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This article introduces an optical device for measuring and recording the vibrations

during milling. The constructed apparatus is able to discriminate between stable cutting

and chatter vibration. A review of various chatter detection methods is presented. It lists

basic numerical approximation methods to predict chatter and the devices used to

detect unstable cutting. A discussion on the importance of experimental detection versus

theoretical predictions is also included. The article further presents the measurement

setup, its basic components, and their parameters along with the basic principles of the

measurements and the theoretical framework of the stability analysis. The theoretical

framework is then applied to show the chatter determining frequencies and to determine

what has to be detected during the measurements. Experimental results for slotting and

down milling with different immersion ratios are also presented. These include stability

maps based on the power spectrum density (PSD) graphs of the collected data and

confirmed by photographs of the cut surfaces. The conclusion summarizes the results,

and describes advantages and disadvantages of the setup.
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1. INTRODUCTION

Machining operations, like cutting, drilling, and milling are one of the
most commonly used manufacturing processes. These have been carried out using
experience-based approaches. The optimum cutting conditions are determined
after extensive shop-floor tests over a long time. With the increase of industrial
competition, the need of higher accuracy and lower production costs has become
apparent. At the same time, the quality of the manufactured products has to be
maintained. During a milling process, one of the most disturbing phenomena is the
so-called chatter vibration. This is a dynamic instability resulting in low surface
quality that can also lead to workpiece and tool damage. Self-excited vibrations
of the cutter, holder, spindle, or machine cause chatter resulting in very large chip
thickness variations as each tooth of the cutter passes through the cut. The vibration
continues to grow until the chip thickness is exceeded and the cutter jumps out
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NOMENCLATURE

�1 natural frequency of the mill bit, first mode
� perturbation
C modal damping
F cutting force
G stationary cutting force vector
H force variation matrix
K modal stiffness
M modal mass
xp forced chatter free motion of the mill bit
x deflection of mill bit
� critical multiplier
� characteristic multiplier
� mass density
� tooth passing period, 1/rpm
A horizontal distance of the real previous and real current tooth passes, mm
a radial immersion of mill bit, mm
ap cutting depths of lathe
B vertical distances of the real previous and real current tooth passes, mm
bw bandwidth of oscilloscope
D diameter of mill bit
E Young’s modulus
ex excentricity of mill bit, �m
F estimated reaction force on mill bit
f1 natural frequency of the mill bit, first mode
fH characteristic frequency refers to the secondary Hopf bifurcation, Hz
fs sampling frequency, Hz
fz controled feed rate of lathe, mm/tooth
Fjn normal component of cutting force
Fjt tangential component of cutting force
Fjx vertical component of cutting force
Fjy horizontal component of cutting force
fPD characteristic frequency refers to period doubling, Hz
fTPE tooth path frequency, Hz
fz feed per tooth, mm
g screen function
h instantaneous chip thickness, mm
I moment of inertia of the cross section
Ii currents on OPD subareas
Kn linear normal cutting coefficient
Kt linear tangential cutting coefficient
L constant for OPD, mm
Lf overall length of mill bit
N� z number of teeth
R� r radius of mill bit
S area of cross section
t distance between point of reflection and OPD
vf feed speed, m/s
x horizontal deflection of light on the OPD
Y estimation function
y vertical deflection of light on the OPD
� angle between incident laser light and vertical
� angle between vertical axes before and after deflection of mill bit
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NOMENCLATURE

	Rr real position sensitivity, �m
	Rt position resolution of OPD, �m
	s deflection of laser beam on OPD
	smax maximal deflection of laser beam on OPD
	x deflection of mill bit

 spindle speed of lathe, rpm
�j angular position of the jth cutting edge, rad
DDE delay differential equation
FFT fast Fourier transformation
LDS laser distance triangulation sensor
LDV laser doppler vibrometer
LI laser interferometer
OPD optical position detector
PSD power spectrum density
SDM semi-discretisation method
ZOA zeroth order approximation

