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Chapter 1

Introduction

1.1 Introduction
The bisection method – or the so-called interval halving method – is one of the
simplest root-finding algorithms which is used to find zeros of continuous non-linear
functions. This method is very robust and it always tends to the solution if the signs
of the function values are different at the borders of the chosen initial interval.

Geometrically, root-finding algorithms of f(x) = 0 find one intersection point
of the graph of the function with the axis of the independent variable. In many
applications, this 1-dimensional intersection problem must be extended to higher
dimensions, e.g.: intersections of surfaces in a 3D space (volume), which can be
described as a system on non-linear equations. In higher dimensions, the existence of
multiple solutions becomes very important, since the intersection of two surfaces can
create multiple intersection curves.

In this User’s Guide, I give a description of the Matlab package of the Multi-
Dimensional Bisection Method.

The theoretical details and the flowchart of the computation is presented in [1].
If you use this code, please, cite my work!

Important notice: users of MDBM are assumed to have a basic knowledge about
Matlab programming. The manual on the package does not replace the corresponding
text books!
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Chapter 2

Program description

2.1 Required form of the function
The numerical method is implemented to determine the roots of the function given
in the following form

f(x) = 0, (2.1)

in other form

f1(p1, p2, . . . , pi, . . . , pNdim
) = 0,

f2(p1, p2, . . . , pi, . . . , pNdim
) = 0,

...
fC(p1, p2, . . . , pi, . . . , pNdim

) = 0,

(2.2)

where p is the general coordinate vector (the independent parameter vector), with
general variablei = 1, 2, ..., Ndim. The number of equations, which defines the co-
dimensions C must be smaller or equal than the parameter dimensions Ndim, so
C <= Ndim. Note, that the Ndim − C value defines the dimension of the solutions
(E.g.: 3 parameter - Ndim = 3 with two equation C = 2, defines curves Ndim−C = 1).

The MDBM is efficient if Ndim − C=1 or 2. In case of Ndim − C = 0, fine initial
mesh is necessary in some problems.

The MDBM is designed and optimized for Ndim = 2, 3. Higher values for Ndim

(4,5,6) and Ndim − C (3,4) can also be used, however, the computational time and
the memory consumption of the MDBM is much larger in these cases. Theoretically
the MDBM method is programmed for any high values of the Ndim and C.
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2.2 The Developed Matlab algorithm
Program files

The db_mdbm file contains all necessary code for the computation, which can be called
as follows:

outputsol
=db_mdbm(ax,bound_fuction_name,Niteration,par,triangulation);

The output is a struct which contains the interpolated roots in outputsol.posinterp,
and the corresponding gradients of the functions outputsol.gradient, the triangu-
lation in DTalphashapecell in different levels (if the input triangulation=true),
and many other variables (which can be used for development purpose).

2.3 Input parameters of db_mdbm file
ax - (struct) description of the parameter region

bound_fuction_name - (string) name of the ’system files’
(e.g: bound_fuction_name=’fval_my_nonlin_system’) which evaluates the func-

tions.

Niteration - (integer >= 1 ) number of the iteration halving along all the parameter
dimension

par - (struct) additional parameters for the computation (optional)

triangulation - (logical) if it is true, then the determined point cloud is triangulated
(optional)

2.3.1 Definition of the parameter space - ax

First of all, lets assume that the parameter vector p determines an n-cube with Ndim

dimension (Ndim = 2 - rectangle, Ndim = 3 - "cube") that is: size(p) = Ndim.
One input of the method is an initialized (coarse) net within this n-cube. Its

resolution must be defined along each direction (dimension) and must be paced in a
structure ax(i).val where i = 1, 2, ...Ndim. It is typically given as follows:

ax(1).val = linspace(p1min, p1max, Np1);
ax(2).val = logspace(9, 10, 10);
ax(3).val = (0.1 : 0.1 : 2).ˆ(−1);

(2.3)

Note in the example above, that it is not necessary to have a uniform linear mesh.
In some case it is very useful to use some power of a linear grid as given in the third
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line of the equation above. Typically, the length of these vectors are between 6 and
30, depending on the problem.

2.3.2 Definition file of the functions - bound_fuction_name

The function values f1, f2, . . . , fC must be defined by the user in a separate Matlab
function file (*.m). The string bound_fuction_name must contains the name of this
file, e.g.: bound_fuction_name=’fval_my_nonlin_system’;

or
bound_fuction_name=’fval_complex_3_turning_stability’;
In the later case, this m-file must be called as follows:

f= fval_complex_3_turning_stability(ax);
or

f= fval_complex_3_turning_stability(ax,par);
The par can contain additional parameters if it is provided in the db_mdbm func-

tion.
Details of the input and output parameters of this file will be discussed later.
It can be an in-line function, too e.g.:
bound_fuction_name=@(x) sin(x(1,:))+cos(x(2,:)),
however, a non-linear system is usually described in a more complex way and it

is better to place it in a separate m-file.

