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Abstract: The effect of periodic gain variation on the stability and robustness of
digitally position controlled machines is investigated. Time delay and sampling
effect of the control are included in the model. A discrete map is constructed that
describes the dynamics of the digitally controlled system. The destabilizing effect
of the time delay is shown by numerical examples. In order to improve stability
properties, the control gains are varied according to the act and wait principle:
they are switched between a constant value (act) and zero (wait). It is shown that
the act and wait method leads to significant improvements in stability and also
decreases the position error.
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1. INTRODUCTION

Position control is a frequent mechanical control-
ling problem in robotics. The aim is to drive the
robot arm into a desired position. Time delays
in information transmission often arise in control
systems, e.g., in remote control. This delay is
constant and may vary from 10−6 to 1 second
depending on the distance between the controlled
robot and the controller, e.g. in master/slave sys-
tems. Consequently, this information delay is of-
ten negligible, but it may be crucial, for example,
in space applications (see Vertut et al., 1976) or
in systems controlled through the internet (Munir
and Book, 2002). Caused by the delay of the con-
trol feedback, the governing equation is a delay-
differential equation (DDE). DDE’s usually have
infinite dimensional phase spaces (Hale and Lunel,
1993), therefore the linear stability conditions for
the system parameters are complicated and often
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do not have an analytical form. However, there
exists several methods to analyze control systems
with delayed feedback (Stepan, 1989, Just et al.,
1999, Klein and Ramirez, 2001, Olgac and Sipahi,
2002, Asl and Ulsoy, 2002).

To achieve a clear picture about the behavior of
the control, digital effects, like sampling, should
also be included in the mechanical model. Sam-
pling is a kind of delay in information transmission
that often leads to unstable oscillations (Raibert
and Craig, 1981, Craig, 1986, Stepan and Haller,
1995, Kollar et al., 2000)). Analytical investiga-
tion of simple models with 1 degree of freedom
(DOF) play a central role in understanding tech-
nical phenomena and forming the common sense
in design work (Insperger and Stepan, 2004).

Gain parameters and sampling time do not always
provide stable motion and fast settling time, since
these parameters are often hedged by other techni-
cal conditions. For these cases, periodic variation
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of the gains may stabilize or speed up the control
(Khargonekar et al., 1985, Savkin and Petersen,
1998, Wolfe and Speyer, 2003). The idea of sta-
bilizing by parametric excitation comes from the
classical example of the pendulum: the upper posi-
tion of a pendulum can be stabilized by vibrating
its pivot point (Insperger, T., Horvath, R., 2000).

Due to the time periodic gains, the control system
becomes time periodic. In this case, the infinite
dimensional Floquet theory should be used for dy-
namic analysis. Even for simple time periodic de-
layed systems, like the delayed Mathieu equation,
stability criteria have no closed form (Insperger
and Stepan, 2002a). However, there exist sev-
eral approximation techniques for analyzing time
periodic delayed systems (Insperger and Stepan,
2002b, Bayly et al., 2003, Elbeyly and Sun, 2004,
Butcher et al., 2004).

One effective way for analyzing periodic DDEs
is the semi-discretization method (Insperger and
Stepan, 2002b, Elbeyly and Sun, 2004). The point
of the method is that only the delayed terms are
discretized, the actual time domain terms are left
in the original form, and the DDE is approxi-
mated by a series of ordinary differential equations
(ODEs). The sampling effect of digital controls
gives also a semi-discrete nature to the system:
although, the system is delayed, the connection
between states at discrete sampling instants can
still be described by ODEs. This serves a finite
dimensional discrete map model similarly to the
semi-discretization method.

In this paper, the effect of periodic gain varia-
tion on the stability and robustness of digitally
position controlled machines is investigated in the
presence of time delays larger than the sampling
time itself. The “act and wait” control technique is
used: the gains are constant for the first sampling
period (act), then they are zero for a certain
number of samplings (wait), then they are con-
stant again, etc. The effect of time delay and the
periodic gains are investigated via stability charts
and optimal controls are given. It is shown that
the “act and wait” control technique improves the
stability properties, and may lead to dead-beat
control. Furthermore, the position error caused by
the Coulomb friction can significantly decrease by
this method.

2. MECHANICAL MODEL, STABILITY AND
ROBUSTNESS

The 1 DOF mechanical model of position control
is shown in Figure 1. The position of mass m is
sensed and a control force Q is applied to push the
mass into the desired zero position. The system is
governed by the differential equation

Fig. 1. Control model.

