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Increasing the Accuracy of Digital Force Control
Process Using the Act-and-Wait Concept

Tamás Insperger, László L. Kovács, Péter Galambos, and Gábor Stépán

Abstract—Proportional gains are to be increased in force control
processes in order to reduce the force error. However, the control
process may become unstable for large gains due to the digital and
delay effects. In this paper, the act-and-wait control concept is com-
pared with the traditional, continuous control concept for a digital
force control model with proportional feedback subject to a short,
one sample unit feedback delay. Both concepts are implemented
in an experimental setup. It is shown that the proportional gain
can be increased significantly without losing stability when the act-
and-wait controller is used; thus, the force error can effectively be
decreased this way. The results are confirmed by experiments.

Index Terms—Discrete-time systems, feedback systems, force
control, stability.

I. INTRODUCTION

FORCE control is a frequent mechanical controlling prob-
lem in robotics since most robotic applications involve

interactions with other objects. The first papers on the basics
of force control approaches appeared in the early 1980s start-
ing with the pioneering work of Whitney [1], Mason [2], and
Raibert and Craig [3]. Since then, several comprehensive text-
books have been published summarizing different methods of
force control processes in the field of robotics [4]–[6]. The aim
of force control is to provide a desired force between the actuator
and the environment (or workpiece). In order to achieve high
accuracy in maintaining the prescribed contact force against
the Coulomb friction, high proportional control gains are to be
used [4], [5]. However, in practical realizations of force control
processes with high proportional gains, the robot often loses sta-
bility, and starts to oscillate at a relatively low frequency. These
oscillations are mainly caused by the digital effects [1] and by
the time delays in the feedback loop [7], [8]. Such delays arise
due to the time required for the computer to compute the control
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force. In addition, the control signal produced by the computer
is piecewise constant (zero-order hold) function of time.

Time delays are inherent attributes of feedback systems that
usually have unfavorable effects on the performance of the con-
trol process. Teleoperation is a typical example, where commu-
nication delay plays a crucial role [9], [10], but similar delays
may arise in haptic interfaces as well [11]. The problem with
time-delayed systems is that the dimension of their phase space
is usually larger than the dimension of the state variables; there-
fore, the number of poles to be controlled is usually larger than
the number of control parameters. Thus, complete pole place-
ment is not possible for these systems using traditional constant
feedback gains. The act-and-wait control concept is an effective
tool to deal with pole placing for systems with feedback delay.
The act-and-wait technique was introduced in [12] for discrete-
time systems and in [13] for continuous-time systems. The crux
of the technique is that the controller is periodically switched
on and off with the switch-off period being larger than the feed-
back delay. Using this periodic switching, the extra poles due to
the time delay are automatically assigned to zero, and the pole
placement problem of the remaining poles is possible if certain
conditions are fulfilled for the system parameters.

Although theoretical predictions showed that the act-and-wait
method can effectively be used for discrete-time control systems
with feedback delay [12], it has never been confirmed by exper-
iments until now. In this paper, a digital force control process
with a short (one sample unit) feedback delay is implemented
in an experimental setup. A proportional feedback is applied in
order to decrease the force error. It is shown that the proportional
gain can be increased, and consequently, the force error can be
decreased, without losing stability if the feedback is periodi-
cally switched on and off according to the act-and-wait concept.
The structure of the paper is as follows. First, in Section II, the
act-and-wait concept is summarized briefly for discrete-time
systems based on [12]. Then, in Section III, the experimental
setup and the corresponding mechanical model are presented
for the continuous and for the act-and-wait control concept.
In Section IV, the experimental results are compared to the
theoretical predictions. The paper is concluded in Section V.