2.3.3 Number of iterations - Niteration

The Multi-Dimensional-Bisection-Method needs the number of the iteration Niteration
as a parameter. Note, that Niteration = 1 means, that only the coarse mesh will
be analysed. Typical values of Niteration are 4-5-6-(7-8-9) for 2 parameter problems
(Ndim = 2) and 2-3-(4) for 3 parameter problems (Ndim = 3). Note, that the memory
consumption of the computation increases exponentially as a function of Niteration:

v const× 2(Ndim+1)Niteration .
E.g.: for a 3 parameter problem with 4 iteration (Ndim = 3, Niteration = 4) it

is 216= 65 536 times the memory consumption of the computation along the initial
mesh only.

Some memory management is built into the numerical method, but not in each
steps. So, for a new problem, the Niteration should increase step-by-step while
the memory consumption of the method is monitored, otherwise Matlab (and/or the
operation system) might collapse (or simply will not respond).

2.3.4 Additional parameters - par

In many situation extra (constant) parameters are necessary for the computations.
Instead of using global variables, these variables can be placed in this par variable,
typically as a struct. E.g. the constant parameters of a dynamic system can be
placed in a struct and provided to the db_mdbm file, and then it can be reached in the
’fval_my_nonlin_system’ file as follows:

4



par.mass=2;
par.damping=0.1’;
par.stiffness=10’;
...
outputsol=db_mdbm(ax,’fval_my_nonlin_system’,4,par);
and the file is defined as follows:
function fvals=fval_my_nonlin_system(ax,par)
s=par.stiffness;
...

This par file can be updated during the computation if necessary, the files should be
formed as follows:

function [fvals,parout]=fval_my_nonlin_system(ax,par)
...
par.A(end+1)=...;
parout=par;
...

2.3.5 Additional parameters - triangulation

The output of the MDBMmethod is basically a point clouds. If triangulation=true,
then the point cloud is triangulated to be plotable as a line or surface, however, in
case of larger Ndim (>3) it could take a very long time. If only the point cloud should
be presented or during the testing phase of the actual problem, it is not necessary to
compute the triangulationtriangulation=false.

Note, that the default value is triangulation=true. It is also important to note,
that the triangulation is problematic at the borders of the parameter space, and in
case of close objects (like close perpendicular lines or intersecting lines).

2.4 The system file: fval_my_nonlin_system

This function is provided by the user, which gives the values of the functions of the
specific problem.

This file must be called as e.g.:

[f, paramout] = fval_my_nonlin_system(ax, par),

where the inputs ax represent a bunch of (unordered) points (with number Np) in the
selected ’parameter’ region/domain. ax is a matrix with size(ax) = [Ndim, Np], where
Ndim is the dimension of the parameter region (see Subsec. 2.3.1). For the nth point:
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p1,n = ax(1, n)
. . .
pi,n = ax(i, n)
. . .
pNdim,n = ax(Ndim, n).

(2.4)

The input par is optional and it can contain some further parameters computed
by the user (or necessary for the user). If it is updated during the computation than
the new values should be place in the output paramout (it is also optional).

The output of this function must be a matrix size(f) = [C, Np]. In the columns,
the function values are placed f1, f2, . . . , fC . Each row refers to each row of the
parameter values of the ax variable. (See the realization in the basic example files
fval_basic_X_pardimX_codimX.m, where different types of evaluation are presented.
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Chapter 3

Examples

Many type of examples are given with their corresponding Matlab m-files, which can
be used as a base for a new problem.

The examples are described from the simplest problem to more complex ones.
The first Section presents very basic examples to help understanding the definition of
the parameter space and the number of co-dimensions. The second Section presents
the plotting possibilities and special presentation forms of the output solution of the
MDBM method. In the third Section, some complex examples where a complicated
problem is solved with special functions and special plotting options.

3.1 Basic Examples
These simple examples present computations for 1 to higher dimensional problems
with ’default’ computation and plotting options. The first few examples are described
here, with the corresponding functions. All the other functions and calculations can
be found in the following files:

run_test_basic_9_pardim4_codim3.m
fval_basic_9_pardim4_codim3.m

where the number after the pardim refers to the number of the independent parameter
variables, and the number after the codim refers to the one of co-dimensions which is
equal to the number of equations.

The fval_basic_... function usually contains many different solutions to eval-
uate the same function values. All the commented versions lead to the same results.
The vectorial format is very fast, however, it can not be used in every situation. The
for cycle is slow but it can be used in any case (see 3.3.1).

