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The Effect of Helix Angle
Variation on Milling Stability
Helical milling tools of nonuniform helix angles are widely used in manufacturing indus-
try. While the milling tools with these special cutting edges are already available in the
market, their cutting dynamics has not been fully explored. Also, there have been several
attempts to introduce complex harmonically varied helix tools, but the manufacturing of
harmonic edges is extremely difficult, and their effect on cutting dynamics is not clear ei-
ther. In this study, a general mechanical model is introduced to predict the linear stability
of these special cutters with optional continuous variation of the helix angle. It is shown
that these milling tools cause distribution in regeneration. The corresponding time-
periodic distributed delay differential equations are investigated by semi-discretization.
This work points out how the nonuniform and harmonically varied helix cutters behave in
case of high and low cutting speed applications. [DOI: 10.1115/1.4007466]

1 Introduction

Some machining processes like boring, turning, and milling are
subjected to regenerative effect [1,2] due to the repeating surface
pattern that continuously stores the relative vibration between the
tool and the workpiece. Because of the rotation, the “stored” past
state excites the system after a certain time during the cutting
operation. This effect can cause the instability of the stationary
cutting operation.

Mathematically, the regeneration can be described by a delay
differential equation (DDE) [3], which has time-periodic coeffi-
cients [4] in case of milling operations. These equations generate
infinite dimensional phase spaces similarly to the partial differen-
tial equations [5], which require special (numerical) techniques to
investigate [6]. Moreover, in the case of variable helix tools, the
time-periodic DDE has distributed regeneration, that is, instead of
one specific discrete delay, an interval of delays operates with
strengths defined by a weight distribution function. This is a
unique direct mechanical example for dynamical systems that can
be described by distributed DDEs besides the short delay effect
for process damping [7] and some shimmy vibration models [8].

These special type of cutters are effective in the same way as
other techniques known in the machine tool industry used to avoid
chatter: they are all based on the “variation” or “perturbation” of
the regeneration. The spindle speed variation [9,10] causes time
dependent delay, the serrated cutter [11,12] causes piecewise
smooth switching between discrete delays, while the variable
pitch tools operate with several discrete delays [13,14] instead of
the single delay of conventional milling.

In this study, we show that the tools with helix variation can be
described by distributed DDEs. This way, we extend the mathe-
matical modeling of milling processes initiated in the previous
works by Refs. [15–20].

In the first section, we construct the geometric model of milling
tools with generally varied helices. In the mechanical model,
linear cutting force characteristics is considered acting along the
cutting edges. We devote a section for the weight functions of the
distributed time delays, and we give two examples how they look
like in case of nonuniform and harmonically varied helices. In the
last section, we present stability calculations by means of the
semi-discretization (SD) method [21].

2 Mechanics of Variable Helix Cutter

In this section, after the geometric interpretation of a general
helix variation, the connection between the local cutting force
distribution and the distributed delays is introduced.

2.1 General Variable Helix Geometry. The so-called lag
angle ug;iðzÞ is the angle with which the local edge portion at
level z is behind relative to the beginning of the edge at zero level.
In case of constant helix �gi, this is a linear distribution
u�g;iðzÞ ¼ ðz=RÞ tan �gi along the z axis [22] if the radius R is con-
stant. For the sake of generality, we consider a general variation
diðzÞ around a mean helix angle �gi of the ith edge as (cf. Fig. 1)

ug;iðzÞ ¼ u�g;iðzÞ � diðzÞ; i ¼ 1; 2;…;N (1)

where N denotes the number of flutes. The local helix angle can
be expressed from the continuously changing lag angle as

tan giðzÞ ¼ Ru0g;iðzÞ (2)

Substituting the z derivative of Eq. (1) into Eq. (2), we obtain the
following expression for the local helix angle at the ith edge:

giðzÞ ¼ arctanðtan �gi � Rd0iðzÞÞ

This continuous variation of the helix causes the variation on the
pitch angle, too (cf. Fig. 1), that is

