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INTERACTION BETWEEN MULTIPLE MODES IN MILLING
PROCESSES

Jokin Munoa1, Zoltan Dombovari2, Iker Mancisidor1, Yiqing Yang3, and
Mikel Zatarain1

1Ideko-IK4 Technological Center, Elgoibar, Spain
2Department of Applied Mechanics, Budapest University of Technology and Economics,
Budapest, Hungary
3School of Mechanical Engineering and Automation, Beihang University, Beijing, PR China

& The productivity of many industrial cutting processes is limited by high amplitude chatter vibra-
tions. An optimization technique based on the use of the stability lobes helps to increase the pro-
ductivity of these processes, improving the life of machine elements and reducing the tool wear as
well. The best-known lobes correspond to Hopf bifurcations. However, in case of interrupted cutting,
additional lobes appear due to period doubling or flip bifurcation. When the system has more than
one dominant vibration mode, important variations can appear in stability due to interaction
between modes. The basic mathematics for the appearance of these new lobes are shown in this article.
The frequency domain study shows that lobes related to flip bifurcation are a special case of the
interaction between modes. The results of these interactions are verified by comparison with
semi-discretization method and time domain simulations, respectively.

Keywords chatter, milling, stability

INTRODUCTION

In metal cutting, self-excited vibrations can limit productivity and put
process safety at risk, giving rise to poor surface quality or even machine
tool component failure. In industry, the use of stability diagrams has pro-
vided a practical way to select the optimum conditions. The regenerative
effect was defined as the main cause of machine-tool chatter by Tobias
(Tobias and Fishwick, 1958) and Tlusty (Tlusty and Polacek, 1963) almost
simultaneously. Later, Merritt (1965) presented the problem as a feedback
loop, clarifying the problem from an engineering point of view.
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In milling processes, the governing equation is a time periodic piecewise
smooth delay differential equation (DDE) (Hale, 1977; Stepan, 1989). Stability
analysis is therefore much more complex than those representing continuous
regenerative cutting processes. Nevertheless, significant progress has been
made in the study of milling stability during the last decades.

In 1995, Altintas and Budak presented a semi-analytical method for
chatter analysis in frequency domain. Later, Budak and Altintas (1998)
worked out this solution by considering several terms of in the Fourier
development of the directional matrix.

The single frequency approach has been shown to be very precise, but in
case of low immersionmilling, the existence of additional stability lobes related
to period doubling or flip bifurcation was found. Davies et al. (2002) used a
discrete map tomodel highly interruptedmilling processes, where the engage-
ment is infinitesimal and the cutting process is modelled as an impact. Insper-
ger and Stepan (2000) used an approximation method called Fargue-method.
Later, they developed the semi-discretization (SD) technique (Insperger and
Stepan, 2002), and Bayly et al. (2002) developed the temporal finite elements
method, obtaining similar results. Merdol and Altintas (2004) showed that the
multi-frequency (MF) method is also able to represent accurately the period
doubling instability phenomenon. At the same time, Corpus and Endres
(2004) studied lobes related to flip bifurcations using an analytical approach.

Several authors have shown that some lens-shaped instability regions appear
for period doubling zones of third and higher order in interrupted turning
(Szalai and Stepan, 2006). By using the multi-frequency approach, Zatarain
et al. (2006) showed that the tool helix produces the transformation of the added
lobes (period doubling) into instability islands. Insperger et al. (2006) arrived to
the same conclusion by using the semi-discretization method. Later, Patel et al.
(2008) obtained the same results by means of temporal finite element method.

In industrial applications, such as steel face milling, it is common to
find situations with more than one dominant mode at different frequen-
cies. In this work, the interactions between different modes are considered
and their effect on the stability chart is studied using the multi-frequency
(MF) approach. Moreover, semi-discretization (SD) (Insperger and Stepan,
2011) method and time domain milling simulations (TDS) are used to vali-
date the results. The objective of this article is to analyze the zero-order
approximation (ZOA) performance for the general case, considering more
than one dominant mode. New inaccuracies of the ZOA have been found.

