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Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied.
A decomposition of the network dynamics is obtained by diagonalizing a newly introduced adjacency
lag operator which contains the topology of the network as well as the corresponding coupling delays.
This generalizes the master stability function approach, which was developed for homogenous delays.
As a result the network dynamics can be analyzed by delay differential equations with distributed
delay, where different delay distributions emerge for different network modes. Frequency domain
methods are used for the stability analysis of synchronized equilibria and synchronized periodic
orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley
neurons is investigated. It is shown that for increasing delay heterogeneity the parameter regions
expand, where synchronized periodic spiking is unstable or even no synchronized periodic solution
exists.

I. INTRODUCTION

Complex networks and synchronization phenomena are
relevant in many fields. Specific examples can be found
in social systems [1, 2], engineering [3–6], biology [7–10]
and physics [11–13]. Some universal results on synchro-
nization in complex networks have been summarized in
[14, 15]. Often the interactions between nodes in the
network are assumed to be instantaneous, which means
that the state of one node immediately affects the state
of other nodes. However, in many cases the signal propa-
gation time between nodes is of the order of the internal
time scales of the system. In such cases, time delays must
be incorporated when modeling the connections between
the network nodes. Some basic results on the dynamics
of networks with time delayed couplings can be found in
[16–18]. In some applications, like semiconductor lasers
[11–13], the coupling delays can be tuned to be homoge-
neous. However, in general, the coupling delays are het-
erogeneous, i.e., there exist different delays for different
connections in the network [5]. Such heterogeneity may
affect the stability of synchronized equilibria and syn-
chronized periodic orbits and lead to “amplitude death”
in complex networks [19, 20].
Numerical simulations or statistical methods are often

used to study the synchronization behavior in networks
with heterogeneous delays [20–22]. However, a better
understanding of the dynamics can be gained by ana-
lyzing the linear stability of specific solutions (equilib-
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ria, periodic orbits, heteroclinic orbits, chaotic motion).
In particular, decomposing the dynamics into network
modes in the vicinity of a particular solution allows sys-
tematic investigations of stability and bifurcations. The
so-called master stability function approach combines
such modal decomposition with linear stability analysis.
This was first proposed for the analysis of complete syn-
chronized solutions in networks with instantaneous cou-
plings [23, 24] where stability properties were linked to
the eigenvalues of the adjacency matrix. Similar decom-
position were performed for nonidentical node dynamics
[25, 26] and around cluster states [27–29].

Modal decomposition can be extended to networks
with delay couplings [17]. This is possible even for mul-
tiple delays [30–32], and distributed delays in the con-
nections [33]. However, in all these cases the delays were
considered to be homogeneous, that is, the same delay
distribution was used for all connections. An extension
to heterogeneous delays was given in [34] with the restric-
tion that the adjacency matrices corresponding to differ-
ent coupling delays must commute. Another approach
based on a timescale separation was presented for hier-
archical networks having a small coupling delay within
subnetworks and a large coupling delay between subnet-
works [35]. A general approach for the modal decomposi-
tion around synchronized equilibria with heterogeneous
coupling delays was introduced in [5]. Extending this
method to synchronized time dependent solutions is not
straightforward and we target this challenging problem
in this paper.

We show that the stability of network modes in the
vicinity of complete synchronized time dependent solu-
tions can be analyzed by non-autonomous delay differ-
ential equations (DDEs) with distributed delays. The
advantage of the present method is that, similar to the
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known master stability approach for networks with ho-
mogeneous delay, the dimension of this DDE system is
equivalent to the dimension of the system that describes
the dynamics at one network node. We show that for
heterogeneous delay coupling the delay distribution of
the DDE may change for different network modes, which
differs from the classical master stability approach, where
only a complex number (the eigenvalue of the adjacency
matrix) may change for different network modes.
For synchronized periodic solutions we use a frequency

domain approach for the stability analysis of the non-
autonomous DDE with distributed delay. This method
has been successfully applied to analyze the stability in
machine tool vibrations [36, 37]. In the context of com-
plex networks, synchronous oscillations of neurons are
of special importance [7–10, 14]. Some results for syn-
chronized solutions of networks of Hodgkin-Huxley neu-
rons with homogeneous coupling delays were presented in
[8, 10]. We apply the developed decomposition method
to study the effects of heterogeneous coupling delays on
such neural dynamics.
The paper is organized as follows. In Sec. II conditions

for the existence of synchronized solutions in heteroge-
neous delay-coupled networks are given. In Sec. III the
decomposition of the dynamics around time dependent
solutions is performed. This is combined with numerical
continuation in Sec. IV in order to study the stability and
bifurcations of synchronized periodic orbits in a network
of Hodgkin-Huxley neurons. We conclude our results in
Sec. V.

II. SYNCHRONIZATION IN NETWORKS

WITH HETEROGENEOUS DELAYS

A network of N identical oscillators with heteroge-
neous delay coupling is considered. In particular, R dif-
ferent coupling delays τr are considered. The dynamics
of the configuration xi ∈ Rn of node i is modeled by the
nonlinear DDE

ẋi(t) = f
(

xi(t)
)

+

R
∑

r=1

N
∑

j=1

ar,ij g
(

xi(t),xj(t− τr)
)

. (1)

The dynamics of the uncoupled node is described by the
n dimensional nonlinear ordinary differential equation
(ODE) ẋi = f (xi), while the coupling function g(xi,xj)
specifies how oscillator j influences the dynamics of os-
cillator i. The coefficients ar,ij are the elements of the N
dimensional coupling matrices Ar corresponding to the
delay τr specifying how strong the current configuration
xi(t) of node i is affected by the retarded configuration
xj(t− τr) of node j with time delay τr. If ar,ij = 0 there
is no incoming signal at node i from node j with time
delay τr. However, there can be an incoming connection
between the same nodes with another delay. Moreover,
the matrices Ar are not necessarily symmetric meaning
that there can be an incoming connection but no out-
going connection with delay τr between the same nodes

and vice versa. The sum
∑R

r=1Ar = A is also known as
adjacency matrix and characterizes the complete topol-
ogy of the network via a weighted directed graph, where
the oscillators and the connections between them are the
nodes and edges of the graph, respectively. Note that
with R → ∞, where the first sum in Eq. (1) becomes
an integral, it is possible to take into account continuous
distributions for the coupling delays.

A. Synchronization

In this paper completely synchronized solutions
xi(t) = xs(t), i = 1, . . . , N of Eq. (1) are studied. These
solutions are contained in the so-called synchronization
manifold. The dynamics within this manifold is described
by the DDE

ẋs(t) = f
(

xs(t)
)

+

R
∑

r=1

Mr g
(

xs(t),xs(t− τr)
)

, (2)

where Mr denotes the constant row sum of the separate
coupling matrices Ar, i.e.