II. THE ACT-AND-WAIT CONCEPT

Consider the discrete-time system

x(j + 1) = Ax(j) + Bu(j − R) (1)

with the controller

u(j) = Dx(j) (2)
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where x ∈ R
n is the state, u ∈ R

m is the input, A ∈ R
n×n ,B ∈

R
n×m ,D ∈ R

m×n are constants and j ∈ Z. We assume that the
feedback delay R ∈ Z

+ is a fixed parameter of the system that
cannot be adjusted during the control design. State augmentation
of system (1) with controller (2) yields the discrete map

z(j + 1) = Ψz(j) (3)

with z(j) = (xT (j),uT (j − 1), . . . ,uT (j − R))T ∈ R
n+mR .

Here, the coefficient matrix

Ψ =




A 0 . . . 0 B
D 0 . . . 0 0
0 I . . . 0 0
...

. . .
...

0 0 . . . I 0


 (4)

is actually the (n + mR) × (n + mR) monodromy matrix of
the system [14], [15]. The identity submatrices I below the di-
agonal of Ψ represent the delay effect in the feedback. Stability
properties are determined by the eigenvalues of Ψ, which are
also called characteristic multipliers or poles. The system is
asymptotically stable if all the (n + Rm) poles lie in the open
unit disk of the complex plane. It can easily be seen that in
general cases, the poles cannot be controlled completely by the
control parameters, i.e., by the elements of matrix D. This also
causes problems during the stabilization of the process.

The act-and-wait control concept for discrete-time systems
was introduced in [12]. It is a special case of periodic controllers
where the control is periodically switched on and off in the form

u(j) = g(j)Dx(j) (5)

where g(j) is the K-periodic switching function defined as

g(j) =
{

1, if j = hK, h ∈ Z

0, otherwise.
(6)

Here, integer K is called period parameter. While the feedback
delay R is a given system parameter, the period parameter K
can be chosen during the control design.

If K = 1, then g(j) ≡ 1. In this case, the control is continu-
ously active, which corresponds to controller (2).

If K ≥ 2, then g(j) alternates between 1 and 0. In the first
discrete step, g(j) = 1 and the control is active (act), while
in the following (K − 1) number of steps, g(j) = 0, and the
control term is switched off (wait), then in the (K + 1)th step,
the control is active again, etc. In [12], it was shown that if the
period parameter K is chosen to be larger than the feedback
delay R, then the following discrete map can be constructed:

z(K) = Φz(0) (7)

where z(j), j = 0,K is defined as in (3), and the coefficient
matrix reads

Φ =




M AK−RB AK−R+1B . . . AR−1B
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


 (8)

Fig. 1. Mechanical model of the force control process.

with

M = AK + AK−R−1BD. (9)

Clearly, mR eigenvalues of Φ are zero, while its nonzero
eigenvalues are just equal to the eigenvalues of the n × n
matrix M. Consequently, stability properties are determined
only by n poles instead of (n + mR) ones. Moreover, if the pair
(AK ,AK−R−1B) is controllable, then the poles of the system
can arbitrarily be placed.

From now on, controller (5) will be called the act-and-wait
controller, while controller (2), where the control is continuously
active, is called the continuous controller.

III. FORCE CONTROL MODEL

The mechanical model of a single DOF force control process
is shown in Fig. 1. Here, the modal mass mb and the equivalent
stiffness k represent the inertia and the stiffness of the robot and
the environment, while equivalent damping b models the viscous
damping originated from the servo motor characteristics and the
environment. Variable q denotes the position of the robot, while
x is a small perturbation around the desired position qd = Fd/k
with Fd denoting the desired contact force. Force Q represents
the controller’s action and C is the magnitude of the effective
Coulomb friction.