FREQUENCY DOMAIN MILLING STABILITY MODEL IN MODAL
COORDINATES

The characteristic equation for milling stability analysis in frequency
domain was developed by Budak and Altintas (1998). Their approach was
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based on Cartesian displacements between the tool and the workpiece. In
order to describe the regenerative effect, the dynamic cutting force is con-
sidered, and the relation between the force and the vibrations is developed.
For face milling operations, the dynamic cutting force can be given in the
following form (Altintas, 2003; Munoa et al., 2005):

fF ðtÞg ¼ Ktb

sin j

� �
½AðtÞ�fDr ðtÞg ð1Þ

where

fDrðtÞg ¼ frtðtÞ � rtðt � sÞg � frwðtÞ � rwðt � sÞg ð2Þ

Here, Dr(t) is the relative regenerative vibration between the tool (t) and
the workpiece (w), b is the depth of cut (see Figure 1), Kt is the tangential
cutting coefficient, s is the tooth passing period, j is the lead angle and
[A(t)] is the Cartesian directional factor matrix. The directional factor
matrix concentrates the projection of the cutting force onto the mode
direction and the projection of the vibration onto the chip thickness.
The Cartesian approach leads to the use of the corresponding directional
coefficient matrix [A(t)].

The modal approach is more convenient for the present study and, for
this purpose, the force expression has to be transformed into the modal
space. Therefore, the relative normalized modal transformation matrix
[Q], the modal displacement fgg and the modal force fPg are introduced
as

fDr ðtÞg ¼ ½Q �fDgðtÞg ð3Þ

fPðtÞg ¼ ½Q �TfF ðtÞg ð4Þ

where fDgðtÞg ¼ fgðtÞ � gðt � sÞg; ½Q � ¼ ½Qt� � ½Qw�; ½Qt� and ½Qw� are the
local modal transformation matrices of the tool and the workpiece. Hence,
the dynamic milling force can be expressed in modal coordinates defining
the modal directional factor matrix [B(t)]:

fP ðtÞg ¼ � Ktb

sin j

� �
½BðtÞ�fDgðtÞg ð5Þ

where

½BðtÞ� ¼ �½Q �T½AðtÞ�½Q � ð6Þ

In milling, the dynamic cutting force is periodic at tooth passing
period s. In case of unstable stationary cutting, the vibration has a
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frequency (xc) close to one of the dominant natural frequencies and
some modulations xc,k¼xcþkX related to the tooth passing frequency
X ¼ 2p=s. The frequency of these modulations depends on the number
of flutes (Z) and the spindle speed (n). The next formulation can be
considered for the modal milling force and vibration:

fP ðtÞg ¼
X1
k¼�1

fPkge jðxcþkXÞt ð7Þ

and

fgðtÞg ¼
X1
r¼�1

fgkge jðxcþrXÞt ð8Þ

Considering this frequency pattern and operating, the regenerative term
can be rewritten as

fDgg ¼ ð1� e�jxcsÞfgg: ð9Þ

The modal directional matrix is also time periodic and, consequently, a
discrete Fourier development is possible, thus

½BðtÞ� ¼
X1
l¼�1

½Bl � e j l X t ¼ Z

2p

X1
l¼�1

½bl � e j l X t ¼
 !

ð10Þ

Taking into account all the different developments in Equations (5)
and operating with the different harmonics as a product of Equations
(7), (8), and (10), the next expression is obtained

X1
k¼�1

fPkg e jðx cþk XÞt ¼� Kt b Z

2 p sin j

� �
ð1� e�jxc sÞ

X1
k¼�1

X1
r¼�1

½bk�r �fgrg
 !

e jðx cþkXÞt :

ð11Þ

The dynamic modal forces and displacements can be related using the
dynamic properties of the mechanical structure. Therefore, considering
the relative frequency response function (FRF) of the system [U] between
tool (t) and workpiece (w), the next expression can be written for each
harmonic component:

fgkg ¼ ½Uðxc þ kXÞ�fPkg ð12Þ
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where

½UðxÞ� ¼ diag
N

i¼1

1

mi ½ðx2
n;i � x2Þ � 2jnixn;ix�

 !
ð13Þ

Note that, xn,i, ni, and mi, are, respectively, the natural frequency, the damp-
ing ratio, and the reflected modal mass of the ith mode associated to the
tool and the workpiece. Following Budak and Altintas’s (1998) develop-
ment, it is possible to obtain a closed loop formulation. The main equation
relates different harmonics of the modal displacement gk taking into
account the directional factor matrices (10) for each harmonic and FRF
matrices (12) evaluated at different harmonics. Therefore;

fgkg ¼ � KtbZ

2p sinj

� �
ð1� e�jxcsÞ

X1
r¼�1

½Uðxc þ kXÞ�½Bk�r �fgrg ð14Þ

Finally, the stability problem results in an infinite dimensional matricial
expression, that is,

..