Fig. 1 A real implementation (a) and the sketch (b) of the
milling cutter with harmonically varied helix. (The real tool was
provided by Prof. Gy. Matyasi: see Acknowledgment.)
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up;iðzÞ ¼ up;i;0 þ ug;iðzÞ � ug;iþ1ðzÞ

where up;i;0 ¼ up;ið0Þ is the ith initial pitch angle considered at

level z¼ 0. Note that, in case of a cutter that has only nonuniform
constant helix angles �gi without any variation around (di ¼ 0), the
variation of the pitch angle is linear

up;iðzÞ ¼ up;i;0 þ
tan �gi � tan �giþ1

R
z (3)

while in case of a cutter that has uniform mean helix angles
�gi ¼ �g with variations diðzÞ, the pitch angles are

up;iðzÞ ¼ up;i;0 þ diðzÞ � diþ1ðzÞ (4)

Remark that milling tools corresponding to Eq. (3) are already
available in the market.

In both cases, the continuous variation of the pitch angles
causes continuous variation in the regenerative effect, since the
regenerative delays between subsequent edges at level z has the
following direct connection with the local pitch angles:

siðzÞ ¼
1

X
up;iðzÞ (5)

where X is the angular velocity of the tool. Accordingly, milling
processes that use variable helix tools are subjected to infinitely
many delays as opposed to delay(s) occurring in milling processes
with conventional, uniform helix tools [11,23].

2.2 Derivation of Regenerative Milling Force. The stand-
ard approximation is used here when the originally trochoid paths
of the local edges are approximated by circles, that is

hiðz; tÞ � giðz; tÞriðz; tÞniðz; tÞ

where the local movement of subsequent edge portions and the
local normal vectors of the edges can be expressed as

riðz; tÞ ¼ Driðz; tÞ þ
f
up;iðzÞ

2p
0

0

2
6664

3
7775; niðz; tÞ ¼

sin uiðz; tÞ
cos uiðz; tÞ

0

2
4

3
5

(6)

respectively, and f is the feed per revolution. The so-called screen
function giðz; tÞ takes the radial immersion into account. Its actual
form is

giðz; tÞ ¼
1; if uen < ðuiðz; tÞmod 2pÞ < uex;

0; otherwise;

�

where the entry angle uen and the exit angle uex are measured
clockwise from the (y) axis (see Fig. 1). This basically describes
box-like cutter-workpiece engagement (CWE) [24] (see gray
regions in Figs. 2(a) and 2(c)). The term that contains the regener-
ation in Eq. (6) is

Driðz; tÞ ¼ rðtÞ � rðt� siðzÞÞ

The position angle of the ith local edge is given by (cf. Fig. 1)

uiðz; tÞ ¼ Xtþ
Xi�1

k¼1

up;iðzÞ � ug;1ðzÞ

Having the angular position of the tool edge, the local specific
force can be determined in the local t (tangential), r (radial), and a
(axial) coordinate system (tra), that is

Fig. 2 Edge pattern of nonuniform and harmonically varied helix tools (left panels) and the corresponding weight distributions
(right panels). Minimum, zero level, and maximum values are denoted by black, middle gray (see top part of panel (b)), and white
in panels (b) and (d).
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f tra;iðz; tÞ ¼ �fðhiðz; tÞÞ

where f(h) is the empirical cutting force characteristics. It is
important to notice that the applied force model has to follow the
continuously changing helix angle (e.g., orthogonal to oblique
transformation [22]). The specific force can be rewritten in
Cartesian system using the following transformation:

f iðz; t; rtðhÞÞ ¼ �giðz; tÞTiðz; tÞf tra;iðz; tÞ

where the negative signs are related to the relative positions of the
coordinate systems involved and the transformation matrix
between the (tra) and (xyz) coordinate systems has the form