Mr,i :=

N
∑

j=1

ar,ij = Mr, for i = 1, . . . , N. (3)

If for any coupling matrix Ar the row sum is not in-
dependent of the row index i, i.e. ∃m,n ∈ [1, N ] with
Mr,m 6= Mr,n, it is not possible to define the synchroniza-
tion manifold Eq. (2) meaning that, in general, only syn-
chronized equilibria are possible [38]. In networks with-
out coupling delays (R = 1, τ1 = 0) [23, 24] and in net-
works with homogeneous delays [17, 28] (R = 1, τ1 6= 0)
Eq. (3) is known as constant row sum condition. In net-
works with heterogeneous delays the constant row sum
condition Eq. (3) must be fulfilled for each r = 1, . . . , R.
Note that for continuously distributed coupling delays,
R → ∞, the condition Eq. (3) for the existence of a
synchronization manifold Eq. (2) means that there must
be the same delay distribution Mr at each node of the
network for all incoming connections.
To analyze the stability of synchronized solutions xs(t)

we define the perturbations yi(t) = xi(t) − xs(t) whose
dynamics can be approximated by the linear variational
system

ẏi(t) = L(t)yi(t) +

R
∑

r=1

N
∑

j=1

ar,ij R(t, τr)yj(t− τr), (4)

where the coefficient matrices are defined as

L(t) = Df
(

xs(t)
)

+
R
∑

r=1

Mr D1g
(

xs(t),xs(t− τr)
)

,

R(t, τ) = D2g
(

xs(t),xs(t− τ)
)

.

(5)
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The matrix Df is the Jacobian of f , and the matrices
D1g and D2g are the derivatives of g with respect to
the first and the second argument, respectively. Defining
the nN dimensional column vector y = col [y1, . . . ,yN ]
Eq. (4) can be rewritten as

ẏ(t) =
(

IN⊗L(t)
)

y(t)+

R
∑

r=1

(

Ar⊗R(t, τr)
)

y(t−τr), (6)

where ⊗ denotes the Kronecker product and IN denotes
the N × N dimensional identity matrix. At this point,
an important difference between networks with homo-
geneous delays and networks with heterogeneous delays
appears. For heterogeneous delays both the matrices Ar

and R(t, τr) depend on the specific coupling delay τr.
In other words, despite the same coupling function g ap-
pearing in all connections and for all delays τr, the coeffi-
cient matrices R(t, τr) in the linearized dynamics Eq. (4)
depends on the coupling delays τr through xs(t − τr).
This has consequences for the decomposition of the net-
work dynamics, which is presented in Sec. III.

B. Tangential vs. transversal dynamics

The perturbation vector y in Eq. (6) can be divided
into tangential perturbations and transversal perturba-
tions [23, 24, 28]. If only tangential perturbations exist,
each node undergoes the same perturbation yi(t) = q1(t)
for i = 1, . . . , N , that is, y(t) = col[q1(t), . . . , q1(t)].
Substituting this into (4) one obtains the dynamics for
perturbations within the synchronization manifold

q̇1(t) = L(t)q1(t) +
R
∑

r=1

Mr R(t, τr) q1(t− τr), (7)

that is indeed the linearization of Eq. (2). The transver-
sal perturbations are defined as yi(t) 6= yj(t) for at least
one i 6= j.
Indeed, many different solutions may exist within the

infinite dimensional synchronization manifold (equilib-
ria, periodic orbits, homoclinic and heteroclinic orbits,
chaos). Whereas tangential perturbations let the sys-
tem stay within the synchronization manifold, transver-
sal perturbations drive the system away from the syn-
chronization manifold. Synchronization occurs only if
the synchronized solution is transversally stable. The lin-
earized dynamics of the network and its decomposition
are discussed in detail in Sec. III.

C. Synchronized equilibria without

synchronization manifold

Time delays can change the stability of an equilibrium
but do not change the existence and location of the equi-
librium [39, 40]. According to Eq. (1) synchronized equi-

libria of the network are defined by [38]

f
(

x∗
s

)

+M g
(

x∗
s ,x

∗
s

)

= 0, (8)

where M denotes the constant row sum of the adjacency
matrix A, i.e.

Mi :=

R
∑

r=1

N
∑

j=1

ar,ij = M, for i = 1, . . . , N. (9)

Thus, as long as Eq. (9) holds, changing the delays of
the connections does not change the existence of synchro-
nized equilibria defined by Eq. (8). On the other hand,
according to Eq. (3) changing the delays can change the
existence of time dependent synchronized solutions. In
other words, synchronized equilibria exist if the constant
row sum condition is fulfilled for the adjacency matrix
A but time dependent synchronized solution exist only if
the constant row sum condition is fulfilled for all matri-
ces Ar with r = 1, . . . , R. Similarly, this means that
time dependent synchronized states may exist for ho-
mogeneous delays (when Eq. (9) holds) but may be de-
stroyed when adding heterogeneity to the delays (when
Eq. (3) is not satisfied). In addition, according to Eq. (8)
for g

(

x∗
s ,x

∗
s

)

= 0 synchronized equilibria may exist even
if Eq. (9) does not hold.
As a consequence, there is a large set of networks with

heterogeneous delays, where synchronized equilibria x∗
s

exist but no time dependent synchronized solutions xs(t)
are possible. In these cases, no synchronization manifold
Eq. (2) can be defined and no tangential network mode
exists. Indeed, if all transversal perturbations around the
equilibrium decay the synchronized equilibrium is stable
but when the equilibrium becomes unstable, an asyn-
chronous state appears. In these networks stable syn-
chronized equilibria occur due of identical node dynamics
and identical coupling functions which is often referred to
as amplitude death in the literature [41–43]. An overview
on the different scenarios including the possibility for syn-
chronized equilibria without a synchronization manifold
is presented in Fig. 1.

III. DECOMPOSITION OF NETWORKS WITH

HETEROGENEOUS COUPLING DELAYS

For characterizing the network dynamics with respect
to complete synchronized solutions the analysis of Eq. (6)
is necessary. However, from the analysis of Eq. (6) it
is not clear if instabilities are related to tangential or
transversal perturbations and the dimension of Eq. (6)
can be very large. Therefore, more insight into the net-
work dynamics can be gained by decomposing Eq. (6)
into smaller subsystems. For networks without delay
or with homogeneous delay we have R = 1 and the
decomposition can be done, for example, by the eigen-
mode decomposition of the adjacency matrix A = A1

[17, 23, 24, 28]. For networks with heterogeneous delays



4

Network Eq. (1) with identical node 

dynamics and identical coupling function.

.

noyes

 
Synchronized equilibrium.

 

noyes

 

 

Synchronization manifold exists.

(time-dependent synchronized 

solutions possible) 

 

No synchronization manifold.

(synchronized equilibria due 

to amplitude death possible)

Row sum condition Eq. (9) ?

Constant delay distribution Eq. (3) ?

