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ABSTRACT 
The stability charts of high-speed milling are constructed. 

Non-conventional unstable regions and vibration frequencies 
are identified. These are related to flip bifurcation, i.e. period 
doubling vibrations occur apart of the conventional self-excited 
vibrations typical for turning or low-speed milling with 
multiple active teeth. A new stability criterion is proposed and 
applied for the delayed parametric excitation model of milling. 

 
INTRODUCTION 

The introduction of the so-called regenerative effect 
resulted in a breakthrough in the modeling of machine tool 
chatter. This effect is related to the cutting force variation due 
to the wavy workpiece surface cut one revolution ago. After the 
extensive work of Tlusty et. al. (1962) and Tobias (1965), 
regenerative effect became the most commonly accepted 
explanation for machine tool chatter (see Moon, 1998). The 
corresponding mathematical models are delay-differential 
equations (DDE). General stability criteria for these equations 
in autonomous cases were given and applied for advanced 
cutting models of turning by Stépán (1989, 1998). The study of 
nonlinear phenomena during the turning process showed the 
existence of unstable periodic motions about the stable 
stationary cutting (a so-called subcritical Hopf bifurcation) 
which was shown experimentally by Shi and Tobias (1984) and 
analytically by Stépán and Kalmár-Nagy (1997). 

Modeling of the milling process requires the description of 
a time-dependent resultant cutting force which varies with the 
number of active teeth. This may show a small periodic 
component only if this number is great. For these cases, the 
conventional time-averaging was used in the classical literature 
(see Tobias, 1965) and so the stability results were similar to 
those of turning. From mathematical view-point, this averaging 

can hardly be justified since significant errors (even qualitative 
ones) can occur due to the time-dependent parameters in the 
model (see Hale and Lunel, 1993, Farkas, 1994). A more 
precise model of milling leads to parametric excitation in the 
regenerative effect. The equation of motion is a DDE with 
periodic coefficients, and the stability criteria can not be given 
in closed form even in the linear case. Minis and Yanushevsky 
(1993) used the first harmonics of the time-periodic parameters 
and showed slight deviations in the stability of milling relative 
to the results with the time-averaging method. Budak and 
Altintas (1998a, 1998b) used 3rd order harmonic balance in the 
milling problem. Seagalman and Butcher (2000) used harmonic 
balance method with much more harmonics and found greater 
deviations in some narrow parameter domains. The results were 
applied for turning where the system stiffness was varied 
periodically. The most sophisticated milling models of 
Balachandran and Zao (2000) were analyzed by extensive 
simulation, and also showed some deviations in the stability 
results. 

Still, there are no reliable analytical results for the stability 
of linear time-dependent DDE models which could be used as 
reference for the analysis of milling dynamics. Clearly, the 
results of Davies et al. (2000) for highly interrupted cutting 
could take this role in the limit case of high speed milling with 
a single tooth cutting a thin workpiece. The models of high-
speed milling with 2 or 3 active teeth require new methods 
which finally explain the transition between the two stability 
charts related to the two extreme models, i.e. the discrete map 
of highly interrupted cutting and the autonomous DDE of 
turning. The results explain the appearance of flip bifurcation 
in the milling process which is a qualitatively new phenomenon 
compared to the dynamics of turning. 
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MECHANICAL MODEL OF MILLING 
A 1 degree of freedom mechanical model of the milling 

process can be seen in Figure 1. The variational system around 
the stationary periodic motion of the milling tool can be written 
in the following form 
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where x(t) is the position of the tool edge at the time instant t, 

mkn /=ω  is the natural angular frequency, )2/( nmc ωζ =  
is the relative damping factor and m is the mass. ∆Fx(t) is the x 
component of the cutting force variation, and because of the 
regenerative effect of cutting, it depends on the difference of 
the present and the delayed tool position 
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Here, w denotes the chip width, h(t) is a periodic function with 
the tooth pass period τ according to the time varying number of 
the working teeth, and depends on the geometry of milling 
through the parameters tool diameter D, workpiece width B, 
difference e between the centerlines of the tool and the 
workpiece, number z of teeth. 

In this paper we investigate the case of interrupted 
machining when the tool loses the contact with the workpiece 
for certain time intervals. In these time intervals, h(t) is zero, 
while in case of contact, it takes (approximately) a constant 
value 
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Figure 1. Mechanical model of milling 

 
Putting (2) into (1), the equation of motion reads the form 
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This is a retarded differential equation with time periodic 
coefficient. The stability of the trivial solution of equation (4) 
(i.e. the stability of stationary periodic motion of the tool) can 
not be analyzed in closed form. The time-periodic delay system 
can either be approximated by a series of autonomous DDEs, 
or by a series of time-periodic ordinary differential equations. 
We choose the latter way by approximating the delayed term as 
follows 
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where wn(ϑ) is a special weight function series coming from 
the product of a polynomial and an exponential expression 
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The function wn(ϑ) satisfies the following properties 
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where fδ  is the Dirac distribution. Fargue (1973) proved that 
(5) converges to x(t–τ) as n tends to infinity. 

 
Figure 2. Weight function 

 
Figure 2 shows the weight functions for parameters n = 2, 

10, 50, 100, 200 and τ =1. It can be seen, that the greater n is, 
the more correct the approximation is. The convergence looks 
slow, but without going into the details of the comparison of 
different approximations used for time-dependent DDEs, the 
authors find the above approach to be the only reliable and 
accurate method for stability analysis. This is especially true for 
systems where the time-dependent parameters have large 
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amplitudes relative to the mean values, as it is in case of 
milling with low number of active teeth. 