of the cut. In the past decade, extensive research was conducted to develop accurate
dynamic machining models to map all of the stable and unstable cutting conditions.
The work of Tlustý et al. (1962) and Tobias (1965) led to the development of the
stability lobe diagram, that plots the boundary between stable and unstable cuts
as a function of spindle speed. The stability analysis of such a system can only
be performed by applying approximated numerical methods such as time-domain
simulations, frequency-domain simulations, or delay-differential equation (DDE)
based methods. Recently, several time-domain simulations of a milling process
were proposed (Campomanes and Altintas 2003). For a given combination of
cutting parameters, the vibrations of the milling process are numerically simulated
by discretizing the process describing DDEs system with Euler, Runge Kutta,
or Tustin‘s approximations. The stability of the system is assessed by evaluating
the time behavior of the vibrations. This approach is very time consuming, and
the applicability in the industry is limited. On the other hand, it is capable of
modeling the effective kinematics of milling, and some important nonlinear effects.
Therefore, the results of the time-domain simulations are often used as a reference
for other methods. The first effective frequency-domain method was derived by
Altintas and Budak (1995b). It is called zeroth order approximation (ZOA). The
applicability of this method is limited to the slot milling configurations. It is
not capable of representing highly intermittent milling processes with small radial
immersions, whose cutting force trends require more harmonics to be approximated.
Other methods for chatter prediction are based on the delay differential equation
(DDE) theory. In 2004, Insperger and Stépán developed the semi-discretisation
method (SDM) (Insperger and Stépán 2002, 2004). Here, the delayed terms and
the time periodic coefficients of the governing time periodic DDE are discretized,
while the actual time domain terms and their derivatives are left in the original
form. This approximation provides a series of ordinary differential equations
that can be solved in each semi-discretization step. Solution of these equations
with matching initial conditions results in a finite dimensional Floquet transition
matrix. If the eigenvalues, the characteristic multipliers of this matrix, are in
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modulo less than 1 then the process is stable, otherwise, it is unstable and chatter
arises. The predictive capabilities of SDM are satisfactory, but the computation
is generally time-consuming since the number of discretization intervals required
for good accuracy is high. The methods described above, perform the analysis on
deterministic models which are usually simplified and inaccurate.

Another issue is that the stability lobe diagrams are based on the frequency
response function of the system. An instrumented hammer is used to excite the
system and the response is measured with the aid of an accelerometer. The measured
response is then exported to additional software for mathematical computations to
create stability diagrams. Model parameters uncertainties due to this modal testing
procedure can also lead to discrepancies between the real system behavior and
the theoretical model. Moreover, a stability lobe diagram is only accurate for one
specific tool, holder, spindle, machine, and workpiece combination, so one has to
make the hammer test for each combination.

Because of these reasons, there is still a need for in-process detection methods
to predict and avoid chatter frequencies during milling processes. There are several
setup types for measuring the vibrations on rotating machines. Since accelerometers
cannot be applied on the spindle shaft itself, the first option is to measure
the vibration transmitted from the spindle into a nonrotating part. Noncontact
position transducers, such as capacitive and inductive displacement sensors are
possible measurement methods but these kinds of sensors are limited to be very
close to the rotating part. Other noncontact measurement devices such as laser
distance triangulation sensors (LDS), TV-holography, laser doppler vibrometers
(LDV), or laser interferometer (LI) may be used. The most sensitive, accurate,
and precise optical device for measuring distance or displacement is the laser
interferometer. This apparatus uses interference to make measurements of distances.
These vibrometers are expensive devices. Errors occur when the contrast of the
interferometer signal is not perfect and when the phase-shifted signal is not shifted
by exactly 90�. Besides, the price of these devices is far higher than the price of the
device shown here. An inexpensive method would be to detect chatter with the help
of a microphone (Schmitz 2003). During chatter, besides the tooth path frequencies
other frequencies arise. Although these would be detectable with a microphone,
in a laboratory or a machine shop a microphone could collect a large amount of
noise; one would have to filter these out permanently, and this would make the
measurements more difficult, and less reliable.

The objective of this project is to build a low cost optical measurement
apparatus that is able to record the displacement of a rotating mill bit during
a cutting process, and to determine at what spindle speed and cutting depth the
process becomes unstable. During a stable milling process, the data should show
only the frequencies associated with the teeth passing through the workpiece.
During an unstable cut, the characteristics of the graphs should show a noticeable
change, where additional vibrational frequencies associated with chatter will appear.
This is discussed in section 5.