Considering a proportional–differential force controller, the
control force can be given as

Q(t) = Fd − P (Fm(t) − Fd) − D(Ḟm(t) − Ḟd) (10)

where P is the proportional gain, D is the differential gain, Fd
is the desired force, and Fm is the measured force. This type
of control force computation was also considered in [4]. The
equation of motion reads

mb q̈(t) + bq̇(t) + kq(t) = Fd − P (Fm(t) − Fd)

−D(Ḟm(t) − Ḟd) − C sgnq̇(t). (11)

Assuming steady-state condition by setting all the time deriva-
tives to zero, considering a constant Coulomb friction force, and
using Fm = kq(t), the maximum force error can be given as

Fmax
e =

C

1 + P
(12)

(see, e.g., [4], and [5]). Thus, the higher the proportional gain
P , the less the force error, while the differential gain D has no
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effect on the accuracy of the force control process. Integral con-
trol can also be used to compensate steady-state force error in
constant velocity applications. However, if the system trajectory
encounters velocity reversal, then simple integral control rather
increases than reduces frictional disturbance. Since the steady-
state force error is always within the deadband [−Fmax

e , Fmax
e ],

it can essentially be reduced by reducing Fmax
e . This can be

achieved by increasing the stiffness or by increasing the pro-
portional gain P , which is a kind of artificial stiffness in the
system. Theoretically, there is no upper limit for the propor-
tional gain P , since the constant solution q(t) ≡ qd of (11) is
always asymptotically stable when C = 0. Experiments show,
however, that the real system is not stable for large proportional
gains [16]. This instability is caused by the digital effects and
the corresponding delays in the feedback loop.

In the next sections, mathematical models for the continu-
ous and for the act-and-wait controller are presented in case of
digital control, and the corresponding stability properties are
compared using stability charts. Since the force error does not
depend on the differential gain D, a pure proportional controller
is investigated. Thus, the only control parameter is P , while
D = 0.

A. Digital Control With Continuous Controller

In digital control, the control force is updated in discrete
instants such that

Q(t) = Fd − P (Fm(tj−1) − Fd)

= kqd − P (kq(tj−1) − kqd), t ∈ [tj , tj+1) (13)

where tj = j∆t, j = 0, 1, 2, . . ., and ∆t is the sampling time.
Here, we assume that the sampling frequency of the force sensor
and the frequency of the digital control are both fs = 1/∆t, and
the data processing and the control computation are executed
within a single sampling period. Thus, the control force Q com-
manded over the sampling period [tj , tj+1) is computed using
the contact force measured at instant tj−1 . This presents a short
delay τ = ∆t in the feedback loop, in addition to the zero-order
hold. The corresponding equation of motion reads

mb q̈(t) + bq̇(t) + kq(t) = kqd − P (kq(tj−1) − kqd)

−Csgnq̇(t), t ∈ [tj , tj+1). (14)

Stability properties of the system can be given by analyzing
the variational system around the desired motion qd . For this
computation, we neglect the dry friction from the model. Con-
sidering that q(t) = qd + x(t), the variational system reads

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t) = −ω2

nPx(tj−1), t ∈ [tj , tj+1)
(15)

where ωn =
√

k/mb is the natural angular frequency of the un-
controlled undamped system, and ζ = b/(2mb ωn) is the damp-
ing ratio. We introduce the frequency ratio

α = fn/fs (16)

where fn = ωn/(2π) is the natural frequency of the uncon-
trolled undamped system and fs = 1/∆t is the sampling fre-

quency. Rescaling the time such that t̃ = t/∆t yields

ẍ(t̃) + 4πζαẋ(t̃) + 4π2α2x(t̃)

= −4π2α2Px(j − 1), t̃ ∈ [j, j + 1). (17)

Thus, the system is characterized by three dimensionless param-
eters, the relative damping ζ, the proportional gain P, and the
frequency ratio α. This way, a wide range of system/environment
combinations can be described by analyzing different values of
ζ, P, and α.

Equation (17) can be transformed into the state-space form

ẋ(t̃) = Âx(t̃) + B̂D̂x(j − 1), t̃ ∈ [j, j + 1) (18)

with

x(t̃) =
(

x(t̃)

ẋ(t̃)

)
, Â =

(
0 1

−4π2α2 −4πζα

)

B̂ =
(

0

−4π2α2

)
, D̂ = ( P 0 ) .

