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Abstract: The stick balancing problem is considered, where the vertical direction is measured
using a single accelerometer attached to the stick. It is shown that the output is a linear
combination of the angular position and the angular acceleration of the stick. If this output
is fed back in a PD controller with feedback delay, then the governing equation of motion is an
advanced functional differential equation, since the highest derivative, the jerk, appears with
delayed argument through the derivative term. Autonomous equations with advanced arguments
are typically non-causal and are unstable with infinitely many unstable poles. However, if the
sampling effect of the digital controller is modeled, then the argument of the delayed highest
derivative term is piecewise constant. In this case, the non-causality does not arise, and the
system can also be stabilized by tuning the control parameters properly. In the paper, different
models for stick balancing are considered and discussed by analyzing the corresponding stability
diagrams.
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equations, Stability domains

1. INTRODUCTION

Systems, where the rate of change of the state depends
on the state at deviating arguments are described by
functional differential equations (FDEs). FDEs can be
categorized into retarded, neutral and advanced types (see,
e.g., Èl’sgol’c, 1964, or Kolmanovskii and Myshkis, 1999).
If the rate of change of the state depends on the past states
of the system, then the corresponding mathematical model
is a retarded functional differential equation (RFDE). If
the rate of change of the state depends on its own past
values as well, then the corresponding equation is called
neutral functional differential equation (NFDE). If the
rate of change of the state depends on the past values of
higher derivatives of the state, then the system is described
by an advanced functional differential equation (AFDE).
Note that these equations are also referred to as FDEs
of retarded, neutral or advanced type (Kolmanovskii and
Nosov, 1986).

The reason for the phrase “advanced” can be demon-
strated by the following example. Consider the simple
AFDE
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ẋ(t) = ẍ(t − τ) . (1)

By a τ -shift transformation in time, and by using the new
variable z = ẋ, this equation can be written in the form

ż(t) = z(t + τ) . (2)

Here, the rate of change of state is determined by the
future values of the state.

As opposed to RFDEs and NFDEs, AFDEs are rarely used
in practical applications due to their inverted causality
explained by (2). While linear autonomous RFDEs have
infinitely many poles on the left half of the complex plane,
linear autonomous AFDEs have infinitely many poles on
the right half of the complex plane (Hale and Lunel, 1993,
Niculescu, 2001). In this sense, linear autonomous AFDEs
are always strongly or infinitely unstable.

Control systems with feedback delay are usually described
by RFDEs or NFDEs. For instance, position and ve-
locity feedback in a second order system results in an
RFDE, while acceleration feedback induces an NFDE (see
Vyhĺıdal et al., 2009). However, if the jerk is fed back
in a second order system with feedback delay, then the
governing equation is an AFDE, which is always unstable
independently on the system and the control parameters.
Although, jerk is practically never intended to be fed back
in a control system, it may still appear in the input signal
due to measuring error or noise.
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Fig. 1. One-DoF model of stick balancing, and the me-
chanical model of the accelerometer.

In this paper, a balancing problem is considered where
the vertical direction is measured by accelerometers such
that the jerk appears in the output. Different types of
models are considered with respect to the arguments of
the feedback term. The corresponding model equations are
RFDEs, NFDEs, and AFDEs. It is shown that the sam-
pling effect stabilizes the system even if an advanced term
(the jerk with feedback delay) appears in the equation.

2. DIFFERENT MECHANICAL MODELS

Figure 1 presents the mechanical model of a simple stick
balancing using the signal of an accelerometer to measure
the angular position of the stick compared to the vertical
direction. The equation of motion reads

Jϕ̈(t) − Hmg sin ϕ(t) = Q(t), (3)
where ϕ is the angular position of the pinned stick, m is
the mass, H is the distance between the suspension point
O and the centre of gravity C, J is the mass moment of
inertia with respect to the axis normal to the plane of the
figure through point O, and Q is the control torque.

The angular position of the stick is measured by the
piezo-accelerometer attached to the stick at point A.
The mechanical model of the piezo-accelerometer is also
presented in Fig. 1. This accelerometer operates normal to
the stick as a mass m0 attached to a spring of stiffness k
modeling the piezo crystal. The accelerometer’s output y is
proportional to the displacement q of the mass: y = KAq
with KA [V/m] being the characteristic constant of the
accelerometer. The displacement q of the mass depends
on the angular position ϕ of the rod. If the rod is standing
still in an oblique position, then

q =
m0g

k
sin ϕ. (4)

Assuming small angular oscillations, the output can be
approximated linearly as

y = Kϕ, (5)
where K = KAm0g/k [V/rad].