FIG. 1. Complete synchronization and amplitude death in
networks with heterogeneous delays.

the same decomposition is still possible if all matrices
Ar, r = 1, . . . , R commute with each other [34]. How-
ever, in most cases the matrices Ar do not commute. For
the analysis of synchronized equilibria a general approach
for the decomposition was introduced in [5]. The idea is
the eigenmode decomposition of the matrix

B̂(s) =

R
∑

r=1

Ar e
−sτr , (10)

which can be derived from the Laplace domain represen-
tation of Eq. (6) (s is the Laplace variable) and com-
bines the information on the coupling topology and the
coupling delays.
However, we will show in the following that an eigen-

value decomposition of the matrix B̂(s) as proposed in
[5] is, in general, not suitable for the decomposition of
the network dynamics around time dependent solutions.
The reason is that, in general, the left and the right
eigenvectors of the matrix B̂(s) depend on s and are
therefore not invariant. Indeed, for synchronized equi-
libria with time-invariant coefficient matrices L(t) = L0

and R(t, τ) = R0 a diagonalization of the matrix B̂(s)
is very helpful because it decomposes Eq. (6) into a sys-
tem of N uncoupled subsystems of dimension n, where
each n dimensional subsystem determines the dynamics
of one network eigenmode. However, we will show that
for the time dependent case the diagonalization of the
matrix B̂(s) does not necessarily decompose the network
dynamics into uncoupled subsystems. Thus, in this pa-
per we are searching for a decomposition of the matrix
B̂(s) with invariant left or right subspaces, which decom-
poses the network dynamics into smaller subsystems even
in the time dependent case.
In the next subsection we first explain what we mean

with a network decomposition since there are different
levels for decomposing the dynamics of a complex net-
works with time delays. Thereafter, in Sec. III B we
introduce a representation of the network dynamics in
terms of lag operators because we show our approach in

the time domain. This is complementary to [5] and we
think that it is more illustrative in case of time dependent
synchronized solutions. In Sec. III C the decomposition
of the network with heterogeneous delays around time
dependent solutions is presented followed by some exam-
ples in Sec. III D.

A. Three decomposition levels

Delay-coupled networks are infinite dimensional sys-
tems due to the existence of time delays τr in the cou-
pling terms, i.e., the initial condition for Eq. (4) are func-
tions on the interval [−τmax, 0] for the vector y ∈ RnN ,
where τmax is the maximum delay. This means that the
state at time t can be defined by the function y(t + θ),
−τmax ≤ θ ≤ 0 [44, 45]. Roughly speaking the network
is N × n×∞ dimensional.
Three different levels of decomposition of delay-

coupled networks may be identified. The first level is
the network level, which focuses on the N nodes cou-
pled via the edges of the graph. A decomposition at the
network level decomposes the dynamics into N network
modes. If Eq. (3) is fulfilled, one tangential and N − 1
transversal network modes exist [10, 17, 23, 24]. The sec-
ond level is the node level corresponding to the n scalar
equations specifying the dynamics at each node that may
be decomposed into n scalar DDEs; see [46, 47] where the
scalar Lambert W function was utilized. For example,
one may decompose Eq. (7) for the tangential dynamics
into n scalar DDEs. The third level is the delay level. In
particular, a scalar DDE can be further decomposed into
infinitely many ODEs corresponding to the characteris-
tic roots [44, 48, 49]. The node level and the delay level
are often handled together using Operator Differential
Equations [44] or Matrix Lambert W function [50].
In the remaining part of this paper we focus on the

decomposition at the network level. Indeed, such a de-
composition is not always possible. For example, net-
works with non-identical node dynamics, i.e., using f i

instead of f in Eq. (1) yield Li instead of L in Eq. (4).
In this case, the Kronecker product in Eq. (6) cannot be
constructed and a decomposition at the network level is
not possible in general. A decomposition combining the
network and the node level is still possible but in such a
case the corresponding modes are less descriptive.

B. Representation with lag operators

We are searching for a time domain representation of
the network dynamics in terms of an operator that con-
tains the information on the network topology and the
coupling delays similar to the matrix B̂(s) defined in
Eq. (10). Thus, we introduce the lag operator S(τ) de-
fined by

S(τ) y(t) = y(t− τ), (11)
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for a scalar-valued function y(t). Indeed, this can be
extended to vector valued functions. An alternative rep-
resentation of the lag operator can be derived from the
Taylor expansion of y(t− τ) about τ = 0 and is given by

S(τ) = e−τ d

dt . The eigenfunctions of the lag operator are
exponential functions independent of the time lag, that
is,

S(τ) est = e−sτ est . (12)

As a consequence, lag operators with different arguments
commute with each other and fulfill the relation

S(τ1)S(τ2) = S(τ2)S(τ1) = S(τ1 + τ2). (13)

It follows that Sn(τ) = S(nτ) and the identity element is
denoted by S(0). Obviously, the lag operator commutes
also with the differential operator d

dt
S(τ) = S(τ) d

dt
.

With the introduction of the lag operator, the lin-
earized dynamics Eq. (6) can be written as

ẏ(t) =
(

IN ⊗ L(t) +

R
∑

r=1

ArS(τr)⊗R(t, τr)
)

y(t). (14)

We remark that when calculating the elements of the
Kronecker product ArS(τr) ⊗R(t, τr) the lag operators
do not act on R(t, τr); see (6). Since the matrix R(t, τr)
may change its shape in each term of the sum in Eq. (14),
in general, a decomposition at the network level is not
possible. In this paper we focus on a delay-independent
coefficient matrix R(t, τ) = R(t) for the coupling term.
There are two cases, where R(t, τ) does not dependent
on τ . The first case is the case of synchronized equilibria
xs(t) = xs(t−τ) ≡ x∗

s , which results in constant matrices
R = D2g(x

∗
s ,x

∗
s ). The second case is when the coupling

is of the form g(xi(t),xj(t− τr)) = G(xi(t)) ·xj(t− τr),
which yields R(t) = G(xs(t)). In these cases Eq. (14)
can be simplified to

ẏ(t) = (IN ⊗ L(t) + B ⊗R(t)) y(t), (15)

where the so-called adjacency lag operator B is defined
by

B =

R
∑

r=1

ArS(τr). (16)

Similar to the corresponding Laplace domain represen-
tation B̂(s) shown earlier in Eq. (10), the adjacency lag
operator contains all information on the network topol-
ogy (given by the matrices Ar) and the coupling delays
(specified by the lag operators S(τr)).

C. Decomposition of the adjacency lag operator

The adjacency lag operator B contains the lag opera-
tors S(τr) defined in Sec. III B. Due to the commutative

property (13) these operators can be handled like com-
muting symbols. At first we will show why a formal diag-
onalization of the operator B or the matrix B̂(s), respec-
tively, as presented in [5] does not necessarily decouple
the linearized dynamics around time dependent synchro-
nized solutions. Later, we show an alternative approach
for the decomposition to overcome this problem.
Ideally, we are searching for a diagonalization of the

adjacency lag operator B as

B Vk = Dk Vk,

Uk B = Dk Uk, k = 1, . . . , N,
(17)

where Dk is an operator-valued eigenvalue while Vℓ and
Uk are the N dimensional operator-valued right and
left eigenvectors in column and row format, respectively.
These form a bi-orthogonal system with Uk · Vℓ = δkℓ,
where δkℓ denotes the Kronecker delta. In general, Dk,
Vk, Uk can contain linear and nonlinear functions of the
lag operators S(τr). We assume that the diagonalization
Eq. (17) exists, i.e. algebraic and geometric multiplic-
ity are the same for each eigenvalue Dk of B. Using the
operator-valued eigenvectors Vk and Uk we define the new
variables

qk(t) = (Uk ⊗ In)y(t), (18)

and use them to construct the solution as

y(t) =

N
∑

ℓ=1

(Vℓ ⊗ In) qℓ(t). (19)

