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ABSTRACT
This paper deals with the modeling and analysis of the cut-

ting tool’s global dynamics in the orthogonal cutting process of
turning operations considering the effect of state dependency and
fly-over in one model. In particular, the one-degree-of-freedom
non-smooth model, presented by Wahi and Chatterjee in 2008,
is extended by the consideration of vibrations in the direction
perpendicular to the feed velocity. This results in the state-
dependency of the model and gives an additional direction in
which fly-over can occur. The constructed mathematical model
consists of a nonlinear PDE, which describes the evolution of
the surface height of the workpiece and a two-degree-of-freedom
ODE, which governs the motion of the tool. The PDE is con-
nected to the solution of the ODE by a non-local, non-smooth
boundary condition. For the case when the tool is within the cut,
this model gives the conventional model of turning governed by
delay-differential equations with state-dependent delays. In or-
der to study the effect of vibrations in the tangential direction
numerical simulations are carried out and their results are com-
pared to the model presented by Wahi and Chatterjee (2008).

1 INTRODUCTION
Machine tool chatter is the large amplitude vibration of the

cutting tool in machining operations involving intermittent loss
of contact between the tool and the workpiece. These vibrations

∗Address all correspondence to this author.

are highly deteriorative to the machining process since they re-
sult in poor workpiece surface quality and machining accuracy
and, at the same time, they also increase the tool wear or even
damage the tool. Consequently, machine tool chatter limits the
material removal rate in addition to the limitations given by the
power supply of the machine [1,2]. Therefore, the elimination of
chatter would lead to a drastic increase in productivity. Although
there exist methods to suppress vibrations during machining op-
erations (see e.g. [3, 4]), these techniques do not solve the prob-
lem of chatter completely. As a result, machine tool chatter is
still a crucial issue in manufacturing.

In the recent decades several articles have been published on
the modeling of machine tool chatter. These articles mainly study
turning and milling operations, however many of them investi-
gate drilling and grinding operations, too. The presented models
relate machine tool chatter to friction [5], to thermo-mechanical
effects [6] and to the so called surface regeneration [7]. Out
of these chatter sources regenerative chatter is the most impor-
tant [8, 9].

This particular paper deals with the modeling of regenera-
tive chatter in turning processes. The essence of the regenerative
phenomenon is that the cutting force depends on the chip thick-
ness, which can be calculated as the difference between the ac-
tual position of the cutting tool and its position one revolution
before. Therefore, the governing equation of the tool involves
delayed values of the state. Depending on the selection of ma-
chining parameters, these delayed terms can lead to the loss of
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stability which is associated with chatter vibrations. Due to the
presence of delayed terms, the majority of mathematical mod-
els represent the regenerative phenomenon by delay-differential
equations (DDEs). For turning, mechanical models resulting in
smooth DDEs assume that the cutting tool remains in the cut
at all time. The cutting force is defined either by Taylor’s or To-
bias’s law, which both describe dependence on the chip thickness
and thus dependence on some delayed state of the tool. When the
local stability of the cutting process is studied then smooth DDE
models can be verified since the cutting edge has permanent con-
tact with the workpiece in case of stationary cutting. However,
chatter itself is defined as the motion where the tool repeatedly
loses and re-establishes contact with the workpiece. Therefore,
when one is interested in not only the local but also in the global
behaviour of the cutting tool, then the standard smooth DDE
models have to be modified by the consideration of the so called
fly-over of the tool. The term fly-over refers to the tool’s motion
for the case when it is out of cut. During fly-over the tool vi-
brates freely and the delayed terms disappear from the governing
equations which results the non-smoothness of the mathematical
model [10].

The first models, dealing with the global dynamics of chat-
ter in turning, were carried out by Wahi and Chatterjee [11] and
Dombovari et al [12]. Both models neglected the tool’s vibra-
tion in the direction perpendicular to the feed velocity (which
coincides with the tangential direction of the workpiece) and ex-
tended the conventional, smooth DDE model by modeling the
surface height of the workpiece. This paper deals with the exten-
sion of the model presented in [11] by the consideration of the
tool’s motion in the tangential direction of the workpiece. More-
over, the relation is shown between different models for turning
and the effect of the tool’s vibration in the tangential direction is
presented by the comparison of time-domain simulations for the
herein introduced model and the model presented in [11]. The
structure of the paper is the following. First, the most important
models are described for regenerative chatter in turning. Then
the proposed model is introduced. Thereafter relation between
different models is discussed and time-domain simulations are
presented. Finally some conclusions are drawn from the results.