2. MEASUREMENT SETUP

Figure 1 shows the optical setup mounted on the lathe. The basic parts of the
setup are labeled in the figure. It consist of several mounting brackets, laser source,
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Figure 1. Optical measurement setup mounted on the lathe.

an optical position detector, and signal processing circuit. In Figure 2, one can see
a schematic from the hall setup and the relative position of the laser and the optical
position detector.

2.1. Laser

A micro LDM laser diode from Edmund optics (part no.: NT57-101) was used
as the illumination source. It included automatic power control circuits, focusable
optics, and had a visible red light output at 653nm. Its focus range was 50mm to
� with a beam size at the focus of less than 50�m.

2.2. Optical Position Detector

The laser beam was directed onto the mill bit. The reflected beam was
projected onto an optical position detector (OPD) (see Figures 2a and 2b). The
OPD was from Hamamatsu (part no.: S5991-01). The active area of the OPD was
9× 9mm. The theoretical position resolution of the OPD was 	Rt = 1�5�m, but
during the measurement it turned out that the real position sensitivity was only
	Rr = 70�m. The reason for that was probably that the reflected beam couldn‘t
focus as a small dot on the OPD.

2.3. Milling Bit Selection

For the measurements, two mill bits were used. These were long single end
mills from Micro 100 Tool Corporation (part no.: GLR-312-2), and from T & M
Grinding with a diameter of D = 5/16 in, two helical flutes, and an overall length
of Lf = 4 in. The material properties of the bits are shown in Table 1. Because
of the flutes of the bits, the beam could not be reflected from their tip because
this would have changed the angle of the reflection constantly, and would have
caused dificulties during the measurements. Because of the curvature of the bits,
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Figure 2. Optical measurement setup. a� Schematic of the optical measurement setup (front view) and
b� Schematic of the optical measurement setup (side view).

the cross-section of the treflected laser beam was bigger than the area of the
OPD, so the neck parts of the bits had to be polished to lower the cross-section
size of the laser beam to get specular reflection conditions and reduce the specke
noise. The eccentricity of a turning bit was under ex = 25�m. Due to laboratory

Table 1. Material properties of the used mill bits

Micro 100 T & M grinding

E (Young’s Modulus) Gpa 139.3 580
� (Density) kg/m3 14,554 14,450
� (Poisson’s R.) 0.3 Unknown
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limitation, a lathe (Enco Type: # 308–0233) was used to emulate a milling machine
by interchanging the positions of the workpiece and the working tool. The mill bit
was fixed into the spindle of the lathe and the probe, and an aluminum brick was
placed on the place of the cutting knife. Measurements were made with spindle
speeds of 
 = 385, 510, 585, 770, 900, 1,170, and, 1,800 rpm, with axial cutting
depths of ap = 1–6mm with a constant increase of 0�5mm, and with a constant
from the lathe-controled feed rate of fz = 0�078 = mm/tooth. Due to the limitations
of the lathe, no high speed cutting processes were investigated.

A digital oscilloscope (Link Instruments Type: DSO – 8500) was connected
to a laptop (Dell Latitude D610). The OPD was connected to the oscilloscope.
The frequency bandwidth of the optical system was equal with the bandwidth of
the oscilloscope, and this was bw = 100MHz. A manufacturer-suggested current
sensing circuit was used to measure the position of the reflected beam (see
Figures 2a and 2b). The position of the beam was determined according to the
following formulas.

I2 + I3�− I1 + I4�

I1 + I2 + I3 + I4
= 2x

L
(1)

I2 + I4�− I1 + I3�

I1 + I2 + I3 + I4
= 2y

L
� (2)

where Ii values are the currents on the four subareas of the OPD, x and y are the
perpendicular deflections on the OPD, and L is L = 10mm for S5991-01. These
formulas were provided from the manufacturer and can be dound on the data sheet
of the OPD.