Tiðz; tÞ ¼
cos ui sin ui 0

� sin ui cos ui 0

0 0 1

2
4

3
5

with ui: ¼ uiðz; tÞ. The sum of all specific force components
along the edges and for all flutes gives the resultant cutting force

Fðt; rtðhÞÞ ¼
XN

i

ð
ri

f iðzðriÞ; t; rtðhÞÞdri; dri ¼
dz

cos giðzÞ

where ri is the arc length coordinate of the ith flute (see Fig. 1).
The rtðhÞ ¼ rðtþ hÞ is the shift function [3,5], which represents
the actual and the past states of the delayed system, since
h 2 ½�smax; 0�ðsmax ¼ max

i;z
siðzÞÞ.

2.3 Milling Dynamics. The milling process is considered in
modal space where the governing equation has the following ma-
trix form:

€qðtÞ þ ½2nkxn;k� _qðtÞ þ ½x2
n;k�qðtÞ ¼ UTFðt;U qtðhÞÞ (7)

where ½2nkxn;k� and ½x2
n;k� are diagonal matrices that contain the

modal damping ratios and the natural angular frequencies of the
modes (k ¼ 1; 2;…;Nq), while U is the mass-normalized modal
transformation matrix (as constructed in Ref. [11]), which con-
nects the spatial and the modal space as rtðhÞ ¼ UqtðhÞ.

If we consider the perturbation qðtÞ ¼ qpðtÞ þ uðtÞ around the
periodic stationary solution qpðtþ hÞ ¼ qpðtþ T þ hÞ ¼: qp;tðhÞ,
the linearization of Eq. (7) leads to a time-periodic system [4]

€uðtÞ þ ½2nkxn;k� _uðtÞ þ ½x2
n;k�uðtÞ

¼ UT
XN

i¼1

ð
z

Ciðz; tÞðutð�siðzÞÞ � utð0ÞÞdz

This can be rewritten in a time-periodic distributed delay form as

€uðtÞ þ ½2nkxn;k� _uðtÞ þ ð½x2
n;k� þ CðtÞÞuðtÞ ¼

ð�0

�smax

Wðh; tÞutðhÞdh

(8)

The weight distribution can be expressed in the following form:

Wðh; tÞ ¼
XN

i¼1

XNinv;i

l¼1

UT
DqtðhÞf i zi;lðhÞ; t;Uqp;tðhÞ

� �
cos giðzi;lðhÞÞ

jz0i;lðhÞj (9)

in the delayed-time interval h 2 ½�smax; 0Þ. In Eq. (9), D denotes
gradient now w.r.t. qtðhÞ and zi;lðhÞðl ¼ 1; 2;…;Ninv;iÞ are the lth
local inverse functions of h ¼ �siðzÞ. The term jz0i;lðhÞj in Eq. (9)
represents the integration by substitution with dz ¼ jz0i;lðhÞjdh.
The coefficient matrix of the present solution in Eq. (8) is origi-
nated from the weight function as

CðtÞ: ¼ UTDqtð0ÞFðt;Uqp;tðhÞÞ ¼
ð�0

�smax

Wðh; tÞdh (10)

3 Weights of Distributed Delays

As it was shown at Eq. (8), continuously changing helices cause
continuous variation in the delays. This means that the axial force
distribution can be considered as a weight distribution Eq. (9)
with respect to the delayed time h. Because of the time periodicity
of the original system, the weight distribution is time periodic too,
that is, Wðh; tÞ ¼Wðh; tþ TÞ, where T is the principal period of
the milling process. According to Eq. (10), the following is also
true: CðtÞ ¼ Cðtþ TÞ.

In Fig. 2, one can follow how the weight distribution Wðh; tÞ is
originated in the edge pattern and the CWE (shaded areas). It can
be realized that the variation of helices (the axial variation on
pitch angles) “smear” the “sharp” effect of a constant delay occur-
ring in case of conventional milling tool (see Figs. 2(b) and 2(d)),
where the �up;0=X denotes the corresponding discrete delay
value that would be described by a Dirac delta function as a
weight distribution. Note that all the examples shown in Fig. 2 are
constructed at X ¼ n ¼ 5000 rpm and ap ¼ 15 mm in case of half
immersion down-milling. The tool used for the simulation has
diameter D ¼ 2R ¼ 30 mm and the number of flutes is N¼ 4.