2 REGENERATIVE CHATTER MODELS OF TURNING
As mentioned above, the existing models of turning can be

categorized based on whether they consider the fly-over effect
or not. Those considering the fly-over of the tool, result in non-
smooth dynamical systems while the ones neglecting this phe-
nomenon give smooth DDEs.

2.1 Smooth models
Models which assume permanent contact between the tool

and the workpiece throughout the machining process are de-

FIGURE 1. Mechanical model of the orthogonal cutting process

scribed by smooth DDEs. If the spindle speed is constant then,
depending on whether tangential vibrations are considered or not
the delay is state dependent or constant, respectively.

2.1.1 Model with constant delay Figure 1 shows the
simplest model of the orthogonal cutting process. In particular,
the cutting tool is substituted by a spring-mass system which is
carried by a frame moving with a constant feed velocity mag-
nitude v f in direction −y, normal to the removed surface and
parallel to the axis of the workpiece. The (x,y,z) coordinate sys-
tem is fixed to the moving frame (see Figure 2). For simplicity, it
is assumed that the modal matrices of the tool, corresponding to
its first eigenfrequencies in the normal direction y and tangential
direction x, are diagonal thus there is no coupling between x and
y directions. The non-zero elements of the modal mass matrices
are denoted by m. The elements of the modal stiffness matrix
are kx and ky, while the elements of the modal damping matrix
are cx and cy in the corresponding directions. The magnitude of
the cutting force is denoted by Fc, while the angle between the
tangential direction and the cutting force is given by β . When
the tool is considered to be rigid in the tangential direction (that
is kx→ ∞) then the dynamics of the tool is governed by

mÿ(t)+ cyẏ(t)+ kyy(t) = sin(β )Fc(t). (1)

Throughout this paper the Taylor cutting force model is used,
therefore the cutting force is calculated as

Fc(t) = Kwhq(t), (2)
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where K is called cutting force coefficient, w is the chip width of
the tool, q is the cutting force exponent and h is the chip thick-
ness, calculated as

h(t) = y(t− τ)− y(t)+ v f τ. (3)

The time-length of the last complete rotation at time t is denoted
by τ . It is assumed that the spindle speed is constant and the tool
is rigid in direction x, therefore the delay can be calculated as
τ = 2π/Ω. (Details on Tobias’s cutting force law can be found
e.g. in [13].)

By introducing dimensionless time t̃ = ωy t and dimension-
less delay τ̃ =ωy τ and dropping the tilde immediately, equations
(1)–(3) give

ÿ(t)+2ζyẏ(t)+ y(t) = κy
(
y(t− τ)− y(t)+ v∗f τ

)q
, (4)

where v∗f = v f /ωy and κy = Kyw/(mω2
y ), with Ky = sin(β )K be-

ing the cutting force coefficient in direction y. The natural angu-
lar frequency and damping ratio in direction y are ωy =

√
ky/m

and ζy = cy/(mωy), respectively. The trivial equilibrium of (4)
is ye = κy(v∗f τ)q which gives the desired nominal chip thickness
h0 = v∗f τ . By introducing dimensionless coordinate ỹ = y/h0 and
dropping the tilde immediately, one obtains

ÿ(t)+2ζyẏ(t)+ y(t) = κ̂y (y(t− τ)− y(t)+1)q , (5)

where κ̂y = κyhq−1
0 . This is a nonlinear DDE with one constant

delay. It has a well understood behavior since its stability and
local nonlinear dynamics have been analyzed by several authors
(see, e.g., Chapter 5.1.2 in [14] and [15]). The structure of the
stability chart on the (Ω, w) parameter plane and the existence
of subcritical bifurcation around the stationary motion have been
verified by measurements also (see e.g. [7]).