Two output signals were collected on the two channels of the oscilloscope
connected to the laptop through a usb data port, and processed with a Matlab
program. The laser and the OPD were attached to mounting tools from Thorlabs;
these posts and clamps are specifically designed for optical measurements. To
avoid constructing a separate stand for the laser and the OPD, they were attached
through mounting posts and clamps from Thorlabs directly to the main slide of
the lathe. The posts and clamps are designed for optical measurements. Because of
this mounting method, it had to be checked to see if the vibrations of the lathe
itself would influence the measurement. Tests with rotating spindle but without
cutting showed that the vibrations of the machine were negligible compared to the
vibrations of the mill bit during cutting. Figure 2b shows the relative position of the
laser and the OPD to the mill bit.

3. MEASUREMENT PRINCIPLES

Using simple ray tracing, one can show that

	x = r� (3)

where r is the radius of the beam. Figure 3 shows a schematic of how the angle of
the reflected beam changes if the bit moves. The position of the laser doesn’t change
during the movement of the bit, so the angle of incident after the movement will be
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Figure 3. Laser beam reflection diagram.

�+ �. It is easy to see that the angle between the reflected rays before and after the
movement will be 2�. For small deflections 	s will be

	s = 2t� (4)

Figure 4. Connection between 	x and 	s.
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Therefore, the connection between the deflection of the bit and the reflected light
spot on the OPD will be

	s = 2t
r
	x (5)

The bit size was chosen according to its known material properties, such that
for an estimated reaction force of F = 80N, (Mann et al. 2002), the maximal
deflection on the OPD (Type: 5990-01) is 	smax = 4mm. Validation of Eq. (5) was
performed using a micro-positioner moving the bit with prescribed displacement.
The calibration showed that the definition in Eq. (5) of the connection between the
bit movement and the reflected beam movement on the OPD is precise enough.
Moreover, it also shown that the measured displacement on the OPD differs from
the theoretical (Figure 4), this had to be considered during the calculations and
programming of the Matlab code. The diameter of the chosen bit was D = 5/16
in and the distance between the bit and the OPD was t = 40mm. This means an
amplification of the bit displacement to the displacement of the reflected beam on
the OPD is by 10. With these parameters, the difference between the displacement
on the OPD due to the calibration (in the measured point x = 0�025mm, y =
0�49mm) and the counted displacement was about 3%.

4. MEASUREMENTS

First, the natural frequency of the bit (from T & M Grinding) was measured.
An estimation was made according to the Rayleigh method. The first mode can be
estimated with the following expression.

�2
1 =

IE
∫ l

0 Y
′′2x�dx

�S
∫ l

0 Y
2x�dx

[
1
s2

]
(6)

where I is the inertia of moment of the bit, E is the Young’s modulus, � is the
density, S is the area of the cross-section, and Y is an estimation function. This is
a simple polynomial function Y = x3 + a2x

2 + a1x + a0. The constants a1, a2, and
a3 were calculated due to the edge conditions Y0� = 0, Y ′0� = 0, and Y ′′l� = 0,
where l is the total length of the beam. According to the calculations, the first
mode of the bit was f1 = �1/2� = 1�109�9Hz. The calculation was also checked
with a simple FEM model created in Ansys. The calculated first mode was here
f1 = 1�125�7Hz. The sampling frequency with the oscilloscope was fs = 1MHz. The
measured self-vibration was f1 = 1�162Hz, which compares well with the estimated
values. The measurements were repeated during cutting. During the processes, no
lubricants were used. The laser and the OPD was covered with a plexi plate, so
the chips produced during cutting could not damage them and could not affect the
measurements.

So-called full immersion cutting or slotting was done. Here, the immersion
ratio was a/D = 1, where a is the radial immersion and D is the diameter of the bit.
The experiments did not show chatter on the frequency spectrum. A second set of
measurements was made with an immersion ratio of a/D = 0�25 and a/D = 0�5. All
of these measurements were made as down milling cutting processes. The parameters
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of the measured points are described in section 2 and subsection 2.3, the only
difference is that the maximal cut depth ap was reduced to 4mm. Besides collecting
the data, photographs were made of the work pieces and the cuts. Stability maps
were made according to the stored data and according to the photos, and these
were compared afterwards. The stored data was processed with a Matlab program
calculating the Fourier (FFT) and power spectrum density (PSD) graphs. The PSD
graphs showed characteristic changes when a cut was unstable. The interpretation
of these results requires an in-depth analysis of the chatter phenomenon.