A typical pattern caused by nonuniform helices can be seen at
Fig. 2(b) (the gray-scale refers to weights with white for high val-
ues and black for low values). Apart of the fact that an interval of
distributed delays appears instead of a discrete delay, it is also
true that subsequent flutes with varying helices induce wide delay
intervals compared to the discrete delay of conventional milling.
The realized repeatable pattern assumes �gi ¼ 30; 34; 30; 34 deg in
Fig. 2(a). One may find more complex patterns, too, but it will
remains linearly distributed in case of nonuniform constant helices
as shown in Fig. 2(b).

The other case in Fig. 2(d) shows the weight distribution for
harmonically varied helix tool with Lh ¼ 15 mm wavelength and
ah ¼ 10 deg variation amplitude. Here, the variations diðzÞ from
Eq. (1) have the following form:

diðzÞ ¼ ah sin 2p
z

Lh

þ wh;i

� �
(11)

where wh;i are the phase shifts between harmonic variations of
subsequent flutes (see Fig. 2(c)). In case of uniform phase shifts,
we have wh;i ¼

Pi�1
k¼1 up;i;0. According to Eqs. (4) and (11), the

varying pitch angles related to the ith flute can be expressed as

up;iðzÞ ¼ up;i;0 þ Up;i sin 2p
z

Lh

þ ei

� �

where Up;i and ei are the amplitudes and the phase shifts of
the variations. Note that Up;i ¼

ffiffiffi
2
p

ah and ei ¼ p
4
; 3p

4
; 5p

4
; 7p

4
in case

of a N¼ 4 fluted tool with uniform initial pitch angles
up;0: ¼ up;i;0 ¼ p

2
. This obviously means that the larger the varia-

tion amplitude ah is, the wider the weight distribution will be. One
may expect a continuous weight function for the delay distribution
due to the presence of harmonically varied helix and the continu-
ous change of variables, but this is not the case in Fig. 2(d). There
are three sources of possible nonsmoothness in the weight func-
tion of delay distribution. On one hand, the chip thickness may
still change abruptly, too and so does the cutting force. This
means possible sharp change in the chip thickness shifted in time
t as depicted in Fig. 2(d). On the other hand, there can be
nonsmoothness along the distributed time delay h, too, since
neighboring delay intervals can be related to different chip thick-
ness values in the CWE as it is observable in Fig. 2(c) as one
follow how and where the (iþ 4)th edge enters into the CWE.
Moreover, the occurrence of different delays can change instantly
too, especially, when a cutting edge enters or leaves the
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workpiece. This effect is presented in the delay occurrence density
plot depicted in Fig. 3 in case of harmonic variation of helices
(Lh ¼ 15 mm and ah ¼ 10 deg). Note that there are delay intervals,
which are not acting in some parts of the period at all (black means
zero occurrence, while white indicates four occurrences in Fig. 3).

4 Linear Stability

The linear stability of dynamical systems like Eq. (8) can be
investigated by the SD method [21,25]. Note that the cutting tools
dealt with in this paper need discretization along the axial direc-
tion to cover correctly the waves along the edges. However, the
discretization along the distributed delay h should result in a
proper representation of the weight distributions Wðh; tÞ, which is
not an obvious task due to the above described discontinuity prop-
erties of the distributions.

In short, the semi-discretization combined by the Floquet theo-
rem [4] can approximate the so-called monodromy operator of
time-periodic distributed DDEs that maps the current state utðhÞ

of the system to the state utþTðhÞ after a period. The discrete
counterpart of the monodromy operator is the transition matrix,
which connects the current discretized state zi with the state ziþk

after a period, that is

ziþk ¼ Uzi (12)

where zi¼ colðutið0Þ; _uti
ð0Þ;uti

ð�DhÞ;uti
ð�2DhÞ;…;utið�rDhÞÞ.

