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Abstract: To reach the maximal material removal rate in turning processes, optimal 

technological parameters can be selected from the corresponding stability charts. At low 

cutting speed ranges, appropriate modeling of the process damping effect is essential to 

obtain reliable stability charts. Large variety of physical explanations and mathematical 

descriptions are used in the literature to predict the increased stability limits in the 

corresponding parameter domains. 

 

In this study, the cutting force is calculated by means of finite element method (FEM) 

based simulations. Due to the surface regeneration effect, the cutting force depends on 

the current and the delayed tool positions. This complex dependency is modeled 

separately with the help of two different frequency response functions (FRF). The first 

FRF is based on the time signal of the cutting force computed by FEM for a predefined 

perturbed tool motion. The second one is obtained by introducing a perturbed surface 

profile which also affects the resultant cutting force. The combination of these two 

FRFs presumably includes all the relevant sources of the process damping phenomenon, 

such as the contact forces on the flank face, the short regenerative effect on the rake 

face, and also the plastic deformation, thermal effects at the tool tip. 

Stability charts are constructed based on these specific FRFs for a single degree-of-

freedom mechanical model. It is shown, that the process damping phenomenon can be 

explained via different physical effects and that they all have similar influences on 

cutting stability. 
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1. INTRODUCTION 

For turning processes experience shows, that the lower envelope of stability lobes in the 

low spindle speed range shifts up to higher depth of cut values. There exist various 

models to describe this phenomenon. In a widely spread model, so-called process 

damping model, additional damping proportional to the time delay is added to the 

structural damping to characterize the contact force at the small region between the 

flank face and the work piece ([Das and Tobias, 1967], [Chiou et al., 1998], [Altintas et 

al., 2008] and [Eynian, 2010]). 



A different explanation is given in [Stépán,1984] and [Stépán, 1989], where the contact 

force on the rake face is modeled by a short delay representation.   

The main goal of this study is to give a model for the cutting force including all relevant 

sources of the phenomenon explained above. The force fluctuation caused by the 

current tool motion and by the motion of the tool one revolution before is simulated by 

means of FEM computations. 

2. MECHANICAL MODEL 

 
 

Figure 1: Mechanical model of the turning process with surface regeneration effect 

 

The governing equation of the simplest, 1DoF turning model is given with [Tlusty and 

Polácek, 1963] [Tobias, 1965]: 

 𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝐹𝑎, (1) 

where 𝐹𝑎 is the cutting force in axial direction. The mechanical model can also be well 

characterized by its frequency response function (FRF) 𝐻1, as follows 

 𝑥(𝜔) = 𝐻1(𝜔)𝐹𝑎. (2) 

𝐻1 is usually determined by modal testing. 

The axial cutting force is influenced by the variation of the tool motion, but is constant, 

if there is no vibration. However, for stability analysis only the variation of the axial 

cutting force and the tool motion around the stationary state is relevant. 

According to the surface regeneration effect, the 𝐹𝑎 depends on the current 𝑥(𝑡) and the 

previous 𝑥(𝑡 − 𝜏) tool position, which describes the current surface profile 𝑢(𝑡) =
𝑥(𝑡 − 𝜏), where the time delay 𝜏 is determined with the help of the spindle speed 𝛺 by 

𝜏 = 2𝜋/𝛺.  

If we consider that the variation of the force can be separated into two parts, one related 

to the current tool deflection and the other to the current surface profile: 

 𝐹𝑎(𝑥(𝑡), 𝑢(𝑡)) = 𝐹𝑥(𝑥(𝑡)) + 𝐹𝑢(𝑢(𝑡)). (3) 



 

If linearity is assumed, the variation of the axial cutting force due to a small perturbation 

in x(t) or in u(t) can be rewritten in frequency domain: 

 𝐹𝑥(𝑥(𝜔)) = 𝐺𝑥(𝜔)𝑥(𝜔), (4) 

 𝐹𝑢(𝑢(𝑡)) = 𝐺𝑢(𝜔)𝑢(𝜔) = 𝐺𝑢(𝜔)𝑥(𝜔)𝑒−i𝜔𝜏, (5) 

where we denote the Force-FRFs with 𝐺𝑥(𝜔) and 𝐺𝑢(𝜔), which give back the force-

output for a given input position. 

 

3. DETERMINATION OF THE STABILITY CHART 

For known 𝐺𝑥(𝜔) and 𝐺𝑢(𝜔) functions, stability analysis can be carried out. 

Substituting (4) and (5) into the perturbed governing equation (1) one obtains the 
following: 

 𝑥(𝜔) = 𝐻1(𝜔)(𝐺𝑥(𝜔) + 𝐺𝑢(𝜔)𝑒−i𝜔𝜏)𝑥(𝜔). (6) 

Finally, the stability boundary can be found based on the characteristic equation 

[Stépán,1989] ,[Merdol and Altintas, 2004]:  

 𝐷 = (1 − 𝐻1(𝜔)(𝐺𝑥(𝜔) + 𝐺𝑢(𝜔)𝑒−i𝜔𝜏)) = 0. (7) 

The real and the imaginary parts of Eq. (7) form a co-dimension 2 problem 

(Re(𝐷) = 0, Im(𝐷) = 0) in the usual parameter space of spindle speed 𝛺, depth of cut 

𝑤 and chatter frequency 𝜔. This set of equations can be solved by the Multi-

Dimensional Bisection Method (MDBM) [Bachrathy and Stepan 2012] for given Force-

FRF functions, which are determined in the following section. 