If the dynamic effects, namely, the angular acceleration of
the rod, are also taken into account, then the displacement
of the accelerometer reads

q =
m0g

k
sin ϕ − m0L

k
ϕ̈. (6)

In this case, the linearized output is
y = Kϕ − K1ϕ̈, (7)

where K1 = KAm0L/k [Vs2/rad] and K is the same as
above. As it can be seen, the second derivative of the
angular position appears in the output.

Based on the measurement technique of the output, three
different models are distinguished:

(a) real-time continuous measurement: y(t);
(b) continuous measurement with feedback delay: y(t−τ);
(c) sampled measurement with feedback delay (digital

control): y(tj−r) with t ∈ [tj , tj+1], tj = jh, j ∈ Z,
here h is the sampling period, r is the delay parameter
and τ = rh is the feedback delay.

It is assumed that the output is fed back in a PD controller.
In the case of sampled systems (digital controller), two
derivative models can be defined:

(I) continuous differentiation: ẏ(tj−r), t ∈ [tj , tj+1];
(II) digital differentiation: y(tj−r)−y(tj−r−1)

h , t ∈ [tj , tj+1].

Equations (5) and (7) and cases (a), (b), (c) and (I), (II)
rises up 8 different models listed in table 1. In the next
section, these models are analyzed in details.

3. ANALYSIS OF THE DIFFERENT MODELS

In this section, the models listed in table 1 are considered
and their stability properties are described briefly.

Model 1.0

In this model, it is assumed that the exact angular position
is measured continuously real-time and is fed back without
any delay. The corresponding linearized equation of motion
reads

ϕ̈(t) − Hmg

J
ϕ(t) = −PK

J
ϕ(t) − DK

J
ϕ̇(t), (8)

which implies
ϕ̈(t) + dϕ̇(t) + (p − a)ϕ(t) = 0, (9)

with

a =
Hmg

J
, p =

PK

J
, d =

DK

J
. (10)

This system is asymptotically stable if d > 0 and p > a.

Model 1.1

Here, it is assumed that the feedback loop contains a delay
τ . The corresponding linearized equation of motion reads

ϕ̈(t) − aϕ(t) = −pϕ(t − τ) − dϕ̇(t − τ), (11)
where a, p and d are defined in (10). This equation
is a basic equation for balancing with feedback delay
(Stepan, 2009). Although complete pole placement is not
possible for this system (Michiels, et al., 2002), it can be
stabilized for certain system and delay parameters. The
corresponding stability boundaries are the line p = a, and
the parametric curve

p = (ω2 + a) cos(ωτ), d =
ω2 + a

ω
sin(ωτ), (12)

with ω ∈ R
+. The corresponding stability diagram can be

seen in Fig. 2 for a = 0.2 and τ = 1. Note that this system
is always unstable if a > 2 (see, for instance, Stepan, 1989).



Table 1. Different models for stick balancing using accelerometer

Name output control torque

Model 1.0 y(t) = Kϕ(t) Q(t) = −PKϕ(t) − DKϕ̇(t)

Model 1.1 y(t) = Kϕ(t − τ) Q(t) = −PKϕ(t − τ) − DKϕ̇(t − τ)

Model 1.2 y(t) = Kϕ(tj−r) Q(t) = −PKϕ(tj−r) − DKϕ̇(tj−r)

Model 1.3 y(t) = Kϕ(tj−r) Q(t) = −PKϕ(tj−r) − DK
ϕ(tj−r)−ϕ(tj−r−1)

h

Model 2.0 y(t) = Kϕ(t) − K1ϕ̈(t) Q(t) = −PKϕ(t) + PK1ϕ̈(t) − DKϕ̇(t) + DK1
...
ϕ(t)

Model 2.1 y(t) = Kϕ(t − τ) − K1ϕ̈(t − τ) Q(t) = −PKϕ(t − τ) + PK1ϕ̈(t − τ) − DKϕ̇(t − τ) + DK1
...
ϕ(t − τ)

Model 2.2 y(t) = Kϕ(tj−r) − K1ϕ̈(tj−r) Q(t) = −PKϕ(tj−r) + PK1ϕ̈(tj−r) − DKϕ̇(tj−r) + DK1
...
ϕ(tj−r)

Model 2.3 y(t) = Kϕ(tj−r) − K1ϕ̈(tj−r) Q(t) = −PKϕ(tj−r) + PK1ϕ̈(tj−r) − DK
ϕ(tj−r)−ϕ(tj−r−1)

h
+ DK1

ϕ̈(tj−r)−ϕ̈(tj−r−1)

h
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Fig. 2. Stability boundaries and the number of unstable
poles for (11) with a = 0.2.