The delay resolution and the delay time step are
r¼ intðsmax=Dhþ1=2Þ and Dh¼Dt¼T=k, respectively. Note that
k is the resolution in the time period T and r is the resolution in
the maximum delay smax. The transition matrix U can be deter-
mined using the linear maps Bi in subsequent time intervals
t2 ½ti; tiþDt�

U ¼ Biþk�1Biþk�2…Biþ1Bi (13)

The linear map Bi is basically the semi-discretized version of the
solution operator of Eq. (8) at Dt if utiðhÞ were the initial state.
The Bi contains the exact analytical solutions of finite number of
linear ODEs defined over the discretized state zi in the time inter-
val t 2 ½ti; ti þ Dt� [21].

It is important to mention that, due to the necessary fine mesh on
the axial direction, the multiplications defined at Eq. (13) can be time
consuming. Therefore, special techniques can be used [26,27] in
order to decrease the computational cost of the problem.

5 Numerical Results by Semi-discretization

The linear stability properties of some milling operations per-
formed with variable helix tool are shown in Figs. 4 and 5 in com-
parison with the linear stability of a conventional N¼ 4 fluted
helix tool with �g ¼ 30 deg helix angle (see dashed lines in all pan-
els of Figs. 4 and 5). The process is symmetric interrupted milling
characterized by the immersion angle Du ¼ uex � uen, that is
uen ¼ p=2 �Du=2 and uex ¼ p=2þ Du=2. Two identical
dominant modes are considered in the parallel and perpendicular
directions to the feed. The modal parameters can be found in
Table 1 and the tangential and radial cutting coefficients
were Kc;t ¼ 900 MPa and Kc;r ¼ 300 MPa, respectively. These

Fig. 3 Occurrence density of delays (black is zero, while white
is four occurrences)

Fig. 4 Linear stability of machining process performed by milling tools with nonuniform helices with symmetric
engagement defined by Du (thick continuous line) besides the linear stability of processes performed by a
conventional milling tool (thin dashed lines)
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parameters are usually measured by modal tap-testing using accel-
erometers and modal hammer. Two sets of numerical calculations
were performed related to nonuniform helix angles with
�gi ¼ 30; 34; 30; 34 deg and related to a tool with harmonic varia-
tion on its edges with wavelength Lh ¼ 15 mm, amplitude
ah ¼ 10 deg, and uniform phaseshift wh;i.

Note that the presented stability charts include practically unre-
alistic parameter domains especially with respect to high depths
of cut. However, the extended parameter domains help to identify
intricate stability properties of the process. It can be observed in
Fig. 4(d) and in Figs. 5(a)–5(c) that these tools have good
dynamic properties for high axial depths of cut with extremely
high material removal rate without leading to self-excited
vibrations.

As it can be recognized in Fig. 4, the tool with nonuniform
helix angles has a completely different dynamical behavior com-
pared to the conventional milling tools of uniform helix angle.
However, this effect decreases as the symmetric immersion angle
Du increases. In case of low symmetric engagement, the milling
process performed by a nonuniform constant helix tool shows
large stable domain in contrast with the conventional milling
where the well-known lobe structure survives [28]. As the sym-
metric immersion is increased, special instability lenses show up,
while the large stable domain in between becomes separated into
disjunct stable islands ending up at the traditional lobe structure
(Figs. 4(b)–4(d)). The unstable lenses seem to be located along
steep lines starting from the origin.