 

4. THEORETICAL FORCE-FRF 

 

With the well-known proportional force model [Tlusty and Polácek, 1963] [Tobias, 

1965] 

 𝐹𝑎 = 𝑘1𝑤(ℎ0 − 𝑥(𝑡) + 𝑥(𝑡 − 𝜏)), (8) 

the two Force-FRFs  are: 

 𝐺𝑥(𝜔) = −𝑘1𝑤 ,       𝐺𝑢(𝜔) = −𝐺𝑥(𝜔) = 𝑘1𝑤 . (9) 

The corresponding Bode-plots can be seen in Fig. 2.a), and the stability diagram 

together with the robust stability limit, which forms the lower envelope of the stability 

lobe structure [Bachrathy 2015] are presented in Fig. 2.b). 

 

4.1 Process damping model 

The force model including the process damping effect can be written in the following 

form [Budak and Tunc, 2009], [Chiou et al., 1998]:  



 𝐹𝑎 = 𝑘1𝑤(𝑓𝑧 − 𝑥(𝑡) + 𝑥(𝑡 − 𝜏)) − 𝐶𝑤𝜏𝑥̇(𝑡), (10) 

where 𝐶 is the process damping coefficient. For the Force-FRFs, this leads to: 

 𝐺𝑥(𝜔) = −𝑘1𝑤 − 𝑖 𝜔 𝐶𝑤 𝜏 ,       𝐺𝑢(𝜔) = 𝑘1𝑤. (11) 

 
 

Figure 2: (a) Force-FRF for proportional cutting force model (blue continuous: 𝐺𝑥, greed dotted: 𝐺𝑢)  

(b) The corresponding stability chart (red: stability limit, green: robust stability limit) 

 

 
 

Figure 3: (a) Force-FRF for cutting force model with process damping  

(blue continuous: 𝐺𝑥, greed dotted: 𝐺𝑢)  

(b) The corresponding stability chart (red: stability limit, green: robust stability limit) 

 

4.2. Short-delay model 

The short-delay model is described in details in [Stépán,1989], where 𝐹𝑓 is given in the 

following integral form with distributed time-delay: 

 𝐹𝑎 = 𝑘1𝑤 ∫ 𝛾(𝜃)(ℎ0 − 𝑥(𝑡 − 𝜃) + 𝑥(𝑡 − 𝜏 − 𝜃))d𝜃
𝜃𝑚𝑎𝑥

0
. (12) 

After straightforward calculations one ends up with: 

 𝐺𝑥(𝜔) = −𝑘1𝑤 ∫ 𝛾(𝜃)(𝑒−i𝜔𝜃)d𝜃
𝜃max

0
 ,       𝐺𝑢(𝜔) = −𝐺𝑥(𝜔). (13) 



 
 

Figure 4: (a) Force-FRF of the short-delay cutting force model (blue continuous: 𝐺𝑥, greed dotted: 𝐺𝑢)  

(b) The corresponding stability chart (red: stability limit, green: robust stability limit) 

 

It is important to note, that even though the magnitudes of the Force-FRFs given by the 

process damping and the short-delay force models are very different, both describe the 

shift of the lobes for the low spindle speed range in a similar way. It seems, that it is not 

the force magnitude, but the phase shift of the force, which has a key-role, even though 

they are not the same for the two models. 

In order to capture the relevant sources of the lobe-shifting effect, such as contact forces 

on the flank face, short regenerative effect on the rake face, and plastic deformation, 

thermal effects at the tool tip, FEM simulations are carried out. 

 

5. FINITE ELEMENT SIMULATION 

5.1. Material model 

The material model adopted in this study is based on an elastic-viscoplastic constitutive 

equation extended with thermal softening effect, where the yield stress of the material is 

governed by the expression proposed by Johnson and Cook [Johnson & Cook, 1985]: 
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  (14) 

where   represents the yield stress, pl  is the accumulated equivalent plastic strain, 
0  

denotes the reference strain rate, T  is the current temperature, whereas 
rT  and 

mT  are 

the reference and the melting temperature. Constants A , B , C , n   and m  are material 

parameters. Equation  (14) is a built-in model in ABAQUS. The material parameters 

for the A2024-T351 workpiece are collected in Table 3. [Mabrouki et al., 2008]. 

Table 1: Material parameters for the Johnson-Cook plasticity model 

 MPaA   MPaB   -n   -C   -m  

352 440 0.42 0.0083 1 



The material damage is governed by the Johnson-Cook shear failure model, where the 

damage initiation law is specified by the relation for the equivalent plastic strain of the 

damage initiation: 
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  (15) 

where  /p   is the stress triaxiality and 
1 5D D  are additional material parameters, 

and the values for A2024-T351 are reported in Table 2. [Mabrouki et al., 2008]. 