Then the dynamics in the new basis can be obtained by
multiplying Eq. (15) with Uk ⊗ In from the left, substi-
tuting Eq. (19) and using Eq. (17) and Eq. (18). This
yields

q̇k(t) =

N
∑

ℓ=1

(Uk [L(t)]Vℓ + Uk [R(t)]VℓDℓ) qℓ(t), (20)

where we have used the abbreviated notation
Uk [L(t)]Vℓ = (Uk ⊗ L(t))(Vℓ ⊗ In), i.e., the lag
operators in Uk act on L(t), whereas Vℓ does not act
on L(t). If the coefficient matrices L(t) = L0 and
R(t) = R0 are time invariant (which happens around
synchronized equilibria [5]), Uk [L0]Vℓ = L0δkℓ and
similar statement holds for the term with R0. As a
consequence, Eq. (20) decouples into N independent
n dimensional subsystems, where each qk and Vk are
the modal coordinates and the mode shapes of the
network eigenmodes, respectively. In contrast, since Uk

and Vk can contain lag operators, for time dependent
coefficient matrices, in general, Eq. (20) is not decou-
pled because Uk [L(t)]Vℓ 6= L(t)δkℓ. A paradigmatic
example for such a coupling term can be given by
Uk [L(t)]Vℓ = L(t) − L(t − τr) for k 6= l. Thus, even if
the adjacency lag operator B or equivalently the matrix
B̂(s) is diagonalized, for the time dependent case it is



6

not necessarily true that the network dynamics Eq. (15)
represented in the new basis Eq. (20) automatically
decomposes into N subsystems describing the dynamics
of N decoupled network eigenmodes.
Nevertheless, it is worth taking a closer view on

Eq. (20). Often Vk and/or Uk contain no lag operators
(but numbers only). This happens if the matrices Ar

have simultaneous right or left eigenvectors, respectively.
Then, the corresponding operators Dk are given by

Dk =
R
∑

r=1

σr,kSr, (21)

where σr,k are the corresponding eigenvalues of the ma-
trix Ar. For example, if the right eigenvectors contain
only numbers, that is Vℓ = Vℓ, we have Uk [L(t)]Vℓ =
L(t)δkℓ. The same holds for the terms with R(t) and
if the left eigenvectors contain only numbers, i.e. Uk =
Uk. As a consequence, many of the coupling terms in
Eq. (20) vanish. By considering all coordinates qk(t),
k = 1, . . . , N the structure of Eq. (20) can be illustrated
as in Fig. 2(a). In particular, we distinguish between
three different types of modes whose stability can be an-
alyzed separately.
We first consider the modes k = 1, . . . , k1, where the

left eigenvectors contain only numbers, i.e. Uk = Uk.
This means that according to Eq. (20) the modal dy-
namics for k = 1, . . . , k1 are completely decoupled and
can be described by

q̇k(t) = (L(t) +R(t)Dk) qk(t). (22)

This corresponds to the upper row in Fig. 2 and the
elements on the main diagonal are given by Eq. (22).
We call these master modes because they can drive
the remaining modes of the network. Note that since

Dk qk(t) =
∑R

r=1 σr,k qk(t− τr) (cf. Eq. (21)), Eq. (22) is

a DDE with distributed delay
∑R

r=1 σk,r δ(τ − τr), where
δ denotes the Dirac delta function.
Second, we consider the modes k = k2 + 1, . . . , N ,

where the Uk contain lag operators while the Vk con-
tain only numbers as illustrated in the lowest row in
Fig. 2. Since in this case Uk [L(t)]Vℓ = L(t)δkℓ for the
terms in the sum of Eq. (20) with ℓ = k2 + 1, . . . , N ,
the corresponding coupling terms vanish meaning that
these modes do not drive any other mode. Consequently,
the off-diagonal terms in the last column in Fig. 2(a) are
zero. However, since the off-diagonal terms in the lower
left corner with k > k2 and ℓ ≤ k2 do not necessarily
vanish these modes can be driven by other modes and
we call them slave modes. Similarly to the master modes
the main diagonal elements of the slave modes are de-
scribed by Eq. (22).
The third type of modes with k = k1 + 1, . . . , k2 are

called intermediate modes shown in the middle row in
Fig. 2(a). In this case Uk and Vk may contain lag opera-
tors and the dynamics within the intermediate modes is
not decoupled illustrated by the large block in the mid-

dle of the matrix scheme in Fig. 2(a). In order to decou-
ple the intermediate modes from each other, a modified
decomposition of the adjacency lag operator B different
from the eigenmode decomposition Eq. (17) is necessary.
More precisely, we are searching for a decomposition

with an invariant left or right subspace. We can find such
a transformation by a block diagonalization of the adja-
cency lag operator B, where we obtain Q×Q dimensional
blocks of lag operators Dp,...,q for the intermediate modes
with Q = q−p+1 > 1. In particular, for the intermediate
modes k = p, . . . , q we use the decomposition

BVp,...,q = Dp,...,q Vp,...,q,

Up,...,q B = Dp,...,q Up,...,q,
(23)

where Vp,...,q and Up,...,q represent blocks of size N × Q
and Q×N , respectively, and Up,...,q · Vp,...,q results in the
Q dimensional identity matrix. Specifically, we construct
Eq. (23) in such a way that Up,...,q or Vp,...,q contain only
numbers, which makes use of common invariant right or
left subspaces of the matrices Br and implies that the
elements of Dp,...,q are given by linear combinations of the
lag operators S(τr). As a result the intermediate modes
are further decomposed into intermediate master modes
(Up,...,q containing only numbers) and intermediate slave
modes (Vp,...,q containing only numbers); cf. Fig. 2(b).
In this case the nQ×nQ dimensional blocks on the main
diagonal of the intermediate modes, illustrated by the
small quadratic blocks in Fig. 2(b), can be described by

q̇p,...,q(t) =

(

IQ ⊗ L(t) +
1

N
Dp,...,q ⊗R(t)

)

qp,...,q(t),

(24)
where qp,...,q(t) is an nQ dimensional column vector. A
concrete example for Dp,...,q is given in Sec. III D.
From the detailed view on Eq. (20) we can conclude

that, in contrast to the case of synchronized equilibria,
for time dependent synchronized solutions a diagonal-
ization of B does not decouple the network dynamics.
Instead, a block triangular structure appears for the net-
work dynamics; see Fig. 2a). If the modified decompo-
sition Eq. (23) is used a further decomposition of the
intermediate modes into smaller subblocks may be pos-
sible. Similar to the fact, that the eigenvalues of a tri-
angular matrix are equal to the diagonal elements, the
stability of the network can be analyzed by studying the
blocks on the main diagonal of Eq. (20). These blocks
are given by Eq. (22) for the master and the slave modes
and are given by Eq. (24) for the intermediate modes. A
frequency domain method for the accurate and efficient
stability analysis of Eq. (22) and Eq. (24) is presented in
Appendix A. If a slave mode becomes unstable only the
corresponding qk(t) grows exponentially. On the other
hand, for an unstable master mode in addition the per-
turbations qℓ(t) corresponding to all driven intermediate
and slave modes grow exponentially. Finally, we remark
that the tangential mode is always a slave mode because
by definition we have V1 = V1 = [ 1, . . . , 1 ]T meaning
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=

q1

qk1
qk1+1

qk2
qk2+1

qN

q1

qk1
qk1+1

qk2

qk2+1

qN

master 

modes

slave

modes

intermediate

modes

Structure of Eq.(20)