Solving (18) over a unit sampling period (∆t̃ = 1 on the rescaled
time domain) results in a discrete system of form (1) and (2)
with matrices

A = eÂ , B = (eÂ − I)Â−1B̂, D = D̂ (19)

and with feedback delay R = 1. In this case, n = 2 and m = 1;
thus, the stability of the system can be assessed by checking
all the (n + mR) = 3 eigenvalues of the monodromy matrix Ψ
given in the form (4).

B. Digital Control With Act-and-Wait Controller

The control force associated with the act-and-wait control
concept can be given as

Qa&w(t) = Fd − g(j)P (Fm(tj−1) − Fd), t ∈ [tj , tj+1)
(20)

where g(j) is the K-periodic act-and-wait switching function
defined in (6), i.e.

Qa&w(t) =
{

Fd − P (Fm(tj−1) − Fd), if j = hK, h ∈ Z

Fd, otherwise.
(21)

This means that for (K − 1) number of steps, the control force
is just equal to the desired force Fd , and the feedback is switched
on only in each Kth step. The corresponding variational system
on the rescaled time domain reads

ẍ(t̃) + 4πζαẋ(t̃) + 4π2α2x(t̃)

= −g(j)4π2α2Px(j − 1), t̃ ∈ [j, j + 1). (22)

This equation can be transformed into the state-space form

ẋ(t̃) = Âx(t̃) + g(j)B̂D̂x(j − 1), t̃ ∈ [j, j + 1) (23)

with x(t̃), Â, B̂, D̂ given as in (18). Solution of (23) over a
sampling period gives a discrete system that is equivalent to (1)
and (5) with matrices A,B, and D defined as in (19), and with
feedback delay R = 1.
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The results for system (1) with the act-and-wait controller (5)
can now be applied to the presented force control problem: if
the period parameter K is larger than the feedback delay R = 1,
then the system has only n = 2 poles that are the eigenvalues of
matrix M defined in (9). The obvious choice for the period pa-
rameter is K = 2. Note that complete pole placement is still not
possible in this case, since the number of poles to be controlled
is 2, and the only control parameter is the proportional gain P ;
still, the stability properties of the system improve significantly,
as shown in the next section.

C. Comparison of Continuous and Act-and-Wait Controller

Stability of the control processes can be determined by the
analysis of the characteristic multipliers that are the eigenval-
ues of matrix Ψ in (4) for the continuous controller, and the
eigenvalues of matrix M in (9) for the act-and-wait controller.
The stability properties can be represented by stability charts in
the plane of the frequency ratio α = fn/fs and the proportional
gain P . In addition to stability charts, the frequencies of the
vibration that arise at the stability boundaries can also be deter-
mined using the phase angle of the critical (largest in modulus)
eigenvalues of Ψ and M, respectively. Since vibration frequen-
cies can easily be determined experimentally, they can also be
used to verify the theoretical predictions [16].

The vibration frequencies can be obtained by the analysis
of (17) and (22). Due to the sampling, (17) is periodic at the
sampling period, T̃ = 1, while (22) is periodic at the act-and-
wait period, T̃ = K. Here, T̃ denotes the principal period of
the system on the rescaled time domain, i.e., T̃ = T/∆t. Vibra-
tions arise when the system loses stability; therefore, we assume
that the critical characteristic multiplier satisfies |µ1 | = 1. Note
that µ1 may be either real±1 or complex e±iω1 . According to the
Floquet theory, the solution corresponding to the characteristic
multiplier µ1 reads

x(t̃) = p(t̃)eλ1 t̃ + p̄(t̃)eλ̄1 t̃ (24)

where p(t̃) is a T̃ -periodic function, the bar denotes complex

conjugate, and λ1 is the characteristic exponent, i.e., µ1 = eλ1 T̃ .
Fourier expansion of p(t̃) and substitution of λ1 = iω1 result in

x(t̃) =
∞∑

h=−∞

(
Chei

(
ω1 +h2π/T̃

)
t̃ + C̄he−i

(
ω1 +h2π/T̃

)
t̃
)
(25)

where Ch and C̄h are complex coefficients. Note that ω1 equals
the phase angle describing the direction of µ1 on the complex
plane so that −π < ω1 < π. The exponents in (25) give the
angular frequency content of the motion. The corresponding
frequencies on the rescaled time domain are

f̃vib = fvib/fs = ±ω1

2π
+

h

T̃
, h = 0, 1, 2, . . . . (26)