Additional material and physical parameters for the given material are listed in Table 3. 

[Mabrouki et al., 2008]. 

 

5.2. Geometry, mesh and loading conditions 

The geometry of the workpiece is depicted in Fig. 5, where the dimensions are to be 

understood in [mm]. 

For sake of simplicity, the tool is modeled as a rigid body with rake and clearance 

angles 0° and 20°, respectively. 

 

Table 2: Failure parameters for A2024-T351 

 1 -D   2 -D   3 -D   4 -D   5 -D  

0.13 0.13 -1.5 0.011 0 
 

Table 3: Workpiece material and physical parameters 

3

Density

kg/m  

 
 

Young's modulus

GPa
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Poisson's ratio


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Specific heat

J/kg / °C
 

2700 73 0.33 0.557 877.6T    
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Figure 5: Geometry of the workpiece 



 

The applied element type is CPE4RT, 4-node plane strain thermally coupled 

quadrilateral element with reduced integration and hourglass and distortion control. The 

applied element size is 0.015mm. 

The applied cutting speed of the tool along the horizontal direction is 5 m/s. 

 

CASE 1 - Perturbation in the tool path:  

In FEM simulations, the impact-like motion is difficult to model, hence a smoothed step 

function will be used. The perturbation in vertical direction is controlled by the 

ABAQUS built-in „Smooth Step” amplitude function with the tabular data provided in 

Table 4. The displacement perturbation in vertical direction is 0.045 mm. The initial 

dept-of-cut was 0.3 mm. The path of the tool in the neighboring region of the 

perturbation is illustrated in Fig. 6, where the dimensions are given in [mm]. 
 

Table 4: Tabular data for the smooth step 

function 
Time Amplitude 

0 0 

0.00028 0 

0.0002925 1 

0.00053 1 

 

 
 

Figure 6: Loading path in the region of the 

perturbation 

CASE 2 - Perturbation in the workpiece surface contour: In this case, the contour of 

the workpiece 𝑢(𝑡) is changing at time 0.00028 s according to Fig.7. 

 

 
Figure 7: Loading path in the region of the perturbation 

 

The friction coefficient defined between the tool and the material was 0.1. The 

maximum contact shear stress allowed in this simulation was / 3A . The default heat 

generation option was set for the contact property. In addition, the default value 0.9 was 

used for the inelastic heat generation for the workpiece material. 

 

 

 



5.3. Results 

For illustration purposes, the distribution of the Mises equivalent stress and the nodal 

temperature corresponding to CASE 1 is demonstrated in Fig. 8 at step time 2.26E-04. 

The variation of the vertical force acting on the tool is shown in Fig 9. 

 

    
 Figure 8: Distribution of the Mises equivalent stress and the nodal temperature 

 

 
Figure 9: Vertical force acting on the tool in CASE 1 and in CASE 2, respectively 

 

5.4. FEM based Force-FRFs 

Based on the predefined tool path and on the resultant force fluctuation the Force-FRFs 

can be determined with 

 Gx(ω) = w
Fx

FEM(x(ω))

xFEM(ω)
 ,      Gu(ω) = w

Fu
FEM(x(ω))

uFEM(ω)
.  (16) 

The multiplication with 𝑤 is necessary hence only plane strain elements were used. The 

resultant raw Force-FRFs are plotted in Fig.10 a) and the filtered ones in Fig.10 b). 

 



 

Figure 10: Force-FRF based on the FEM simulations (blue: continuous: 𝐺𝑥, greed dotted: 𝐺𝑢)  

(b) The corresponding stability chart (red: stability limit, green: robust stability limit) 

 

Due to difficulties of numerical calculations, large fluctuations can be observed in the 

force functions, which leads to moderate noise in the Force-FRFs’ magnitudes and to 

large noise in their phase angles. With proper filtering techniques, the tendencies can be 

visualized. On one hand, concerning the magnitudes, it shows correlation with the 

process damping force model, which has its roots in the compressed workpiece material 

appearing in the FEM simulation due to high velocity of the perturbed tool motion. On 

the other hand, the changing phase angle in both Force-FRF functions prevail 

characteristic of the short-delay force model. 

In order to determine stability charts based on these Force-FRF functions, higher time 

resolution and much smaller element size are required. 

 

6. CONCLUSION 

With the introduced Force-FRF formulation the conditions of the stability computation 

can be given in a simple form, even for force models including distributed delays. 

In order to capture all relevant sources of lobe-shifting phenomenon, such as contact 

forces on the flank face, short regenerative effect on the rake face, and also plastic 

deformation, thermal effects at the tool tip, FEM simulations were carried out. 

Future goal is to create FEM computation with higher resolution to be able to determine 

the corresponding stability charts and to determine the Force-FRFs via direct 

measurements. 
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