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Abstract. Remote control of robots often leads to the presence of time delay in the in-
formation transmission of the signals in the control loop. Analytical methods are
available for the calculation of the maximum critical time delays and control gains when
stationary end positions of robots, or constant contact forces between actuators and envi-
ronment are still stable. When the desired trajectory is periodic, or the desired contact
force varies periodically, the non-linearities of the robotic structure take an important
role even in the local stability behavior about the desired motion. The non-linear char-
acteristics and the periodic path together lead to parametric excitation, i.e., the stiffness,
damping and gain parameters may vary periodically in time. The stability behavior of
these systems become intricate in the presence of great time delays. Stability charts are
constructed which explain the stability properties of remote periodic force control.

1 Introduction

The design of robot structures and their control usually neglects the presence of time delays.
This approach is often acceptable, in spite of the fact, that time delays always appear in real
structures. There are three important sources of these delays: (1) the sampling time of the
digital controller; (2) the delay of the signals in the information transmission system; (3) the
mechanical structure itself. In case (1), the sampling delay is usually in the range of 10-3 –10-2

seconds and it is combined with a so-called zero order holder. In case (2), the time delay is
constant and may vary from 10-6 to 1 second depending on the distance between the controlled
robot and the controller, e.g. in master/slave systems. Consequently, this information delay is
often negligible, but it may be crucial, for example, in space applications (see Vertut et al.,
1976). In case (3), time delay may arise when the actuator is in elastic contact with the envi-
ronment along a contact surface (see Stépán, 1997), and the delay is inversely proportional to
the relative velocity of the contact surfaces. In this study, case (2) is examined only, but the
results can partly be extended for the digital control case (1) due to the physical similarities
between the two cases.

There are existing methods to estimate the critical values of the delays in case of robot po-
sition/force control when the desired position or contact force is fixed in time (see Stépán and
Steven, 1990). The linear variational system of the equations of motion at a trivial solution
leads to a system of linear autonomous differential-difference equations. In these equations,
the time delay is responsible for the presence of the difference in time, while the differential
part comes from the time derivatives in Newton’s laws. In spite of the finite degrees of free-
dom, this system has an infinite dimensional nature, its phase space is infinite dimensional in
mathematical sense. Still, the linear system allows us to get conclusion on the local stability of
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the robot control strategy. These investigations are supported by methods developed for
autonomous, i.e. time independent systems.

When closed trajectories, periodic motion, or periodic time-varying contact forces are de-
sired, the non-linearities of the robot manipulator structure and those of its elastic and viscous
elements result time-varying parameters in the linear system for the small perturbations of the
desired motion. If the desired motion in time is ‘slow’, there is not much difference with re-
spect to the stability limits regarding time delays. In other words, the greater the time delay in
the information transmission is, the slower the motion should be for stable operation. This is
observed when elderly people having slow reflexes (consequently great time delays) are ad-
vised to move slower to avoid fall-over, i.e. to maintain stability (see Cooper and Kojeca,
1994).

The stability properties of those systems where relatively fast periodic motion has to be
controlled remotely is still quite unexplored. The analytical study of these systems may partly
explain unexpected losses of stability, while it may also lead to new stable control parameter
domains since the time-periodic parameters sometimes stabilize otherwise unstable equilibria
(see Insperger and Horváth, 2000). However, this physical observation has not been approved
yet in case of delayed or retarded dynamical systems.

As a general introductory example, consider the remote control of a robot having the well-
known general nonlinear system of equations of motion in the form

),(),()( yyQyyfyyM &&&& =+ ,

with the general coordinate vector y, the general mass matrix M, coriolis, centrifugal, gravi-
tational, elastic, viscous and other forces all included in f, and with the control force denoted
by Q (see Spong and Vidyasagar, 1989). If the desired motion is periodic with period T, that
is yd(t) = yd(t+T ), and the control force is constructed from the computed torque Qd(t) and
the simplest PD compensator, the linear system of equations of motion with respect to the
small perturbation x = y– yd assumes the form

)()()()()()()()()( ττ −+−=++ ttttttttt xDxPxCxBx &&&& .

The coefficient matrices may all be periodic with period T originated in the desired motion
period. Due to the information delay τ occurring in the control, the position and velocity er-
rors contain this delay in the compensator. Thus, the above system is a parametrically excited
delay-differential equation. In the subsequent sections, preliminary experimental work, a new
stability criterion, and stability charts for remote periodic force control are summarized.

2 Preliminary experiments

The Newcastle robot was an excellent tool to study hybrid position/force control strategies (see
Stépán and Steven, 1990). In case of a one degree of freedom force control implementation,
different digital sampling delays were introduced to check the critical proportional gain Pcr

applied for the force error at the limit of stability. The mechanical model of the structure is
presented in Figure 1. The precisely identified parameters of the robot are the mass m = 2500
[kg], the viscous damping factor c=32 [Ns/mm], and the linear stiffness of the force sensor k =
44.5 [N/mm]. The experimental stability chart presented in the plane (τ,P) of the delay and
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the gain parameters in see Stépán and Steven (1990) confirmed the analytical estimation for
the critical proportional gain Pcr:

)3/()2(0 τkcPP cr =<< .