Fig. 2. Sampling effect with delay.

mẍ(t) = Q(t, xt, ẋt), (1)

where xt(ϑ) = x(t + ϑ) and ẋt(ϑ) = ẋ(t + ϑ) with
ϑ ∈ [−σ, 0] represent delay effects of the feedback.

Let the sampling time be ∆t, and the delay of the
control be τ = n∆t, where integer n is the delay
parameter. The control force Q is updated at each
sampling instant tj = j∆t (j ∈ Z) by the delayed
discrete values x(tj−n) and ẋ(tj−n) (see Figure 2):

Q(t, xt, ẋt) = −Pjx(tj−n) − Dj ẋ(tj−n),
t ∈ [tj , tj+1), (2)

where Pj+k = Pj , Dj+k = Dj are the periodic
control gains. Integer k is the gain period param-
eter, that is, the gains are periodic with period
T = k∆t. Now, the governing equation reads

mẍ(t) = −Pjx(tj−n)−Dj ẋ(tj−n), t ∈ [tj , tj+1).
(3)

Use the notations xj = x(tj) and ẋj = ẋ(tj) for
all j ∈ Z. Stepwise integration of equation (3)
gives the velocity and the displacement for the
next sampling instant. Setting t = tj+1 gives the
following formula for two succeeding samples:

ẋj+1 = ẋj − Pj∆t

m
xj−n − Dj∆t

m
ẋj−n, (4)

xj+1 = xj + ẋj∆t − Pj∆t2

2m
xj−n − Dj∆t2

2m
ẋj−n.

(5)

Equations (4) and (5) can be represented as the
discrete map

yj+1 = Ajyj , (6)

where yj = col(xj ẋj xj−1 ẋj−1 . . . xj−n ẋj−n)
and the coefficient matrix is

146



0 1 2 3

x 10
4

0

200

400

600

800

1000

P [N/m]

D
 [N

s/
m

]

ρ=1 ρ=0.95

ρ=0.9

ρ>1 − unstable

n=1

0 1 2 3

x 10
4

0

200

400

600

800

1000

P [N/m]

D
 [N

s/
m

] ρ=1

ρ=0.95

ρ=0.9

ρ>1 − unstable

n=2

0 500 1000 1500 2000
0

100

200

300

P [N/m]

D
 [N

s/
m

]

ρ=0.95

ρ=1

ρ>1 − unstable

n=5

0 500 1000 1500 2000
0

100

200

300

P [N/m]

D
 [N

s/
m

]

ρ=1

ρ>1 − unstable

n=10

Fig. 3. Stability charts for different delay parameters n. Stability boundaries (ρ = 1) are denoted by
thick lines.

Aj =
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2m −Dj∆t2

2m
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0 1 0 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 0 0 0
0 0 0 0 . . . 0 1 0 0




.

(7)
Note, that the larger the delay parameter n is, the
larger the size of the discrete map is. For stability
analysis, the Floquet transition matrix over the
period T = k∆t is determined by coupling the
solutions:

Φ = Ak−1Ak−2 . . .A0. (8)

Now, the stability of the control is determined by
the eigenvalues of matrix Φ. If these eigenvalues
are inside the unit disc of the complex plane, then
the control is asymptotically stable (Kuo, 1977,
Lakshmikantham and Trigiante, 1988). The criti-
cal (largest in modulus) eigenvalue µ1 determines
the robustness of the control. For a stable control,
the value |µ1| characterizes the decrease of the
error ratio over gain period T : xj+k < |µ1|xj .
Introduce the decrease index ρ = |µ1|1/k that
characterizes the average error decrease ratio over
the sampling period ∆t. Controllers with different
gain period parameters k can be compared via the
decrease index.

For the future investigations, the following mass
and sampling time will be used: m = 10 kg,
∆t = 0.01 s, while the delay parameter n and
gain period parameter k will be changed. One aim
during the control design is to find the optimal
control parameters, i.e., the control gains, where
the decrease ratio is minimal. In the presence of
Coulomb friction force C, the position error is ∆ =
C/Pmax, where Pmax = maxi(Pi). Another aim of
the control design is to decrease the position error,
that is to increase Pmax.