Here, f̃vib is the vibration frequency on the rescaled time do-
main, fvib is the vibration frequency on the regular time domain
in hertz, and fs = 1/∆t is the sampling frequency. In further
analyses, the ratio fvib/fs will be used; thus, control processes
with different sampling rates can be compared. Of course, only
the positive frequencies have physical meaning.

Fig. 2. Vibration frequencies (top), stability boundaries (middle), and the
maximum force errors (bottom) for the continuous system (17) and for the act-
and-wait system (22) with period parameter T̃ = K = 2. The relative damping
is ζ = 1.57.

Fig. 2 presents the stability boundaries (middle panel), the as-
sociated vibration frequencies (top panel), the ratio of the max-
imum force error Fe , and the Coulomb force C (bottom panel)
for the continuous control concept (thick gray) and for the act-
and-wait control concept (thin black). The stability charts were
determined via point-by-point numerical evaluation of the criti-
cal eigenvalues of Ψ (for the continuous controller) and M (for
the act-and-wait controller) over a (200 × 200)-sized grid of
parameters α and P . The period parameter for the act-and-wait
controller was T̃ = K = 2. It can be seen that there is an upper
limit for the control gain P for both cases. Above this stability
boundary, the control process is unstable. The lower stability
limits correspond to the negative proportional gain P and have
no practical relevance. The vibration frequencies in the top panel
were determined according to (26) using the eigenvalues corre-
sponding to the upper stability boundary. The ratio of the maxi-
mum force error Fmax

e and the Coulomb force C is presented in
the bottom panel in Fig. 2. According to (12), this ratio comes
from the simple computation Fmax

e /C = 1/(1 + P ), where P
is the critical (maximum stable) proportional gain from the mid-
dle panel. Fig. 2 shows that the critical proportional gains are
essentially larger for the act-and-wait controller than for the con-
tinuous controller, and the corresponding force error is smaller
by a factor of 2–3.

Analysis of the eigenvalues shows that the continuous control
concept loses stability with a complex pair of characteristic
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TABLE I
SAMPLING FREQUENCIES DURING THE TESTS

Fig. 3. Experimental setup.

multipliers that corresponds to a secondary Hopf bifurcation
of the underlying nonlinear system. In this case, quasi-periodic
vibrations arise.

For the act-and-wait control case, if fn/fs > 0.14, then the
critical eigenvalue is real, and it crosses the unit circle at −1
that corresponds to flip (or period doubling) bifurcation of the
underlying nonlinear system. In this case, the period of the
arising vibrations is just double of the act-and-wait period. If
fn/fs < 0.14, then the secondary Hopf bifurcation occurs sim-
ilarly to the continuous control case. The differences between
the secondary Hopf and flip cases can clearly be seen in the
frequency diagram as well.