3.1.1 1-parameter function, co-dimension 1

run_test_basic_1_pardim1_codim1.m
fval_basic_1_pardim1_codim1.m

The roots of a sinusoidal function are determined.
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f1(x) = sin x = 0. (3.1)

Figure 3.1: Roots of the sin function.
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3.1.2 2-parameter function, co-dimension 1

run_test_basic_2_pardim2_codim1.m
fval_basic_2_pardim2_codim1.m

Finding the roots of a two parameter function, which determines a circle with
radius R = 2, defined by the following equation

f1(x, y) = x2 + y2 −R2 = 0. (3.2)

Figure 3.2: The set of roots forms a circle.
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3.1.3 2-parameter function, co-dimension 2

run_test_basic_3_pardim2_codim2.m
fval_basic_3_pardim2_codim2.m

Finding the roots of a two parameter functions. Now the function is vector valued;
it is defined by the two following scalar equations

f1(x, y) = x2 + y2 −R2 = 0,

f2(x, y) = x− y = 0.
(3.3)

where f1 is a circle as defined in the previous subsection and f2 is a straight line
x = y.

Figure 3.3: The roots of the equations.
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3.1.4 3-parameter function, co-dimension 1

run_test_basic_4_pardim3_codim1.m
fval_basic_4_pardim3_codim1.m

The function describe a sphere with radius R = 2.

f1(x, y, z) = x2 + y2 + z2 −R2 = 0, (3.4)

Figure 3.4: The roots of the equations.
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3.1.5 3-parameter function, co-dimension 2

run_test_basic_5_pardim3_codim2.m
fval_basic_5_pardim3_codim2.m

We have the sphere as before and we have a plain where x = y. Now the function
is vector valued. We have 3 independent parameter variables and 2 equations, so the
resultant objects are curves (here a single circle).

f1(x, y, z) = x2 + y2 + z2 −R2 = 0,

f2(x, y, z) = x− y = 0.
(3.5)

Figure 3.5: The roots of the equations.
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3.1.6 3-parameter function, co-dimension 3

run_test_basic_6_pardim3_codim3.m
fval_basic_6_pardim3_codim3.m

We have the sphere as before and now we have two plains where x = y and x = −z.
Now the function is vector valued, too. We have 3 independent parameter variables
and 3 equations, so the resultant objects are points.

f1(x, y, z) = x2 + y2 + z2 −R2 = 0,

f2(x, y, z) = x− y = 0.

f3(x, y, z) = x+ z = 0.

(3.6)

Figure 3.6: The roots of the equations.
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3.2 Plotting options
The output structure variable of MDBM contains all the information you need to anal-
yse and plot the results yourself, however, an easy-to-use plotting function (db_plot_mdbm.m)
is provided, which can be used for most of the situation. See the help of this file (help
db_plot_mdbm.m).

The examples described in the run_test_plotting_exampels.m file are easy to
understand.

The function db_plot_mdbm.m can be called as:
graphobjects=
db_plot_mdbm.m(outputsol,plotcolor,dimensionsorder,plotobjdim,gradplot)

3.2.1 outputs

graphobjects contains the object handles of the plotted graphical objects. You can
used them to modify their properties e.g. like line width and edge color as follows:

set(graphobjects,’LineWidth’,3)
set(graphobjects,’Color’,[1,0.4,0])
See the detailed examples in the run_test_plotting_exampels.m file.

3.2.2 inputs

Only the first input is necessary, all the others can be omitted, or suppressed by an
empty value [].

The outputsol is simply the output structure of the db_mdbm file.
The plotcolor can define the color of the plotting object, which can be a ’color

representing string’ (like.: ’k’ -black, ’b’ - blue, ’r’ - red, ...) or an RGB value
(e.g: [0.1,0.5,0.7]). The RGB values can not be used for points.
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Figure 3.7: Plotting the results in different colors
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The dimensionsorder can change the order of the parameters in the plot. In case
of [3,1,2], it will plot variable 3 along the x axis, variable 1 along the y axis, and
variable 2 along the z axis.

Figure 3.8: Chaging the order of the variables (and the color representation)

In the plotobjdim, you can specify your preference for plotting:
0 - as a point cloud (or points).
1 - as lines.
2 - as surfaces.
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Figure 3.9: Plotting the results with as a point cloud, as lines or as a surface

The gradplot (logical value: true (1) or false (0)). If it is true (non-zero value)
you can plot the numerically approximated gradient of the functions (which is a side
results of the MDBM) as a vector-filed along the roots.