5. ANALYSIS OF CHATTER

5.1. Mechanical Model

The mathematical model describing a milling process is a delay-differential
equation (DDE) with infinite dimensional state space. For continuous cutting
operations, like turning, the governing equation is autonomous and the stability
conditions can be given in closed form. The study of nonlinear phenomena in
the cutting process showed that the chatter frequencies are related to unstable
periodic motions about the stable stationary cutting, i.e., a so-called subcritical Hopf
bifurcation occurs, as proven experimentally by Shi and Tobias (1984), and later
analytically by Stépán and Kalmár-Nagy (1997).

The theoretical explanation in this section is based on Insperger et al. (2006).
The standard 2-DOF (degree of freedom) mechanical model of end milling is shown
in Figure 5. The tool is assumed to be flexible relative to the rigid workpiece. The

Figure 5. Schematic of 2-DOF milling model.
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2-DOF oscillator is excited by the cutting force Ft�. The governing equation has
the following form.

Mẍt�+ Cẋt�+ Kxt� = Ft� (7)

where

xt� =
[
xt�
yt�

]
� Ft� =

[
Fxt�
Fyt�

]
(8)

The x and y components of the cutting force are given as

Fjxt� = Fjtt� cos�jt�+ Fjnt� sin�jt� (9)

Fjyt� = −Fjtt� sin�jt�+ Fjnt� cos�jt�� (10)

where Fjtt� and Fjnt� are the normal and tangential forces acting on jth tooth,
respectively, and �jt� is the angular position of the jth cutting edge. Let the feed
per tooth be denoted by fz = vf � where vf is the feed speed and � = 60/N
� is the
tooth passing period. If fz � R, where R is the radius of the tool and A and B are the
horizontal and vertical distances of the real previous and real current tooth passes,
then the instantaneous chip thickness can be expressed according to Figure 6 as

ht� ≈ A sin�jt�+ B cos�jt�

= �fz + xt − ��− xt�� sin�jt�+ �yt − ��− yt�� cos�jt� (11)

Figure 6. Chip thickness.
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The resultant cutting forces are the sum of the forces acting on the teeth.

Fxt� =
N∑
j=1

Fjxt�

=
N∑
j=1

g��jt���Kt cos�jt�+ Kn sin�jt��apht�

(12)

Fyt� =
N∑
j=1

Fjyt�

=
N∑
j=1

g��jt���−Kt sin�jt�+ Kn cos�jt��apht�

where g��jt�� is a screen function, which is 1 when the jth tooth is cutting and 0
when not. Kt and Kn are the linear tangential and linear normal cutting coefficients.
So, the equation of motion can be written in the following form.

Mẍt�+ Cẋt�+ Kxt� = apHt��xt − ��− xt��+Gt� (13)

where Ht� is the force variation matrix (Altintas and Budak 1995a). Gt� is the
stationary cutting force vector

Gtx� = apfzHxxt� (14)

Gty� = apfzHyxt� (15)

5.2. Forced and Self-Excited Motion of the Tool

The motion of the workpiece is decomposed in the form:

xt� = xpt�+ �t� =
[
xpt�
ypt�

]
+

[
�t�
�t�

]
(16)

where xpt� = xpt − �� is the forced chatter free motion of the tool, and �t� is a
perturbation corresponding to the self-excited vibrations of the tool. Substitution of
Eq. (16) into Eq. (13) results in

Mẍpt�+ Cẋpt�+ Kxpt�+M�̈t�+ C�̇t�+ K�t� = apHt���t − ��− �t��+Gt�
(17)

For the ideal case, when no chatter arises, �t� = 0, and the motion is described
by xt� = xpt�, the corresponding equation of motion is an ordinary differential
equation.

Mẍpt�+ Cẋpt�+ Kxpt� = Gt� (18)
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For linear stability analysis the variational system of Eq. (13) is determined around
the periodic chatter-free motion xpt�. Equations (17) and (18) imply the equation

M�̈t�+ C�̇t�+ K�t� = apHt���t − ��− �t�� (19)

If the cutting process is stable, the component �t� corresponds to the chatter signal
decays, and the tool moves according to the periodic chatter–free motion described
by xpt�. If the process is unstable, �t� increases exponentially, and the resultant
motion xt� = xpt�+ �t� will also obtain exponential growth.