2.1.2 SD-DDE model When the tool is not rigid in the
tangential direction, then an additional equation appears in the
form

mẍ(t)+ cxẋ(t)+ kxx(t) =−cos(β )Fc(t). (6)

For this equation, the same way as for (1), the introduction of
dimensionless time and dimensionless coordinate gives

ẍ(t)+µζxẋ(t)+µ
2x(t) =−κ̂x (y(t− τ)− y(t)+1)q . (7)

where κ̂x = Kxwhq−1
0 /(mω2

y ) with Kx = cos(β )K being the cut-
ting force coefficient in direction x. The damping ratio in direc-
tion x is denoted by ζx = cx/(mωx), while µ =

√
kx/ky is the

FIGURE 2. 3D sketch of the mechanical model

stiffness ratio. Together, (5) and (7) determine the motion of the
tool however, due to the flexibility of the tool in direction x, the
delay is not constant but given implicitly by

∫ t

t−τ

R̂Ω̂(s)ds = 2R̂π− x(t)+ x(t− τ), (8)

where R̂ = R/h0 is the dimensionless radius of the workpiece
(see Figure 1) and Ω̂ = Ω/ωy is the dimensionless spindle speed.
Note, that because of (8) the delay depends on state variable x.
For more details on the SD-DDE model see Section 5.1.1 in [14],
for results on its stability see [16], and for its local nonlinear
dynamics see [17].

2.2 Non-smooth models
Note, that the above equations are valid only for the case

when h(t) ≥ 0 ∀t, since the cutting force cannot be negative at
any time. Therefore, the above models can describe the local dy-
namics of the tool, only. When the global dynamics of the tool
is considered then the governing equations are inevitably non-
smooth. This property is due to the fly-over of the tool which
results that the force term Fc becomes zero for h < 0. However,
the application of solely this condition to the above equations
would not lead to a correct model. This is owing to the fact that
uncut segments reappear in the calculation of the chip thickness
after one or more revolutions. Therefore, in addition to the con-
sideration of the non-smoothness of the force term one also has
to describe the evolution of the workpiece surface in direction y.

Models describing the global dynamics of the cutting tool
were carried out in [12] and in [11]. Both models assume con-
stant spindle speed and the tool to be rigid in the tangential di-
rection. Furthermore, they introduce a surface height function
(denoted by L in Figures 1 and 2), which describes the evolution
of the workpiece surface in direction y. The difference between
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FIGURE 3. Mechanical model in the (x,z) plane

these models is that while [12] calculates the value of the surface
height from an algebraic equation, [11] determines its value from
a PDE. In the following, the models presented in [12] and [11]
are briefly described.

2.2.1 DDAE model (Dombovari et al.) By the con-
sideration of the non-smoothness of the cutting force (5) is mod-
ified as

ÿ(t)+2ζyẏ(t)+ y(t) ={
κ̂y (L̄(t− τ)− y(t)+1)q if L̄(t− τ)− y(t)+1≥ 0
0 otherwise

(9)

where the evolution of the dimensionless surface height function
is defined by

L̄(t) =

{
y(t) if L̄(t− τ)− y(t)+1≥ 0
L̄(t− τ)+1 otherwise.

(10)

It can be seen from the definition of L̄ that when fly-over occurs
then the surface height in the next revolution simply becomes
the actual ”skipped” surface height plus the nominal chip thick-
ness. When the tool is in the cut, then the chip thickness is cal-
culated as usual. Equations (9) and (10) define a non-smooth
delay-differential algebraic equation (DDAE), where (10) is the
algebraic, while (9) is the delay-differential part, both being non-
smooth.

2.2.2 Simple PDE-ODE model (Wahi and Chatter-
jee) Note that in the DDAE model, function L̄(t) defines the
dimensionless surface height at time t for the angular position
where the tool tip is located, while the coordinate L̄ = 0 is fixed
to the moving frame of the tool. On the other hand the simple
PDE-ODE model describes the dimensionless surface height at

time t not only for one point, but for the whole cylindrical sur-
face of the workpiece, while the coordinate L = 0 is fixed to a
steady coordinate system parallel to y. That is the simple PDE-
ODE model defines L as a bivariate function L(t,φ) with do-
mains t ≥ 0, φ ∈ [0,2π] (see Figures 1 and 2). Coordinate φ = 0
is fixed to the angular position of the tool tip and the positive di-
rection of coordinate φ coincides with the direction of rotation
(see Figure 3). Utilizing that the surface height does not change
along the domain φ ∈ (0,2π], one can derive a hyperbolic PDE
(its derivation is detailed in the next section) in the form

∂L(t,φ)
∂ t

=−Ω̂
∂L(t,φ)