.

fg�hg
..
.

fg0g
..
.

fghg
..
.

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼� Kt b Z

2p sinj

� �
ð1� e�jxc s Þ
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. ..
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. . .
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..
. . .

. ..
. . .

.

� � � ½bh� � � � ½b0� � � � ½b�h� � � �
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where fgkg are the amplitudes of vibration of all the considered modes
for the kth modulated frequency, and [Uk]¼ [U(xcþ kX)] and [Bk] the
FRF matrix and the modal directional factor matrix evaluated at the kth

modulated chatter frequency.
In a theoretical basis, the size of thematrices is infinite, but in practice the

FRF takes very small values for frequencies far from the natural frequencies.
Therefore, the system can be truncated without noticeable loss of accuracy.

The solution of this equation results in an eigenvalue problem where
the obtained eigenvalues are related to the spindle speeds X=Z and depth
of cuts b. Different numerical methods have been proposed to obtain the
multi-frequency solution (Budak and Altintas, 1998; Merdol and Altintas,
2004). If only the zeroth-order term is considered, a fast semi-analytical
solution is possible (Altintas and Budak, 1995).

For high tooth passing frequencies X, even a low matrix size in (15)
produces vibration frequencies xc � X with negative values. It must be
noted that any vibration at frequency x can be considered as the sum of
two complex vibrators, at frequency x and at its complex conjugate at
�x. Therefore, when a spectrum contains some energy at frequency x,
the energy is shared among frequencies at x and �x.

A formulation based on Cartesian displacements can also be used
(Budak and Altintas, 1998), which may be useful because FRFs are often
measured in Cartesian coordinates. Practically, when the number of con-
sidered modes is bigger than three, the modal approach gives rise to bigger
matrix dimensions and larger calculation times. Next, the inaccuracies of
the ZOA are analyzed, considering basically the MF analysis and comparing
the results with SD and time domain milling simulations.

STABILITY LOBES WITH SEVERAL DOMINANT MODES

In general, a system with multiple modes refers more reliably to the
otherwise high dimensional dynamics of a machine tool than a dynamical
model with a single mode. In machine dynamics, a two-mode model is able
to represent the complexity of a case with higher number of modes; whereas,
single mode models do not capture the interactions between modes. There-
fore, the results obtained for two modes offer a good view of dynamically
complex machine tool structures by means of an affordable mathematical
load. Most of the results can be extrapolated to the case of multiple modes.
For this reason, a mechanical system with two dominant modes has been
posed in this section. An example will be considered in order to describe
the different inaccuracies of the ZOA (see Table 1) in a clearer way.

In a single mode system, the angles between mode and milling force,
and between mode and chip thickness direction are really important. If
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systems with two modes are considered, there are more important para-
meters: the projection of both modes onto the chip thickness and cutting
force, the difference between the frequencies of both modes and the differ-
ences between their damping ratios and modal stiffness. Therefore, it is
complex to make a dimensionless study of the system. Two modes in perpen-
dicular directions have been chosen with different natural frequencies avoid-
ing the most special case when the modes are identical in their dynamic
parameters. Remark that, in modal space, perpendicular modes are not a
special case. With the chosen example the presence of the double period
chatter and mode couplings is assured and, luckily, some stable islands exist.

Comparison between ZOA, Multi-frequency Solution, and
Semi-discretization

Several simulations have been carried out using different down milling
radial immersions (see Figure 2). Finally, the case of 25% radial engage-
ment (RE) is studied. The dynamics and the cutting coefficients have been
chosen according to standard conditions for steel face milling with univer-
sal milling machines (see Table 1). A straight-fluted tool with four teeth and
a diameter of D¼ 50mm has been selected to make the stability calcula-
tions. The lead angle of the tool is j¼ 90�.