IV. EXPERIMENTAL VALIDATION

For the experimental validation of the theoretical results, force
control process was implemented using a HIRATA (MB-H180-
500) dc drive robot shown in Fig. 3. This robot has two linear
axes. The first axis (the y-direction) was fixed during the exper-
iments, while the second axis (the x-direction) was connected
to the base of the robot (environment) by a helical spring of
stiffness k = 7144 N/m. The contact force between the envi-
ronment and the spring was induced by the displacement of the
moving robot axis in the x-direction. The force was measured by
a Tedea–Huntleight Model 355 load cell mounted between the
spring and the robot’s flange. The driving system of the moving
axis consisted of a HIRATA HRM-020-100-A dc servo motor
connected directly to a ballscrew with a 20-mm pitch thread.
The robot was controlled by a microcontroller-based control
unit providing the maximum sampling frequency of 1 kHz for
the overall force control loop. The control force was set propor-
tionally to the measured force error by the pulse with modulation
of the supply voltage of the dc motor. The controller made it
possible to vary the sampling time and the time delay as integer

multiples of 1 ms, and to set the proportional gain and the desired
contact force arbitrarily. The modal mass and the damping ratio
of the system were experimentally determined: mb = 29.57 kg
and b = 1447 Ns/m. The natural angular frequency of the un-
controlled undamped system was ωn =

√
k/mb = 15.54 rad/s,

the damping ratio was ζ = b/(2mb ωn) = 1.57. The Coulomb
friction originated mostly from the dc drive system and was
measured to be C = 16.5 N.

During the tests, the desired contact force was set to Fd =
50 N. Due to the relatively small stiffness, the system is char-
acterized by a well-defined single natural frequency: fn =
ωn/(2π) = 2.474 Hz. The disturbing effect of higher order
modes can, therefore, be neglected, and a single DOF model can
be used. Since the natural frequency of the system was constant
during the tests, different frequency ratios α = fn/fs = fn∆t
were attained by changing the sampling time ∆t between 10
and 100 ms according to Table I. For each sampling period, the
proportional gain P was increased step by step. The control pro-
cess was declared unstable if the robot started oscillations for
perturbations larger than 50 N. In most cases, the experimental
stability boundaries were clearly identified.

Fig. 4 presents the comparison of the theoretical and the
experimental results for the continuous control case. Left mid-
dle panel shows the theoretically predicted stability boundaries
(lines) and the experimentally determined ones (crosses). In or-
der to verify unstable behavior, the frequency spectra of the
arising vibrations were compared to the theoretical predictions.
Left top panel presents the theoretically predicted vibration fre-
quencies according to (26). Here, the dots denote the theoretical
frequencies for the test points a, b, c, etc. Right panels show
the corresponding power spectra density (PSD) diagrams that
were determined using the recorded time history of the mea-
sured contact force. Here, the frequencies that were predicted
theoretically are denoted by the black dots for reference. In the
PSD diagrams, logarithmic scale is used for the vertical axes in
order to show the higher frequencies clearly. Thus, the structure
of the frequency diagrams can be compared to the theoretical
predictions. Left bottom panels show the ratio of the maximum
force error Fmax

e and the Coulomb friction force C. The the-
oretically predicted envelope curve for this ratio is denoted by
the line, while the experimentally measured values are denoted
by the crosses. It can be seen that the measured force errors are
smaller than the predicted maximum. Fig. 4 shows that the the-
oretical predictions for the continuous control case are verified
by the experiments regarding all the stability boundaries, the
structure of the vibration frequencies, and the force error.

Fig. 5 presents the same comparison of the theoretical and the
experimental results for the act-and-wait control case. Left mid-
dle panel shows the stability boundaries, left top panel shows
the theoretically predicted vibration frequencies, and right
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Fig. 4. Experimental and theoretical stability charts (left middle), theoretical vibration frequencies (left top), force errors (left bottom), and experimental PSD
diagrams (right) for the continuous control concept.

Fig. 5. Experimental and theoretical stability charts (left middle), theoretical vibration frequencies (left top), force errors (left bottom), and experimental PSD
diagrams (right) for the act-and-wait control concept.
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Fig. 6. Time histories of the measured contact force for ∆t = 10 ms.

panels present the measured PSD diagrams. The predicted and
the measured force errors are presented in the left bottom panel.
It can be seen that the experimental results agree well with the
theoretical predictions for the act-and-wait controller as well.