Model 1.2

In this model, it is assumed that sampling effect (or zero
order hold) also arises in addition to the feedback delay.
The governing equation reads

ϕ̈(t)−aϕ(t) = −pϕ(tj−r)−dϕ̇(tj−r), t ∈ [tj , tj+1], (13)

where tj = jh, j ∈ Z denotes the discrete instants of
sampling, h is the sampling period and r is the delay
parameter. The feedback delay in this case is τ = rh. The
parameters a, p and d are defined in (10).

Note that this equation can be represented also in the form

ϕ̈(t) − aϕ(t) = −pϕ(t − σ(t)) − dϕ̇(t − σ(t)), (14)

where
σ(t) = τ − tj + t, t ∈ [tj , tj+1) (15)

is a time-periodic time delay shown in Fig. 3. In fact, the
sampling effect introduces a periodic parametric excitation
at the time delay according to (15), thus (13) is an non-
autonomous RFDE. It can be seen that the time-periodic
time delay σ(t) tends to the constant delay τ if the
sampling period h tends to 0 and r tends to ∞ by keeping
rh = τ . This limit is basically the key point of the semi-
discetization method of delayed system (see, Insperger et
al., 2008).

Equation (13) can be transformed to the form

ẋ(t) = Ax(t) + Bu(tj−r), t ∈ [tj , tj+1] (16)
u(tj) = Dx(tj) (17)

with

r = 1
σ

h

2h

2h
3h

t t

h

h00

σ
r = 2

r → ∞

4h
3h τ

tt
0h0

σσ
r = 3

Fig. 3. Sampling effect as time-periodic delay.

x(t) =
(

ϕ(t)
ϕ̇(t)

)
, A =

(
0 1
a 0

)
, B =

(
0
1

)
, D = (−p −d) .

(18)
Piecewise solution of the system over a sampling period
and state augmentation gives the finite dimensional dis-
crete map⎛

⎜⎜⎜⎜⎝
xj+1

uj

uj−1

...
uj−r+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

P 0 . . . 0 RB
D 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= Φ1.2

⎛
⎜⎜⎜⎜⎝

xj

uj−1

uj−2

...
uj−r

⎞
⎟⎟⎟⎟⎠ , (19)

where xj = x(tj), uj = u(tj), and

P = eAh, R =
∫ h

0

eA(h−s) ds. (20)

In the case r = 0 (when only zero order hold appears in
the feedback loop without any delay), the discrete map
turns to the form

xj+1 = (P + RBD)︸ ︷︷ ︸
= Φ1.2

xj . (21)

The system is asymptotically stable if the eigenvalues
of the monodromy matrix Φ1.2 in (19) or in (21) are
in modulus less than one. The corresponding stability
diagram can be seen in Fig. 4 for a = 0.2.

If the delay τ = rh is fixed to 1, then the system is always
unstable if
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Fig. 4. Stability boundaries for (13) for different delay
parameters r with rh = τ = 1 and a = 0.2.

a > acrit =

(
r ln

(
r(r + 1) + 1 +

√
2r(r + 1) + 1

r(r + 1)

))2

.

(22)
For r = 1, this formula reduces to

acrit = ln2

(
3 +

√
5

2

)
= 0.926, (23)

that was derived for the digitally controlled inverted pen-
dulum in Enikov and Stepan (1998). The critical values
to different delay parameters r are summarized in table
2. It can be seen that as r → ∞ and h → 0 by keeping
τ = rh = 1 constant, the critical system parameter tends
to that of Model 1.1: acrit = 2.

Table 2. Some critical system parameters for
Model 1.2 with τ = rh = 1

r 1 2 5 10 100

acrit 0.926 1.297 1.658 1.815 1.980

Model 1.3

The new feature of this model compared to the previous
one is that here the angular velocity for the derivative term
of the feedback is determined by digital differentiation.
The corresponding equation reads

ϕ̈(t) − aϕ(t) = −pϕ(tj−r) − d
ϕ(tj−r) − ϕ(tj−r−1)

h
,

t ∈ [tj , tj+1]. (24)

This system can be transformed to a system with two
delays

ϕ̈(t)−aϕ(t) = −p1ϕ(tj−r)+p2ϕ(tj−r−1), t ∈ [tj , tj+1],
(25)

where p1 = p + d/h and p2 = d/h. The corresponding
state-space model reads

ẋ(t) = Ax(t) + BD1y(tj−r) + BD2y(tj−r−1), (26)
y(tj) = Cx(tj), t ∈ [tj , tj+1] (27)

with x(t), A, and B defined in (18) and

C = (1 0) , D1 = (−p1) , D2 = (p2) . (28)