Apply approximation (5) with a fixed finite n in the 
equation (4), and introduce the new variables y1, y2, ..., yn+3 in 
the following way 
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the derivative of y3(t) with respect to the time t can be 
calculated via integration by parts after the substitution of (6) in 
(10) 
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This time, the second term in (12) is defined as the subsequent 
new variable 
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where similarly again 
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After the introduction of all the new variables in the same way, 
and calculating their time derivatives via integration by parts, 
the degree of ϑ decreases each time by 1, till we arrive back to 
y1(t) at the derivative of yn+3(t) 
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The relationship between the new variables defines a finite 
(n+3) dimensional system of differential equations with a τ 
periodic coefficient matrix 
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where y(t) = col(y1 y2 ... yn+3) and 
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System (16) is asymptotically stable, if and only if all the 
characteristic multipliers denoted by µj (j=1,2,...n+3) are in 
modulus less than one, that is, they are inside the unit circle of 
the complex plane. In general, the characteristic multipliers 
cannot be calculated in closed form. However, the coefficient 
matrix A(t) in (16) is piecewise constant in accordance with the 
function h(t) 
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The characteristic multipliers are the eigenvalues of the 

principal matrix C = exp(A2t2)exp(A1t1) (see Farkas, 1994). In 
critical cases, the relevant multiplier is in modulus 1, i.e. 

11 =µ , and the frequencies in the corresponding vibration can 
be found among the imaginary parts 
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of the characteristic roots λ = (lnµ)/τ. The lowest 
ω ∈ [π/τ,2π/τ) of these frequencies have a central role in 
identifying the kind of loss of stability discussed in the 
subsequent section. 

 

STABILITY CHART 
We analyzed the case with the fixed parameters: m = 0.1 

[kg], ζ = 0.02, ωn = 3456 [Hz] , K = 400 [N/mm2], t1/τ = 0.7. 
The horizontal axis is chosen for zΩ, because the tooth pass 
period τ = 1/(zΩ) depends on the number of teeth z. The 
precision of our stability analysis depends on zΩ for a constant 
n: the greater zΩ is, the more accurate the result is. In case of 
turning with zΩ > 20 [krpm], the n = 200 approximation gives 
already an acceptable stability chart with errors under 5% 
relative to the exactly known stability limit. 

The numerical calculation of the relevant characteristic 
multipliers shows two kinds of bifurcation phenomena at the 
stability limits (see Figure 3). At the solid curves, the relevant 
characteristic multipliers are complex pairs passing through the 
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unit circle presenting a secondary Hopf bifurcation, which is 
similar to the Hopf bifurcation of traditional regenerative 
chatter theory of turning processes (see Stépán and Kalmár-
Nagy, 1997). At the dashed curve, the relevant characteristic 
multiplier is real, and it passes through the unit circle at –1 
resulting a flip (or periodic doubling) bifurcation. This is the 
same phenomenon experienced by Davies et. al. (2000) for 
highly interrupted cutting based on a different mechanical 
model. 

 

 
Figure 3. Stability chart 

 
The wandering of the relevant characteristic multipliers is 

shown in Figure 4. Through the parameter points 1-2-3, the 
critical characteristic multiplier pair moves into the unit circle 
presenting a secondary Hopf bifurcation at point 2. Through 
points 3-4-5, the complex characteristic multiplier pair becomes 
real, then through 5-6-7, one of them moves out of the unit 
circle presenting a flip bifurcation at point 6. Through 7-8-9, 
the relevant real characteristic multiplier moves back into the 
unit circle presenting another flip bifurcation at point 8. 
Through 9-10-11, the two relevant real characteristic 
multipliers become a complex conjugate pair again, and 
decreases in modulus, while through 11-12-13, another 
complex characteristic multiplier pair moves out of the unit 
circle on the positive half of the complex plain presenting 
another secondary Hopf bifurcation at point 12. 

The dashed curve in the chart of Figure 4 presents the 
parameters where real characteristic multiplier occurs with 
multiplicity 2. This curve crosses the intersection of the two 

kinds of stability limits at 2' presenting a degenerate (co-
dimension 2) flip bifurcation (see points 1'-2'-3'). 

 

 
Figure 4. Displacement of relevant characteristic 

multipliers 
 
In case of flip bifurcation, the frequency of the arising 

vibration reads 
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that is, it depends linearly on the angular velocity Ω of the tool, 
and its lowest value is half of the parametric excitation 
frequency zΩ. In other words, the time period of the arising 
vibration is 2τ. The frequency lines are also shown in Figure 3. 
The first flip-lobe corresponds to k = 0, the second to k = 1. In 
the second case, the tangent of the line is 3 times greater than 
that of the frequency line above the first flip-lobe. 

 

DISCUSSION 
The stability investigation of the milling process is difficult 

due to the infinite dimensional phase space caused by the 
regenerative effect, and due to the parametric excitation caused 
by the time-varying number of active teeth. Via an 
approximation of the delayed term, the stability chart in the 
plane of the technological parameters, and also the essential 
frequencies of the arising vibrations at the loss of stability are 
determined. The analysis resulted a new unstable domain in 
case of high-speed milling associated with period doubling 
vibrations. If the ratio of time spent cutting to not cutting gets 
small and the damping is small enough, further new unstable 
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domains appear also at lower cutting speeds, similarly to the 
case of highly interrupted cutting explored by Davies et al. 
(2000). 
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