If the results between the ZOA and the multi-frequency methods are
compared, it is clear that the results diverge in several zones of the lobe dia-
grams as the cutting force becomes more interrupted (see Figure 2(a)–(c)).
If a linear model is considered, a slotting operation with four flutes
produces a constant cutting force. In this case, there is no harmonics in
the dynamic cutting force and in the modal directional matrix [B]; thus,
the ZOA solution is exact. On the other hand, when the engagement is
reduced or even when the slotting is performed using a tool with less than

TABLE 1 Simulation Parameters

Tool

Diameter, D(mm) Number of flutes, Z Helix angle, g(deg) Lead angle, j(deg)
50 4 0 90

Cutting conditions & coefficients

Kt (N=mm2) Kr (N=mm2) Sense Feed Direction (f)
2000 600 Down Milling (1,0,0)

Dynamic Parameters

i xn,i (Hz) ni (%) ki (N=mm) Orientation (v)
1 45 4 30 (1,0, 0)
2 60 4 30 (0,1,0)
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four flutes, discrepancies among methods arise. Two different effects are
creating these deviations in the case of a dynamic system with two or more
modes: the period-doubling instability (flip bifurcation) and the mode
interaction.

FIGURE 1 Schematic milling model.

FIGURE 2 Stability charts in case of down milling processes with parameters taken from Table 1.
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The semi-discretization method shows the presence of stable isolated
zones for engagements of 25% and 50% (see Figure 2(b),(c)). The multi-
frequency method also shows points limiting this stable region, but it is
impossible to completely identify a stable zone due to the fact that the
MF solution directly obtains the stability limits as a parametric function
of the vibration frequency.

Period Doubling Instability

When angular immersion is small, an additional family of stability lobes
appears, producing an increase of stability in a small area and a reduction
in a larger zone. The main characteristic of these lobes can be recognized
in its special spectral pattern in the frequency diagram (see Figure 3(a)),
where the vibration (chatter) frequencies related to these additional lobes
follow straight lines. Hence, chatter frequency has a direct relationship with
cutting frequency.

xc ¼ ðm=2ÞX; wherem ¼ 1; 3; 5; . . . ð16Þ

If one point of this additional lobe is considered (see point C in Figure 3
and Figure 4) and studied in frequency domain, it can be seen that both
the zeroth-order term and one of its harmonics (in this case �1 harmonic)

FIGURE 3 (a) The frequency plot of the critically stable solutions using grayscale showing the strengths of
the harmonics (Dombovari et al., 2011). (b) The linear stability of milling process (cf. Table 1).
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are exciting the same mode. Operating in double period chatter, the regen-
erative term of Equation (14) has the next form:

1� e�jxcs ¼ 1� e�jpm ð17Þ

Therefore, the regenerative term in case of double period chatter is a real
number (Corpus and Endres, 2004).

1� e�jxcs ¼ 2; m ¼ �1;�3;�5; . . . ;
1� e�jxcs ¼ 0; m ¼ �2;�4;�6; . . ..

�
ð18Þ

Only the odd harmonics can create this effect due to the fact that the even
harmonics eliminate the regenerative term.

In the high-speed zone, the system can be truncated considering only
the 0 and �1 harmonics, and the case of the double period chatter in point
C can be studied accurately. For the main flip lobe, only harmonics 0 and
�1 are relevant, and they both have equal amplitudes and different phases.
Assuming that only one mode affects the stability in the period doubling

FIGURE 4 The panels show the effect of the mode interactions (see Figure 3). In each panel the fre-
quency response functions (upper panel), the harmonics of the directional factors, and the unit circles
with the critical eigenvalues are presented.
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instability in (15), the resulting equation is

g�1

g0

� �
¼ � Kt b Z

p sinj

� �
U�1b0 U�1b�1

U0 b1 U0b0

� �
g�1

g0

� �
ð19Þ

where U0 and U�1 are FRF at frequencies xc and xc � X, while b0, b1 and
b�1 are the harmonics of the directional factor. It is remarkable that at per-
iod doubling stability boundaries the U�1 is the complex conjugate of U0.
In addition, b1 and b�1 are also conjugates.