=

q1

qk1
qk1+1

qk2
qk2+1

qN

q1

qk1
qk1+1

qk2

qk2+1

qN

Eq.(20) with decomposition Eq. (24)

(a) (b)

FIG. 2. (a) Structure of Eq. (20) with separation into master modes (Uk contains only numbers), slave modes (Vk contains only
numbers) and intermediate modes. Only the squares and the diagonal stripes are non-empty. The stripes at the main diagonal
are associated with Eq. (22) and determine the stability of the master and the slave modes, respectively. The intermediate modes
are driven by the master modes and both can drive the slave modes. (b) Structure of Eq. (20) after additional decomposition
of the intermediate modes. The two small squares at the main diagonal of the intermediate modes are associated with two
blocks similar to Eq. (24), specifying the stability of the intermediate modes.

that the tangential eigenmode cannot drive transversal
eigenmodes.

D. Examples

As an illustration, two examples with N = 5 nodes and
two different coupling delays are studied. The first one is
a special case of all-to-all coupling without self-coupling

B =











0 S(τ1) S(τ1) S(τ1) S(τ2)
S(τ1) 0 S(τ2) S(τ1) S(τ1)
S(τ1) S(τ2) 0 S(τ1) S(τ1)
S(τ1) S(τ1) S(τ1) 0 S(τ2)
S(τ2) S(τ1) S(τ1) S(τ1) 0











. (25)

Notice that for this example the adjacency matrix A is
symmetric but the adjacency lag operator B is not sym-
metric as B45 6= B54. The operator-valued eigenvalues
after diagonalization of B as described in Eq. (17) are

D1 = 3S(τ1) + S(τ2),

D2 = −2S(τ1) + S(τ2),

D3 = −S(τ1),

D4 = −S(τ2),

D5 = −S(τ2).

(26)

All Dk, k = 1, . . . , N in Eq. (26) are a linear combina-
tion of lag operators as in Eq. (21). This means that
only master and slave modes appear and Eq. (22) can be
used for the stability analysis of all network eigenmodes.
The corresponding operators Uk and Vk can be found in
Appendix B. Notice the algebraic multiplicity D4 = D5

that also results in geometric multiplicity. This means
that V4 and V5 (and similarly U4 and U5) are not unique
but here they are constructed such that orthogonality is
satisfied.

The second example is referred to as general coupling
and is defined by the adjacency lag operator

B =











0 S(τ1) 0 S(τ1) S(τ2)
0 0 S(τ2) S(τ1) S(τ1)

S(τ1) S(τ2) 0 0 S(τ1)
S(τ1) 0 S(τ1) 0 S(τ2)
S(τ2) S(τ1) 0 S(τ1) 0











. (27)

A diagonalization as described in Eq. (17) yields the
operator-valued eigenvalues

D1 = 2S(τ1) + S(τ2),

D2 = −S(τ1) + S(τ2),

D3 = −S(τ2),

D4 = 1
2

(

−
(

S(τ1) + S(τ2)
)

+
√

S2(τ2)− 2S(τ1)S(τ2)− 3S2(τ1)
)

,

D5 = 1
2

(

−
(

S(τ1) + S(τ2)
)

−
√

S2(τ2)− 2S(τ1)S(τ2)− 3S2(τ1)
)

,

(28)

where D4 and D5 correspond to intermediate modes.
This means that for time dependent solutions the formal
diagonalization of B does not necessarily lead to uncou-
pled network dynamics for the intermediate modes. As a
consequence, Eq. (22) with D4 and D5 from Eq. (28) can
be used only for the stability analysis around an equi-
librium. In this case the nonlinear combinations of the
lag operators appearing in D4 and D5 can be defined via
multi-variable Taylor series [5]. For time dependent syn-
chronized solutions a decomposition similar to Eq. (24)
is necessary, where

D4,5 =

[

−S(τ1) S(τ1)
−S(τ1) −S(τ2)

]

. (29)

The mode shapes U4,5 (V4,5) for the modified decompo-
sition are given in Appendix B, where U4,5 (V4,5) are
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constructed as a linear combination of U4 and U5 (V4

and V5). Obviously, the formal diagonalization of D4,5

again lead to the operator-valued eigenvalues D4 and D5

as defined in Eq. (28) and this property can be also used
to construct D4,5.

IV. DELAY-COUPLED HODGKIN-HUXLEY

NEURONS

In this section we study the synchronized solutions in
a network of N delay-coupled Hodgkin-Huxley neurons
with heterogeneous delays [8, 10, 51]. In the following nu-
merical analysis the modal decomposition from Sec. III
is used, which means that we take the advantage of ana-
lyzing the modal dynamics Eq. (22) with different delay
distributions instead of the full network dynamics. We
use the frequency domain method from Appendix A for
the stability analysis of the non-autonomous DDE with
distributed delay. Apart from the lower dimension of
Eq. (22) compared to the full network dynamics, the de-
composed analysis gives us some additional information
on the stability of the particular network modes.
The time evolution of the Hodgkin-Huxley neuronal

network is given by the DDE

CV̇i(t) = I − gNam
3
i (t)hi(t)

(

Vi(t)− VNa

)

− gK n4
i (t)

(

Vi(t)− VK

)

− gL
(

Vi(t)− VL

)

+
κ

N

R
∑

r=1

ar,ij
(

Vj(t− τr)− Vi(t)
)

,

ṁi =αm

(

Vi(t)
)(

1−mi(t)
)

− βm

(

Vi(t)
)

mi(t),

ḣi =αh

(

Vi(t)
)(

1− hi(t)
)

− βh

(

Vi(t)
)

hi(t),

ṅi =αn

(

Vi(t)
)(

1− ni(t)
)

− βn

(

Vi(t)
)

ni(t),

(30)

for i = 1, . . . , N . Here the time t is measured in ms. The
symbol Vi denotes the voltage of the i-th neuron at the
soma (measured in mV) while the dimensionless gating
variables mi, hi, ni ∈ [0, 1] characterize the “openness” of
the ion channels embedded in the cell membrane. The
specific form of the nonlinear functions αm(V ), αh(V ),
αn(V ) and βm(V ), βh(V ), βn(V ) are given in Eq. (C1),
while the reference voltages VNa, VK, VL, the conduc-
tances gNa, gK, gL, the membrane capacitance C, the
driving current I, and the number of neurons N are given
in Table I in Appendix C. The last term in the voltage
equation in Eq. (30) represents a direct electronic con-
nection of conductance κ between the axon of the j-th
neuron and the dendrites of the i-th neuron, that is, Vi(t)
represents the postsynaptic potential while Vj(t−τr) rep-
resents the presynaptic potential and the delay τr stands
for the signal propagation time along the axon of the j-
th neuron (dendritic delays are omitted here). That is,
the presynaptic potential is equal to what the potential
of the soma of the jth neuron was τr time before.