For sampling times in the range 7.5–30 [ms], the critical gains are between 19 and 62. After
the loss of stability, the resulting vibration frequencies were in the surprisingly low range of
3.5–6 [Hz] in accordance with the estimated value

πτ /)6/( mcf = .

These results cannot be extended directly for great time delays and time periodic contact
forces. This gives the motivation for the following analysis.

3 Stability analysis of remote force control

Let us consider the non-linear spring characteristic k y + k3 y3 in the force control model of
the Newcastle robot as shown in Figure 1. The softening spring has a negative coefficient k3 =
–6.6 [N/mm3].

Figure 1. Mechanical model

The equation of motion of force control reads (see Craig, 1986)

)(3
3 ede FQPFykykycym ++−=+++ &&& , (1)

where the force error Fe is the difference of the sensed and the desired forces

))()(()()()()()( 3
3

3
3 ττττ −+−−−+−=−= tyktyktyktyktFtFtF dddse ,

and the computed torque assumes the form

)()()()()( 3
3 tyktyktyctymtQ ddddd +++= &&& .

For the small perturbation x defined by y = yd – x, the substitutions and linearization leads to
the linear time-periodic delay-differential equation

)())(3)(1()())(3()()( 2
3

2
3 ττ −−+−−=+++ txtykkPtxtykktxctxm dd&&& .

Introduce dimensionless time t by t = t / τ, and by abuse of notation, drop the tilde immediately.
We get the following equation
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)1())1(31()(4)1( 222 −−+−−= txtyrfP dknτπ , (2)

where

π2/)/( mkfn = is the natural frequency of the undamped, uncontrolled oscillating system,

)2/( kmc=ζ is the relative damping factor,

kkrk /3= is a ratio characterising the spring non-linearity.

Clearly, for linear spring characteristic rk = 0, the system is time independent, and the sta-
bility chart can be given in closed form as explained in Section 2 for the preliminary
experiments (see Figure 2).

Figure 2. Stability charts for linear spring and various damping values

The stability of fixed point x(t) ≡ 0 of equation (2) for a non-linear spring with rk ≠ 0 can-
not be determined in closed form. The delayed term x(t–1) is approximated as follows

ϑϑϑ dwtxtx n∫
∞−

⋅+≈−
0

)()()1( , (3)

where wn(ϑ) is a special weight function series coming from the product of a polynomial and
an exponential expression
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The function wn(ϑ) satisfies the following properties

1)(
0

=∫
∞−
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∞→

ϑδϑnn
w ,

where δ is the Dirac distribution. It was proved by Fargue (1973) that (3) converges to x(t–1)
as n tends to infinity. Figure 3 shows the weight function with parameters n = 2, 10, 50, 100.
It can be seen, that the greater the approximation parameter n is, the more correct the ap-
proximation is.
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Figure 3. Weight functions

Approximation (3) can be applied in (2). A long calculation (derivations and partial inte-
gration) yields a finite dimensional system of differential equations with a time periodic
coefficient matrix

)()()(
d
d ttt
t

zAz = , (4)

where z(t) = col( z1 z2 ... zn+3 ) and c (t) = 4π 
2 (1+3 rk yd 

2(t)) in the coefficient matrix

System (4) is asymptotically stable if and only if all the characteristic multipliers of the
principle matrix C are in modulus less than one, that is they are inside the unit circle of the
complex plane. In general, the principal matrix can not be calculated in closed form. How-
ever, if the desired contact force is piecewise constant, the function c(t) is also piecewise
constant
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In this case, the principal matrix takes the form

)exp()exp()exp()exp( 1234 tttt 1234 AAAAC =
where the functions c(t) and c(t–1) are constant in each time interval of length ti belonging to
the coefficient matrix Ai (i=1,2,3,4 and t1+ t2+ t3+ t4 = T ).
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Figure 4. Stability chart for constant desired contact force

Figure 5. Stability charts for time periodic desired contact forces with various periods T
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4 Conclusions

The system is analysed with the parameters of the Newcastle robot (see in Section 2), the
modal parameters are fn = 0.67 [Hz], ζ  = 1.52. The desired periodic contact force switches
between F1=21.4 [N], F2=44.5 [N] in (5). The stability charts are shown in the (P,(τ fn)) plane
of dimensionless parameters, for various time periods (T = 1, 2, 4, 8 [s]). The stable points are
marked with crosses in the stability charts of Figures 4 and 5 In case of constant desired force,
the n = 100 approximation gives an acceptable result in the presented parameter domain with
errors under 1% relative to the exactly known stability limit (solid line in Figure 4).

As Figures 5 clearly show, the maximal gains decrease for increasing time delays. For
long time periods T, the stability properties approach the stationary case shown in Figure 4.
For small periods T, i.e. for fast changes in the desired contact force, certain ranges of the
delay (and natural frequency) show great improvement in the stability properties. These ef-
fects, together with the periodic changes in the contact force may greatly help to improve
accuracy limited by the Coulomb friction in the structure.
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