Considering all the special characteristics of the period doubling insta-
bility, it is straightforward to predict the spindle speed region zone affected
by this phenomenon. The tooth passing frequency should be two times the
natural frequency divided by an odd number, similarly as in (18)

X ¼ 2xn

m
; n ¼ 120xn

Z � m ; m ¼ 1; 3; 5; ::: ð20Þ

In our case study, this formula predicts the beginning of the double period
chatter at 1800 r=min for the first harmonic and the second mode (60Hz).
The Flip bifurcation is not visible for the rest of the possible combinations
(see 2n2 in Figure 3).

If the stability borders related to period doubling bifurcation are ana-
lyzed using the semi-discretization method (Insperger and Stepan, 2002),
the unit circle shows that the instability is created when the dominant
eigenvalue crosses the unit circle following the real axis (see point C in
Figure 4). This means a possible periodic motion loses its stability by alter-
nately in- and out-circling the stationary solution, that is, it flips in every rev-
olution. The linear stability limits related to the period doubling (flip)
bifurcation can have open or closed forms (Szalai and Stepan, 2006;
Zatarain et al., 2006), although always independent from linear stability
limits related to Hopf-bifurcation. The multi-frequency approach must be
applied in frequency domain to capture these lobes.

Mode Interactions

When the system has two (or more) strong modes, another similar
effect can happen. In some regions two modes start interfering and, con-
sequently, this effect increases or reduces the linear stability depending
on the sense of the interaction (see point B in Figures 3 and 4). The
dynamic cutting force and the directional factor should have strong compo-
nents to create this effect and, therefore, an interrupted milling process
is necessary.
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In the case of mode interaction, there is not a special distribution of the
chatter frequencies or the stability boundaries. Hence, the borders can only
be obtained using pure numerical methods. Anyway, considering that the
chatter frequency is always very close to the natural frequencies, it is poss-
ible to predict the range of milling frequencies considering the physical
meaning and different harmonics.

X ¼ xn;1 þ xn;2

m
;

X ¼
xn;1 � xn;2

�� ��
m

;

m ¼ 1; 2; 3; 4; 5; . . . ð21Þ

Note that (21) can be generalized for more than two modes and the spin-
dle speed can be calculated as n ¼ 60X=Z. The point B in Figure 3 repre-
sents this phenomenon when formula (21) shows that the first harmonic is
creating interference around 1575 r=min, taking into account the sum of
both modes (see n1þn2 in Figure 3).

If the study is extended using the semi-discretization method, it can be
seen that this effect is related with Hopf bifurcation and the lobe-like region
is actually connected to the ordinary lobe that corresponds to point A in
Figure 3. Clearly, this region is a part of an ordinary Hopf lobe and it is sepa-
rated from the flip lobes. Also, ZOA is not accurate enough to capture these
special areas of the linear stability charts. In fact, these interactions are more
complex than the double period chatter. It changes the usual lobes introdu-
cing new shapes, reduces the location and values of the minimum stability
and changes considerably the position of the most stable spindle speeds.

Traditionally, a stability diagram is formed by a number of lobes with
the same value for the minimum depth of cut, but with different location
of the spindle speed related to the maximum stability. Due to mode inter-
action, this minimum can change for lobes of different order. For instance,
in the case study the minimum for the first lobe (point B) differs from the
second lobe (point E) or the third one (point F).

When mode interaction happens, the chatter vibration grows with two
modulated chatter frequencies close to both dominant natural frequencies
(xn,1 and xn,2). The time domain simulations confirm this chatter fre-
quency pattern and the stability limit (see point C in Figure 5). In other
regions (point A), the harmonics are far from other modes, therefore,
ZOA defines the right stability boundary.

It is important to mention that the vibration (chatter) frequencies that
are calculated by multi-frequency and by semi-discretization only deal with
the frequencies that appear at the stability border when the system loses its
stability. Later, the vibration grows till some parts of the cutting edge lose its
contact with the workpiece. Then, the dynamics changes drastically that
results frequency changes and appearance of new frequencies, too (see
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Figure 5(d)). The complexity of mode interactions increases with the
number of significant modes, but the behavior is the same and the multi-
frequency and semi-discretization methods are able to capture these effects.