For unstable machining, the nonlinear phenomena also plays an important
role in the system’s dynamics. Due to its large vibrations, the tool leaves the cut
and the cutting force instantly drops to zero. This nonlinearity actually stops the
exponential amplitude growth so that in practice, the tool vibrations during unstable
machining still have a finite amplitude (Stépán et al. 2005).

The linear stability of the milling process is described by Eq. (19). The stability
analysis of this time periodic DDE can be determined by the semidiscretization
method (Insperger et al. 2003). The critical multipliers can be located three ways.

1) They are a complex pair located on the unit circle, ��� = 1. This case is
topologically equivalent to the Hopf bifurcation of autonomous systems.

2) � = 1. The associated bifurcation is topologically equivalent to the saddle-node
bifurcation of autonomous systems and is called a period one bifurcation.

3) � = −1. This case is called period doubling or flip bifurcation. There is no
topologically equivalent type of bifurcation for autonomous systems.

According to Davies et al. (2002), in milling processes only cases 1) and 3) can be
observed. First, when � is a complex pair then characteristic frequencies arise in the
vibration signal. These frequencies can be defined as

fn
H =

{
± �

2�
+ n

z


60

}
[Hz] n = � � � �−1� 0� 1� � � � (20)

and refer to the secondary Hopf bifurcation. Second, when � < −1; � ∈ R, then
another type of characteristic frequencies arise in the measured signal. These
frequencies can be defined as

fn
PD = z


120
+ n

z


60
[Hz] n = � � � �−1� 0� 1� � � � (21)

� = Imln��/� where � is the characteristic multipliers, z is the number of teeth,
and 
 is the spindle speed of the machine.

During a stable milling operation, the excited frequencies are related to all
components of xt� defined by Eq. (16). The periodic motion xpt� contains the
characteristic frequencies defined as

fn
TPE = nz


60
[Hz] n = 1� 2� 3� � � � (22)

Because of the runout of the bit the period, doubling frequencies (fn
PD) turn into

tooth path frequencies (fn
TPE) because the principal period changes from � = z
/60�
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to T = z� (Insperger et al. 2008). Runout is a phenomenon where the loads on the
cutting teeth of the mill bit are not equal. This comes out of the asymmetry of the
multiflute bits.

Run out typically arises in machining with bits that have more than one flutes
because the tool is never ideally symmetric. During a stable process, peaks should
be visible only at the fn

TPE and fn
PD frequencies. The expected changes on the graphs

during an unstable cut were that peaks arise not only at these frequencies but

Figure 7. Stability maps according to data (top) and according to photos (bottom).
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Table 2. Characteristic frequencies


 (rpm) fn
TPE (Hz)

n 1 2 3

385 13�7 27�4 41�1
510 18�3 36�6 54�9
585 20�9 41�7 62�6
770 27�4 54�7 82�1
900 31�7 63�3 95
1,170 41�6 83�3 124�9
1,800 63�1 126�1 189�2

fn
PD (Hz)

385 20�5 34�3 48
510 27�5 45�7 64
585 31�3 52�2 73
770 41 68�4 95�8
900 47�5 79�2 110�8

1,170 62�5 104�1 145�7
1,800 94�6 157�7 220�7

also in between those. Contrary to this, we observed that during an unstable cut
the fn

PD frequencies disappeared. Although the changes on the PSD graph of an
unstable cut related to a stable cut were not expected ones, the dissapearance of the
fn
PD frequencies is ovious, so the observations of the PSD graphs still give reliable
information about the stability of a cutting process.

The first map was made according to a/D = 0�5. For these, the comparison
between photographs and vibration frequency peaks showed some differences.

Figure 8. Power spectrum graph of a stable cut.
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Figure 9. Power spectrum graph of an unstable cut.