A series of stability charts are also shown in Fig. 5 in case of
different symmetric engagement angles Du for milling processes
with harmonically varied helix tools. It can be seen that the
special stable tongues are gradually lost with the increase of the
symmetric immersion angle Du (Figs. 5(a)–5(c)). This effect was
not recognized in Ref. [29] where only one vibration mode was
modeled and the stable tongues remained important even for
half-immersion down milling. In both cases (Figs. 4 and 5), the
stability limits increase at low spindle speeds in case of low sym-
metric engagements. Note, however, this is essentially different
from the increased linear stability caused by the process damping
effect [30] at low spindle speeds, in spite of the fact that similar
distributed delay models may also be used to explain the process
damping phenomenon [7,31,32].

In Fig. 6, the dominant vibration frequencies [33] are plotted in
case of a nonuniform helix tool for a milling process with sym-
metric engagement angle Du ¼ 20 deg (Fig. 4(c)). It can be seen
that the instability lenses that are located near to the standard
linear stability limits have dominant chatter frequencies close to
the natural frequencies of the system. Instability lenses at higher
depths of cut regions correspond to higher dominant frequencies
further away from the natural frequencies. This is against the rule
of thumb that dominant chatter frequencies are in the neighbor-
hood to the natural ones.

6 Conclusions

This work was motivated by the fact that continuous variation
of the helix angle causes distribution of the regeneration between
subsequent edges. A general mechanical model was presented,
which is suitable to take into account the weight distribution of
the regeneration occurring in the system. The shape of the weight
distribution function was presented and discussed for nonuniform
and harmonically varied helix angle cases.

Case studies were provided to show the relevant dynamic
behavior of these cutters. Examples with two identical modes
were presented, and the differences between these and the single
mode models were highlighted from cutting stability viewpoint
[29].

The calculations showed that special instability lenses occur
in the stability chart in case of nonuniform constant helix angle
milling tools. The size of these instability lenses decrease and
they line up toward the low spindle-speed region. The size of the
lenses shrink to a degree where the stable region above them may
become practically realizable: cutting can be performed at
extremely high depth of cut regions.

Fig. 5 Linear stability of machining process performed by harmonically varied helix milling tools with symmetric engagement
defined by Du (thick continuous line) besides the linear stability of processes performed by a conventional milling tool (thin
dashed lines)

Table 1 Modal parameters used for simulations

xn [1,2] (Hz) n1;2 (%) k1;2 (N/lm) Direction

410 2 20 (x and y)

Fig. 6 The dominant (chatter) frequencies along the linear sta-
bility in the case of nonuniform constant helix tools Fig. 4(c)
(dashed lines represents the dominant vibration frequencies of
the same operation with conventional tool)
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In case of harmonic variable helix angle milling tools, the cal-
culations showed that large stable tongues are formed at the low
spindle-speed domain, while they loose their importance as the
process becomes less interrupted.

In summary, the developed distributed delay model and the
examples explored some intricate stability properties of the vary-
ing helix angle tools that can be utilized both in designing new
milling cutters and in identifying cutting parameter regions of
extremely high material removal rates.
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Nomenclature

ah ¼ amplitude of the harmonical variation
f ¼ feed per revolution in the x direction
g ¼ screen function
h ¼ chip thickness

Lh ¼ wavelength of the harmonical variation
N ¼ number of flutes
R ¼ radius of the tool envelope
f ¼ specific force

f(h) ¼ empirical cutting force characteristics
F ¼ resultant cutting force
q ¼ modal coordinates
u ¼ perturbation around the periodic stationary solution
z ¼ discretized state of the system
B ¼ discretized solution operator (step matrix)
U ¼ mass normalized modal transformation matrix

W ¼ weight distribution function
d ¼ angle variation around the mean helix angle �g
g ¼ helix angle
h ¼ delayed time
n ¼ damping factor
u ¼ position angle of the edge compared to the y axis

up ¼ pitch angle
ug ¼ lag angle
Up ¼ amplitude of the pitch angle variation
wh ¼ phase shift of the harmonical variation
xn ¼ natural angular frequency

X ¼ n ¼ spindle speed
U ¼ transition matrix
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