This semi-discrete system implies the discrete map
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Fig. 5. Stability boundaries for (24) for different delay
parameters r with rh = τ = 1 and a = 0.2.⎛

⎜⎜⎜⎜⎝
xj+1

yj

yj−1

...
yj−r

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

P 0 . . . 0 RBD1 RBD2

C 0 . . . 0 0 0
0 1 . . . 0 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= Φ1.3

⎛
⎜⎜⎜⎜⎝

xj

yj−1

yj−2

...
yj−r−1

⎞
⎟⎟⎟⎟⎠ ,

(29)
where P and R are defined in (20). If r = 0, the discrete
map has the form(

xj+1

yj

)
=
(

P + RBD1C RBD2

C 0

)
︸ ︷︷ ︸

= Φ1.3

(
xj

yj−1

)
. (30)

The system is asymptotically stable if the eigenvalues of
the monodromy matrix Φ1.3 in (29) or in (30) are in
modulus less than one. The associated stability diagram
is presented in Fig. 5 for a = 0.2.

Model 2.0

In this model, it is assumed that the angular position
is measured by accelerometers continuously without any
feedback delay. In this case the output of the system is
affected by the angular acceleration of the stick, and the
equation of motion reads

ϕ̈(t) − Hmg

J
ϕ(t) = −PK

J
ϕ(t) +

PK1

J
ϕ̈(t)

− DK

J
ϕ̇(t) +

DK1

J

...
ϕ(t). (31)

This equation can be written in the form
−εd

...
ϕ(t) + (1 − εp)ϕ̈(t) + dϕ̇(t) + (p − a)ϕ(t) = 0, (32)

where ε = K1/K describes the weight of the angular
acceleration in the output, and the parameters a, p and d
are defined in (10). The condition for asymptotic stability
for this ordinary differential equation is

d > 0 and a < p < 1/ε < 0. (33)
Clearly, this system is unstable for any parameters p and
d, if a > 0.

Model 2.1

This model assumes that the output of the system is
affected by the angular acceleration as in the previous
model, but the feedback loop involves a delay τ . The
corresponding equation of motion reads



ϕ̈(t)−aϕ(t) = −pϕ(t−τ)+εpϕ̈(t−τ)−dϕ̇(t−τ)+εd
...
ϕ(t−τ).

(34)
where, again, a, p and d are defined in (10), and ε = K1/K.
As it can be seen, the highest derivative appears with a
delayed argument, thus this equation is an autonomous
AFDE. Consequently, this system is always unstable with
infinitely many unstable poles if εd �= 0.

Model 2.2

Here, the sampling effect is also modeled, and the govern-
ing equation is shaped as

ϕ̈(t) − aϕ(t) = −pϕ(tj−r) + εpϕ̈(tj−r)
− dϕ̇(tj−r) + εd

...
ϕ(tj−r), t ∈ [tj , tj+1]. (35)

This equation can also be considered as an AFDE, since
the highest derivative appears with a delayed argument.
Note that the term

...
ϕ(tj−r) with t ∈ [tj , tj+1] can be

written in the form
...
ϕ(t − σ(t)) with σ(t) defined in (15)

(see also Fig. 3). Still, this equation does not face to the
non-causality of (34), since this equation can simply be
solved by the method of steps, if the initial function and
its appropriate derivatives are given. The corresponding
state-space model reads

ẋ(t) = Ax(t) + Bu(tj−r), t ∈ [tj , tj+1] (36)
u(tj) = Dx(tj) − εDẍ(tj) (37)

with x(t), A, B, and D defined in (18). Piecewise solution
of the system over a sampling period and state augmenta-
tion gives the finite dimensional discrete map⎛
⎜⎜⎜⎜⎜⎜⎝

xj+1

ẍj+1

uj

uj−1

...
uj−r+1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

P 0 . . . 0 RB
A2P 0 . . . 0 QB
D −εD 0 0
0 1 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= Φ2.2

⎛
⎜⎜⎜⎜⎜⎜⎝

xj

ẍj

uj−1

uj−2

...
uj−r

⎞
⎟⎟⎟⎟⎟⎟⎠ , (38)

where P and R are the same as in (20), and

Q =
∫ h

0

A2 eA(h−s) ds + A. (39)

If r = 0 then the discrete map turns to the form(
xj+1

ẍj

)
=
(

P + RBD −εRBD
A2P + QBD −εQBD

)
︸ ︷︷ ︸

= Φ2.2

(
xj

ẍj−1

)
. (40)

The system is asymptotically stable if the eigenvalues of
the monodromy matrix Φ2.2 in (38) or (40) in are in
modulus less than one. The stability boundaries can be
seen in Fig. 6 for a = 0.2 with different r and ε values. It
can be seen that there exist some domains of the control
parameters, where the system is stable. Note that the case
ε = 0 gives Model 1.2, and the corresponding stability
boundaries are identical to that of Model 1.2.