The graphs didn’t match each other completely. This was because the chosen
sampling frequency was wrong. The oscilloscope used is able to store 524,200
points. The chosen sampling frequency was fs = 50KHz and fs = 100KHz. At
lower spindle speeds, this caused a too short measuring window and the unstable
vibrations weren’t recorded. Figure 7 shows the maps made according to the
measurements and the photos. The difference is at 
 = 510 rpm, ap = 1�5mm,

 = 510 rpm, and ap = 2mm on the two graphs. The boundary lines for stable
and unstable processes are estimations and sketches, no calculations were done to
determine the stability lobes. Figures 8 and 9 show the PSD graphs of the power
spectrum of the measured displacement. The red and blue dotted vertical lines show

Figure 10. Cut surfaces of an unstable cut.
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the values for the fn
TPE and fn

PD. A few values are listed in Table 2. The basic
difference between Figures 8 and 9 is the arising peaks at the fn

PD frequencies. During
an unstable cut, these peaks disappear on the graphs. In Figure 11 one can see the
cuts on the work pieces. The parameters are the same as for the PSD graphs in
Figures 8 and 9. One can see that with a cut depth of 1mm the cut is stable and
straight, but with a cut depth of 2mm the cut is unstable, i.e., it is wavy. That is
because of the self-excited vibrations.

Going deeper into the unstable region on the stability map, the frequency of
leaving the cut increases. One can see in Figure 10 that the waves in the cut are
shorter than in Figure 11. The best results were obtained for 
 = 385� 510� 585 rpm
a sampling frequency of fs = 20KHz, for 
 = 770� 900 rpm fs = 50KHz, and for

 = 1�170� 1�800 rpm fs = 100KHz. Measurements were made with this frequencies
at an immersion ratio of a/D = 0�25.

Figure 11. Cut surfaces of a stable and an unstable cut. a� 900 rpm, 1mm cut depth and b� 900 rpm,
2mm cut depth.
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Figure 12. Stability maps according to data (top) and according to photos (bottom).

The comparison of the stability maps based on the recorded data and the
photos were satisfactory. The graphs matched each other at all points. Figure 12
shows the two maps.

6. CONCLUSION

The real time measurements and the comparison of the cut surfaces and the
recorded data show that the setup is able to detect chatter vibrations based on PSD
analysis. For spindle speeds of 
 = 385� 510� 585 rpm, the best sampling frequency
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was fs = 20KHz. The oscilloscope was able to store a maximum number of 524,200
points. At a high sampling rate at these spindle speeds, the resulting measuring
window was too short to capture the instability developement. For spindle speeds
of 
 = 770� 900 rpm the best sampling frequency was fs = 50KHz. For spindle
speeds of 
 = 1�170� 1�800 rpm, the best sampling frequency was fs = 100KHz.
A lower frequency caused too long of a measurement. After about 10 s, the slide
of the machine reached its limits, and the length of the measurement with fs =
50KHz was about 16 s. Because of the two flutes on the bit and the runout during
a stable cutting process, the fn

TPE peaks turned into fn
PD peaks like those in Figure 8.

The measuring method can be adapted on a vertical CNC machine. Connecting a
second laser, the horizontal deflections could also be detected and a two-dimensional
deflection analysis can be done.

6.1. Advantages of the System

• The setup is quite flexible. The parts are not limited to be very close to the
rotating bit, as in the case of the capacitive and inductive displacement sensors.
One can mount the laser and the OPD onto the machine itself if the housing is
stiff enough, or build a separate stand for them.

• It is not as sensible as the laser interferometer because its work principles are not
based on the phase shift of the laser light.

• The setup itself is really simple; it is built only out of a few parts. The main
elements are the laser and the OPD.

• Compared to most of the other devices, this setup is quite inexpensive.

6.2. Disadvantages of the System

• The surface where one wants to reflect the laser beam has to be polished, and in
the case of a rotating mill, the roundness of the bit has to be ensured to avoid
speckle noise.

• The OPD is sensible against all kinds of dirt and impurities. If the setup is built
close to the bit, one has to cover it so that no chips of the workpiece fall onto it
because this would damage the OPD.

• The device is not measuring the vibrations on the tool tip but at the neck part of
a bit, so the results don‘t show the vibrations arising at the cutting point.
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