In order to represent the decomposition techniques
established above the examples with all-to-all coupling
Eq. (25) and the general coupling Eq. (27) are consid-
ered with the conductances fixed at κ = 1.2 mS

cm2 and

κ = 1.6 mS
cm2 , respectively. The different values of the

coupling strengths compensate the different row sums of
the two coupling schemes, i.e., κM is the same in the
two examples. Consequently, the tangential dynamics
Eq. (7) are equivalent in the two cases when considering
homogeneous delays τ1 = τ2; see [10]. We vary the delays
and study how the stability of the equilibria and periodic
orbits change.

A. Synchronized equilibria

For the parameters considered here, Eq. (30) has a
unique equilibrium; see [10]. Fig. 3(a) and (b) show
the stability charts for the equilibrium in the (τ1, τ2)-
plane for all-to-all coupling (Eq. (25)) and general cou-
pling (Eq. (27)), respectively. The stable domains are
shaded. When crossing the thick black curves starting
from the shaded area, the dominant characteristic root
corresponding to the tangential eigenmode crosses the
imaginary axis and the synchronized equilibrium bifur-
cates to synchronized periodic solutions. Notice that
along the diagonal τ1 = τ2 of homogeneous delays, tan-
gential stability losses occur at the same locations in both
panels. When crossing the thin curves, either by setting
τ1 6= τ2 or by making the coupling more general, char-
acteristic roots corresponding to transversal eigenmodes
cross the imaginary axis. If this happens while starting
from the shaded regions, the synchronized equilibrium
becomes unstable with respect to transversal perturba-
tions and synchronization is broken. In this case typically
cluster-synchronized periodic solutions appear [52].

In order to emphasize the effects of delay heterogeneity
we show the real part λ of the dominant characteristic
roots s for the case with general coupling in Fig. 4. In
Fig. 4(a) and (b) we vary the delays along the identity
τ1 = τ2 and along τ2 = τ1 +4.8 ms, i.e., along the dotted
and dashed line in Fig. 3(b), respectively. For the ho-
mogeneous case τ1 = τ2 both tangential and transversal
stability losses occur and the synchronized equilibrium is
stable only for τ1 ∈ [1.7, 2.4] and τ1 ∈ [3.9, 4.5]. In con-
trast, for the heterogeneous case τ2 = τ1+4.8 ms tangen-
tial instabilities vanish and the stable regions are larger
compared to the homogeneous case. Heterogeneous de-
lays not always increase the stable regions. However,
properly tuned delay distributions can be used to sta-
bilize the system dynamics, as it is used, for example,
in industrial applications for the suppression of machine
tool chatter [53–55].
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FIG. 3. Stability charts for the equilibrium of Hodgkin-Huxley neurons with (a) all-to-all coupling and (b) general coupling.
Thick (black) curves are associated with purely imaginary roots of the tangential mode. Thin dark (blue) and light (green)
curves indicate purely imaginary roots associated with mode 2 and 4/5, respectively. Stable regions, where all characteristic
roots have negative real part, are shaded. The dotted and dashed lines in panel (b) correspond to Fig. 4(a) and (b), respectively.

FIG. 4. Real part of characteristic roots for general coupling
with (a) homogeneous delays τ1 = τ2 and (b) heterogeneous
delays τ2 = τ1 + 4.8 ms (b); cf. Fig. 3(b). Stable regions
are shaded. Color code as in Fig. 3 (only the dominant roots
corresponding to modes 1,2 and 4/5 are shown).

B. Synchronous periodic spiking

The tools developed above allow us to study the stabil-
ity of time-varying synchronized solutions. Here we study
synchronized periodic solutions of the Hodgkin-Huxley
neurons by analyzing the network dynamics within the
synchronization manifold with the help of the software
package DDE-BIFTOOL [56]. In other words, we com-

pute periodic solutions of the n dimensional system
Eq. (2) by using numerical collocation and continue these
while varying the delays τ1 and τ2 with different values
of the delay heterogeneity ∆τ = τ2 − τ1 as displayed in
Fig. 5. Here the peak-to-peak voltage |Vs|, that is the
difference between the maximum and the minimum volt-
age of the synchronized periodic solution, is used on the
vertical axes. The left and the right columns in Fig. 5
correspond to the all-to-all (Eq. (25)) and the general
coupling (Eq. (27)), respectively. DDE-BIFTOOL also
provides us with the stability of the periodic solution
with respect to perturbations within the synchronization
manifold, where solid thin green (thick red) curves indi-
cate tangentially stable (unstable) solutions. The stabil-
ity with respect to transversal perturbations was calcu-
lated by decomposing the network dynamics as presented
in Sec. III and analyzing the resulting periodic DDE with
distributed delay Eq. (22) or Eq. (24) with the frequency
domain method as described in Appendix A. The coef-
ficient matrices L(t) and R(t) were calculated from the
output of DDE-BIFTOOL and the operatorsDk andD4,5

were taken from Sec. III D. While following each branch
of periodic solutions, the dominant Floquet exponents as-
sociated with all N−1 transversal eigenmodes are calcu-
lated via Hill’s infinite determinant Eq. (A10). Transver-
sal instabilities are marked by dotted thick black curves
in Fig. 5.

The solid thin (green) and solid thick (red) curves in
Fig. 5(a) and (b) (for τ1 = τ2) are exactly the same
because the tangential dynamics Eq. (7) are equivalent
in case of homogeneous delays. However, due to dif-
ferent eigenvalues Dk of the adjacency lag operator for
the all-to-all and the general coupling, we obtain differ-
ent results for the stability with respect to transversal
perturbations (dotted thick black curves). For example,
for τ1 = τ2 = 3.4 ms both the synchronized equilib-
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FIG. 5. Bifurcation diagrams for synchronized solutions of the Hodgkin-Huxley neurons for all-to-all coupling (left) and general
coupling (right) and different values of the delay heterogeneity ∆τ = τ2− τ1. The peak-to-peak voltage |Vs| of the synchronized
solutions for varying delay τ1 are plotted. Solid thin green (thick red) curves represent stable (unstable) solutions with respect
to tangential perturbations. Transversal instabilities are marked by dotted black curves. The dashed vertical lines in panels
(a,b,e,f) are specific parameter sets that are used in Fig. 6. It can be seen that for increasing ∆τ the parameter regions expand,
where all synchronized periodic solutions are unstable or even no synchronized periodic solutions exist.