Figure 3.10: Plotting the gradient of the functions along the roots.
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3.3 Complex example
In this Section, complex problems are solved to show, how the MDBM can be applied
for complicated functions, special plotting problems, etc. The presented examples
can be used as a base for new problems, you can simply modify the parameter range
and the functions to suit your problem.

3.3.1 Mandelbrot-set

run_test_complex_1_Mandelbrot_set.m
fval_complex_1_Mandelbrot_set.m

This examples shows, how the MDBM can be used to analyse a complex, non-
analytic function. The computation of the Mandelbort-set is based on am iterative
computation, and denotes the regions of the convergence.

Here the function is defined by an iteration

z0 =0

zi+1 =z2 + C
(3.7)

where the complex number C = x+ iy, where x and y are the two parameters.
We search for the boundary of convergence, so our function f is -1 if convergent

(even in the last iteration zi < 2) and 1 if it is divergent. Note, that it is only
an illustrative example, which presents fractal like results. The MDBM is not the
best way to determine fractals, however it can be used to approximate the fractal
dimension based on a box-counting dimension (see [1]).
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Figure 3.11: Mandelbrot set, roots of a complicated function which are based on an iteration.
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3.3.2 Catastrophe surface

run_test_complex_2_catastrophe_surface.m
fval_complex_2_catastrophe_surface.m

These examples show, how to plot different sections of a complex solution and
how to present them. See: http://en.wikipedia.org/wiki/Catastrophe_theory

The roots of the following equation are plotted:

f(a, b, x) = a sin(x) + x+ b; (3.8)

Sections for constant a and b values are also computed, the critical points are
determined based on a co-dimension 2 problem:

f1(a, b, x) = a sin(x) + x+ b

f2(a, b, x) = a cos(x) + 1
(3.9)

Based on the content of the par variable, it can be decided which functions should
be evaluated. The gradients of the functions values along the results are also plotted.

Figure 3.12: Catastrophe surface, and its sections. The critical values and the corresponding gradi-
ents are also computed.
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3.3.3 Stability of the turning process with traditional process
damping

run_test_complex_3_turning_stability.m
fval_complex_3_turning_stability.m

In this example the stability boundaries of the turning process with surface regen-
eration effect and with process damping are plotted. The corresponding governing
equation is given as:

ẍ(t) + (2ζ + C
2π

Ω
)ẋ(t) + x(t) = w(x(t− τ)− x(t)). (3.10)

The corresponding characteristic equation is formed as:

D = λ2 + (2ζ + C
2π

Ω
)λ+ 1 + w(1− exp(−λτ)) = 0. (3.11)

In the stability boundary is at λ = iω. So we have a three parameter problem
(D(w,Ω, ω)), with two equations (co-dimension 2 problem) if the damping ζ and the
process damping coefficient C is considered as a constant parameter:

f1(w,Ω, ω) = Re(D(w,Ω, ω)) = 0

f2(w,Ω, ω) = Im(D(w,Ω, ω)) = 0;
(3.12)

In the numerical evaluation of the characteristic equation, ζ and C are placed in
the par struct. In the following figure the solution curves are plotted.
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Figure 3.13: Stability of the turning process with traditional process damping.
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3.3.4 Unite norm

run_test_complex_4_unit_circles.m
fval_complex_4_unit_circles.m

In this example, the ’unit circles’ are computed in different norms and it is shown
how to create special plotting.

The unit circle measured by Euclidean distance is given by:

f(x, y) = ‖(x, y)‖L2 =
√
x2 + y2 = (x2 + y2)0.5; (3.13)

Different norms can be defined by:

f(x, y, p) = p
√
xp + yp; (3.14)

During plotting, the graphical object handle (the output of the plotting function
db_plot_mdbm.m) is used to modify the presentation.

Figure 3.14: Unit ’circles’ as a function of the norm value.

23



3.3.5 Section of surfaces, solution of transcendent equation,
error calculation

run_test_complex_5_transcendent.m
fval_complex_5_transcendent.m

We create special plottings of the roots of two transcendent equations and the
common intersection points. We also analyse the error of the computation and we
use the output of the MDBM as in input for a different optimisation technique.

The functions given as follows

f1(x, y) = sin(2y + 0.5x2) + 0.2x2 + 0.1y2 − 1

f2(x, y) = cos(3x) + sin(2y)− 0.5
(3.15)

The effect of the number of iteration of the MDBM on the function error is
analysed. The solution converges to the analytical solution, however, it should
be mentioned that the MDBM can not really be used for large iteration numbers
(Niteration >∼ 10), because it can easily lead to memory problems. If high pre-
cision is required, the output of the MDBM should be used as an input of different
algorithms like Newton’s method.
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Figure 3.15: Roots of function 1 and 2, the common intersection points, and convergence of the
solution as function of the interation number
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