∂φ
, ∀t, φ ∈ (0,2π]. (11)

At the angular position φ = 0 a non-smooth non-local boundary
condition is given in the form

L(t,0) =

{
L(0,0)− v̂ f t + y(t) if h(t)≥ 0
L(t,2π) otherwise

(12)

where v̂ f = v∗f /h0 is the dimensionless feed velocity and it is as-
sumed, that cutting starts at t = 0, therefore L(0,φ), φ ∈ (0,2π]
is the initial surface height function. The tool’s motion is deter-
mined by the non-smooth ODE

ÿ(t)+2ζyẏ(t)+ y(t) =

{
κ̂yhq(t) if h(t)≥ 0
0 otherwise.

(13)

The surface height difference on the cutting edge gives the chip
thickness, that is

L(t,2π)−L(t,0) = h(t). (14)

When the tool is in the cut (h(t)≥ 0) then the chip thickness is
given by

h(t) = L(t,2π)−L(0,0)+ v̂ f t− y(t), (15)

otherwise the chip thickness is zero, thus

h(t) = 0. (16)

Note that this PDE-ODE description is more general than the
DDAE since the modelled physical process is a contact problem
of two rigid bodies, which both can be described by PDEs con-
nected with non-smooth boundary conditions. Since it was pro-
posed in [11] the simple PDE-ODE model has been investigated
by other authors as well (see eg. [18]).
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3 EXTENDED PDE-ODE MODEL
As it was mentioned in the previous section, existing models

for the description of global dynamics in turning consider vibra-
tions only in direction y and the tool is therefore assumed to be
rigid in direction x. However, in real cases kx and ky are usually
in the same order of magnitude, hence, when the tool leaves the
workpiece then it starts considerable vibrations in both x and y
directions. This makes the extension of existing models in direc-
tion x reasonable. In this section the derivation of the governing
equation of such extended modell is detailed.

Let us use the same coordinate system as described for the
simple PDE-ODE model. Consider a particular material point on
the surface of the workpiece. If this material point is within the
domain φ ∈ (0,2π], then the corresponding surface height does
not change. This results that if φ = φ(t) is a function describing
the relative angular position between the material point and the
tool tip then the following relation holds

L(t,φ(t)) = L(t +∆t,φ(t +∆t)) ∀t, ∀∆t, φ ∈ (0,2π]. (17)

It can be assumed, that L is continuous in both variables on the
above given domains, therefore

lim
∆t→0

L(t +∆t,φ(t +∆t))−L(t,φ(t))
∆t

= 0, ∀t, φ ∈ (0,2π]. (18)

which, at the limit gives

dL(t,φ(t))
dt

=
∂L
∂ t

+
∂L
∂φ

dφ

dt
= 0, ∀t, φ ∈ (0,2π]. (19)

Since the coordinate φ = 0 is fixed to the tool tip, the relative
angular displacement between the tool and the workpiece surface
can be approximated as

φ(t)≈ x(t)
R̂

+ϕ(t) (20)

if the ratio sup{|x(t)|}/R̂ is small enough. Here ϕ(t) is the an-
gular displacement of the spindle. Equation (19) therefore gives

∂L(t,φ)
∂ t

=−
(

ẋ(t)
R̂

+ Ω̂(t)
)

∂L(t,φ)
∂φ

∀t, φ ∈ (0,2π], (21)

where Ω̂(t) = (1/ωy)(dϕ(t)/dt). This PDE governs the evolu-
tion of the dimensionless surface height function. The chip thick-
ness is given again by (15) or (16) depending on whether the
tool is in or out of the cut, respectively. Therefore, the boundary

conditions will be the same as in case of the simple PDE-ODE
model except for the switching conditions. The switching condi-
tions will differ since now the tool can leave the cut in direction
x as well. This happens when φ̇(t)< 0, that is when the relative
motion between the tool and the workpiece changes its direction.
Therefore, both φ̇(t)≥ 0 and h(t)≥ 0 have to be satisfied for the
tool to be in the cut. Hence, the boundary conditions read as

L(t,0) =

{
L(0,0)− v̂ f t + y(t) if h(t)≥ 0 and φ̇(t)≥ 0
L(t,2π) otherwise.