rium (|Vs| = 0 mV) and synchronized periodic spiking
(|Vs| ≈ 90 mV) is linearly stable for all-to-all coupling,
whereas for general coupling the synchronized equilib-
rium is unstable; cf. solutions at the vertical dashed
lines in Fig. 5(a) and (b), respectively. When increas-
ing the delay heterogeneity ∆τ = τ2 − τ1, the parameter
regions expand, where no synchronized periodic solutions

exist. For example for ∆τ = 4.8 ms shown in Fig. 5(i)
and (j) no such solutions exist for τ1 ∈ [1.9, 5.9] ms and
for τ1 ∈ [1.4, 6.2] ms, respectively. In addition, the re-
gions for transversal instabilities increase with increasing
∆τ , which further reduces the probability to observe syn-
chronized periodic spiking. Moreover, transversal insta-
bilities are more pronounced for the case of general cou-
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FIG. 6. Voltages of the Hodgkin-Huxley neurons Eq. (30)
for all-to-all coupling (a) and general coupling (b). We set
τ1 = 3.4 ms while heterogeneity in the delays is introduced at
t = 200 ms by switching from ∆τ = 0 ms to ∆τ = 2.4 ms.

pling. For example, for all-to-all coupling with ∆τ = 4.8
shown in Fig. 5(i) synchronized periodic spiking is sta-
ble for τ1 ∈ [0, 1.5] ms and τ1 ∈ [6.0, 14.7] ms, whereas
for the general coupling shown in Fig. 5(j) synchronized
periodic spiking is only stable for τ1 ∈ [0, 0.7] ms and
τ1 ∈ [6.4, 13.5] ms.
In order to demonstrate the full nonlinear dynamics

of the Hodgkin-Huxley neurons we use numerical sim-
ulations. Specifically, Eq. (30) was integrated numeri-
cally with a Runge-Kutta method [57]. Arbitrary con-
stant values are chosen for the initial functions. For
t < 200 ms the delays were set to the homogeneous case
τ1 = τ2 = 3.4 ms corresponding to the vertical dashed
lines in Fig. 5(a) and (b). The voltages Vi of the five
neurons are plotted as a function of time t for all-to-all
coupling in Fig. 6(a) and for general coupling in Fig. 6(b).
In both cases (after some transient dynamics not shown
in Fig. 6) synchronized periodic spiking arose for t < 200
ms. At t = 200 ms, the delay τ2 was increased abruptly
to create the heterogeneity ∆τ = τ2 − τ1 = 2.4 ms cor-
responding to the vertical dashed lines in Fig. 5(e) and
(f). Since in this case all possible synchronized solutions

are transversally unstable, cluster-synchronized periodic
spiking (for the all-to-all coupling) or asynchronous spik-
ing (for the general coupling) appears.

V. CONCLUSION

Synchronized solutions of networks with heterogeneous
coupling delays were investigated. The conditions for the
existence of the synchronization manifold were given. It
was shown that adding heterogeneity in the delays may
destroy time dependent synchronized solutions while still
maintain synchronized equilibria.

A systematic method was presented for the decompo-
sition of the dynamics at the network level in the vicinity
of synchronized solutions. This was based on the decom-
position of the adjacency lag operator, which contains
information about the network topology as well as the
coupling delays. Conditions were given for the modes
to be decoupled. In the generic case, a diagonalization
of the adjacency lag operator leads only to a triangu-
lar structure for the network dynamics. This is a fun-
damental difference to synchronized equilibria, where a
diagonalization of the adjacency lag operator decouples
the network dynamics [5]. Due to the triangular struc-
ture, indeed, for time dependent synchronized solutions
the stability of the complete network dynamics can be
analyzed by several lower dimensional blocks in the main
diagonal, but the unstable directions cannot be identified
uniquely. The low dimensional blocks that determine the
stability of the network modes are DDEs with distributed
delay, where the stability of different modes is associated
with different delay distributions.

As an example, the effects of delay heterogeneity on
synchronized equilibria and synchronized periodic spik-
ing in a systems of Hodgkin-Huxley neurons were studied.
It turns out that increasing the heterogeneity in the cou-
pling delays leads to larger regions where all synchronized
periodic solutions are unstable or even no synchronized
periodic solutions exist. As neurosystems often store in-
formation using periodic cluster-synchronized states, es-
tablishing mathematical tool for their stability analysis
in the presence of heterogeneous delays is an interesting
future research direction. The extension of the current
work to near synchronous states is another interesting
direction for future research.
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Appendix A: Stability analysis in the frequency

domain

A frequency domain approach is suitable for the stabil-
ity analysis of the modal dynamics Eq. (22) and Eq. (24)
because exponential functions est are eigenfunctions of
the lag operator (cf. Eq. (12)). For synchronized equilib-
ria xs(t) ≡ x∗

s , Eq. (22) with time invariant coefficient
matrices L(t) = L0 and R(t) = R0 can be used for the
description of the modal dynamics. Then, the exponen-
tial ansatz

qk(t) = q̂k,0 e
st (A1)

with s ∈ C can be substituted into Eq. (22) (see [44, 48,
49, 58]), which leads to the modal characteristic equation

det [Ins− L0 −R0Λk(s)] = 0, (A2)

where Λk(s) is the frequency domain representation of
Dk. In fact, we can define Λk(s) as the eigenvalue of the
operator Dk, i.e.,

Dk e
st = Λk(s) e

st . (A3)

Recall that e−sτ is the eigenvalue of the lag operator
S(τ); see Eq. (12). For example, when Dk can be written
in the form Eq. (21), we have

Λk(s) =

R
∑

r=1

σr,k e−sτr . (A4)

The discrete spectrum of the DDE, i.e., the characteristic
roots s, can be found by solving the characteristic equa-
tion Eq. A2. The characteristic roots determine the sta-
bility of the kth network mode: if all characteristic roots
are located in the left-half of the complex plane then the
mode is stable. Although there are infinitely many char-
acteristic roots, those with the largest real part, often
called dominant roots, determine the stability. In this pa-
per we compute these roots by using a multi-dimensional
bisection method [37, 59]. As the parameters (e.g., the
delays) are varied, roots can move into the right-half of
the complex plane resulting in an instability. The stabil-
ity boundaries indicate the parameter values where roots
cross the imaginary axis. By substituting s = iω, ω ≥ 0
into Eq. A2 one may find these boundaries explicitly.

The frequency domain stability analysis for synchro-
nized periodic solutions xs(t) = xs(t + T ), where T de-
notes the period, is based on Hill’s infinite determinant
method [60, 61]. The method is often used in engineering
applications and it is also known as multifrequency ap-
proach [36, 37, 62–64]. Here we present the formula only
for the analysis of Eq. (22) but the approach can be easily
extended to the analysis of Eq. (24). For synchronized
periodic solutions the coefficient matrices are periodic,
that is, L(t) = L(t + T ) and R(t) = R(t + T ). From

Floquet theory it is known that the solutions Eq. (22)
can be written as

qk(t) = pk(t) e
st, pk(t) = pk(t+ T ), (A5)

where the complex numbers s ∈ C are called Floquet
exponents; see [65]. The periodic part pk(t) can be ex-
panded using Fourier series

pk(t) =

∞
∑

l=−∞

q̂k,l e
ilΩt ⇒ qk(t) =

∞
∑

l=−∞

q̂k,l e
(s+ilΩ)t,

(A6)
where i is the imaginary unit, Ω = 2π/T is the frequency
and q̂k,l are the Fourier coefficients. Similarly, the peri-
odic matrices L(t) andR(t) can be expanded into Fourier
series

L(t) =

∞
∑

m=−∞

Lm eimΩt, R(t) =

∞
∑

m=−∞

Rm eimΩt .