The results shown in Figs. 4 and 5 confirm that larger propor-
tional gains can be used with stable control process if the act-
and-wait concept is used instead of the continuous controller.
Consequently, the force error can be reduced by a factor of 2–3.

The gain of the act-and-wait method is demonstrated in Fig. 6,
where time histories of the measured contact force are presented
for different control concepts with the same sampling period
∆t = 10 ms. The controller is switched on at t = 1 s for all
the six cases. Left panels present the continuous control case for
proportional gains P = 5, 10, and 13. Case P = 13 corresponds
to point “a” in the stability chart of Fig. 4. For P = 13.5, the
control process was found to be unstable. The ratio Fmax

e /C =
1/(1 + P ) is also presented in each panel in order to show the
tendency of the force error for increasing P . It can be seen that
the overshoot increases with the proportional gain, while the
force error decreases.

For the act-and-wait controller, the proportional gain can be
increased up to P = 27 without losing stability. Right panels
in Fig. 6 present the act-and-wait control case for proportional
gains P = 13, 20, and 27. The case P = 27 corresponds to
point “a” in the stability chart of Fig. 5. For P = 27.5, the
control process was found to be unstable. The tendency of the
overshoot and the maximum force error for increasing propor-
tional gains are similar to those of the continuous controller: The
overshoot increases, while the force error decreases for increas-
ing P . However, for the same proportional gain, the overshoot
is significantly smaller for the act-and-wait controller than it is
for the continuous controller. This can clearly be seen in Fig. 6
for the proportional gain P = 13 (left bottom and right top pan-
els). This is due to the fact that the continuous control system
with P = 13 is close to the stability boundary (for P = 13.5,

the system is already unstable), while the act-and-wait control
system is stable up to P = 27. For the act-and-wait controller,
the force error can be decreased further by increasing the pro-
portional gain, but in this case, the overshoot increases. Still,
in some applications, it might be acceptable to have a strong
transient with a relatively large overshoot in order to provide a
minimal force error during the steady state of the system.

In Fig. 6, the transient behavior of the system can also be seen.
For the continuous controller with P = 13, the transient vibra-
tions decay almost linearly in time, which refers to the presence
of Coulomb friction. The frequencies appearing in the transient
can be identified using panel (a) in Fig. 4. These frequencies
are 8.4, 91.6, 108.4, and 191.6 Hz. Here, the lowest frequency,
8.4 Hz, is the dominant frequency that clearly appears in the
force signal in Fig. 6 as well. For the act-and-wait controller
with P = 27, the transient vibrations decay in a quasi-periodic
way due to the periodic switching of the controller. The corre-
sponding frequencies can be read from panel (a) in Fig. 5 as 8.5,
41.5, 58.5, 91.5, 108.5, and 141.5 Hz.

V. CONCLUSION

The act-and-wait control concept was applied to an experi-
mental digital force control process with a short (one sample
unit) feedback delay. The crux of the concept is that the feed-
back loop is switched off and on periodically during the control
process so that the duration of the switch-off period is larger
than the feedback delay. The experimental setup was designed
such that the control gain can be varied in each sampling; thus,
the act-and-wait concept can be implemented in the system. The
technique was compared to the traditional, continuous control
case, when the feedback loop is continuously active.

Stability charts were constructed that plot the critical pro-
portional gains, where the process loses stability, as a function
of the frequency ratio α = fn/fs with fn being the natural
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frequency of the uncontrolled undamped system and fs being
the sampling frequency. It was shown that the application of the
act-and-wait concept allows the use of larger proportional gains
without losing stability: the critical gains for the act-and-wait
controller are about double/triple of the critical gains associated
with the continuous controller. Consequently, the force error can
significantly be decreased by the application of the act-and-wait
control concept. The theoretical results were confirmed by ex-
periments for a range of frequency ratios. Vibration frequencies
at the stability boundaries were used to verify the model. The
theoretically predicted frequencies agreed well with the experi-
mentally determined PSD diagrams.
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