Model 2.3

In this model, the angular velocity for the derivative term
of the feedback is determined by digital differentiation as it
was done for Model 1.3. The corresponding equation reads
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Fig. 6. Stability boundaries for (35) for different delay
parameters r (left) and for different ε (right) with
rh = τ = 1 and a = 0.2.

ϕ̈(t) − aϕ(t) = −pϕ(tj−r) + εpϕ̈(tj−r)

− d
ϕ(tj−r) − ϕ(tj−r−1)

h
+ εd

ϕ̈(tj−r) − ϕ̈(tj−r−1)
h

,

t ∈ [tj , tj+1]. (41)

In this case, the highest derivative appears both with
delayed and with non-delayed arguments, thus, this equa-
tion is an NFDE. Similarly to (41), this system can be
transformed to a system with two delays

ϕ̈(t) − aϕ(t) = −p1ϕ(tj−r) + p2ϕ(tj−r−1)
+ εp1ϕ̈(tj−r) − εp2ϕ̈(tj−r−1), t ∈ [tj , tj+1], (42)

where p1 = p + d/h and p2 = d/h. The corresponding
state-space model reads

ẋ(t) = Ax(t) + BD1y(tj−r) + BD2y(tj−r−1), (43)
y(tj) = C1x(tj) + C2ẍ(tj), t ∈ [tj , tj+1], (44)

where x(t), A, and B are defined in (18) and

C1 = (1 0) , C2 = (−ε 0) , (45)
D1 = (−p1) , D2 = (−p2) . (46)

The corresponding discrete map reads⎛
⎜⎜⎜⎜⎜⎜⎝

xj+1

ẍj+1

yj

yj−1

...
yj−r

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

P 0 . . . 0 RBD1 RBD2

A2P 0 . . . 0 QBD1 QBD2

C1 C2 . . . 0 0 0
0 1 . . . 0 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= Φ2.3

⎛
⎜⎜⎜⎜⎜⎜⎝

xj

ẍj

yj−1

yj−2

...
yj−r−1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

(47)
where P and R are defined in (20) and Q is defined in (39).
If r = 0, the discrete map has the form(

xj+1

ẍj+1

yj

)
=

⎛
⎝ P + RBD1C1 RBD1C2 RBD2

A2P + QBD1C1 QBD1C2 QBD2

C1 C2 0

⎞
⎠

︸ ︷︷ ︸
= Φ2.3

(
xj

ẍj

yj−1

)
.

(48)
The system is asymptotically stable if the eigenvalues of
the monodromy matrix Φ2.3 in (47) or (48) are in modulus
less than one. The corresponding stability diagram is
presented in Fig. 7 for a = 0.2 with different r and ε. Note
that the case ε = 0 gives Model 1.3, and the corresponding
stability boundaries are identical to that of Model 1.3.
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Fig. 8. Stability diagrams for the different models. Parameters: a = 0.2, τ = 1 (for models 1.1 and 2.1) and r = 1 (for
models 1.2, 1.3, 2.2 and 2.3).

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

Stable

Unstable

r = 1
r = 2

r = 5

p

d

Model 2.3 (ε = 0.2)

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

Stable

Unstable

ε = 0

ε = 0.2

ε = 0.5

ε = 1

Model 2.3 (r = 1)

p

d

Fig. 7. Stability boundaries for (41) for different delay
parameters r (left) and for different ε (right) with
rh = τ = 1 and a = 0.2.

4. RESULTS

Stability diagrams to the different models listed in table
1 are summarized in Fig. 8. The cases, when the signal of
the accelerometers is fed back continuously without delay
(Model 2.0) results in a system, that cannot be stabilized,
if the open loop system is unstable (i.e., if a < 0). If
signal of the accelerometers is fed back continuously with
feedback delay (Model 2.1), then the equation of motion
is an AFDE, and the system is unstable with infinitely
many unstable poles. This strong instability is however
reversed if the sampling effect of a (digital) controller is
also considered in the model. A detailed study about this
phenomenon for first order delayed, neutral and advanced
scalar equations were presented in Insperger et al. (2010).
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Vyhĺıdal, T., Michiels, W., Źıtek, P. & McGahan, P.
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