(22)

The tool’s motion is now described by the non-smooth system of
ODEs

ÿ(t)+2ζyẏ(t)+ y(t) =

{
κ̂yhq(t) if h(t)≥ 0 and φ̇(t)≥ 0
0 otherwise

(23)

ẍ(t)+2µζxẋ(t)+µ
2x(t) =

{
κ̂xhq(t) if h(t)≥ 0 and φ̇(t)≥ 0
0 otherwise.

(24)

Equations (21), (23) and (24) define the PDE-ODE system sub-
ject to the boundary condition (22). The PDE is coupled nonlin-
early to the ODEs since the term ẋ(t) shows up in (21) as a multi-
plier. The PDE and the ODEs are also coupled via the boundary
condition (22). Note that the ODEs are already two-degree-of-
freedom approximations obtained by modal measurements of the
tool. This model can be easily extended by the consideration of
arbitrary number of modes, which would increase the dimension
of the ODE system.

4 RELATION AMONG DIFFERENT MODELS
In this section, the relation is studied between the extended

PDE-ODE model and the above described models taken from the
literature.

Clearly, if the spindle speed is constant, that is, ϕ(t) = Ωt,
and the vibrations in direction x are neglected then the extended
PDE-ODE model is exactly the same as the simple PDE-ODE
model.

Define τ as the time necessary for one complete rotation
with respect to the tool tip, that is

φ(t)−φ(t− τ) = 2π. (25)

Due to (17), this gives

L(t− τ,0) = L(t,2π) ∀t. (26)
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Therefore, if the tool is in the cut, then from (14) and (22) the
chip thickness is

h(t) = L(t− τ,0)−L(t,0) = y(t− τ)− y(t)+ v̂ f τ. (27)

Since v̂ f τ = 1, by the substitution of (27) to (23) and (24) one ob-
tains (5) and (7), respectively. Note, also that (25) is equivalent
to (8) after the substitution of (20). Hence, if the tool is perma-
nently in the cut, then the solution of the extended PDE-ODE
model at angular position φ = 0 gives the SD-DDE model.

When vibrations in direction x are neglected and the spindle
speed is constant then the SD-DDE model gives the DDE model
with constant delay, therefore under these assumptions the ex-
tended PDE-ODE model also gives the DDE model with constant
delay when h≥ 0 for all t.

Let us transform now the dimensionless surface height func-
tion to the moving frame as

L̃(t,φ) = L(t,φ)+L(0,0)− v̂ f t. (28)

Now if L̄(t) := L̃(t,0), then the substitution of (26) to (15) and
(16) gives the corresponding cases in (10). Therefore, for con-
stant spindle speed and under the neglection of vibrations in di-
rection x, (23) gives (9), that is, at angular position φ = 0 the
extended PDE-ODE model gives the DDAE model. Note, that
with (28), the simple PDE-ODE model at angular position φ = 0
also gives precisely the DDAE model.

According to the above discussed reasons the presented
models from the literature are special cases of the extended PDE-
ODE model.

5 CALCULATIONS
In this section some results are shown for the extended PDE-

ODE model and the simple PDE-ODE model in the form of nu-
merical simulations. First, the numerical method, which was
used for the calculation of the results is detailed, then some re-
sults are presented and discussed.

5.1 Numerical scheme
In order to carry out simulations for the dynamical system

defined by (21)-(24) one first have to discretize the PDE given
by (21). This discretization is done by using central differences
for which the idea was taken from [19]. At time instant t, this
method represents the function L(t,φ) by an (n+1)-dimensional
vector of distinct points of the state function, corresponding to
the nodes of an equidistant mesh on φ ∈ (0,2π]. The state func-
tion is therefore discretized in its second variable as

Li(t) = L(t,φi), φi =
2π(i−1)

n
, i = 1,2, . . . ,n+1. (29)

Using these state values the derivative with respect to φ is ap-
proximated by central differences as

L′i(t) =
∂L(t,φ)

∂φ

∣∣∣∣
φ=φi

≈


Li+1(t)−Li(t)

∆φ
i = 1

Li+1(t)−Li−1(t)
2∆φ

i = 2,3, . . . ,n
Li(t)−Li−1(t)

∆φ
i = n+1.