Stable Isolated Zone

Because the semi-discretization provides information about the local
behavior of the stationary cutting process, the stable and unstable areas
can be identified easily. The multi-frequency solution, on the other
hand, only finds the borders where the system has non-hyperbolic behavior
(Guckenheimer andHolmes, 1983). Theoretically, it is impossible to point out
the stable areas using MF solution only, although in machine tool vibration,
one can predict that the cutting process with zero depth of cut is always stable.
In this manner, the only difficulty is the identification of possible stable islands,
which requires further investigations. Figure 3 shows a case, where a stable
island exists, which was identified by means of semi-discretization method.
Following the roots of multi-frequency in Figure 3, it is possible to realize
that this stable island also appears in the results of multi-frequency solution.

The island encircled by borders is related to Hopf and flip bifurcations,
which are mostly originated by the mode interaction phenomenon. Similar
phenomena have been found in the literature (Munoa et al., 2009; Sellmeier
and Denkena, 2011). In the case of Sellmeier and Denkena (2011), their
existence has been related to the introduction of variable helix angles in
the tool, whilst here, the stable island is caused by simple conventional tool
and has a reachable axial depth of cut level from machining point of view.

FIGURE 5 Spectra of different time-domain simulations in different spindle speeds (see points A, B, C,
and D in Figure 3).
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In fact, these isolated stables zones are theoretically the highest stable
zones, and consequently themost suitable conditions to optimize production.
Therefore, it is important to confirm the existence of these zones through
experimental testing. However, these zones did not appear in time-domain
simulations if the non-linearity related to the possibility that the tool may
lose contact with the workpiece is considered when the tool starts cutting.
To explain this phenomenon some control points, namely a, b, and d (cf.
Figure 3), were used checking the correctness of the linear stability and the
time domain solver. However, the simulation of point c (see Figure 6(a))
shows that the stable sense of the island does not appear in the reality.

In Figure 6 one can realize how sensitive the stable sense of the station-
ary solution in the isolated zone at point c is. These solutions were simulated
by using the correct, but slightly perturbed stationary cutting solution as an
initial function. The results show that for small perturbation the system is
attracted by the linear equilibrium, but for higher perturbation the system
is pushed out and it tends to chatter. Therefore, the stable island has a little
attraction zone, which means that the stable sense might vanish or be
unreachable in real circumstances. This phenomenon is similar to cases
addressed by Dombovari et al. (2008) or Bachrathy et al. (2011), but here
the system is originally linear. Therefore, the isolated zone cannot be used
in real cutting conditions to increase the material removal rate.

CONCLUSIONS

The stability of a milling process with several dominant modes has been
studied using a two mode system as an example. The predictions of ZOA,
multi-frequency method, semi-discretization method and time domain
simulations have been compared. The precision of the ZOA is reduced

FIGURE 6 (a) Time domain simulations at point c with different perturbation levels. (b) Bifurcation
structure along n (see Figure 3(b)). (HB: non-hyperbolic points related to Hopf bifurcation).
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when the cutting force becomes interrupted. These inaccuracies have two
sources: the double period chatter and variations due to mode interaction.
When the number of flutes is low, these effects appear in considerable
engagements. The multi-frequency and semi-discretization methods lead
to the same exact solution in all cases but the multi-frequency method
has problems to determine stable isolated zones.

As it is well known, the double period chatter adds another family of
lobes in the stability chart. Mathematically it is related to the flip bifurcation,
and it happens when the zeroth-order term and one harmonic act on the
samemode. In this case, the chatter frequency is always related to tooth pass-
ing frequency. This characteristic can help to build these lobes very fast.

Finally, the variations produced by the mode interactions have been
addressed. In the frequency domain, the phenomenon is similar to the flip
bifurcation, but in general it does not result in an independent family of
lobes. Pure numerical methods are necessary to describe this effect; there-
fore, it is really difficult to develop fast prediction methods. Approximated
formulas have been proposed to define the region affected by the mode
interaction.

The cases considered show that the mode interaction can create isolated
stable zones confirmed by different methods. However, as it was showed, this
linearly stable island might not exist in real cutting processes due to the
possible tiny attraction zone, concluding that any kind of perturbation
can destabilize the cutting process within the theoretically stable island.
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