3. CONTROL WITH CONSTANT GAINS

If the gain period parameter k is set to 1, then
the gains are constant during the control. For this
autonomous case, stability charts are presented
in Figure 3 for different delay parameters n. The
charts were determined via point-by-point evalu-
ation of the transition matrix (8) over a 500 ×
500 sized grid, and a contour plot was used to
obtain the transition curves associated to different
decrease indices ρ = 1, 0.95, 0.9, etc. Obviously,
the stability boundaries are the transition curves
where ρ = 1.

It can be seen, that the larger the time delay is,
the less the area of the stable domain is (note the
different scales of the axes). The optimal gains,
where the decrease index ρ is minimal, were also
determined numerically. These optimal gains are
denoted by black points in Figure 3 and are also
presented in Table 1. It can be seen, that the larger
the time delay is, the smaller the optimal decrease
index is, that is, the stability and the robustness of
the control worsen with increasing feedback delay.
Our numerical result is checked at n = 1, where
ρ = 2/3 is an analytically proven value (Stepan et
al., 1990).

It can also be observed in Figure 3 and in Table 1,
that the optimal proportional gain decrease, that
is, the position error increase with increasing delay
parameter n.

Table 1. Optimal control gains and the
corresponding decrease indices for dif-

ferent delay parameters n.

n P [N/m] D [Ns/m] ρ

1 3706 314.8 0.6667

2 1291 186.1 0.7887

5 263.1 84.04 0.8987

10 72.01 43.97 0.9457
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Fig. 4. Stability charts for delay parameter n = 5 with different gain period parameters k. Stability
boundaries (ρ = 1) are denoted by thick lines.

4. CONTROL WITH PERIODICALLY
VARYING GAINS

Now, the gain parameters will be modified as

Pj = gjP, Dj = Dgj , (9)

where gj is a switching function:

gj =
{

1 if t ∈ [t0 + hT, t1 + hT ), h ∈ Z

0 if t ∈ [t1 + hT, tk + hT ), h ∈ Z

(10)
The control is switched on for a sampling period
[t0, t1) and it is switched off for the remaining k−1
number of sampling intervals, i.e., for [t1, tk). This
is the act and wait principle of control systems
with delayed feedback.

Stability charts for delay parameter n = 5 and
different gain period parameters k are presented
in Figure 4. The optimal gains with minimal ro-
bustness index are denoted by black points and
are also presented in Table 2. For gain period
parameters k = 1, 2, . . . , 5, there are no significant
changes in stability properties, only a slight decay
of the optimal decrease index can be observed,

while the optimal proportional gain increases def-
initely resulting smaller position error. In these
cases, the duration of waiting (zero gains) is less
than the time delay.

For the case k = 6, there is a drastic change in the
stability chart. The stable domain increases by a
factor of 10 (note the scale of the axes) resulting

Table 2. Optimal control gains and the
corresponding decrease index for delay
parameters n = 5 and different gain

period parameters k.

k P [N/m] D [Ns/m] ρ

1 263.1 84.04 0.8987

2 645.3 189.3 0.8881

3 1237 327.4 0.8736

4 927.6 310.3 0.9036

5 743.0 300.2 0.9222

6 16667 1917 0

7 14286 1785 0

8 12500 1688 0

9 11111 1611 0

10 10000 1550 0

11 9091 1500 0

12 8333 1458 0
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Fig. 5. Simulations for delay parameters n = 5 and different gain period parameters k.

a significant improvement in position error, and
the optimal control gains result in zero decrease
index (ρ = 0), that is, in a dead-beat control. For
k > 6, the optimal control still results in dead-
beat control, but the area of stable parameter
domains gets slightly smaller. Also, the optimal
proportional gains get smaller with increasing k
when k > 6. This shows, that both the stability
condition and the position error are optimal for
the case k = 6.

Numerical simulations were carried out according
to equation (6) for different gain period parame-
ters k with the associated optimal gains given in
Table 2. The simulation plots are shown in Figure
5. As it was predicted by the decrease indices in
Table 2, the best control was obtained for the case
k = 6.

5. CONCLUSION

The PD position control of a one degree of free-
dom system was investigated for the case when the
gain parameters are varied periodically according
to the act and wait principle. It was shown, that in
spite of the destabilizing effect of the time delay,
the control system can be optimized by prop-
erly chosen gain values and properly chosen gain
variation period. A qualitative improvement in
stability and position error was found for the case
when the gain period parameter k is just larger
than the time delay parameter n. The results were
confirmed by simulations.
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