(30)

Utilizing this discretization, PDE (21) can be approximated by a
system of n+1 number of ODEs in the form

L̇(t) =−
Ω̂(t)+

ẋ(t)
R̂

L′(t) = M(t, ẋ(t))L(t), (31)

where L(t) and L′(t) are vectors of Li(t) and L′i(t), respectively,
and

M(t, ẋ(t)) =−
Ω̂(t)+

ẋ(t)
R̂





− 1
∆φ

1
∆φ

0
− 1

2∆φ
0 1

2∆φ

. . . . . . . . .
− 1

2∆φ
0 1

2∆φ

0 − 1
∆φ

1
∆φ


(32)

is an (n+1)× (n+1) tridiagonal matrix. After the introduction
of vectors

zx=

[
x(t)
ẋ(t)

]
, fx (t,y(t),Ln+1(t)) =

[
0

−κ̂xh(t)q

]
, (33)

zy=

[
y(t)
ẏ(t)

]
, fy (t,y(t),Ln+1(t)) =

[
0

κ̂yh(t)q

]
, (34)

matrices

Ax =

[
0 1
−µ2 −2µζx

]
, Ay =

[
0 1
−1 −2ζy

]
(35)

and dimensionless chip thickness h(t) = Ln+1(t)−L1(0)+ v̂ f t−
y(t), the possible tool motions can be summarized as follows.

• Cutting: h(t)≥ 0 and
Ω̂(t)+

ẋ(t)
R̂

≥ 0

The tool’s motion is governed by

żx(t) = Axzx(t)+ fx (t,y(t),Ln+1(t)) , (36)
ży(t) = Ayzy(t)+ fy (t,y(t),Ln+1(t)) , (37)
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while the boundary condition is enforced by

L1(t) = L1(0)− v̂ f + y(t). (38)

• Fly-over: h(t)< 0 or
Ω̂(t)+

ẋ(t)
R̂

< 0

The tool’s motion is governed by

żx(t) = Axzx(t), (39)
ży(t) = Ayzy(t), (40)

while the boundary condition is enforced by

L1(t) = Ln+1(t). (41)

If the initial function L(0,φ) and the initial state (zx(0),zy(0))
of the tool are given then the solution of the approximate sys-
tem can be determined. For this purpose the 4th-order Runge-
Kutta method was used. Note that the accuracy of the solution
is sensitive to the accurate determination of the switching points.
Hence, close to the switching points smaller time steps should
be used. For the herein presented numerical solutions the accu-
rate determination of switching points was done by an interval-
halving technique.

5.2 Comparison
The simulations, shown in Figures 4 and 5, were carried

out using the parameter set of Table 1. These results were ob-
tained by the built-in ode23 solver of Matlab. For the detection
of switching points the built-in event location option of the solver
was used. The resolution of the finite dimensional approximation
of the PDE was n = 500, while the relative and absolute toler-
ance of the solver was set to 10−8 and 10−6, respectively. It can
be seen in Figure 4, that considerable vibrations of the tool are
present in direction x although the tool is stiffer in this direction
(kx = 4ky). It can also be observed that the vibration of the tool
in direction x does not affect the vibrations in direction y. This
is due to the fact that for the simulation shown in Figure 4 the
velocity of the tool does not exceed the limit where the contact
would be lost (i.e., φ̇(t) ≥ 0). Note that the ratio ρ = v f /(RΩ)
of the feed velocity and the cutting speed is also small which
resulted very small differences in stability between the smooth
models with state-dependent and constant delays (see Figure 3
in [16]). Also note that in practice directions x and y are coupled,
which would result differences in the results even if φ̇(t)< 0.

6 CONCLUSIONS
This paper investigated the modeling of the global dynam-

ics of the cutting tool in turning operations. A new model was

TABLE 1. Used parameters for the numerical simulation

ζx = ζy κ̂x = κ̂y µ q Ω̂ v̂ f R̂

0.05 2 2 3/4 2 2 100

0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

t

 

 

x(t)

y(t)

L̄(t,2π)

L̄(t,0)

FIGURE 4. Time domain simulation of the extended PDE-ODE
model

presented which considered the non-smoothness given by the fly-
over of the tool. It was shown that this new model is more general
than the existing ones, and the models taken from the literature
can be obtained as special cases of the herein presented model.
A method for the discretization of this PDE-ODE problem was
described, then it was shown by simulations that the tool is sub-
ject to considerable vibrations in the direction perpendicular to
the feed.
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