(A7)
Putting Eq. (A6) and Eq. (A7) into the modal dynamics
Eq. (22) yields

∞
∑

m=−∞

eimΩt

∞
∑

l=−∞

Mm,l q̂k,l = 0, (A8)

where the matrices Mm,l are given by

Mm,l = In(s+ilΩ) δm,l−Lm−l−Rm−lΛk(s+ilΩ). (A9)

and Λk(s) are defined in Eq. (A3). Since in Eq. (A8) the
coefficients for each harmonic m must vanish, we obtain

det

















. . .
... . .

.

M−1,−1 M−1,0 M−1,1

. . . M0,−1 M0,0 M0,1 . . .
M1,−1 M1,0 M1,1

. .
. ...

. . .

















= 0. (A10)

which is an infinite determinant and can be interpreted
as the characteristic equation of the DDE Eq. (22) for pe-
riodic coefficient matrices. Note that the matrices Mm,l

also depend on the modal index k.
If the coefficient matrices L(t),R(t) are constant, the

higher harmonics in Eq. (A7) vanish, i.e., Lm = Rm = 0

for m 6= 0, and Eq. (A10) simplify to Eq. (A2). In gen-
eral, the Fourier coefficients Lm and Rm depend on the
form of the synchronized periodic solution of the net-
work, which is often available only numerically. Again,
stability is guaranteed when all Floquet exponents s are
located in the left-half of the complex plane. We use
the multi-dimensional bisection method to compute the
exponents and detect the stability boundaries in param-
eter space [37, 59] but one may find alternative methods
in [52]. For a practical calculation of the determinant
Eq. (A10), the infinite matrix M is truncated to a finite
dimensional matrix by taking into account only a finite
number of higher harmonics [36, 37, 62, 63]. Finally, we
remark that ansatzes similar to Eq. (A1) or Eq. (A5) can
also be made in the original system Eq. (6) leading to
a complete frequency domain description of the network
dynamics.
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Appendix B: Network modes for the examples

For simplicity we introduce the notation S(τ1) = S1, S(τ2) = S2. The operator-valued left and right eigenvectors
for the all-to-all coupling corresponding to the operator-valued eigenvalues of Eq. (26) are given by

V1 =











1
1
1
1
1











, V2 =











1
− 3

2
− 3

2
1
1











, V3 =
1

4S1 + S2











S1

S1

S1

−(3S1 + S2)
S1











, V4 =











0
1
2

− 1
2
0
0











, V5 =
1

3S1 + 2S2











S1 + S2

− 1
2S1

− 1
2S1

S1 + S2

−(2S1 + S2)











,

(B1)
and

U1 =
[

1
5

13S2
1+9S1S2+3S2

2

(4S1+S2)(3S1+2S2)
1
5

1
5

S1

4S1+S2

1
5
2S1+3S2

3S1+2S2

]

,

U2 =
[

1
5 − 1

5 − 1
5 0 1

5

]

,

U3 =
[

1 0 0 −1 0
]

,

U4 =
[

0 1 −1 0 0
]

,

U5 =
[

1 0 0 0 −1
]

.

(B2)

The operator-valued left and right eigenvectors corresponding to the general coupling with D1, D2 and D3 from
Eq. (28) corresponding to the master and slave modes and D4,5 from Eq. (29) corresponding to the intermediate
modes are given by

V1 =











1
1
1
1
1











, V2 =











1
−2
−2
1
1











, V3 =
1

2

1

(S1 + S2)(S1 − 2S2)











S2
1 − 2S2

2

−S2
1

−S2
1

S2
1 − 2S2

2

−(S2
1 − 2S1S2 − 2S2

2 )











,

V4,5 =
1

(S2
1 − S1S2 + 2S2

2 )(7S
2
1 + 8S1S2 + 2S2

2 )

×











S1(S
3
1 − S1S

2
2 − S3

2 ) S1(2S
3
1 + 2S2

1S2 + 5S1S
2
2 + 4S3

2 )
S4
1 + 6S2

1S
2
2 + 7S1S

3
2 + 2S4

2 S1(2S
3
1 − 5S2

1S2 − 3S1S
2
2 + 2S3

2 )
−6S4

1 − S3
1S2 − 2S2

1S
2
2 − 7S1S

3
2 − 2S4

2 S1(2S
3
1 − 5S2

1S2 − 3S1S
2
2 + 2S3

2 )
S1(S

3
1 − S1S

2
2 − S3

2 ) −5S4
1 + S3

1S2 − 3S2
1S

2
2 − 10S1S

3
2 − 4S4

2

S1(S
3
1 − S1S

2
2 − S3

2 ) S1(2S
3
1 + 2S2

1S2 + 5S1S
2
2 + 4S3

2 )











,

(B3)

and

U1 =
[

1
6
9S3

1+16S2
1S2+12S1S

2
2+4S3

2

(S1+S2)(7S2
1
+8S1S2+2S2

2
)

(S1+S2)(4S1+S2)
21S2

1
+24S1S2+6S2

2

3S2
1+3S1S2+S2

2

21S2
1
+24S1S2+6S2

2

S1(6S1+5S2)
21S2

1
+24S1S2+6S2

2

1
6
S1+2S2

S1+S2

]

,

U2 =
[

− 1
3

S2(2S
2
1−3S1S2+2S2

2 )

(S1−2S2)(S2
1
−S1S2+2S2

2
)

− 1
3

S2
1−S1S2+S2

2

S2
1
−S1S2+2S2

2

− 1
3

S2
2

S2
1
−S1S2+2S2

2

1
3

S1S2

S2
1
−S1S2+2S2

2

1
3

S1−S2

S1−2S2

]

,

U3 =
[

1 0 0 0 −1
]

,

U4,5 =

[

0 1 −1 0 0
1 0 0 −1 0

]

.

(B4)

Appendix C: Details of the Hodgkin-Huxley model

The nonlinear functions used in the the Hodgkin-
Huxley model Eq. (30) are

αm(V ) =
0.1 (V + 40)

1− e−
V +40

10

, βm(V ) = 4 e−
V +65

18 ,

αh(V ) = 0.07 e−
V +65

20 , βh(V ) = 1

1+e−
V +35

10

, (C1)

αn(V ) =
0.01 (V + 55)

1− e−
V +55

10

, βn(V ) = 0.125 e−
V +65

80 .

while the parameters used in Eq. (30) are given in Table I.

TABLE I. Parameters for Hodgkin-Huxley neurons.

VNa = 50 mV gNa = 120 mS

cm2 C = 1 µF

cm2

VK = −77 mV gK = 36 mS

cm2 I = 20 µA

cm2

VL = −54.4 mV gL = 0.3 mS

cm2 N = 5


