 2, . . . ,m). In simple cutting situation, due to the regeneration effect, the delay term
x(t− τ) appears with τ = 2π/Ω/Z delay, where the constant angular velocity is Ω and the number of teeth is Z.
The cutting force F is originated from the specific empirical cutting force characteristics f(h) = col(ft(h), fr(h), fa(t))
which depends mostly on the chip thickness h. In the industry this empirical cutting force characteristics are usually
considered to be linear [7], but there are other more realistic nonlinear power-like and polynomial-like considerations,
too. In order to ease the mathematical description we assume that the tool has cylindrical envelope geometry and it is
straight fluted, that is, the helix angle is η = 0 and the lead angle is κ = 90 deg. Then the resultant cutting force can be
expressed with the transformation matrix T [8] as

F(t,x(t),x(t− τ)) = −
Z∑

i=1

gi(t)T(ϕi(t))f(gi(t)hi(t)), (2)

where the angular position of the ith tooth is ϕi(t) = Ωt + 2π(i − 1)/Z. We assume planar motion, that is, x(t) =
col(x1(t), x2(t)) and small only x1 directional feed motion characterized by the feed per tooth fZ . In this case the
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Figure 1: a) sketch of milling process, b) linear stability diagram, c) flyover map of milling process.

originally trochoid path of the edges can be approximated by circles. Since hi(t) can be negative, real momentary chip
thickness gi(t)hi(t) is used in (2), which is characterized by the screen function gi(t) = {1, if ϕen ≤ ϕi(t) mod 2π ≤
ϕex ∧ hi(t) > 0; 0, otherwise}, where ϕen and ϕex are the enter and exit angles, respectively (Figure 1a).
If a tooth leaves the workpiece, the surface remains uncut which can be traced by the surface function, which is defined
the following way

χ(t) = col(χ1(t), χ2(t)) =
{

x(t), cut,
col(χ1(t− τ)− fZ , χ2(t− τ)), flyover. (3)

Accordingly, the theoretical momentary chip thickness cut by the ith tooth is hi(t) := hi(t,x(t), . . . ,x(t− nkτ), . . . ) =
(fZ +x1(t)−χ1(t− τ)) sinϕi(t) + (x2(t)−χ2(t− τ)) cosϕi(t), which means through χ(t− τ) many integer nk (k =
1, 2, . . . ) multiplications of delay τ appear in the system, that is, in (1) the resultant cutting force is F(t,x(t), . . . ,x(t −
nkτ), . . . ). Different situations can appear during this violent chatter vibration. On the one hand there can be a tooth
which leaves the surface but other teeth can remain in cut, which means the regenerative sense of the system is not
violated. On the other hand vibration can reach that point where all teeth leave the surface, the resultant cutting force F
switches off and the tool behaves as a simple high DOF damped vibratory system with an equilibrium at q = 0 till one of
teeth hit the surface again.
This situation can be traced conveniently in a special transformation of the phase space using stroboscopic mapping
by T = τ in this conventional milling case. The projection is made in the coordinate system of (∆x1,∆x2), where
∆x1(t) = x1(t) − χ1(t − τ) and ∆x2(t) = x2(t) − χ2(t − τ)). In this consideration for each teeth one can formulate
the following conditions for cutting, if

∆y ≶ − tanϕi(t)(fZ + ∆x), if cosϕi(t) ≶ 0, i = 1, 2, . . . , Z. (4)

These Z pieces of conditions, combined with ϕen and ϕex angles, formulate domains in (∆x1(T ),∆x2(T )) plane where
one can follow which teeth are in cut and when the tool is flying over the surface of the material. In Figure 1c the ’flyover
map’ of Z = 4 fluted conventional milling is depicted with 3/4 radial immersion.

Conclusions

The phase space structure of nonlinear, nonsmooth milling was explored in order to identify the presence of unstable limit
cycles around stable stationary milling, which helps to determine unsafe zones close to the stability limits.
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